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Abstract

This doctoral research addresses the complexities of aerodynamic design for high-
performance fighter aircraft, focusing particularly on the prediction and analysis of
leading-edge vortices in delta-wing configurations. The study stems from the necessity
to enhance CFD methodologies for improving the fidelity of aerodynamic simulations,
which are crucial for designing and optimizing future combat aircraft. It aims to
contribute to the advancement of CFD by providing a more accurate, efficient, and
versatile tool for predicting the aerodynamic performance of future fighter aircraft.

The dissertation delineates the theoretical foundations of vortex-dominated flows and
the challenges in accurately simulating such phenomena, especially under high angles
of attack and transonic flight conditions. Results from CFD simulations are validated
against experimental data, employing both Unsteady RANS and scale-resolving simu-
lations to assess the applicability of current CFD methods. The simulations investigate
vortex-dominated flow, analyzing the patterns of leading-edge vortices, shock-vortex
and vortex-vortex interactions, with a particular emphasis on accurately predicting
the breakdown of leading-edge vortices. A theory and explanation for the occurrence
of this phenomenon is provided. It elucidates the reasons behind the inaccuracies of
RANS simulation predictions and identifies the limitations of the Spalart-Allmaras one-
equation turbulence model. Aiming to significantly improve its predictive capabilities
regarding vortex formation and breakdown, a straightforward modification to the SA
model is proposed, and the enhanced accuracy of the developed model is presented.
The model’s application to complex aircraft configurations showcases its potential to
impact the aerodynamic design process in academic research and industrial practice.

A novel aspect of this research is the integration of machine learning techniques to
optimize RANS turbulence models. By employing a CFD-driven machine learning
framework, specifically Gene Expression Programming, the dissertation innovates in
calibrating and enhancing turbulence models. This approach addresses the specific
aerodynamic challenges posed by delta wings and contributes broadly to the field of
aerodynamics by offering insights into the fundamental physics governing turbulent
flows. The developed one-equation RANS turbulence model represents a significant
step forward for understanding and predicting complex vortex flows, with implications
extending beyond aerospace engineering to include a wide range of fluid dynamics
applications.
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Zusammenfassung

Diese Doktorarbeit behandelt die Komplexität des aerodynamischen Entwurfs von
Hochleistungs-Kampfflugzeugen. Der Fokus liegt insbesondere auf der Vorhersage und
Analyse von Wirbelsystemen an Deltaflügel-Konfigurationen. Es ist notwendig, ak-
tuelle CFD-Methoden zu verbessern und ihre Genauigkeit für aerodynamische Strö-
mungen, welche für den Entwurf und die Optimierung zukünftiger Kampfflugzeuge
von entscheidender Bedeutung sind, zu erhöhen. Die Arbeit versucht zur Weiteren-
twicklung von CFD beizutragen, indem Sie ein genaueres und vielseitigeres Werkzeug
für die Vorhersage von aerodynamischen Strömungen bereitstellt.

Die Dissertation beschreibt die theoretischen Grundlagen von wirbeldominierten Strö-
mungen und die Herausforderungen bei der genauen Simulation solcher Phänomene,
insbesondere im hoch-Anstellwinkel und transsonischen Flugbereich. Es werden sowohl
instationäre RANS, als auch skalenauflösende Simulationen mit experimentellen Daten
verglichen, um ihre Anwendbarkeit zu bewerten. Die Simulationen untersuchen im
Wesentlichen 3 Phänomene: die Form von Wirbelschleppen, Stöße und Wirbel-Stoß-
Interaktionen. Dabei liegt der Schwerpunkt auf der präzisen Vorhersage des Wirbe-
laufplatzens. Eine neue Theorie erklärt das Auftreten von Wirbel-zerfall an der Flügel-
vorderkante. In diesem Zuge werden Gründe für Ungenauigkeiten von RANS-Simulatio-
nen erläutert und die Grenzen des Spalart-Allamaras Turbulenzmodells aufgezeigt. An-
schließend, wird eine einfache Modifikation des Spalart-Allamaras-Modells vorgeschla-
gen, welche die Aussagekraft in Bezug auf Wirbelbildung und -aufplatzen deutlich
verbessert. Die Anwendung dieses modifizierten Modells auf komplexe Flugzeug-Konfi-
gurationen zeigt, dass das Modell das Potenzial hat, den aerodynamischen Entwurf-
sprozess in der akademischen Forschung und der industriellen Praxis zu verbessern.

Ein neuartiger Aspekt dieser Forschung ist die Integration von maschinellen Lernver-
fahren zur Optimierung von RANS-Turbulenzmodellen. Durch den Einsatz eines CFD-
gesteuerten maschinellen Lernsystems, insbesondere von Gene Expression Program-
ming, bietet die Studie innovative Möglichkeiten zur Kalibrierung und Verbesserung
bestehender Turbulenzmodelle. Dieser Ansatz befasst sich mit den spezifischen aerody-
namischen Herausforderungen von Deltaflügeln und leistet einen umfassenden Beitrag
zur Aerodynamik, indem er Einblicke in die grundlegenden physikalischen Zusam-
menhänge turbulenter Strömungen bietet. Das entwickelte Ein-Gleichungs-RANS-
Turbulenzmodell stellt einen bedeutenden Fortschritt für das Verständnis und die
Vorhersage komplexer Wirbelströmungen dar, und hat Auswirkungen, welche über die
Luft- und Raumfahrttechnik hinausgehen und ein breites Spektrum von Anwendungen
der Strömungsdynamik umfassen.
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1
Introduction

This chapter serves as the introduction to the dissertation. It offers an in-depth explo-
ration of the background and motivations underpinning this study, as well as its scopes
and objectives. Additionally, the structure of the thesis is meticulously detailed, fur-
nishing a exhaustive roadmap for the reader.

1.1. Background and motivation
The development and design of an aircraft represents a complex intersection of aca-
demic and industrial research efforts. They are constrained by time and cost consid-
erations, scientific validity, market competition, and the necessity to meet pre-defined
requirements and targets. This task gains complexity as technology advances, global
competition intensifies, and requirements evolve. Consequently, increasing collabora-
tion between academia and industry is imperative to address pertinent scientific ques-
tions and promote further progress. This necessity is a key driver in developing this
research project that amalgamates these two perspectives towards a common goal.

Different aircraft types and mission profiles necessitate distinct characteristics. This
research focuses on high-agility and performance aircraft with notably stringent chal-
lenges. Agile military aircraft operate under extreme flight conditions characterized by
intricate flow fields, and often incorporate low aspect ratio wings with swept leading-
edges. The aerodynamic efficacy of these delta wings is significantly influenced by the
vortex-dominated flows originating at their swept leading-edges, underlining the im-
portance of understanding and precisely predicting the vortical flow system within the
aircraft design.

1.1.1. Advancements in fighter aircraft technology
In recent years, the aerodynamic design of future fighter aircraft has become a focal
point of advanced aeronautical engineering research. Hitzel et al., 2020 has specifically
addressed the multifaceted challenges and considerations in developing aerodynami-
cally efficient designs that meet the rigorous demands of modern combat scenarios.
Modern combat aircraft are mandated to encompass a broad spectrum of performance
metrics and maneuverability capabilities, as illustrated in Fig. 1.1a. Furthermore, the
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1.1 Background and motivation

design considerations extend to conforming with signature limitations, as evidenced
in Fig. 1.1b, alongside achieving specific operational ranges and payload capacities.
Recent analyses of mission scenarios have intensified the requirements for swift, dy-
namic controllability, especially at elevated angles of attack (AoA). Historically, many
advanced combat aircraft have adopted delta-wing configurations to benefit from the
slender design and the advantageous non-linear lift properties provided by leading-edge
vortex flows. The augmented lift and enhanced aerodynamic properties significantly
boost agility, particularly at low speeds, thus steering the widespread adoption of delta
wing platforms in designing various intricate configurations (Anderson, 2016).

Understanding and precisely controlling vortex flows is imperative, as these signif-
icantly influence the aircraft’s aerodynamic characteristics, affecting its agility and
response in various flight conditions. As depicted in Fig. 1.1a, numerous instabilities
and flow phenomena present significant challenges in extending the operational enve-
lope of fighter aircraft. Additionally, the influence of aircraft design parameters such
as planform, wing sweep, and leading-edge configurations on vortex behavior has to be
explored. The aim is to enhance the flight envelope regarding control power, maneu-
verability, and performance while maintaining acceptable stability, structural integrity,
and longevity. The design process requires exceptional precision across all disciplines
to meet these demands and aerodynamics plays a crucial role.

(a) Typical agility envelope and flow phenomena. (b) Maneuverability and signature triangle.

Figure 1.1: Design complexities of modern combat aircraft (inspired by Hitzel et al.,
2020).

A significant portion of aerodynamic research and development is devoted to explore
flow phenomena that become prominent as the angle of attack increases. The down-
stream movement of the flow detaching at the leading-edges culminates in the formation
of coherent vortical structures above the leading-edge, contributing substantially to the
lift force produced by the wing. The efficacy of these lift-augmenting wing vortices in-
tensifies with the angle of attack until these structures destabilize and disintegrate into
a turbulent state. This degradation in the coherence of the flow structure atop the
wing is noted to adversely impact the aerodynamic properties, precipitating abrupt
changes in the forces and moments imposed on the vehicle.
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As illustrated in Fig. 1.1, the expanded operational envelope of many contemporary
aircraft includes manoeuvres being conducted at transonic speeds, which also introduce
the phenomenon of shock waves interacting with leading-edge vortices. These shocks
arise from localized supersonic regions, and as the flow behavior evolves with an in-
crease in incidence, both the location and intensity of the shocks are subject to change.
These alterations can influence the overall flow dynamics and, by extension, impact
the aircraft’s performance during manoeuvres within this flight regime. Consequently,
a profound understanding of the flow behavior, particularly the interactions between
the shock and vortical flows, is paramount in aerospace research. Furthermore, pio-
neering research observed that the flow over the delta wing is unsteady, particularly
when leading-edge vortices transition into a turbulent state. This unsteadiness adds
layers of complexity to an already intricate flow behavior. Coupled with interactions
with the wing surface and other aircraft structures, aeroelastic effects follow, inducing
fatigue and, in extreme scenarios, precipitating catastrophic failure (Lambourne and
Bryer, 1961). This type of unsteady flow, known as buffet, concerns all aircraft con-
figurations incorporating swept edges into their design. Understanding the dynamics
of this unsteady force is pivotal to mitigating any resultant structural responses. This
holds paramount importance for the analysis of current complex fighter configurations
and the design of futuristic ones.

Notable aircraft within this category, depicted in Fig. 1.2, include the Concorde, the
Eurofighter and the Space Shuttle. Analogous considerations are also prevalent in
Unmanned Aerial Vehicles (UAVs) and Unmanned Combat Aerial Vehicles (UCAVs).
UCAVs, commonly referred to as combat drones, are unmanned aircraft designed for
roles including intelligence, surveillance, target acquisition, and reconnaissance. The
advent and proliferation of new UAV and UCAV technologies, particularly those adopt-
ing planforms where vortical dynamics are crucial, reemphasize the necessity for an
in-depth understanding of vortex flows.

Figure 1.2: Insights into delta wing aircraft configurations: Concorde, Eurofighter
and Space Shuttle created by OpenAI, 2024.

Given the dualistic nature of these vortical flows, exhibiting both positive and nega-
tive impacts on aircraft aerodynamics, extensive research and development have been
undertaken to dissect and ameliorate wing behavior under diverse flight conditions.
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A challenge is thus posed for researchers in both experimental and numerical fields.
Historically, aerodynamic flow behavior were predominantly studied using experimen-
tal methodologies, including extensive wind tunnel testing and flight tests. However,
flight tests, offering the highest accuracy by evaluating the device in its actual applica-
tion environment, are feasible only after a prototype has been evaluated, constructed,
and deemed safe to fly. Consequently, they incur the highest costs in both time and
money. Therefore, although less accurate due to boundary condition limitations, wind
tunnel tests are more cost-effective and can be conducted with preliminary designs to
elucidate flow dynamics across various flight conditions.

An increasingly instrumental tool in investigating intricate flow regimes is Compu-
tational Fluid Dynamics (CFD). CFD produces numerical solutions for a set of par-
tial differential equations governing fluid motion. Utilizing discrete methodologies,
CFD’s primary aim is to qualitatively and quantitatively decode physical phenom-
ena within the flow, subsequently contributing to advancements in engineering design.
Over time, CFD has emerged as an essential complement to conventional wind tunnel
experiments, pivotal in designing and developing contemporary high-performance air-
craft. Specifically, CFD simulations, especially those targeting vortical flow over delta
wings, continue to accumulate significant interest. Numerical simulation offers the
best turnaround time, albeit at a compromise in accuracy quality, contingent on the
chosen numerical methodology. Each method has then its advantages and drawbacks,
primarily evaluated in terms of accuracy and cost, both temporal and economic.

CFD’s role in understanding vortical flows is critical for advancing future air-vehicle
concepts. Unconventional wing planforms demand the application of high-fidelity CFD
to predict their high angle of attack aerodynamics accurately. Hitzel et al., 2020 has
critically reviewed the existing knowledge landscape in vortex dynamics and pinpoints
specific lacunae that necessitate attention for the discipline’s advancement. The im-
provement of CFD tools (and experimental facilities) is imperative to facilitate more
precise analyses and the assimilation of intricate flow characteristics into the design
schema. A more profound and extensive understanding of vortex flows, with enhanced
simulation capabilities, will catalyze the formulation of more resilient and pioneering
aerodynamic configurations. Such progressions will substantially strengthen the per-
formance and adaptability of future fighter aircraft, ensuring their continued efficacy
and capability in the progressively complex scenario of aerial warfare. This necessity is
underscored in various ongoing development initiatives, notably the Future Combat Air
System (FCAS) project, an European defense initiative, which is providing financial
support for this doctoral research.

1.1.2. Challenges in CFD: complex flow phenomena

Since the mid-1960s, the advancement of CFD methods for computing flow has un-
dergone remarkable progress. The advancement in high-speed computation has revo-
lutionized engineering analysis across various fields. This evolution has been propelled
by the substantial growth in computer memory, coupled with notable advancements in
numerical algorithms for solving fluid-dynamic equations.
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CFD has become an increasingly valuable tool for understanding aerodynamic flow be-
havior. It minimizes the need for expensive, large-scale testing programs by identifying
regions of interest in flow regimes before physical testing begins. Integrating CFD with
experimental testing in research and industrial design processes is gaining recognition
among scientists and engineers. CFD has played a pivotal role in augmenting the un-
derstanding of flow physics, especially in turbulence. It enables the examination of
situations that may be impractical in wind tunnels, such as more realistic flight con-
ditions and scenarios. This advancement, in turn, translates into reducing project risk
and a heightened analysis of system performance before flight. Additionally, it opens
the door for developing tools capable of understanding unexpected flight behavior that
may arise during flight tests.

Although computations of viscous flow under cruise conditions are now routine, accu-
rately predicting complex effects at high angles of attack remains a formidable chal-
lenge. Key challenges, as delineated in previous studies (Hitzel, 2022a,b; Lovell, 2001),
are here briefly outlined.

• The computational methods for predicting vortex flows have to be validated.

• Tools enabling the rapid computations of vortex flows around complex configu-
rations are in research stage.

• Accurate predictions of the strength and position of the primary vortex core
require a suitable grid and turbulence model.

• Refinement studies should be conducted to demonstrate grid convergence.

• Prediction of vortex breakdown for complex configurations proves challenging.

• Consideration of scale, compressibility, and unsteady effects is essential.

Challenges then include the accurate modeling of turbulence and transition in vortical
and extensively separated flows, alongside the need for suitable numerical algorithms,
and the difficulties associated with generating grids that facilitate precise simulation
of the flow field (Cummings et al., 2003a). The inherent complexities of delta wing
flow directly impact turbulence stresses and scales, necessitating ongoing development
and improvement in prediction methods. Addressing these challenges is crucial for
advancing the predictive capabilities of CFD in the complex aerodynamic regimes.

Currently, CFD is acknowledged as an experimental technique when applied to delta
wing flows and unsteady effects. For this reason, it typically requires support from
experiments for almost all such problems (Spalart and Bogue, 2003). Despite advance-
ments, further development is imperative to enhance the accuracy and reliability of
CFD techniques for industrial applications. The overarching challenge lies in achiev-
ing time-accurate CFD simulations of a complete aircraft configuration at high angles
of attack and flight Reynolds numbers. The ongoing challenge in developing CFD
methods for vortex-flow simulations lies in the search for an optimal balance between
computational efficiency and fidelity.
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1.2. Scopes and structure of the thesis
The objectives of the thesis are detailed in Section 1.2.1, whereas its structure, which
closely adheres to these objectives, is outlined in Section 1.2.2. Moreover, a summary
of the thesis objectives in bullet points is provided. This format provides a compact
overview where all essential information is included, ensuring both readability and ease
of understanding.

1.2.1. Objectives

The investigation of leading-edge vortices of swept wings with low aspect ratio has
been subject to several research projects in recent decades. Also, unsteady phenomena
like the vortex breakdown at high angles of attack have been investigated in detail.
In many configurations, the flow separation, which forms the initial stage of vortex
formation, is fixed by the sharp leading-edge. Therefore, the main challenge of turbu-
lence models is to correctly produce formation and further development of the vortical
flow system along the wing surface. As the complexity of the configuration escalates,
including multiple leading-edge angles, variations in edge contours, and additional flow
control devices, current state-of-the-art methods render it impracticable to predict flow
behavior without recourse to detailed simulation or costly wind tunnel testing. Compu-
tational fluid dynamics experts have been striving to numerically estimate the behavior
of these intricate and challenging flow patterns. However, despite considerable efforts,
no definitive and universally applicable solution has been discovered. Therefore, it
is essential to assess several turbulence treatments to determine their suitability for
addressing these wing configurations’ specific and demanding requirements.

Turbulence models and approaches capture the complex turbulence fluctuations in the
delta wing flow. The Reynolds Averaged Navier-Stokes (RANS) approach is widely
preferred in industrial settings primarily because it demands significantly less compu-
tational resources compared to high-fidelity (Hi-Fi) simulations like Direct Numerical
Simulations (DNS) and Large Eddy Simulation (LES). Nevertheless, RANS often falls
short in its predictive accuracy when dealing with complex geometries and flow dynam-
ics. In the RANS momentum equation, the turbulent fluctuations are represented by
the Reynolds stress tensor. Different assumptions are used for modeling the Reynolds
stress tensor, which categorizes the turbulence model used in the solver. The com-
monly used Boussinesq hypothesis assumes a linear relationship between the Reynolds
stress tensor and the mean strain rate tensor.

Boussinesq postulated that the momentum transfer caused by turbulent eddies could
be modeled using an eddy viscosity. Several eddy-viscosity models (EVMs) can be
classified according to the number of transport equations solved to compute the eddy
viscosity. Among the various established models, the Spalart-Allmaras (SA) model is
widely recognized as a standard RANS closure method in aerodynamic applications.
However, while the SA model is widely adopted in the (aerospace) industry due to its
simplicity and robustness, its inherent limitations and drawbacks become more evident
when applied to complex configurations. Notably, it frequently exhibits excessive eddy
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viscosity production within the vortex, affecting the unburst vortex size, type, and ve-
locities. Therefore, both the academic and industrial worlds remain keenly invested in
improving the predictive accuracy of SA-based RANS models, especially in the aerody-
namic design validations within the aerospace sector. Since a substantial requirement
exists for a model that can predict flows dominated by leading-edge vortices with both
time efficiency and high accuracy, a sustained interest persists in developing novel
one-equation turbulence models with the potential to enhance RANS outcomes.

The primary objective of this dissertation is to develop an efficient one-equation RANS
turbulence model, specifically tailored for the prediction of leading-edge vortex for-
mation and interaction in multiple delta configurations. Emphasis is placed on the
accurate prediction of leading-edge vortex breakdown. The SA model serves as the
foundational reference, with the goal of refining its predictive capabilities. This thesis
aims to extend its practical use in both academic research and industrial applications,
particularly in military aircraft design and engineering. The roadmap to achieving
this goal involves several distinct steps, which can be categorized into intermediate
objectives.

First of all, it is imperative to cultivate knowledge and expertise in vortex-dominated
flows over delta wings. This process necessitates acquiring high-fidelity data to elu-
cidate complex flow patterns over the wing. Reviewing existing numerical methods
is essential to evaluate their suitability for modeling swept leading-edge vortex phe-
nomena. While LES may offer a more general approach to turbulence resolution,
its computational cost renders it impractical for routine in aerodynamic applications.
Given the complexity of these simulations, the hybrid RANS/LES (HRL) approach is
then identified as a viable alternative. It aims to accurately capture the unsteady char-
acteristics of the vortices with a manageable computational effort by resolving parts
of the turbulence spectrum in the flow away from the wall rather than modeling the
entire spectrum.

The HRL approach based on the SA one-equation turbulence model requires rigorous
validation against established, straightforward configurations. For this purpose, the
well-documented and sharply contoured leading-edge configuration of the Vortex Flow
Experiment (VFE-2) delta wing is utilized to examine the vortex-dominated flow thor-
oughly, as depicted in Fig. 1.3. The CFD simulations have been performed using the
DLR-TAU code, developed by the Deutsches Zentrum für Luft-und Raumfahrt (DRL,
German Aerospace Center). In addition to evaluating sensitivity to spatial and tem-
poral resolutions, the research uncovers physical characteristics not readily discernible
from experimental data, necessitating scale-resolving simulation approaches. The study
explores the complex pattern of leading-edge vortices, including embedded shocks and
the subsequent interactions between shocks and vortices. The shock-vortex interaction
is detailed, and a theory behind the occurrence of the vortex breakdown is introduced.
Accurate outcomes are obtained, supported by Hi-Fi data derived from scale-resolving
simulations. The analysis also extends to turbulence-related metrics such as eddy vis-
cosity and resolved Reynolds stresses, providing insights into their dynamics during
the vortex formation and sustenance processes.
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After the methodology validation, the focus is directed towards the Airbus Defense
and Space (ADS) NA2-W1 configuration to elucidate the flow field behavior over such
intricate geometries, as depicted in Fig. 1.3. The vortex-dominated flow around the
triple-delta wing is meticulously examined to enhance understanding of the flow physics
phenomena, especially under side-slip and transonic conditions. Both Unsteady RANS
and scale-resolving simulations based on the SA turbulence model are utilized to assess
the range of applicability of current CFD methods. The aerodynamic coefficients are
examined across various flight conditions to elucidate the reasons behind the persisting
prediction inaccuracies. The deficiencies of URANS outcomes are demonstrated, and
significant enhancements are achieved using the HRL method. The Hi-Fi data notably
uncovers physical aspects previously unobserved with sufficient accuracy in URANS,
such as vortex-vortex, shock-vortex interactions and vortex breakdown. These phenom-
ena elucidate the improved prediction of surface pressure coefficients over the aircraft
and, consequently, the aerodynamic force and moment coefficients.

Furthermore, the triple-delta wing is employed for additional analyses and consider-
ations on the vortex breakdown phenomenon and its underlying causes. Numerical
results obtained from two-equation turbulence methods are included as well. The flow
physics derived from different turbulence modeling approaches is then compared. The
study aims to identify the limitations of the SA one-equation model in addressing such
complex applications. The physical and modeling reasons behind the one-equation
model’s misprediction are investigated to enhance its accuracy. The influence of tur-
bulence treatment on CFD results is then discussed. A straightforward modification
to the Boussinesq assumption when utilizing the SA model for complex configurations
is assessed, and the improved URANS results are compared with the state-of-the-art
outcomes.

Figure 1.3: Visualization of flow around the single-delta wing VFE-2 (left) and the
triple-delta wing ADS-NA2-W1 configuration (right).

Based on the expertise gained analyzing the vortex-dominated flows on both configu-
rations, this research progresses to conceptualizing and developing an enhanced one-
equation turbulence model. A CFD-driven machine learning (ML) framework, utilizing
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the Gene Expression Programming (GEP) methodology, is used to advance RANS mod-
els. The study investigates two distinct strategies: firstly, challenging the Boussinesq
hypothesis, and secondly, constructing a new one-equation turbulence model designed
to predict a broad spectrum of turbulent wall-bounded flows accurately. A compara-
tive analysis is conducted on these methodologies to assess their potential in enhancing
RANS modeling capabilities. At the first stage, four fundamental flows of the NASA
challenge validation cases, the flat plate, channel, jet, and wall-mounted hump, are
employed to perform the training process. Subsequently, the VFE-2 delta wing config-
uration is then trained and investigated numerically. The CFD code used within the
GEP training framework is OpenFoam Version 7.0. Utilizing pre-existing training data,
the symbolic regression applied in this study not only formulates constitutive relations
for specific user-defined expressions but also provides deep insights into fundamen-
tal physics by negating ineffective methodologies. Consequently, the role of machine
learning in this context transcends the mere development of a turbulence closure for a
particular instance, signifying its broader application and impact in aerodynamics and
fluid mechanics research.

Concise summary of thesis objectives: a bullet point overview

Primary Goal → Enhancement of SA Model: Improve the predictive accuracy
of the SA turbulence model via the RANS method to extend its applicability in both
academic and industrial sectors. Address the SA model’s limitations by developing an
optimized model for predicting the formation and breakdown of leading-edge vortices
in multi-delta configurations.

The intermediate objectives of the thesis are concisely articulated in bullet points and
arranged logically and sequentially.

1. Understanding vortex-dominated flows: deepen the understanding of vortex-
dominated flows over the VFE-2 delta wing at transonic conditions, concentrating
on predicting the formation and breakdown of leading-edge vortices.

• Explore the feasibility and applicability of HRL methods. Evaluating sen-
sitivity to spatial and temporal resolutions necessary for accurate scale-
resolving simulations.

• Employ scale-resolving simulations to investigate vortex-dominated flow, an-
alyzing the pattern of leading-edge vortices, and shock-vortex interactions.

• Focus on the accurate prediction of the breakdown of leading-edge vortices.
Provide a theory and explanation behind the occurrence of the leading-edge
vortex breakdown.

• Uncovering physical characteristics not evident from experimental data and
extending the analysis to turbulence-related metrics.
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2. ADS-NA2-W1 aircraft configuration: analyze the flow field behavior over
the triple-delta wing aircraft, particularly at side-slip and transonic conditions.

• Utilize both URANS and scale-resolving simulations to assess the applica-
bility of current CFD methods.

• Examine vortex-vortex and shock-vortex interactions, vortex breakdown and
their impact on aerodynamic force and moment coefficients.

• Explore the vortex breakdown phenomenon and its underlying causes, com-
paring flow physics from different turbulence modeling approaches.

• Elucidate reasons behind inaccuracies of the RANS simulations predictions.
Identify limitations of the SA one-equation model.

• Propose a straightforward modification to the SA model.

3. Enhanced turbulence model development: conceptualize and develop an
enhanced one-equation turbulence model for a broad spectrum of turbulent flows
through a CFD-driven machine learning framework.

• Conduct a comparative analysis of novel methodologies to assess their po-
tential in enhancing RANS modeling capabilities.

• Highlight the broader application and impact of machine learning in aero-
dynamics research.

1.2.2. Outline
The structure of the thesis is delineated to reflect the logical progression of the objec-
tives previously outlined.

Chapter 2 includes the literature review. Section 2.1 provides a comprehensive ex-
amination of delta wing flows, considering various aspects such as the formation of
leading-edge vortices, vortex breakdown, unsteady flow phenomena and transonic vor-
tical flows. The VFE-2 and the ADS-NA2-W1 configurations investigated in this thesis
are also introduced, discussing the experimental framework. A review of the state-of-
the-art in CFD as it pertains to delta wing flows is presented in Section 2.2. Section 2.3
introduces the concept of ML, with a focus on the fundamentals of evolutionary algo-
rithms (EAs). It provides an introduction to GEP and concludes with an overview of
the application of machine learning in turbulence modeling.

Chapter 3 is dedicated to the theoretical foundations of fluid motion and modeling. The
governing equations and the nature of turbulence are discussed in Sections 3.1 and 3.2,
respectively. Section 3.3 provides a comprehensive overview of modeling and simulation
techniques. Subsequently, Section 3.4 offers a detailed examination of the modeling
approaches and turbulence models employed for analyzing delta wing aerodynamics in
this dissertation.

Chapter 4 outlines the software and the numerical strategy. Section 4.1 briefly intro-
duces the CFD codes employed in this dissertation, particularly TAU and OpenFOAM.
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Section 4.2 discusses evolutionary computing strategies, placing particular emphasis on
GEP with a focus on the CFD-driven approach. It then introduces EVE, the GEP code
employed in this thesis. Section 4.3 provides a detailed exposition of the conservative
equations fundamental to the Finite Volume Method (FVM). It subsequently explores
the numerical methods employed for solving these equations, highlighting spatial and
temporal discretization techniques.

Chapter 5 focuses on scale-resolving simulations of the vortex-dominated flow around
the VFE-2 wing, exploring complex vortex patterns and shock interactions. It dis-
cusses the rigorous validation of the HRL approach and its significant contributions to
understanding the flow physics in transonic conditions.

Chapter 6 applies the HRL and URANS approaches to the complex ADS-NA2-W1 con-
figurations, analyzing vortex-dominated flow at side-slip and transonic conditions. It
assesses the applicability and limitations of current CFD methods, highlighting signif-
icant improvements in predicting flow behavior and aerodynamic coefficients through
Hi-Fi data. The deficiencies of the SA model in predicting vortex breakdown are high-
lighted.

Chapter 7 focuses on understanding the vortex breakdown phenomenon and its causes.
It evaluates the limitations of the SA one-equation model, investigates the reasons
behind its inaccuracies, and propose an extension to the Boussinesq assumption to
enhance its accuracy.

Chapter 8 explores potential advancements in the SA model developed through a CFD-
driven machine learning framework. It challenges traditional hypotheses and signifi-
cantly improves the state-of-the-art in predictive accuracy. It underscores the pivotal
role of machine learning in enhancing RANS capabilities and its broader impact on
research in aerodynamics and fluid mechanics.

The thesis concludes with Chapter 9, synthesizing the main findings and delineating
potential directions for future investigations.

Finally, a detailed, implementation-ready specification of the employed turbulence
models and their associated coefficients is provided in the Appendix.
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2
Literature Review

This chapter delineates the background and conducts a literature review pertinent to
the studies undertaken in this dissertation. It is divided into three sections. Sec-
tion 2.1 delves into the complex aerodynamics of delta wing flows, offering an in-depth
examination of various characteristics and analyses. Section 2.2 reviews the state-of-
the-art CFD methods and approaches applied to delta wing flows. Specifically, one-
and two-equation models are discussed, with an emphasis on providing an overview
of the proposed models along with their modifications or improvements. The chapter
concludes with Section 2.3, which introduces the concept of ML. Particular attention
is devoted to Evolutionary Algorithm (EAs) and GEP, detailing the utilization of ML
within the context of turbulence modeling.

2.1. Delta wing flow
Delta wing designs are critical in many high-speed aircraft. The aerodynamic flow
around these wings is complex and present unique challenges and opportunities in
aeronautical engineering. One of the most notable features of delta wing aerodynamics
is the formation of coherent vortices along the leading-edges. Understanding these flow
patterns is crucial for optimizing aircraft performance, stability, and control, especially
in high-speed flight regimes.

2.1.1. Leading-edge vortices
The subsonic aerodynamic characteristics of delta wings with leading-edge separation
are documented in existing literature, resulting in a well-established understanding of
the flow topology (Anderson, 2016). The schematic representation of the flow pattern
around a sharp-edged delta wing is illustrated in Fig. 2.1.

The predominant feature of the subsonic flow over delta wings, particularly notewor-
thy for wings with leading-edge sweep angles exceeding 45○, is the formation of vor-
tical structures. Upon encountering the sharp leading-edge, a geometrical singular-
ity denoted as the primary separation line 𝑆1 in Fig. 2.1, the flow separates. This
phenomenon initiates the formation of a free shear layer that extends into the outer
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non-dissipative flow. Under the influence of the vorticity within it, the free shear layer
undergoes a spiral roll-up, forming the compact and steady primary vortex.

As illustrated in Fig. 2.2, the vortex structure in a cross-flow plane comprises three
distinct components: the vortex sheet or free shear layer, the rotational core, and the
inner viscous sub-core. The vortex contains a viscous core, and the surrounding vortex
flow is inviscid. The primary vortex remains embedded within the shear layer, con-
tinually acquiring vorticity along the entire wing’s leading-edge length. This vorticity
is transported through the free shear layer, enhancing the strength and cross-sectional
dimension of the vortex core downstream. The diameter of the rotational core is
approximately one-third of the local wing span and is marked by intense tangential
velocities. In contrast, the viscous sub-core, constituting about 5% of the local span,
is predominantly influenced by dissipation effects.

Figure 2.1: Subsonic flow field above a delta wing (adapted from Zanin, 2013).

Figure 2.2: Leading-edge vortex structure, including qualitative distribution of the
vorticity, the axial and the tangential velocities (inspired by Nelson and Pelletier, 2003).

The presence of the primary vortex significantly influences the local velocity and pres-
sure distributions on the wing by introducing additional velocities, with the immediate
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effect of establishing a low-pressure region beneath the vortex core (Délery, 1994). The
rotational core exhibits high axial and azimuthal velocities. Within the inner core, axial
velocity can reach up to threefold the free-stream velocity. For instance, axial velocities
exceeding three times the free-stream velocity are recorded in the vortex core by Payne
et al., 1986. The high rotational velocities extend beyond the core, interacting with
the wing surface and generating a suction footprint. According to Hummel, 1981, the
peak of additional velocity, which occurs beneath the vortex axis, coincides with the
lowest point in the pressure distribution.

The vortex sheet loops over the wing and reattaches along the primary attachment
line 𝐴1. The streamlines on the vortex sheet follow helical paths, diverging from
attachment lines and converging towards separation lines where they detach from the
surface. Inboard of the primary attachment lines 𝐴1, the surface streamlines remain
attached. Outboard these attachment lines, the flow captured by the primary vortex
moves outward beneath the primary vortex core toward the leading-edge. This flow may
separate near the wing surface at 𝑆2 due to the adverse pressure gradient encountered
in the span-wise direction. The separated flow can then give rise to an oppositely
rotating secondary vortex. Beyond the secondary vortex, the flow reattaches at 𝐴2
and approaches the leading-edge. These secondary vortices can further spawn tertiary
vortices through a similar process. At the leading-edge, the flow again separates and
combines with the flow from the lower surface in the shear layer (Anderson, 2016).

The occurrence of secondary and tertiary vortices is contingent upon the type of sepa-
ration in the cross-flow. In general, these smaller vortices impact the primary vortex,
causing a displacement of its position inboard and lifting it away from the wing surface.
Consequently, the presence of the secondary vortex may alter the location of the pri-
mary suction peak, shifting it out from a precise alignment below the primary vortex
core (Jupp et al., 1999; Lowson, 1991). The nature of the boundary layer influences
the location, size and strength of the secondary separation, specifically whether it is
laminar or turbulent, which depends on the Reynolds number. The laminar boundary
layer, more susceptible to adverse pressure gradients, experiences earlier separation,
thus manifesting further inboard on the delta wing surface. Consequently, a transition
from laminar to turbulent flow on a delta wing may be signaled by an outboard inflec-
tion of the secondary separation line. For a laminar boundary layer and separation,
the formation of the secondary and subsequent vortices leads to a peak in the surface
pressure distribution greater than that caused by the primary vortex. Conversely, for
turbulent boundary conditions and separation, this peak is relatively flat and, conse-
quently, less pronounced than the peak resulting from the primary separation.

The suction peak results in the so-called vortex lift, augmenting the potential lift
achieved with fully attached flow (Polhamus, 1971). Consequently, the relationship
between lift and incidence becomes nonlinear. Furthermore. leading-edge vortices
supply the central regions of the wing with fresh air, mitigating the propensity for
two-dimensional boundary layer separation, which is the primary factor contributing
to the stall in conventional wings. The suction effect produced by strong and stable
leading-edge vortices, in conjunction with this phenomenon, contributes to an increase
in the lift coefficient (𝐶𝐿) for a delta wing. Notably, this increase in 𝐶𝐿 occurs at angles
of attack where conventional wing planforms typically experience stall. Between 30%
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and 60% of the total lift at high AoA is attributed to the leading-edge vortices (Wentz
and Kohlman, 1971). Consequently, the presence of leading-edge vortices generally
enhances the performance of delta wings. Ultimately, as the angle of attack continues
to increase, a limit to the favorable effects induced by the vortex system is encoun-
tered, marked by large-scale vortex breakdown occurring above the wing, leading to
an unsteady flow field.

2.1.2. Vortex development

Figure 2.3: Various stages of vortex flow de-
velopment (inspired by Moioli et al., 2022)

The evolution of the large-scale vor-
tex on a delta wing undergoes vari-
ous stages, contingent on flow conditions
and geometrical parameters, such as an-
gle of attack (𝛼), sweep angle (𝜙), and
leading-edge (LE) roundness, as shown
in Fig. 2.3. The angle of attack is the
primary variable in differentiating its de-
velopmental stages. Variations in the
sweep angle similarly impact the vor-
tex stage, often mirroring the effects of
an inverse angle of attack change (Hum-
mel, 1981). For a given wing geom-
etry, positive sweep angle adjustments
results in equivalent vortex stages at
higher AoA. The leading-edge shape crit-
ically determines the initial vortex sep-
aration (Moioli et al., 2022). A sharp
leading-edge or small radius induces a
fixed position for flow separation, simplifying the flow dynamics and inducing the de-
velopment of vortices along the entire leading-edge, even at low AoA (Hummel, 1981).
Conversely, an increased leading-edge radius enhances the separation’s sensitivity to
flow conditions. This effect is attributed to the radius’s relative size in comparison to
the wing, which can modify the effective angle of attack and subsequently influence
the flow dynamics.

For a rounded leading-edge, no noticeable vortex separation occurs at low angles of
attack (Stage I). As the angle of attack increases, the flow begins to roll into a vortex
from a specific onset point on the leading-edge, identified as the partially developed
vortex stage (Stage II). This stage corresponds to the initial stage of a sharp leading-
edge wing. Further increase in the angle of attack causes the vortex to advance, with
its separation onset moving toward the wing apex. A fully developed vortex stage
(Stage III) is achieved upon reaching the apex. Beyond this point, the separation
onset remains fixed at the apex, with the vortex axis moving inward at larger AoA
until it stabilizes (Stage IV). At a certain threshold value of the angle of attack, a
drastic alteration occurs in the vortex flow field over the wing, significantly impacting
aerodynamics. The vortex breakdown stage (Stage V) is defined by the angle of attack
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at which this instability first appears, starting from the trailing-edge and moving up-
ward with increasing angle of attack, eventually leading to vortex shedding and stall
conditions (Stage VI) (Moioli et al., 2018, 2022).

At lower incidence angles, breakdown may occur, but the bursting point is downstream
of the trailing-edge, exerting no influence on the vortex lift generated by the wing.
Subsequent increments in the angle of attack result in a rapid forward displacement
of the vortex breakdown onset location. This movement is initially rapid and later
exhibits a more gradual progression with increasing incidence (Délery, 1994; Huang
and Hanff, 1992; Lowson and Riley, 1995). Beyond the angle of attack corresponding
to the breakdown location at the apex, the shear layer separating from the leading-
edges fails to form a swirling flow with axial motion. Instead, vortex shedding from
the wing initiates (Gursul, 1994). Increased leading-edge sweep amplifies the strength
of the leading-edge vortex and simultaneously delays vortex breakdown (Hemsch and
Luckring, 1990). Wentz and Kohlman, 1971 note that for sweep angles exceeding 75○,
breakdown becomes independent of the sweep angle.

Vortex breakdown plays a crucial role in delta wing aerodynamics, primarily due to
its sudden modification of the wing’s aerodynamic characteristics. This phenomenon
significantly influences lift generation, underlining its importance in aerodynamic per-
formance. Accurate prediction of the breakdown location and intensity is then crucial
in designing and developing delta wing aircraft. While the theoretical framework pro-
posed by Polhamus, 1971, based on a leading-edge suction analogy, is commonly used
to describe the vortex lift contribution, it becomes invalid when vortex breakdown oc-
curs over the wing, limiting its applicability. Wentz and Kohlman, 1971 and Johari
and Moreira, 1998 reveal that for wings with a sweep angle exceeding 70○, the point
where breakdown passes over the trailing-edge aligns with maximum lift. However, the
coupling between vortex burst and lift is weak for wings with sweep angles of 70○ or
less, and maximum lift is not attained until the breakdown is near the apex of the wing,
close to stall (Kengelman and Roos, 1989). Therefore, the relationship between vortex
breakdown and lift generation is complex, with factors like incidence angle, sweep angle
and vortex strength playing crucial roles (Lee and Ho, 1990).

2.1.3. Vortex breakdown

Vortex breakdown is a complex and unresolved challenge in fluid mechanics. The
core of a leading-edge vortex undergoes a sudden expansion in cross-sectional area
as the angle of incidence surpasses a critical value, contingent on the wing’s sweep
angle. Upstream of this phenomenon, the flow exhibits steadiness, contrasting with the
downstream region where unsteady flow phenomena are consistently observed (Délery,
1994; Gursul, 1994), as discussed in Section 2.1.4.

Despite the profound alterations in the flow field over a delta wing associated with
breakdown, the overall strong circulatory flow pattern does not abruptly disappear
when vortex breakdown occurs. Breakdown involves a sudden reduction in the axial
and circumferential velocity, leading to a turbulent wake flow downstream (Lambourne
and Bryer, 1961). More intricate measurements conducted by Kengelman and Roos,
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1990 and Délery, 1994 reveal that along the vortex axis, the axial velocity component in-
creases until the breakdown location, where it experiences an abrupt decrease. Within
the vortex core, the total pressure loss remains relatively constant until it reaches the
breakdown location, where it suddenly increases. The vortex region characterized by
elevated total pressure losses diminishes until the breakdown point, then experiences a
sharp increase and starts to include the entire vortex sheet. Subsequently, total pres-
sure losses begin to decrease downstream of the breakdown. During breakdown, the
initially 𝑥-direction vorticity, concentrated near the vortex core axis, tends to disperse
into regions beyond the axis and reorients itself along a transverse direction (Gursul,
2005; Nelson and Pelletier, 2003).

Various forms of breakdown are identified in literature. Lambourne and Bryer, 1961
are the pioneers in differentiating between spiral and bubble-type breakdown, as de-
picted in Fig. 2.4. In a spiral breakdown, a rapid deceleration of the core flow occurs.
Immediately downstream, the vortex core filament undergoes an abrupt bending, ini-
tiating a spiral motion around the axis of the structure and creating a distortion of the
vortex core. This spiral structure may persist for one or two turns before transitioning
into large-scale turbulence (Payne et al., 1987). For leading-edge vortices, the sense
of the spiral winding is opposite to the direction of rotation of the upstream vortex.
However, the winding’s rotation aligns with the rotation of the upstream vortex. The
bubble type is characterized by a stagnation point on the vortex axis, succeeded by an
oval-shaped recirculation zone. The upstream portion of the recirculation zone can be
nearly axisymmetric, with the core flow symmetrically spreading out at the stagnation
point and smoothly passing around the recirculation zone. The downstream half is
typically open and irregular, with the flow shedding from the aft end resembling the
shedding from a blunt solid body (Payne et al., 1987). Payne et al., 1986 observe that
the bubble is single-celled, with the recirculation flow moving upstream along the vor-
tex axis. The bubble typically spans two or three upstream core diameters in length.
Downstream of the bubble, the vortex becomes turbulent and rapidly diffuses with
distance.

Understanding the flow parameters influencing these two types of vortex breakdown
and unraveling the underlying physical processes of the breakdown mechanism remain
among the most challenging fundamental research problems in fluid dynamics. As
outlined in Section 1.2, this thesis aims to offer additional insights and potential ex-
planations for this phenomenon through Hi-Fi data.

Numerous investigations have explored vortex breakdown’s movement and sensitivity
to internal and external parameters over delta wings and within vortex tubes. Break-
down must be initiated by a destabilizing factor, such as the adverse longitudinal
pressure gradient in the vicinity of the trailing-edge, which, in turn, is contingent on
factors like incidence and sweep (Lambourne and Bryer, 1961). Several theories have
been proposed to elucidate the cause of vortex breakdown, encompassing analogies to
a 2-dimensional boundary layer, hydrodynamic instability, and critical state (wave)
theories (Délery, 1994; Escudier, 1988). Additionally, substantial efforts have been
dedicated to theories positing the existence of a critical parameter or relationship at
which stagnation and mass disorganization occur in the flow. These criteria typically
hinge on internal parameters such as swirl velocity, axial velocity, and adverse pressure
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gradient. They include a critical value of swirl ratio (or Rossby number), rooted in
critical states theory and vortex stability (Robinson et al., 1994; Spall et al., 1987), a
critical value of helical angle (Ashley et al., 1991; Mitchell and Délery, 2001), a switch
in the sign of azimuthal vorticity (Brown and Lopez, 1990; Towfighi and Rockwell,
1993), and a critical value of circulation (Jumper et al., 1993).

(a) Stages in the behavior of the axial filament
and the orientation of the spiral during a spiral
breakdown on the left.

(b) Visualization in a water tunnel depicting spi-
ral (top) and bubble-type (bottom) vortex break-
down over a delta wing.

Figure 2.4: Insights into vortex breakdown (Lambourne and Bryer, 1961).

Numerous external factors significantly influence the behavior of vortex breakdown.
Geometric considerations, such as the presence of center-bodies or sting geometries (Er-
icsson, 2003), sweep angle, and leading-edge properties (Lowson and Riley, 1995; Sri-
grarom and Kurosaka, 2000), as well as the proximity of wind tunnel walls (Allan
et al., 2004, 2005), play also crucial roles. The vortex breakdown may also be con-
tingent, to some extent, on the behavior of the secondary vortex, considering that it
is identified by a twist in the secondary separation line. When the rate of vorticity
feeding from the leading-edge surpasses what can be convected downstream, the vor-
tex filaments constrict, resulting in breakdown (Huang and Hanff, 1992). Numerous
potential causes have been then proposed to account for this phenomenon. However,
a universally accepted explanation has yet to be established.

2.1.4. Unsteady flow phenomena

The vortex system over delta wings comprises flow structures characterized by unsteadi-
ness across various scales, which include nonlinear interactions. An understanding of
the unsteady behavior in delta wing flows can be drawn from the literature. Gursul,
1994 extensively reviews the primary unsteady elements in delta wing flow. Several
concepts are briefly introduced for clarity and completeness, even though unsteady
effects are not the focus of this thesis. Understanding these fundamental principles,
however, aids in comprehending the complexity of this phenomenon.
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• Helical mode instability of vortex breakdown: characterized by spiral-type vortex
breakdown at typical Reynolds numbers and ratios of vortex-induced to free-
stream velocity, the vortex core flow experiencing burst exhibits helical mode
instability (Breitsamter, 2008; Lambourne and Bryer, 1961).

• Shear layer instabilities (Kelvin-Helmholtz instability): at high Reynolds num-
bers, the shear layer rolls up periodically, forming discrete vortical substructures
that feed into the primary vortices (Lowson, 1991).

• Vortex shedding: observed at high angles of attack, it occurs when the vortex
breakdown location reaches the wing apex, with vortices periodically shed from
the trailing-edge in a symmetric mode (Rediniotis et al., 1993).

• Vortex core rotation (vortex wandering): upstream of the vortex breakdown,
significant velocity fluctuations are observed in the vortex core, even without
breakdown. These fluctuations correlate with the Kelvin-Helmholtz instability
and are explained by a Biot-Savart induction of the small-scale vortices on the
primary vortex (Gursul and Xie, 2000; Gursul, 1994).

• Vortex breakdown oscillation: the breakdown location of the vortex exhibits
unsteady fluctuations along the vortex axis. This motion, which is anti-symmetric
on the two halves of a delta wing, may lead to an undesired periodic rolling
moment, as the oscillation frequency is significantly lower than that of the helical
mode instability (Délery, 1994; Gursul and Yang, 1995).

Menke et al., 1999 performed an analysis of the vortex-dominated flow behavior and a
schematic of the frequency spectrum was created to classify the unsteady frequencies.
Characteristic frequencies can be associated with each of these phenomena. The ma-
jority of the frequencies assigned to the helical mode instability fall between a Strouhal
number 𝑆𝑡 = 1 − 2 and similarly, for the oscillation of vortex breakdown location, the
majority of the investigations show this to occur between 𝑆𝑡 = 0.04−0.2. The Strouhal
number is a dimensionless number that describes oscillating flow mechanisms. It is
defined as follows

𝑆𝑡 = 𝑓𝐿
𝑈

(2.1)

where 𝑓 is the frequency of vortex shedding, 𝐿 is a characteristic length, and 𝑈 is the
velocity of the flow. Further insights into the unsteady behavior of flow over delta
wings are provided by Gursul, 2004, 2005.

2.1.5. Transonic vortical flows: compressibility effects

The role of flow compressibility in the evolution and development of vortex flows
presents an additional fluid dynamics characteristic of significance. Compressibility
effect are determined by the Mach number, 𝑀𝑎. It is a dimensionless ratio, defined as
the speed of an object, 𝑈 , divided by the speed of sound, 𝑐, as follows

𝑀𝑎 = 𝑈
𝑐
. (2.2)
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In the context of high-performance aircraft, which predominantly operate in high sub-
sonic (𝑀𝑎 < 1), transonic, and supersonic regimes (𝑀𝑎 > 1), the impact of compress-
ibility becomes critical. The speed of sound in an ideal gas is given by

𝑐 =
⌈︂
𝛾𝑅𝑇 (2.3)

where 𝛾 is the adiabatic index (also known as the heat capacity ratio, 𝐶𝑝⇑𝐶𝑣, where
𝐶𝑝 is the heat capacity at constant pressure, and 𝐶𝑣 is the heat capacity at constant
volume), 𝑅 is the specific gas constant, and 𝑇 is the temperature of the gas. The
specific gas constant 𝑅 and the adiabatic index 𝛾 vary depending on the gas. For dry
air at standard conditions, 𝛾 is approximately 1.4, and 𝑅 is approximately 287𝐽⇑(𝑘𝑔𝐾).
This relationship indicates that the speed of sound increases with the square root of
the temperature, showing that sound travels faster in warmer air. In air at sea level,
at a temperature of 293.15𝐾, the speed of sound is approximately 343𝑚⇑𝑠.

Compressibility primarily influences the stability and structure of the vortex. As the
free-stream Mach number is elevated to transonic levels, 𝑀𝑎 > 0.7, the vortical flow
undergoes a transition and exhibits behavior different from that of the subsonic regime.
In the experiments conducted by Erickson and Rogers, 1987, an increase in Mach
number from 0.4 to 0.95 results in a notable transformation of the leading-edge vortex.
The vortex assumed a flatter, more elliptical shape, progressively approaching the
wing’s surface. Additionally, as the Mach number increases across the transonic regime,
the suction induced on the wing’s surface by the leading-edge vortices diminishes due
to a reduction in the up-wash generated by the leading-edges.

Moreover, as the Mach number increases, the flow locally becomes supersonic, leading
to shock waves that further modify the behavior of the leading-edge vortices. Stanbrook
and Squiref, 1964 establish a correlation between the change in the behavior of the
leading-edge separated flow by considering the Mach number and the incidence, both
normal to the leading-edge, defined respectively as

𝑀𝑁 =𝑀∞
⌉︂

1 − sin2(Λ) cos2(𝛼) and 𝛼𝑁 = tan−1(tan(𝛼)
cos(Λ)). (2.4)

Utilizing these flow parameters, the flow behavior could be categorized into two primary
types: separated and attached. Miller and Wood, 1984 extend the consideration of
flow types over delta wings to transonic and supersonic regimes based on experimental
results for various delta wings with different sweep angles, Mach numbers, and angles of
incidence. Their analysis classify the flow into six types of behavior, also characterized
by the normal Mach number and incidence used by Stanbrook and Squiref, 1964,
leading to a redefined classification diagram depicted in Fig. 2.5. Transonic flow over
delta wings generally falls into the category of leading-edge separation. This flow
regime is characterized by the formation of leading-edge vortices and the emergence of
shock waves, which are dependent on the Mach number.

A multitude of investigations, including both experimental and numerical studies, scru-
tinize the occurrence and dynamics of shock waves in vortical flows under transonic
conditions (Donohoe and Bannink, 1997; Donohoe et al., 1995; Longo, 1995). These
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studies document several shock-wave systems, and among them, two primary systems
are identified: the cross-flow shock, positioned underneath the primary vortex at a
relatively constant span-wise location just outboard of the primary suction peak, and
the rear/terminating shock, located on the aft section of the wing, close to the trailing-
edge and perpendicular to the plane of symmetry. Fig. 2.6 shows the behavior of these
shocks in the flow, drawing insights from experiments conducted on a 65○ delta wing
at 𝑀𝑎 = 0.8 (Donohoe and Bannink, 1997).

Figure 2.5: Categorization of flow behaviors
over delta wings (inspired by Miller and Wood,
1984).

The cross-flow shock, also known as the
separation shock, is theorized to induce
secondary separation beneath the pri-
mary vortex. As incidence increases for
a specific Mach number, the shock mate-
rializes beneath the vortex, generating a
substantial adverse pressure gradient that
leads to boundary layer separation. This
phenomenon explains the inward move-
ment of the secondary separation pre-
viously discussed. Although cross-flow
shocks may manifest as tightly contoured
pressure coefficient regions in surface iso-
bar plots, their position may not be dis-
tinctly discerned in span-wise pressure co-
efficient distributions.

The presence of the rear shock is
identified through the analysis of the
chord-wise pressure coefficient distribu-
tion along the plane of symmetry. At low
angles of incidence and low Mach num-
bers, the distribution gradually decreases
toward the trailing-edge as the flow con-
ditions approach free-stream conditions.
However, at moderate angles of incidence and increasing Mach numbers, a sharp change
in distribution near the trailing-edge signifies the presence of a shock wave in this region.
The rear shock appears perpendicular to the symmetry plane at the wing’s centerline
but then curves downstream toward the primary vortices, seemingly intersecting the
vortex region. Side-view visualizations reveal that the shock, starting perpendicular to
the wing surface at the symmetry plane, curves upward toward the apex before return-
ing to a perpendicular direction until it dissipates. The rear/terminating shock can
exist for low to moderate angles of incidence without vortex breakdown. Donohoe and
Bannink, 1997 hypothesize that the shock wave is situated above the vortex region,
seemingly not interacting with the core. However, the dynamics at this point remain
poorly understood, and conclusive knowledge about interaction is lacking. Insights
from the study of the interaction between longitudinal vortices and normal shocks in
supersonic flow suggest that a vortex can pass through a normal shock without being
weakened sufficiently to induce breakdown (Kalkhoran and Smart, 2000).
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The presence of these shock-wave systems in the flow introduces intricate interac-
tions (Délery, 1994). This complexity becomes crucial when examining the behavior of
vortex breakdown in transonic flows. It differs significantly from that observed in sub-
sonic vortical flows, where the onset of breakdown is relatively gradual with increasing
incidence (Jobe, 2004). A thorough investigation of the delta wing flow behavior can be
performed by conducting an in-depth analysis of the VFE-2 experimental datasets.

Figure 2.6: Proposed positions and shapes of shock systems over transonic delta
wings: embedded cross-flow shock and rear/terminating shock (inspired by Donohoe
and Bannink, 1997).

2.1.6. Vortex flow experiment

The Vortex Flow Experiment is a notable research project in aerodynamics, particularly
focusing on the characteristics of vortex flow over delta wings. The geometry utilized in
the VFE-2 study is initially examined in experiments conducted by Chu, 1996a,b,c,d
at the National Transonic Facility (NTF) of NASA Langley. These investigations
focus on a delta wing with a 𝜙 = 65○ sweep, featuring four types of leading-edge
profiles: one sharp and three rounded with varying radii. The geometry of all leading-
edge profiles is defined analytically. Fig. 2.7 illustrates the wing positioned within the
NTF wind tunnel, along with detailed geometric information. The experiments span a
comprehensive range of conditions, encompassing subsonic and transonic velocities, as
well as test and flight Reynolds numbers.

Considering the purpose of this dissertation, only the sharp leading-edge profile at
transonic conditions is considered, with further details provided in Chapter 5. In the
study of transonic flow over sharp leading-edge wings (𝑀𝑎 = 0.85, 𝑅𝑒 = 6 × 106),
a significant chord-wise variation in flow structure is observed (Chu, 1996a). With
increasing angles of incidence, the suction peak intensifies and shifts inboard, especially
noticeable between 19.6° and 20.6°. Beyond 20.6°, secondary peaks emerge without
inboard movement. A critical observation is the collapse of the primary vortex suction
peak and disappearance of secondary peaks and cross-flow shock at angles equal to or
greater than 24.6°, indicating vortex breakdown.

The findings of Konrath et al., 2006, 2013 involve a detailed analysis of aerodynamic
phenomena on the VFE-2 delta wing utilizing Pressure-Sensitive Paint (PSP) and Par-
ticle Image Velocimetry (PIV) techniques. The study reveals how vortex structures
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form and evolve, particularly noting the significant effects of changes in flow condi-
tions. A vital aspect of the research is its exploration of vortex breakdown. As the
incidence rises, the magnitude of the suction peaks increases. The inboard motion of
the vortical system is also observable. However, the most prominent feature is the
sudden asymmetric breakdown at 24.3°, where it unexpectedly occurs on the right
side of the wing. This asymmetry in breakdown aligns with NASA data for a similar
Mach number, although the critical onset angle is slightly higher (Chu, 1996a). The
experimental tests consistently show this behavior for other transonic conditions. The
asymmetry always appears on the same side of the wing, indicating the potential sensi-
tivity of transonic vortex breakdown to surface disturbances within experimental tests.
However, as also investigated by Chu, 1996a, this behavior transitions to a symmetric
breakdown with an increase in the angle of incidence. It is also noted that the PSP
suction peak heights are underestimated due to temperature effects. Furthermore, in
contrast to the observations made by Donohoe and Bannink, 1997, Konrath et al.,
2006 reports the presence of two terminating shocks: one close to the sting tip curving
downstream and a second located over the sting between the 𝑥⇑𝑐𝑟 = 0.8 and 0.9 stream-
wise locations. A curving of the vortex core trajectory is observed in the vicinity of
the sting shock from these tests.

Analysis of cross-flow behavior upstream and downstream of breakdown can be inferred
from the PIV results. For the post-breakdown case, 𝛼 = 25.7°, a secondary vortex is
evident under the vortex, near the leading-edge. The breakdown appears to occur
between 𝑥⇑𝑐𝑟 = 0.6 and 0.7, and the flow behavior shifts to a large region of reversed
flow, expanding downstream and exhibiting a relatively circular nature. Inboard this
breakdown region the flow remains supersonic and accelerating.

(a) Wing in NTF Facility (Chu, 1996a). (b) Wing geometry (adapted from Luckring, 2013).

Figure 2.7: VFE-2 65○ delta wing configuration.

A critical repository of information on the state-of-the-art in numerical simulations of
vortex flows is also included in the VFE-2, where internationally recognized academies,
research establishments, and industries apply their best practices to a uniform wing
geometry (Fritz and Cummings, 2008). The outcomes of these experiments provide,
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for example, a crucial foundation for the studies conducted by Luckring, which investi-
gate the effects of Reynolds number (Luckring, 2002a,b) and compressibility (Luckring,
2004) on wings with both sharp and rounded leading-edges. Significant discrepancies
are noted by comparing steady surface pressure measurements with numerical results
in prior extensive research (Crippa and Rizzi, 2008; Cummings and Schütte, 2013;
Fritz and Cummings, 2008). Significant numerical challenges include predicting the
breakdown type, position, vortex structure, development stage, and suction levels.
More pronounced deviations from experimental data are observed in the breakdown
position and vortex development with increasing angle of attack. These discrepancies
vary across different numerical grids, turbulence model definitions, and solver imple-
mentations, indicating a fundamental source of error associated with the Boussinesq
assumption.

At transonic conditions, discrepancies are primarily found in the breakdown strength
and position, closely tied to the shock wave’s position on the wing’s upper surface (Fritz
and Cummings, 2008; Schiavetta et al., 2009). This shock wave coincides with the
vortex’s transition to a chaotic wake flow. Employing Detached Eddy Simulation (DES)
and Delayed DES (DDES) models may offer more detailed insights into the impact of
small-scale turbulence on the vortex flow (Cummings and Schütte, 2013). However, this
approach increases computational costs and complexity in setting up stable numerical
simulations with adequately refined meshes and settings. Furthermore, it does not
assure improved alignment of numerical solutions with experimental data (Cummings
and Schütte, 2013). For this reason, as outlined in Section 1.2, this manuscript initially
applies and validates the HRL approach, which aims to acquire Hi-Fi data using the SA
turbulence model, to the VFE-2 delta wing. Subsequently, this approach is employed
for the more complex flow analysis of the ADS-NA2-W1 configuration. Further insight
into previous CFD studies for delta wing flows are given in Section 2.2.1.

2.1.7. Generic delta wing planforms at transonic speeds

To achieve a more practically relevant configuration, the lambda-shaped SACCON is
investigated within the NATO-RTO task group AVT-161 (Cummings and Schütte,
2012). This configuration exhibits leading-edge contours in the span-wise direction,
incorporating sharp and rounded segments with radii significantly larger than those
in the VFE-2 cases. Consequently, it results in a complex system of primary and
secondary vortices, extensively documented for this specific configuration but posing
challenges for turbulence models regarding accurate reproduction. With a heightened
emphasis on the separation process, the NATO-STO task group AVT-183 investigate
a diamond-shaped geometry with rounded leading-edges (Luckring et al., 2016). An-
other noteworthy configuration, the SAGITTA also adopts a diamond-shaped wing and
incorporates span-wise variations of the leading-edge contour to control the formation
of the leading-edge vortex (Seifert, 2012).

Within the framework of the NATO-STO AVT-316 task group (Hövelmann et al.,
2020; Pfnür and Breitsamter, 2019), a generic multi-swept delta wing configuration is
subject to both experimental and numerical investigations (Hitzel et al., 2020; Schütte
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and Marini, 2020). The project aims to investigate the vortex interaction effects rele-
vant to military air vehicle performance (NATO Science and Technology Organization,
2018), by using CFD simulations and wind tunnel experiments across subsonic, tran-
sonic, and supersonic conditions. These configurations are particularly relevant for
combat aircraft, which often operate in high angle of attack conditions, necessitating
designs that maintain stability and control even in extreme flight regimes. Geometry
and flow condition variations are included, where differing wing sweep angles notably
enhance flow complexity. The geometric discontinuity at the leading-edge corresponds
to vortices generation, each varying in strength, stability, and nature, influenced by
the sweep angles from which they originate. Furthermore, these vortices interact or
merge in various ways depending on the angles of attack and side-slip. Additionally,
as mentioned above, in transonic flow conditions, the shock-vortex interaction further
contributes to this complexity. The primary goals are to deepen the understanding of
vortex-related flow phenomena and enhance the predictive accuracy of current CFD
methods, particularly in turbulence modeling. The task group’s findings are exten-
sively disseminated across the scientific literature. For instance, Hitzel, 2022a presents
an overview of the research program, whereas Hitzel, 2022b provides a detailed sum-
mary of the findings. Additionally, Russel et al., 2022 delves into the analysis of results
under transonic conditions, and Schütte and Werner, 2022 investigates the effects of
turbulence models on the prediction of transonic vortex interactions.

Hövelmann et al., 2020 introduce a combined experimental and numerical investigation
based on URANS computations into the aerodynamics of a generic triple-delta wing
configuration at transonic speeds. The focus is on understanding vortex flow phenom-
ena, including vortex development, vortex-vortex and vortex-shock interactions. The
experimental investigate the ADS-NA2-W1 triple delta wing, which consists of a 52.5°
sweep in the negative strake, a 75° sweep in the mid-wing section, and a 52.5° sweep
in the rear wing section. The wind tunnel model for this planform, characterized by
a thickness of 8𝑚𝑚, is equipped with a sharp leading-edge. Figure 2.8 and Table 2.1
illustrate the specific characteristics of the aircraft configuration. The results include
flow conditions at 𝑀𝑎 = 0.5 and 0.85, covering different angles of attack (up to 40○) and
non-symmetric flows (with non-zero side-slip angles). The experimental datasets in-
cludes force and moment measurements and digital representations of processed steady
PSP measurements. These PSP data provide a high-resolution pressure distribution on
the surface, offering a valuable experimental basis for validating the numerical results.
The detailed illustration of the experimental data is presented in Chapter 6, where
they are compared with the numerical results obtained in this dissertation.

Findings indicate that the experimental and computational results generally agree at
lower to medium angles of attack. However, as the angle of attack increases, discrepan-
cies emerge, particularly in predicting vortex breakdown effects. These discrepancies
are more pronounced in lateral motion cases, where the experimental and numerical
results emphasize different predictions of vortex breakdown effects. The CFD compu-
tations presented by Hövelmann et al., 2020 employ the one-equation Spalart-Allmaras
with negative turbulent viscosity correction (SAneg) turbulence model. A detailed dis-
cussion of this specific turbulence model is provided in Section 3.4, as it constitutes
a focal point of this dissertation. The discrepancies underline the need for further
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research, possibly involving different turbulence models or enhancing existing ones.
The application of alternative turbulence models demonstrates the sensitivity of flow
phenomena to these models (Schütte and Marini, 2020). This observation is critical
as it indicates that current state-of-the-art CFD tools might inaccurately predict flow
characteristics, leading to substantial uncertainties regarding the stability and control
of such planforms during preliminary development phases.

Figure 2.8: ADS-NA2-W1: triple delta wing configuration

Table 2.1: Geometric details of the ADS-NA2-W1

Model
length

Root
chord
length

Mean
aerodynamic

chord

Wing
span

Moment
reference

point aft of
nose

Wing
thickness

Wing
reference

area

(︀𝑚⌋︀ (︀𝑚⌋︀ (︀𝑚⌋︀ (︀𝑚⌋︀ (︀𝑚⌋︀ (︀𝑚𝑚⌋︀ (︀𝑚2⌋︀
0.580 0.401 0.234 0.417 0.380 8 0.082

2.1.8. Vortex interactions

Within the framework of the NATO-STO AVT-316 task group, the complexity of vor-
tex interactions in high-performance aircraft, especially those featuring multi-swept
delta wing configurations, is investigated. The multiple wing sections with different
sweep angles lead to the generation and interaction of various vortical structures, as
detailed in literature (Hitzel et al., 2020; Schütte and Marini, 2020). While horizontal
surfaces downstream of the main wing do not significantly affect other vortical struc-
tures, vortices from canard wings or deployed slats may interact or merge with the
main wing vortex, depending on flow conditions. Furthermore, additional complexity
arises in configurations with rounded leading-edge geometries, where multiple vortices
may separate at different positions along the leading-edge. The interaction and merg-
ing of these vortices increase then the flow complexity, introducing cross-dependencies
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in their evolution. The vortices can interact in various ways, leading to complex aero-
dynamic behaviors. The interaction can change the aircraft’s lift, drag, and stability.
The interaction of vortices can enhance lift, but it can also lead to increased drag or
potentially dangerous flight conditions like vortex-induced vibrations or buffeting. Un-
derstanding vortex interactions is crucial for the design and optimization of aircraft for
improved performance, efficiency, and safety.

Figure 2.9: Vortex development on double
delta wings: influence of leading-edge kink
angle, Δ𝜙, and angle of attack, 𝛼 (inspired
by Brennenstuhl and Hummel, 1982).

In a straked double-delta wing, the
vortex-vortex interaction evolves progres-
sively with the angle of attack. At low an-
gles of incidence, the vortices show mini-
mal interaction. However, as the angle of
attack increases, the interaction strength
grows due to the cross-sectional increase
of the vortices (Brennenstuhl and Hum-
mel, 1982). Eventually, the inner vortex
merges into the outer vortex, with the
merging position moving upstream as the
angle of attack increases, as illustrated in
Fig. 2.9. These configurations have dif-
ferent sections with varying sweep angles.
The point where the sweep of the wing
changes is known as the kink and it is a
critical design feature that influences the
aerodynamic performance of the aircraft.
A parameter closely associated with these phenomena is the kink angle Δ𝜙, defined
as the difference between the strake and aft wing sweep angles. The angle of attack
at which merged vortices’ breakdown decreases with increasing Δ𝜙 as the outer vor-
tex becomes less stable. Employing multiple vortical flows increases the complexity of
physical understanding and predicting aerodynamic behavior. This complexity chal-
lenges numerical methodologies and physical modeling, such as turbulence models, in
maintaining consistent accuracy across varying flow conditions. The vortex-vortex in-
teraction is primarily investigated in Chapter 6, where the CFD simulations conducted
on the ADS-NA2-W1 configuration are discussed at various angles of attack.

2.2. Advancements in CFD: turbulence modeling
A review of the state-of-the-art in CFD as it pertains to delta wing flows is presented.
This discussion includes an examination of the RANS turbulence models, with a focus
on one and two-equation models, reflecting their utilization in this dissertation.

2.2.1. Previous CFD studies for delta wing flows

One of the most critical considerations in applying CFD, especially for delta wings, is
the selection of a turbulence model (Cummings et al., 2003a). Various approaches and
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methods exist for turbulence treatments and modeling, differing in complexity, accu-
racy, and computational expense. In ascending order of complexity, these techniques
include inviscid, laminar, RANS, hybrid RANS/LES, LES, and DNS. The choice of
a turbulence model typically involves a trade-off between computational expense and
solution accuracy. Chapter 3 elaborates on various techniques and approaches, with
particular emphasis in Section 3.4 on the methodology adopted to achieve this disser-
tation’s outcomes.

The following section provides an overview of CFD studies focusing on vortex flow over
delta wings, considering the advantages and disadvantages of each numerical approach.
While informative, it is essential to note that this review may not cover the entirety
of the available literature and predominantly emphasizes simulations at high angles
of attack, where vortex breakdown occurs. The RANS and HRL methodologies are
examined in greater detail, as these are the approaches utilized in this thesis. Conse-
quently, the literature review is primarily focused on the VFE-2 and the ADS-NA2-W1
configurations, as detailed in Sections 2.1.6 and 2.1.7, respectively.

Inviscid methods: solving the Euler equations

Inviscid methods, notably through solving Euler equations, are extensively applied in
simulating flow over delta wings, favored for their reduced computational demands
compared to Navier-Stokes solutions. Despite their inability to account for bound-
ary layers and predict separation, these methods are particularly effective for delta
wings with sharp leading-edges, where separation is inherently fixed, thereby providing
reasonable flow approximations (Allan et al., 2005).

Pioneering studies by Rizzi and Eriksson, 1985 illustrate the Euler equations’ effec-
tiveness in capturing leading-edge separation and vortex formation. The critical role
of numerical dissipation in defining separation at sharp edges and the necessity for
dense grids to accurately model vortex-shock interactions are emphasized (Murman
and Rizzi, 1986; Rizzi and Eriksson, 1985; Rizzi and Purcell, 1987).

The capacity of Euler equations to predict vortex breakdown, albeit with outcomes
highly dependent on grid resolution affecting vortex strength and breakdown character-
istics, is validated by Newsome, 1986. Further researches explore the dynamics of vortex
breakdown, highlighting the influence of grid refinement on the phenomenon (Kumar,
1999). J. Müller and Hummel, 1999 report the observation of periodic oscillations in
aerodynamic forces attributed to vortex breakdown, significantly affected by numerical
damping.

Finally, the comparative analysis of Euler and Navier-Stokes solutions points out the
inviscid methods’ shortcomings, and accentuates the importance of viscous effects for
an accurate depiction of flow separation and vortex breakdown mechanisms (Agrawal
et al., 1992; Rizzi and B. Müller, 1988).

Laminar methods: solving the Navier-Stokes equations

Laminar flow modeling, which accounts for viscosity effects while neglecting turbulence,
is pivotal for elucidating flow dynamics over delta wings, especially under conditions
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dominated by viscous effects. This methodology demonstrates the laminar bound-
ary layer’s heightened sensitivity to adverse pressure gradients, resulting in more pro-
nounced separation phenomena than those observed in turbulent flows (Agrawal et al.,
1992). Nonetheless, the applicability of such computations is primarily at low Reynolds
numbers, where viscous forces significantly outweigh inertial forces.

Comparative analyses of Euler and laminar Navier-Stokes solutions highlight distinct
differences in the mechanisms of vortex initiation and separation over delta wings with
rounded edges (Rizzi and B. Müller, 1988). Laminar models, initiating vortices at
the wing apex, align more closely with experimental findings than Euler solutions,
underscoring the critical influence of grid resolution and axial pressure gradients on
accurately predicting vortex dynamics (Ekaterinaris and Schiee, 1990a,b).

Further research into the unsteady characteristics of flow following vortex breakdown
uncovers intricate interactions between breakdown structures and the wing boundary
layer (Gordnier, 1997; Visbal, 1996). Time-accurate laminar simulations reveal detailed
behaviors of spiral and bubble-type breakdowns, elucidating the complex onset and
evolution of vortex breakdown over delta wings (Cummings et al., 2003b,c; Visbal and
Gaitonde, 1999). However, as the flow transitions towards turbulent, the necessity for
employing advanced modeling techniques becomes paramount to accurately depict the
complex vortex dynamics inherent to such conditions.

Reynolds Averaged Navier-Stokes

For enhanced accuracy in computational solutions of delta wing flows, it is imperative
to consider and model the turbulent behavior of the flow. Reynolds averaging, which
simplifies the instantaneous Navier-Stokes equations into mean flow equations, repre-
sents a prevalent approach for treating turbulence. The principles and applications
of Reynolds averaging, along with several turbulence models, are elaborated in Chap-
ter 3. Not all turbulence models are suitable for analyzing delta wings and vortical
flows. Consequently, researchers dedicate substantial efforts to identifying appropriate
models and modifying existing ones to yield the most accurate results compared to
experimental data.

Morton et al., 2002 examine the impact of turbulence modeling on the unsteady behav-
ior of flow over a 70○ semi-span delta wing, operating at 𝑀𝑎 = 0.069, 𝑅𝑒 = 1.56 × 106,
and 𝛼 = 27○. The investigation utilizes five turbulence models: three RANS models
(SA, SA-RC, SST) and two HRL approaches based on the SA and Menter’s SST mod-
els. The analysis of the frequency content of unsteady results indicates that while the
SA and SST models struggled to resolve the majority of the spectrum’s frequencies,
the SA-RC model exhibits an improved spectrum due to its correction, which reduced
turbulence dissipation within the vortex core. However, this model faces challenges
with specific frequencies associated with post-breakdown turbulence scales. A com-
parison with experimental data by Mitchell et al., 2000 reveals that all turbulence
models, except the SST, produce breakdown positions comparable to experimental
observations.

Fritz and Cummings, 2008 provide insights into the VFE-2 delta wing flows. They per-
form RANS simulations, initially with algebraic turbulence models and subsequently
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with one- and two-equation turbulence models. There are good agreement between
numerical results and experiments for subsonic sharp leading-edge test cases, but pre-
dicting vortex breakdown remains challenging. The simulations are able to predict sec-
ondary (and even tertiary) vortex separation. However, issues with turbulence models
lead often to poor predictions of surface pressures, especially regarding the location
and strength of the secondary vortices. In transonic conditions, the shock position is
often predicted too far upstream, leading to premature vortex breakdown compared to
experimental observations.

Crippa and Rizzi, 2008 focus on CFD analysis of the VFE-2, involving simulations
across a range of Reynolds numbers at subsonic speeds and low incidences, and com-
paring the results to experimental data. The numerical simulations reveal a wide, thin
inner vortex forming early in the apex region, attaching to the symmetry plane. How-
ever, these findings differ from experimental data, which suggest the inner vortex is
located further outboard, stronger, and more compact than the numerical predictions.
The computations consistently under-predict the strength of the inner vortex at its
origin, leading to mismatches in its further development. This under-prediction aligns
with the detailed analysis of skin friction lines, where there is no distinct convergence of
lines leading to the formation of inner vortical flow. The recognized separations are pri-
marily due to primary and secondary leading-edge vortices. The need for time-accurate
computations is justified, as the formation of complex multi-vortex systems and time-
dependent sub-vortices upstream of primary separation are crucial for understanding
and accurately modeling these flow characteristics.

Rizzi et al., 2009 focus on numerical simulations of the F-16XL aircraft using various
CFD solvers and RANS methods. They compare simulations with flight-test measure-
ments across different flight Reynolds/Mach number combinations. The challenges and
discrepancies encountered in the simulations, particularly in replicating complex flow
phenomena like vortex breakdown and the interaction of vortices over the aircraft, are
emphasized. Specifically, for FC70, a high-Mach, high-Reynolds condition, although
there is a remarkable agreement among state-of-the-art computational tools, the agree-
ment with actual flight measurements is not close. It is suggested that this discrepancy
is due to the poor prediction of a concentrated leading-edge vortex and its interaction
with a shock.

Schütte et al., 2012b analyze the SACCON UCAV configuration using wind tunnel
experiments and numerical calculations. The basic flow pattern around the SACCON
configuration, characterized by a 53○ swept and rounded leading-edge, consists of an
apex vortex and a tip vortex, separated by a primarily attached flow region at the
leading-edge. With increasing angle of attack, the intermediate flow region disappears,
leading to a flow dominated by two vortices. This change in flow topology is responsible
for a characteristic dip in the pitching moment slope as AoA increases. Schütte et al.,
2012b emphasize the effectiveness of the SA turbulence model in accurately predicting
aerodynamic coefficients and surface pressure distributions, highlighting its suitability
for complex aerodynamic analyses. Slight differences are noted in the AoA at which the
dip in the pitching moment curve occurs. Numerical simulations significantly overpre-
dict the pitching moment coefficient at very high AoAs (above 20○), likely due to vortex
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breakdown, indicating a need for improvement in numerical simulations to account for
this phenomenon.

Schütte et al., 2012a conduct a comprehensive investigation of the complex aerodynam-
ics of the X-31 aircraft utilizing various CFD solvers, including the DLR-TAU Code.
They perform a detailed comparison of numerical results obtained using a range of
RANS turbulence models, such as SA, SA-RC, 𝑘 −𝜔, and others, against experimental
data. The focus is on the necessity for precise prediction of complex flow phenomena,
especially around fighter aircraft configurations at high angles of attack, where intricate
vortical structures are prevalent. The research emphasizes the crucial role of amalga-
mating CFD predictions with experimental data to deepen aerodynamic understanding
and enhance the model validation process.

Schütte and Marini, 2020 focus on the computational analysis of the sharp leading-edge
triple delta wing NA2-W1 fighter configuration. The study highlights the significant
impact of grid resolution on the representation of suction peaks of vortices and pressure
recovery near attachment lines. Although a final grid convergence is not achieved, a
medium-size grid is used for the analysis, suggesting a need for further grid assess-
ment after selecting an optimal turbulence model. The pitching moment coefficient is
significantly influenced by the chosen turbulence models. The SA turbulence model,
compared with two versions of the 𝑘 − 𝜔 models and a Reynolds-Stress turbulence
model, shows significant differences in predicting flow topology. The SA turbulence
model fails to provide accurate flow physics and aerodynamic performance. The 𝑘 − 𝜔
models yields reasonable results in some areas but inaccurate in others, such as over-
predicting suction in secondary vortices. The Reynolds-stress model provides the best
overall results across the range of angle of attack and side-slip.

While classical RANS models are computationally efficient, their ability to accurately
predict highly vortical flows, especially at high angles of attack and side-slip, is lim-
ited. EVMs often struggle to accurately predict the fundamental characteristics of
vortices, primarily due to the misprediction of eddy viscosity production/destruction
in vortex flow regions. This limitation, inherent in standard RANS models, typically
results in excessive eddy viscosity, affecting the vortex’s size, type, and velocities, and
leading to significant discrepancies in suction peak and pressure distribution compared
to experimental findings. Numerical solutions inaccurately predict vortex breakdown
in terms of position and intensity, negatively affecting the accuracy of delta wing aero-
dynamic coefficients. This constraint generates interest across academic and industrial
communities in advancing the accuracy of RANS models, notably within the aerospace
industry. Despite advancements in computational power, turbulence modeling remains
then a vital area of research aimed at accelerating engineering design processes. This
topic is further explored in Section 2.2.2, which provides a comprehensive review of
modifications to the RANS model. Additionally, Section 2.3.3 highlights innovations
that incorporate machine learning techniques to improve classical models.

LES and DNS

The most accurate methods for predicting turbulent flows are LES and DNS. DNS
directly solves the Navier-Stokes equations for all scales of motion, which makes it
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highly accurate but computationally expensive, typically limiting its application to
low-Reynolds number flows (Shan et al., 2000; Visbal and Gordnier, 2003). LES sim-
ulates large-scale flow structures directly while modeling smaller scales, allowing for
coarser grid resolutions and application to higher Reynolds numbers, albeit with greater
computational demands than RANS methods.

Mary, 2003 employ LES to study vortex breakdown over a delta wing, using localized
mesh refinement and various wall treatments to explore near-wall effects, revealing the
sensitivity of flow behavior to wall conditions and mesh resolution. Similarly, Shan
et al., 2000 and Visbal and Gordnier, 2003 utilize DNS to investigate vortex shedding
and the structure of vortical flows over delta wings, highlighting the technique’s ability
to capture intricate flow phenomena even at modest Reynolds numbers.

Despite their computational demands, LES and DNS have are feasible for detailed flow
analysis of simple and selected test cases, particularly in studying complex phenomena
like vortex breakdown and shear layer instabilities. However, the substantial com-
putational resources required for these simulations often render them impractical for
routine applications, especially at higher Reynolds and Mach numbers. In this context,
the hybrid RANS/LES methodology offers a more feasible alternative, balancing accu-
racy with computational efficiency for complex flow conditions (Gordnier and Visbal,
2005).

Hybrid RANS/LES

To mitigate the demanding spatial and temporal requirements of LES, particularly
within boundary layer regions, researchers employ HRL methods. These hybrid tech-
niques leverage the strengths of RANS and LES by applying RANS models to boundary
layer regions and LES to the rest of the flow domain. Hybrid RANS/LES emerges as
a significant field in analyzing vortical flows, and many researchers assess this method
to simulate delta wing flows. Further elaboration on the formulation of such methods
is provided in Chapter 3.

Morton et al., 2002 simulate the flows over a 70○ wing and compare RANS with two
DES formulations based on the SA and SST models. Given DES’s inherent sensitivity
to time step size and grid resolution, they conduct both time accuracy and grid de-
pendence studies. The DES methods are able to capture the full range of frequencies
present in delta wing flows. Their analysis of vortex breakdown behavior further re-
veal that breakdown is more distinctly resolved in the DES solutions, concluding that
DES methods provide a more accurate prediction of flow behavior, demonstrating their
potential as a valuable tool for capturing complex turbulent flows over delta wings.

Mitchell et al., 2006 explore the presence of vortical substructures in delta wing flows
using DES based on the SA turbulence model. They conduct meticulous time step and
grid resolution analyses, employing Adaptive Mesh Refinement to enhance grid reso-
lution in critical areas, particularly within the vortex core region. The results show
good concordance with experimental observations, revealing small, spatially stationary
sub-vortices in the shear layer on the finest and adapted grids. These structures iden-
tified in the adapted grid solution mirror the experimental results more closely than
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those on the finest grid, suggesting that the manifestation of these structures is highly
grid-dependent. While DES is endorsed for its solution accuracy, the study emphasizes
the criticality of meticulous grid creation due to the significant sensitivity of the results
to vortex region resolution.

Goertz, 2003; Goertz and Le Moigne, 2003 conduct DES investigations on a 70○ delta
wing at a Mach number of 0.2 and a Reynolds number of 1.56×106. The study perform
a time step analysis on a semi-span wing to expedite calculation times. Although the
signal duration is insufficient to detect frequencies associated with vortex breakdown
oscillation, flow visualizations in agreement with experimental data indicate an accu-
rate prediction of the unsteady behavior of the breakdown location. Overall, the study
concludes that while DES accurately predicts unsteady vortex breakdown locations,
further research into grid refinement is necessary.

Riou et al., 2010 focus on the impact of compressibility on vortical flow over the VFE-2
delta wing at different Mach numbers (0.4 and 0.8) and an angle of attack of 25.5°.
The simulations utilize a combination of DDES and Zonal DES approaches, enhancing
the decay of eddy-viscosity in LES regions. The study highlights the influence of the
Mach number on the leading-edge vortex core development. Notably, two perpendicular
shock waves to the wing’s symmetry plane are observed, with the shock at 𝑥⇑𝑐 = 0.55
interacting with the leading-edge vortex. This interaction results in a decrease in
longitudinal velocity and Rossby number, indicating vortex breakdown. The presence
of the normal shock wave leads to an earlier vortex breakdown in the transonic case.
Additionally, five cross-flow shocks around the vortical flow are noted, with one shock
moving laterally at frequencies characteristic of shock/boundary layer interactions. The
HRL method demonstrate a commendable correlation with experimental data, enabling
an in-depth analysis of phenomena not accurately discernible through experimental
methods alone.

Tangermann et al., 2012 conduct DDES on the VFE-2 delta wing, achieving results
that largely concur with experimental findings. They highlight the pivotal role of ini-
tial vortex formation in influencing the overall vortex system. High resolution in the
apex region is crucial for accurate vortex development, while downstream areas can be
modeled with coarser grids and smaller time steps. Discrepancies are observed between
simulations and experiments, particularly in the predicted locations of vortex break-
down, which occurs further downstream and develops more suddenly in simulations.
Accurate prediction of vortex behavior, especially vortex breakdown, is found to be
contingent on fine resolution near the wing apex despite the fixed flow separation due
to the sharp leading-edge.

Numerical simulations of the flow at subsonic conditions for the VFE-2 delta wing con-
figuration with rounded leading-edges are carried out by Cummings and Schütte, 2013
using RANS and several hybrid turbulence models. The work focuses on the dual pri-
mary vortex flow topology and its sensitivity to varying angles of attack and Reynolds
number effects. The simulated flow field resulting from SA-DDES simulations shows
significant improvements compared to other hybrid turbulence model simulations, and
the results are promising for understanding the flow field.
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Peng and Jirasek, 2016 perform RANS and HRL computations, taking into account the
flow around the VFE-2 delta wing at a low-speed subsonic Mach number 𝑀𝑎 = 0.14
and an angle of attack 𝛼 = 23○. The HRL computations reproduce the mean flow
more reasonably than the RANS computation, conducted with the SA model and the
Explicit Algebraic Reynolds Stress Model (EARSM). The HRL approach enables a
reasonable vortex evolution and bursting prediction as the flow approaches the wing
trailing-edge, aligning better with experimental data than the RANS models. It ade-
quately represents the presence of inner, primary, and secondary vortices in terms of
the resolved instantaneous vortical flow structures.

A promising research contribution in the filed of HRL approach is also given by Zhou et
al., 2019. The study focuses on simulating the turbulent flow around the VFE-2 delta
wing at a low subsonic Mach number using the HRL approach. An automated mesh
generation methodology is employed for a sharp leading-edge delta wing and the DDES
approach is used with a shear layer adapted sub-grid scale model. The simulations
employ three different mesh densities and compare the results with experimental data,
highlighting the importance of mesh adaptation and resolution in capturing essential
flow physics, especially in leading-edge and vortex core regions.

These studies collectively suggest that HRL approaches offer significant advancements
in accurately simulating complex turbulent flows, particularly for configurations such
as delta wings. These HRL methods demonstrate an enhanced capability to capture the
intricate details of vortex formation, development, and breakdown. The importance of
high-resolution meshing in critical areas like the wing apex for precise vortex prediction
is underscored, while also acknowledging the method’s sensitivity to grid and time step
choices. Overall, HRL methods emerge as a promising tool for studying vortical flows,
providing a balance between computational feasibility and the need for detailed flow
physics representation, especially in areas where standard RANS models fall short.

2.2.2. RANS turbulence modeling: history and improvements

Historically, a diverse array of turbulence models have been proposed, spanning from
rudimentary algebraic models such as Prandtl’s mixing length hypothesis to compre-
hensive stress-transport models like the Launder–Reece–Rodi (Launder et al., 1975).
Nonetheless, the escalated complexity of these turbulence models and their heightened
computational demands when applied to practical technical challenges do not always
correlate with a marked enhancement in solution quality. A review of several preva-
lent and widely adopted turbulence models can be found in literature (Wilcox, 1998).
The following overview is concentrated on one and two-equation turbulence models,
reflecting their utilization in this dissertation.

Over the past decade, one-equation turbulence models have gained significant atten-
tion. Their rising popularity is primarily attributed to their numerical simplicity in
comparison to conventional two-equation models such as 𝑘 − 𝜖 (Jones and Launder,
1972) and 𝑘−𝜔 (Wilcox, 1988). While algebraic models, exemplified by the established
Baldwin–Lomax model (Baldwin and Lomax, 1978), are computationally efficient, they
often lack universality and omit specific effects like transport and diffusion. In contrast,
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one-equation models are the most rudimentary form of turbulence models that account
for transport effects, positioning them as a favorable middle ground between algebraic
and traditional two-equation models.

As the state-of-the-art, the widely used one-equation model is formulated for the tur-
bulent eddy viscosity 𝜈𝑡 by Spalart and Allmaras, 1992, prioritizing numerical stability.
Subsequently, Menter, 1997 delineate a comprehensive technique for extrapolating one-
equation models from their two-equation counterparts, culminating in a novel model
rooted in the conventional 𝑘 − 𝜖 equations. Additionally, Nagano et al., 2000 extrap-
olate another one-equation model from the low-Reynolds-number 𝑘 − 𝜖 model. Their
model register commendable performance against DNS and experimental data for wall-
adherent flows such as boundary layers and planar wall jets.

The efficacy and predictive accuracy of numerous models, including the Baldwin–Barth,
Spalart–Allmaras, standard 𝑘 − 𝜖, 𝑘 − 𝜔, and the SST (Menter, 1993) are extensively
detailed in several studies (Spalart, 2000; Wilcox, 1988). As detailed in Section 2.2.1,
RANS models frequently face challenges in predictive accuracy, and a universal solution
to address their shortcomings has yet to be identified.

Over the years, turbulence modeling has seen numerous modifications and new ap-
proaches to enhance the fidelity of RANS models. A notable focus is addressing accu-
racy issues in complex flow scenarios like highly curved, rotating, or recirculating flows.
Diverse curvature and rotation corrections are developed for RANS turbulence mod-
els over the years, even though introducing streamline curvature directly into model
equations often fails due to the lack of Galilean invariance (Howard et al., 1980; Laun-
der et al., 1977). For instance, Howard et al., 1980 explore 𝑘 − 𝜖 model adjustments
considering the Coriolis force, while Launder et al., 1977 introduce a term in the ep-
silon transport equation for curved boundary layers. Similarly, Degani and Schifft,
1986 identify and correct an over-prediction issue in the Baldwin-Lomax model. Shur
et al., 2000 introduce a streamline curvature correction that modifies the source term
of the SA model (SA-RC) by applying a correction function to the production term in
the eddy viscosity transport equation. This modification is later adapted for the SST
turbulence model by Smirnov and Menter, 2009, with correction constants calibrated
for a global formulation. It significantly influences the vortex core and is highly re-
sponsive to the vortex characteristics and strength. However, while it is effective in
improving solutions for many delta wing simulations, it is observed to be ineffective or
even detrimental in other cases.

Recent researches in turbulence modeling highlight the potential of empirical and phys-
ical modifications to improve the accuracy of specific flow classes. These modifications
progressively address increasingly complex flow scenarios, comparing their performance
with experimental data. W. Zhang et al., 2010 implement a rotation correction based
on the formulation by Hellsten, 1998, focusing on simplification and computational
efficiency. Unlike the SA-RC model, which requires higher-order velocity derivatives,
Zhang’s correction is based on a general definition of the Richardson number and uti-
lizes only first-order velocity derivatives. Arolla and Durbin, 2013 modify the produc-
tion term of 𝜔 based on streamline curvature, following the concept of Reif et al., 1999.
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Similarly, Stabnikov and Garbaruk, 2016 propose a correction that multiplies turbu-
lent kinetic energy transport equation, showing improvements in various test cases,
including vortex flows.

Asnaghi et al., 2019 comprehensively compare various curvature corrections concern-
ing separating a Rankine tip vortex. The sensitivity of vortex separation to turbulence
modeling is highlighted. Different rotation corrections have varying impacts on eddy
viscosity distribution. X. Zhang and Agarwal, 2018 introduce a Richardson model-
based correction to the model by Wray and Agarwal, 2015, demonstrating mild accu-
racy improvements without additional computational costs.

An alternative strategy involves the development of an optimized and enhanced tur-
bulence model, using an existing database of Hi-Fi data. Menter et al., 2020 propose
the Generalized 𝑘 − 𝜔 model, highlighting the importance of minimizing other error
sources and using experimental data for model adaptation. Moioli et al., 2018, 2022
aim to adapt the one-equation SA model specifically for delta wing applications using
an experimental database and a gradient-based optimization process. However, since
the model terms are modified to better agree with measured data from experiments,
such development leads to very specialized turbulence models suitable only for specific
applications.

As introduced in Section 2.2.1, EVMs based on Boussinesq’s hypothesis, are devel-
oped to compute eddy viscosity from flow characteristics but struggle with accuracy
in complex flows. These models, simplifying turbulence to kinetic energy and using
eddy viscosity, neglect turbulence’s anisotropic nature. The assumption that Reynolds
stress aligns with the mean strain rate fails in vortical flows, such as those around delta
wings. The concept, while widely adopted for its simplicity, falls short in conditions
where stress and strain rates are misaligned or in situations of rapid stress redistribu-
tion, especially at high AoA and side-slip. Further details are given in Section 3.3.

Since the Boussinesq assumption limits the potential accuracy of RANS numerical
simulation of vortex flows, different approaches are proposed to remedy some of the
shortcomings of the linear eddy-viscosity models (Spalart, 2000). Pope, 1975 intro-
duces a more realistic effective-viscosity formulation. It aims to better represent the
turbulent viscosity, which is a key factor in determining the momentum transfer and
mixing in turbulent flows. Pope’s formulation enhances turbulence modeling by inte-
grating turbulence anisotropy and strain rate effects into effective viscosity calculations.
This approach, achieved by introducing additional transport equations or modifying
existing ones, offers a more refined representation of turbulent flow physics. It accounts
for the distribution of turbulent energy across various scales and directions, providing
a more accurate depiction of turbulence’s dissipative actions. By accounting for the
anisotropy of turbulence, the effective-viscosity formulation can more accurately pre-
dict the behavior of turbulent flows, especially in complex scenarios where traditional
models may fail.

Therefore, research efforts focus on incorporating non-linear terms into turbulence mod-
els. Shih, 1997 demonstrate accuracy improvements in swirling flows by including a
cubic Reynolds stress-strain term in the 𝑘 − 𝜖 model. Craft et al., 1996 further expand
on the development of non-linear eddy-viscosity models. Dol et al., 2002 explore the

37



2.3 Machine learning

capabilities of non-linear eddy viscosity models in predicting flow behavior over delta
wings, comparing them with standard linear two-equation models, both with and with-
out rotation correction. Both the rotation-corrected and non-linear models improve sig-
nificantly upon the standard model’s predictions, with the non-linear model showing
strong agreement with experimental results at higher angles of incidence. Further-
more, Rumsey et al., 2020a propose the Quadratic Constitutive Relation (QCR) which
employs a non-linear turbulent stress/strain equation, extending the linear Boussinesq
relation. This approach accounts for the anisotropy property of Reynolds’s normal
stresses, addressing their incorrect behavior.

In general, while these advancements in turbulence modeling show potential in specific
cases, their application often requires preliminary testing and lacks consistent flexibil-
ity and accuracy across different flow scenarios. The exploration of these corrections
continues to be integral to advancing RANS model fidelity. Future research directions
include model extensions to complex physical flows and more universal applicability.

2.3. Machine learning
Machine learning represents a transformative branch of artificial intelligence, aiming
to empower machines to learn from and make data-based decisions. It includes the
development of algorithms capable of processing, analyzing, and learning from data to
autonomously make predictions or execute tasks without the need for explicit program-
ming for each specific scenario. Machine learning algorithms progressively improve as
they are exposed to more data, enhancing their ability to make more accurate pre-
dictions and informed decisions. This field is rapidly evolving, continually pushing
the boundaries of machine capabilities and finding new applications across nearly ev-
ery sector of society and industry. The primary categorizations of machine learning
are outlined and the integration of EAs into the machine learning framework in dis-
cussed. This discussion encompasses the application of machine learning techniques in
a broad context, with a particular focus on their specific utilization within the fields of
aerodynamics and turbulence modeling.

2.3.1. Role of evolutionary algorithms in machine learning
Machine learning algorithms are broadly categorized based on how they learn and oper-
ate. One approach within this field is EAs, which draw inspiration from biological evo-
lution. Evolutionary Algorithms complement traditional machine learning approaches
by addressing optimization challenges that are intractable for gradient-based methods,
thus expanding the applicability of machine learning.

EAs are highly flexible and can adapt to solve a wide range of optimization problems
without the need for gradient information, which is often unavailable or difficult to
compute for turbulent flows. This makes EAs particularly suitable for optimization
in turbulence research where the problem landscapes are highly nonlinear and multi-
modal. Unlike gradient-based optimization methods that are prone to getting stuck in
local minima, EAs are designed to perform global searches by maintaining a population
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of solutions. This characteristic is particularly beneficial in exploring the vast solution
spaces inherent in turbulence models, enhancing the likelihood of finding optimal or
near-optimal solutions. Furthermore, the intrinsic exploratory nature of EAs enables
them to discover novel solutions that might be overlooked by methods that optimize
based on gradient descent, which is particularly relevant in the innovative field of
turbulence research where new phenomena are frequently discovered.

While traditional ML techniques, such as deep learning, have shown success in turbu-
lence research, they often rely on large amounts of labeled data and may struggle with
extrapolation outside the training datasets. In contrast, EAs do not require labeled
data to explore the solution space, making them more versatile in situations where data
is scarce or expensive to obtain. EAs are inherently parallelizable, as each individual
in the population can be evaluated independently. This feature is highly advantageous
for computational efficiency, especially given the computationally intensive nature of
turbulence simulations (Deb et al., 2002; Fleming and Purshouse, 2002).

At the heart of EAs is the concept of the evolutionary cycle, which involves the genera-
tion of a population of individuals (solutions), the evaluation of these individuals based
on a fitness function (how well they solve the problem), and the application of evolu-
tionary operators such as selection, crossover (recombination), and mutation to create
a new generation of individuals. This process is repeated over many generations, with
the population ideally converging towards an optimal or satisfactory solution. pressure
within the algorithm.

Several types of EAs exist, each with its own strengths and optimal applications for
specific types of problems. Among these, Genetic Algorithms (GA) and Genetic Pro-
gramming (GP) form the foundational concepts behind GEP. GAs represent a subset of
EAs that employ mechanisms inspired by biological evolution, including reproduction,
mutation, recombination, and selection. Within this framework, candidate solutions to
an optimization problem serve as individuals in a population, with the fitness function
assessing the quality of these solutions. GP, a branch of evolutionary computation,
focuses on evolving programs or algorithms tasked with specific functions. The foun-
dational concept of GP is articulated by Koza, 1994 and further elaborated by Kramer,
2017. GP extends GAs by operating on populations of tree-structured programs rather
than fixed-length strings, thereby enhancing the adaptability and scope of evolution-
ary computation in problem-solving (Langdon et al., 2008). This structural aspect of
representing individuals is also integral to GEP.

Evolutionary Algorithms represent a versatile and powerful toolkit for solving optimiza-
tion problems across a wide range of domains. In general engineering, EAs are employed
to address many problems (A. Johnson et al., 2019; Parmee, 2012). The adaptability of
EAs extends to areas such as turbulence modeling (Sandberg et al., 2018; Schoepplein
et al., 2018), as well as health technologies (Ling et al., 2016). Recent crises further
demonstrate the utility of EAs, examining the coevolutionary dynamics of SARS-CoV-
2 (Govinda et al., 2021), and enhancing real-time flood predictions through EA-neural
network integrations (Suddul et al., 2020). Beyond engineering challenges, EAs venture
into creative domains, generating art and music (Hofmann, 2015; Secretan et al., 2011).
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The continuous evolution and diversification of EAs underscore then their versatility
and growing impact across various fields.

2.3.2. Introduction to gene expression programming
Gene Expression Programming is a type of EAs developed by Ferreira, 2002 that com-
bines the advantages of GAs and GP. GEP evolves populations of individuals encoded
in linear chromosomes, which are then expressed as tree structures for evaluation. The
linear chromosome representation facilitates the application of genetic operators such
as mutation, recombination, and transposition, while the tree structure expression al-
lows for the direct evaluation of evolved expressions (Ferreira, 2006b). This dual nature
of GEP enables it to efficiently search the solution space for optimal or near-optimal
solutions. Ferreira, 2006a introduced the notion of the Open Reading Frame to ar-
ticulate the linear string of the genome, wherein the symbolic expression is termed
k-expression, derived from Karva-language. Further research efforts are ongoing to
develop more accurate and faster GEP codes (Kasten et al., 2022a; Weatheritt and
Sandberg, 2015, 2016).

The GEP’s ability to evolve concise, yet complex models offers significant advantages
for symbolic regression and the modeling of complex systems. As research continues,
GEP is expected to find even broader applications and achieve greater optimization
performance. While black box models offer the advantage of handling highly com-
plex problems with potentially higher accuracy, the transparency, interpretability, and
adaptability of GEP make it a preferred choice for applications where understanding the
model’s decision-making process is crucial. GEP’s ability to produce human-readable
models that can evolve and adapt over time provides a unique blend of flexibility and
transparency that is highly valued in many domains.

2.3.3. Machine learning applied to turbulence modeling
Recent progress in data science has reinvigorated scientific research focused on turbu-
lence modeling. In the field of turbulence modeling, machine learning has achieved
significant advancements (Duraisamy et al., 2019). The evolution of more efficient and
complex deep neural networks and machine learning tools presents an opportunity for
synergistic improvements in physical modeling, particularly in accuracy and computa-
tional feasibility. Applying deep neural networks to analyze extensive datasets from
high-fidelity simulations or experimental studies holds promise for advancing tradi-
tional RANS turbulence models to their optimal performance thresholds.

Various machine learning techniques are employed to improve the predictive capacity
of conventional RANS models. These methodologies include the calibration of model
parameters via the Bayesian approach (Edeling et al., 2014), the introduction of a
neural network-informed correction component for the turbulence production term (Z.
Zhang and Duraisamy, 2015), and the integration of a spatially varying correction field
employing field inversion and Gaussian Process techniques (Parish and Duraisamy,
2016), among others. Beyond merely introducing corrections to pre-existing model
parameters, attempts to devise new Reynolds stress closures using physics-informed
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machine learning are conducted. Wang et al., 2017 employ a random forest method to
train Reynolds stress discrepancy functions based on the eigenvalues of the anisotropy
tensor. Ling et al., 2016 use a deep neural network to train the Reynolds stress tensor
conserving Galilean invariance.

Initially, most of these efforts have focused on simple individual test cases. Milano and
Koumoutsakos, 2002 use neural networks to recreate the near-wall velocity fields in
turbulent channel flows. Weatheritt and Sandberg, 2016 showcase promising outcomes
for the backwards-facing step and periodic hill flows using GEP. Tracey et al., 2015
probe the capabilities of kernel regression in modeling the NACA 0012 airfoil flow, while
Wang et al., 2017 enhance predictions for the periodic hill flow. Besides, more recent
turbulence modelers broaden the horizons of ML techniques to consider more challeng-
ing flow cases. Significant advancements are observed in predicting wake loss profiles
across both low- and high-pressure turbine instances (Akolekar et al., 2019; Zhao et
al., 2020) and in depicting turbulent boundary layers at high Mach number (Wang
et al., 2019). Moreover, although considering a single test case, some researchers have
tried assessing turbulence models under different flow conditions. Examples include
formulating ML models tailored for periodic hill flows across a range of Reynolds num-
bers (Z. Zhang et al., 2021), airfoil flows subjected to varying free-stream conditions
and geometrical configurations (Zhu et al., 2022), and vertical natural convection cases
under distinct Rayleigh numbers (Xu et al., 2022). Only a handful of studies incor-
porate diverse flow contexts within their training framework, like channel and duct
flows (Jiang et al., 2021). Consequently, there’s a growing inclination in engineering to
develop more comprehensive models aimed at achieving higher accuracy across diverse
flow test cases.

Moreover, various data analysis instruments have been introduced with the advance-
ment of high-performance computing, enabling more complex simulations and state-
of-the-art experimental tools, that provide comprehensive datasets. These instruments
can derive essential physical insights from the data to enhance RANS modeling (Brun-
ton et al., 2020; Duraisamy et al., 2019, 2017; Durbin, 2018). Nevertheless, although
data has historically been instrumental in refining model coefficients and assessing
the model uncertainty (Brunton et al., 2020), the capacity to exploit this expansive
datasets remains predominantly underutilized. Indeed, while the adoption of ML in
turbulence model development is increasing, challenges remain in training these mod-
els for practical engineering applications. Integrating the resulting neural network into
standard RANS solvers present several challenges, and many of the devised corrections
often lack clear physical interpretability.

Recent advancements in turbulence modeling are marked by Singh et al., 2017, who
integrate a neural network with an inference tool to modify the Spalart-Allmaras tur-
bulence model. This modification involves a correction factor applied to the production
term within the flow domain. The process begins with solving an inversion problem to
determine a pointwise correction factor that closely matches experimental data. This
corrected field then serves as a training target for the neural network. The enhanced
model, equipped with the trained neural network, is designed to predict the appropriate
correction factor in new test cases and flow fields. Initial results are promising, par-
ticularly in airfoil flows and other two-dimensional scenarios, indicating the method’s
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potential for broader application and improvement in more complex flow conditions.
Parallel to this, Zhu et al., 2019 and Wu et al., 2018 develop similar methodologies to
integrate high-fidelity data into additional terms of their turbulence models. Their ap-
proach focuses on rectifying the discrepancies between the true Reynolds stresses from
DNS and those predicted by RANS models, employing neural networks to learn and
adjust based on the input flow. The regression function resulting from this learning
process is then utilized to enhance the turbulence models’ predictive accuracy.

Weatheritt and Sandberg, 2016 pioneer the use of GEP to enhance the Boussinesq
approximation within the RANS approach. GEP is the choice for the ML framework
used in this dissertation, owing to its previously demonstrated efficacy in addressing
challenges related to turbulence closures, heat flux, and transition models (Akolekar
et al., 2021; Haghiri et al., 2020; Lav et al., 2021, 2019a,b; Wilsby and Sandberg,
2019; Xu et al., 2022; Zhao et al., 2020). Its adaptability is particularly highlighted in
turbulence closures, where its utility extends from two-equation closures to developing
second-order closure models (Alaya et al., 2022). Further studies in the field of turbu-
lence modeling can be found in the literature (Fang et al., 2023; Kasten et al., 2022b;
Reissmann et al., 2021).

Nevertheless, previous ML research efforts (Ling et al., 2016; Wang et al., 2017) and
GEP studies (Akolekar et al., 2019; Weatheritt and Sandberg, 2015, 2017) have primar-
ily used time-averaged Hi-Fi data for model assessments, employing a method known
as frozen training. In this context, frozen implies that the Hi-Fi data used during the
training phase remains unchanged. Despite the potential for applying this methodology
across various data types, including experimental and theoretical data, the approach
faces limitations due to inconsistencies between Hi-Fi data and the RANS framework,
such as fluctuations in turbulent dissipation rates (Duraisamy et al., 2019). The dis-
crepancies between RANS modeling and Hi-Fi training data often lead to ineffective
model enhancements when applied in RANS contexts, as evidenced by efforts to refine
Reynolds stress models using DNS data (Parneix et al., 1998). This challenge raises
doubt on the efficacy of development approaches that rely on accurately modeling the
Reynolds stress tensor using Hi-Fi data for predicting mean flow dynamics. The sepa-
ration of learning and prediction stages often results in discrepancies between a priori
and a posteriori assessments.

To address these limitations, recent researches have introduced an innovative CFD-
driven training methodology, which integrates CFD simulations into the model train-
ing iterations, aiming for models that align more closely with RANS predictions of
turbulence metrics. A comprehensive understanding of GEP’s application in CFD-
driven training is elaborated by Fang et al., 2023; Zhao et al., 2020. Zhao et al., 2020
apply machine learning techniques to devise an algorithm for identifying the most ef-
fective enhancements to a baseline turbulence model. Within the proposed framework,
the effectiveness of proposed models is directly evaluated through RANS calculations,
bridging the gap between theoretical model development and practical application.
The CFD-driven framework based on GEP used in this dissertation is detailed in Sec-
tion 4.2.
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3
Fluid Motion Theory and Turbulence
Modeling

This chapter scrutinizes fluid motion theory, starting with the presentation of the gov-
erning equations in Section 3.1, followed by an introduction to turbulence in Section 3.2.
The discussion then progresses to the modeling aspect, where numerical approaches
are detailed in Section 3.3. Section 3.4 then presents a thorough examination of the
modeling approaches and turbulence models employed for the analysis of delta wing
aerodynamics in this dissertation.

3.1. Governing equations
The Navier-Stokes equations are a set of differential equations that describe the motion
of viscous fluid substances, such as liquids and gases. These equations are fundamental
in fluid dynamics and are used to model the behavior of the fluid’s velocity, pressure,
temperature, and density. They are derived from applying Newton’s second law to
fluid motion and assuming that fluid stress is the sum of a diffusing viscous term and
a pressure term. The continuum approach is employed, based on the assumption that
the Knudsen number is lower than 0.01. This assumption allows the examination of
fluid behavior through macroscopic properties such as velocity, pressure, and density.

The Navier-Stokes equations play a pivotal role in the fundamental understanding and
prediction of fluid dynamics across diverse scientific and engineering domains. These
equations govern mass, momentum, and energy within fluid flows.

The principle of mass conservation, commonly known as the continuity equation, is
articulated in its differential form as follows

𝜕𝜌

𝜕𝑡
⃦

Transient term

+ 𝜕(𝜌𝑢𝑖)
𝜕𝑥𝑖)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

Convective term

= 0, (3.1)

where 𝜌 represents the fluid density, 𝑢𝑖 the velocity components, and 𝑥𝑖 the spatial
coordinates. The first term, referred to as the transient term, represents the rate of
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mass change in time, whereas the second term, known as the convective term, illustrates
the net mass flow exiting an infinitesimal element.

The conservation of momentum, or the momentum equation, is given by

𝜕(𝜌𝑢𝑖)
𝜕𝑡

+ 𝜕(𝜌𝑢𝑖𝑢𝑗)
𝜕𝑥𝑗

= − 𝜕𝑝
𝜕𝑥𝑖

+ 𝜕𝜏𝑖𝑗

𝜕𝑥𝑗

, (3.2)

where 𝑝 is the pressure, and 𝜏𝑖𝑗 the viscous stress tensor. Subscripts 𝑖 and 𝑗 indicate that
the stress component acts in the 𝑖-direction on a surface normal to the 𝑗-direction.

In Newtonian fluids, the viscous stresses are directly proportional to the deformation
rates as follows

𝜏𝑖𝑗 = 𝜇(
𝜕𝑢𝑖

𝜕𝑥𝑗

+ 𝜕𝑢𝑗

𝜕𝑥𝑖

) + 𝜆(𝜕𝑢𝑘

𝜕𝑥𝑘

) 𝛿𝑖𝑗, (3.3)

where 𝜇 is the the dynamic viscosity, and 𝜆 the second viscosity, which correlate stresses
to volumetric deformation, and 𝛿𝑖𝑗 the Kronecker delta. The second viscosity is typi-
cally approximated as 𝜆 = −2

3𝜇. For an incompressible fluid, it is crucial to note that
the divergence of velocity (∇ ⋅ u) equals zero.

Furthermore, the viscous strain-rate tensor, 𝑆𝑖𝑗, is defined as

𝑆𝑖𝑗 =
1
2 (

𝜕𝑢𝑖

𝜕𝑥𝑗

+ 𝜕𝑢𝑗

𝜕𝑥𝑖

) , (3.4)

which can be substituted into Eq. 3.3 to derive the viscous stress tensor expressed as

𝜏𝑖𝑗 = 2𝜇𝑆𝑖𝑗 −
2
3𝜇(

𝜕𝑢𝑘

𝜕𝑥𝑘

) 𝛿𝑖𝑗. (3.5)

The dynamic viscosity is governed by Sutherland’s law, relating it to temperature, as
follows

𝜇

𝜇0
= ( 𝑇

𝑇0
)

3⇑2 𝑇0 +𝑋
𝑇 +𝑋 , (3.6)

where 𝜇0 = 1.7894×10−5𝑘𝑔⇑(𝑚𝑠) is the reference viscosity at the reference temperature
𝑇0 = 288.16𝐾, and 𝑋 = 110𝐾.

The energy equation, representing the conservation of energy, is expressed as

𝜕(𝜌𝐸)
𝜕𝑡

+ 𝜕 (𝜌𝑢𝑗𝐸)
𝜕𝑥𝑗

= −𝜕 (𝑝𝑢𝑗)
𝜕𝑥𝑗

+ 𝜕

𝜕𝑥𝑗

(𝜏𝑖𝑗𝑢𝑖 − 𝑞𝑗) . (3.7)

Here, 𝐸 is the total energy of the fluid, defined as the sum of internal and kinetic
energy, as

𝐸 = 𝑒 + 1
2𝑢𝑖𝑢𝑖, (3.8)

and 𝑞𝑖 is the heat flux vector defined by Fourier’s Law as

𝑞𝑗 = −𝜅𝑇
𝜕𝑇

𝜕𝑥𝑗

where 𝜅𝑇 =
1

(𝛾 − 1)𝑀2
∞

𝜇

𝑃𝑟
. (3.9)
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It represents the thermal conductivity of the fluid. Here, 𝑇 is the temperature of the
fluid, 𝛾 is the specific heat ratio, 𝑀∞ is the free-stream Mach number, and 𝑃𝑟 is the
Prandtl number.

These equations, along with the following equations of state for a perfect gas

𝐻 = 𝐸 + 𝑝
𝜌
, and 𝑝 = 𝜌𝑅𝑇, (3.10)

provide a complete description of the flow and heat transfer of a three-dimensional
Newtonian fluid.

The Navier-Stokes equations are highly nonlinear and, except for simple cases, cannot
be solved analytically. Instead, numerical methods and simulations for specific bound-
ary conditions and scenarios often obtain solutions. Despite this inherent complexity,
these equations are indispensable for predicting and elucidating fluid behavior across
many contexts, including aerodynamic flows.

3.2. Introduction to turbulence
Turbulence is distinguished by irregular, rapid fluctuations in flow properties, occurring
over a broad scale range and associated with structures known as turbulent eddies.
Their behavior is complex and non-linear, with interactions across various wavelengths
facilitated by vortex stretching, an inherently three-dimensional property crucial for
turbulence production.

The Reynolds number is a crucial parameter for ascertaining the onset and intensity
of turbulence in fluid flow. It is defined as follows

𝑅𝑒 = 𝜌𝑈𝐿
𝜇

, (3.11)

where 𝜌 represents the fluid density, 𝑈 the velocity, 𝐿 a characteristic linear dimension,
and 𝜇 the dynamic viscosity. The Reynolds number effectively juxtaposes the inertial
forces against the viscous forces within the fluid, facilitating the prediction of the flow
being either laminar or turbulent. In the laminar flow regime at low Reynolds numbers,
viscous stresses and vorticity diffusion suppress small-scale instabilities. However, with
increased Reynolds numbers, inertial effects progressively become more dominant. The
viscosity no longer maintains order, transitioning from laminar to turbulent flow.

Understanding turbulence is crucial for predicting and managing turbulent systems in
various scientific and engineering applications. Turbulence’s complexity arises from
several aspects, which can be summarized as follows (Tsinober, 2001).

• Intrinsic spatial-temporal randomness: turbulent flows, sensitive to minute per-
turbations, lack repeatability. However, their statistical properties remain largely
stable against disturbances.

• Intermittency: turbulence can sporadically appear in time and space, interacting
with non-turbulent flows.
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• Wide range of non-locally interacting scales: turbulent flows comprise a broad
spectrum of scales, ranging from large systems to minute eddies.

• Continuous self-production of vorticity and three-dimensionality: vortex dynam-
ics, including stretching and spinning, are central to sustaining turbulence, in-
herently a three-dimensional phenomenon. Notably, two-dimensional vortices
cannot stretch; thus, true two-dimensional turbulence is non-existent.

• Strong diffusion: turbulence necessitates an energy source (like velocity gradients
or buoyancy) to sustain. Energy is supplied at larger scales and dissipated at
smaller ones. Turbulent fluctuations enhance the stretching and distortion of
fluid elements, dramatically increasing the transport and mixing of properties
like heat and momentum.

Despite its complexity, turbulence can be modeled using deterministic Navier-Stokes
equations, although solutions are highly sensitive to initial and boundary conditions.
Consequently, field variables are often treated as random to understand turbulent flows,
and statistical analysis is employed to extract meaningful information.

3.2.1. Statistics of the flow

Due to the inherent complexity of turbulent flows, they are predominantly analyzed
through statistical analysis tools. Some of the more frequently employed single-point
and multi-point statistical measures are then elucidated.

The simplest statistical property to consider is the mean. The mean value of a random
variable at a specific spatial location can be determined by averaging its long-term
measurement as follows

𝜑(𝑥) = lim
𝑇→∞

1
𝑇

𝑡0+𝑇

∫
𝑡0

𝜑(𝑥,𝑡)𝑑𝑡, (3.12)

where 𝜑 denotes the mean value of the random variable 𝜑. The time-averaging process
is meaningful only when the flow is characterized as statistically steady, ensuring that
the result is independent of the initial time 𝑡0 and invariant for sufficiently large values
of 𝑇 .

Furthermore, the ensemble average is articulated as follows

𝜑(𝑥,𝑡) = lim
𝑁→∞

1
𝑁

𝑁

∑
𝑖=1
𝜑(𝑥, 𝑡), (3.13)

where the summation spans a set of samples, 𝑁 , acquired at the same spatial location,
x, and identical instant, 𝑡, across 𝑁 distinct realizations or experiments.

Finally, the 𝑛-th order central moment can be computed from

(𝜑(𝑥,𝑡) − 𝜑(𝑥))𝑛, (3.14)
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assuming that the averaging process is properly defined and converges. A hierarchy
of moments can be established to characterize the statistical state of a random vari-
able, among which the velocity field is a pertinent variable in turbulent flow analysis.
Denoting 𝜑′ as the fluctuating component of the random variable, 𝜑 can be expressed
as

𝜑(𝑥,𝑡) = 𝜑(𝑥) + 𝜑′(𝑥,𝑡). (3.15)

Beyond the mean value, the second central moment, or variance, emerges as the next
critical statistical attribute of turbulence, expressed as follows

var(𝜑) = (𝜑(𝑥,𝑡) − 𝜑(𝑥))2. (3.16)

This metric provides a quantitative assessment of the expected magnitude of deviations
from the mean value. This concept is often articulated as turbulence intensity, which
is essentially the square root of the second central moment, or the root mean square
of the velocity fluctuation,

⌋︂
𝑢′2.

The moments defined above are single-point moments, meaning they contain only
information about a random variable at a point. In turbulent flow, it is essential
to have some statistical measure of spatial and temporal information about the flow.
Turbulence is characterized by chaotic and irregular fluid motion that involves a wide
range of time scales and eddy sizes. Understanding how velocities or other turbulent
quantities are correlated in time at a fixed point or between two points in space provides
insights into the energy cascade process, dissipation mechanisms, and mixing efficiency
within the flow.

The two-point temporal correlation function gives an estimate of the time interval over
which the fluctuation velocity component 𝑢′(𝑡) is correlated. The integral turbulent
time scale, 𝜏0, computed from the two-point temporal correlation function, represents
an averaged inverse rotational frequency of the predominant large eddy, indicating
the time over which 𝑢′(𝑡) retains its historical influence. The integral time scale is
important for understanding the persistence of velocity fluctuations in a turbulent flow
and estimating the time it takes for energy to cascade from large to smaller scales.

The integral length scale, 𝑙0, is connected to this, representing the large scales in the
flow field and serving as a measure from which velocity fluctuations are predominantly
uncorrelated. It is computed using the two-point spatial correlation function. It is
also important for understanding energy distribution across different scales in the flow.
Indeed, the Fourier transform is used to compute the energy spectrum from two-point
spatial correlation function. The energy spectrum describes how energy is distributed
across different spatial scales or frequencies.

3.2.2. Turbulent eddies and energy cascade
The presence of numerous interacting eddies characterizes turbulent flow. The tur-
bulent flow can be decomposed into a series of eddies of various sizes 𝑙𝑒, speeds 𝑢𝑒

and time scale 𝜏𝑒 ≈ 𝑙𝑒
𝑢𝑒

, which interact with each other. They significantly influence
the overall flow field through a kinetic energy transfer from larger to smaller eddies, a
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phenomenon known as the energy cascade. The cascade process commences with the
largest eddies, which possess the highest turbulent kinetic energy per unit mass. En-
ergy is then transferred from these large eddies to smaller ones, with the energy of the
smaller scales eventually dissipating due to viscous action. Larger eddies migrate also
across the flow, carrying smaller eddies. This movement, known as turbulent mixing,
significantly enhances the diffusion of mass, momentum, and energy within the fluid,
thus characterizing the intricate and chaotic nature of turbulent flows.

Kolmogorov, 1991 develops a series of hypotheses that define turbulence behavior, con-
ceptualizing eddies as moderately coherent turbulent motions within a region of scale
𝑙𝑒. Kolmogorov’s hypotheses address crucial questions regarding the quantification
of length scales, their proportions, interdependencies, and the relationship with flow
characteristics.

The first hypothesis pertains to the local isotropy of turbulence. It asserts that small-
scale turbulent motions are statistically isotropic for sufficiently high Reynolds num-
bers. This is contrary to the anisotropic scales, which are prevalent only in the largest
length scales of the flow. Indeed, the anisotropic turbulence, or the energy containing
range, significantly influences the mean flow as it contains most of its energy. This
concept suggests that the anisotropy evident at the largest scales dissipates during the
energy cascade towards the smallest scales. As a result of losing the large-scale flow
information at the smallest scales, the statistical characteristics of small-scale flow be-
come universal across all turbulent flows, depending solely on the energy dissipation
rate per unit mass, 𝜀, and the kinematic viscosity, 𝜈. This hypothesis, combined with
dimensional analysis, leads to the definitions of the Kolmogorov scales as follows

𝜂 = (𝜈
3

𝜀
)

1⇑4
, 𝑢𝜂 = (𝜀𝜈)1⇑4

, and 𝜏𝜂 = (
𝜈

𝜀
)

1⇑2
. (3.17)

The Reynolds number is approximately one at the smallest scale, indicating the promi-
nence of dissipation effects. The dissipative range or viscous range refers then to the
smallest turbulent scales where energy is dissipated to heat by molecular viscosity.

Kolmogorov’s second similarity hypothesis postulates that the intermediate scales in
the energy cascade, the inertial subrange situated between the largest flow scale and the
Kolmogorov scales, are uniquely determined by the dissipation rate of turbulent kinetic
energy, 𝜀 while being independent of the kinematic viscosity, 𝜈. At these intermediate
scales, the Reynolds number is sufficiently high to minimize the influence of viscous
dissipation effects. The rate of dissipation, e.g. for homogeneous isotropic turbulence,
balances the rate of change of turbulent kinetic energy, and it can be defined as

𝜀 = −𝑑𝑘
𝑑𝑡
. (3.18)

It is influenced primarily by the flow’s largest eddies and establishes then a scale range
within the turbulent flow, expanding with the increase in Reynolds number. Conse-
quently, the ratios between the largest and smallest scales of length, velocity, and time
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in turbulent flow can be represented as

𝑙0
𝜂
∝ 𝑅𝑒

3
4 ,

𝑢0

𝑢𝜂

∝ 𝑅𝑒
1
4 , and 𝜏0

𝜏𝜂

∝ 𝑅𝑒−
1
2 , (3.19)

where 𝑙0, 𝑢0, and 𝜏0 denote the characteristic length, velocity, and time scale of the
largest eddies, respectively. This highlights the vast scale disparity between the smallest
and largest turbulent scales and their dependency on the Reynolds number.

As mentioned before, Kolmogorov’s first hypothesis posits that for sufficiently large
Reynolds numbers, turbulence becomes isotropic. Subsequently, the energy spectrum
𝐸(𝜅) becomes solely a function of the rate of energy dissipation, 𝜀, and the eddy size,
𝑟. This hypothesis leads to the formulation of Kolmogorov’s five-thirds law for the
inertial subrange where 𝜂 ≪ 𝑟 ≪ 𝑙0, defined as

𝐸(𝜅) = 𝐶𝑘𝜀
2⇑3𝜅−5⇑3, (3.20)

where 𝐶𝑘 is the Kolmogorov constant. Here, 𝐶𝑘 ≈ 1.5 for 𝑅𝑒 → ∞. The exponents of
2⇑3 and 5⇑3 are chosen to ensure dimensional consistency for 𝐸, which has dimensions
of 𝐿3⇑𝑇 2, and to account for the relationship 𝑟 ∝ 𝜅−1.

Figure 3.1: Turbulent energy spectrum
(adapted from Greenshields and Weller, 2022).

Fig. 3.1 shows the energy spectrum, 𝐸(𝜅)
vs 𝜅, which adheres to the Kolmogorov
−5⇑3 slope in the inertial subrange. The
horizontal axis represents the wave num-
ber, 𝜅, indicative of the number of ed-
dies per unit length and inversely propor-
tional to the eddy size. This spectrum
represents how the kinetic energy is dis-
tributed among different sizes of eddies or
wave numbers. It offers then a profound
understanding of the energy distribution
within turbulent flows. This −5⇑3 slope
on a log-log plot of the energy spectrum
versus wave number is a fundamental re-
sult of Kolmogorov’s theory. It suggests
that the energy cascade process is self-
similar and universal across these scales,
independent of the specific nature of the
large-scale energy input or the small-scale
dissipative mechanisms. This concept is foundational in turbulence research and is used
extensively in analyzing and modeling turbulent flows.

3.3. Modeling and simulations
In CFD simulations, accurately modeling turbulence is paramount, considering the
predominance of turbulent flows in engineering applications. The fidelity of turbulence
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modeling is fundamental to securing reliable CFD results. This discussion delves into
the intricacies, challenges, and methodologies pertinent to simulating turbulent flows,
underscoring its significance as a critical domain of scientific investigation.

3.3.1. Direct Numerical Simulation

By the early 1980s, computational advancements and increased resource availability
have enabled the numerical solution of the Navier-Stokes Equations. DNS, a full-field
simulation approach, has emerged as a vital tool for acquiring insights into turbulence.
DNS facilitates a deeper understanding of turbulence physics and its modeling, eluci-
dating the temporal evolution of turbulence fields, eddy life histories, and multi-point
correlations. However, DNS necessitates resolving the extensive range of temporal and
spatial scales in turbulent flow, from the very large to the very small, down to the
Kolmogorov length scale, 𝜂, introduced in Eq. 3.17.

In turbulent flow simulations, the equations are solved for three-dimensional, time-
dependent velocities, including the full spectrum of turbulence scales. As expressed in
Eq. 3.19, the computational cost can be assessed considering the dependence of length
and time scales on the Reynolds number. Spatial discretization in three dimensions
must be sufficiently fine to capture the smallest turbulent scales, implying that the
number of grid points in each direction scales with Re3⇑4. Consequently, for three
dimensions, the total number of spatial discretization points, 𝑁Δ𝑥, scales with Re9⇑4.

Considering the time discretization executed using an explicit method, the time step
Δ𝑡, is constrained by a Courant number less than one as follows

𝐶 = 𝑢0Δ𝑡
Δ𝑥 < 1, (3.21)

where Δ𝑥 represents the spatial discretization. The number of time steps for the
simulation duration, 𝑇 , is approximately as

𝑁Δ𝑡 ∼
𝑇

Δ𝑡 ∼
𝑇𝑢0

𝑙0
Re3⇑4. (3.22)

Combining spatial and temporal discretization, the computational cost of a DNS sim-
ulation scales proportionally with Re3, rendering this methodology feasible only for a
limited set of cases at low Reynolds numbers, simple geometries, and small domains.

Turbulence modeling is introduced to account for a proportion of the small-scale tur-
bulent fluctuations and consequently reduces the computational expense in resolving
all the scales of turbulence. As illustrated in Fig. 3.2a, the resolved scales refer to the
range of turbulent motions directly computed in a simulation. The approach’s choice
determines the extent to which the scales of turbulence are resolved or modeled, bal-
ancing between computational expense and the level of physical detail captured in the
simulation.
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(a) Scales in turbulence modeling. (b) Turbulence modeling approaches.

Figure 3.2: Characteristics of the CFD modeling approaches.

In engineering, the focus often lies on mean or integral quantities. Turbulence models
are sufficient for this purpose and are recommended, as they provide reliable solutions
efficiently and cost-effectively. Fig. 3.2b illustrates the common approaches to solving
turbulent flows, with the computational cost of a CFD simulation escalating from the
RANS approach to DNS. As a result, scale-resolving methodologies such as DNS and
LES are typically employed for elementary geometries and academic settings. Con-
versely, hRL (in selected test cases), Unsteady RANS (URANS), and steady RANS
are utilized for complex industrial applications. Two strategies are employed in this
dissertation for modeling the Navier-Stokes equations and managing turbulence: the
URANS and hRL.

3.3.2. Large Eddy Simulation

Large Eddy Simulation was initially proposed to mitigate the computational demands
associated with DNS. The foundational philosophy of LES is the explicit resolution
of large-scale motions coupled with the modeling of smaller scales. By focusing only
on the larger scales, LES permits using significantly coarser grids and time steps than
DNS. Consequently, LES is practicable at much higher Reynolds numbers, balancing
accuracy and computational efficiency.

The smallest turbulence scales are spatially filtered out, while the largest and most
energy-dense scales are directly resolved. This methodology relies on the assumption
that, at very small scales, flow structures are similar across various applications, al-
lowing for the application of more universal and simpler turbulence models compared
to those employed in the RANS approach, as discussed in Section 3.3.3. These models
require less tuning and can be broadly applied across diverse scenarios. Nevertheless,
smaller scales are critical in ensuring a complete and accurate solution. Consequently,
their influence, encompassed within scales smaller than the grid cell dimensions, needs
to be accurately modeled.

51



3.3 Modeling and simulations

An LES filter can be applied to a spatial and temporal field 𝜑(𝑥,𝑡) and perform a
spatial filtering operation, a temporal filtering operation, or both. The filtered field,
denoted with an hut, is defined as follows

𝜑(𝑥,𝑡) =
∞

∫
−∞

∞

∫
−∞

𝜑(𝑟,𝜏)𝐺(𝑥 − 𝑟, 𝑡 − 𝜏)𝑑𝜏𝑑𝑟 (3.23)

where 𝐺 is the filter convolution kernel, 𝑥 and 𝑟 represent position vectors in physical
space. This operation can also be concisely given by

𝜑 = 𝐺 ⋆ 𝜑. (3.24)

The filter kernel in physical space is mathematically defined as follows

𝐺(𝑥 − 𝑟) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

1⇑Δ3, if ⋃︀𝑥 − 𝑟⋃︀ ≤Δ⇑2,
0, otherwise.

(3.25)

where Δ denotes the characteristic length scale of the filter, determining the spatial
extent over which the filter operates.

This filter kernel is a simple yet effective way to apply a uniform averaging process
within a defined radius around a point. The choice of Δ is crucial, as it determines the
scale of features that are smoothed out or retained in the filtered data. LES employs
filtering techniques to differentiate between these scales, using the following maximum
cell dimensions of the grid as the filter width:

Δ =max(Δ𝑥,Δ𝑦,Δ𝑧). (3.26)

Scales smaller than these are eliminated from 𝜑. Using the above filter definition, any
field 𝜑 may be split up into a filtered and sub-filtered (denoted with a prime) portion,
as follows

𝜑(𝑥,𝑡) = 𝜑(𝑥,𝑡) + 𝜑′′(𝑥,𝑡). (3.27)
It is important to note that the LES filtering operation does not satisfy the properties
of a Reynolds operator. Flow variables are then partitioned into resolvable (filtered,
𝜑) and sub-grid (residual, 𝜑′′) components to capture the complex dynamics of turbu-
lent flows. The sub-grid component accounts for the remaining unresolved turbulent
fluctuations.

The governing equations for LES are derived by applying a filtering operation to the
Navier-Stokes equations, which govern the dynamics of the flow field, as introduced
in Section 3.1. The transition from incompressible to compressible LES formulations
necessitates the adoption of a modified filtering operation. Specifically, for compressible
flows, the Favre-averaging technique, detailed in Section 3.3.3, has to be employed.
This approach distinguishes between mass-weighted (Favre-averaged) and conventional
filtering operations, reflecting the distinct treatment required for compressible flow.

For incompressible flow and constant viscosity, by applying these techniques and as-

52



3.3 Modeling and simulations

suming that filtering and taking derivatives commutes, the Navier-Stokes momentum
equations for the filtered component of the flow are obtained as follows

𝜌
𝜕�̂�𝑖

𝜕𝑡
+ 𝜌𝜕(⇓𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗

= − 𝜕𝑝
𝜕𝑥𝑖

+ 𝜇 𝜕

𝜕𝑥𝑗

(𝜕�̂�𝑖

𝜕𝑥𝑗

+ 𝜕�̂�𝑗

𝜕𝑥𝑖

) = − 𝜕𝑝
𝜕𝑥𝑖

+ 2𝜇𝜕𝑆𝑖𝑗

𝜕𝑥𝑗

, (3.28)

where 𝑝 is the filtered pressure field and 𝑆𝑖𝑗 is the rate of strain tensor evaluated using
the filtered velocity. The nonlinear filtered convective term ⇓𝑢𝑖𝑢𝑗 introduces the Sub
Grid Scale (SGS) or residual stress tensor, 𝜏𝑆𝐺𝑆

𝑖𝑗 , due to the difference between the
filtered product and the product of two filtered variables (Leonard, 1975), as follows

⇓𝑢𝑖𝑢𝑗 = 𝜏𝑆𝐺𝑆
𝑖𝑗 + �̂�𝑖�̂�𝑗 → 𝜏𝑆𝐺𝑆

𝑖𝑗 = ⇓𝑢𝑖𝑢𝑗 − �̂�𝑖�̂�𝑗 (3.29)

The filtered Navier-Stokes equations become

𝜌
𝜕�̂�𝑖

𝜕𝑡
+ 𝜌𝜕(�̂�𝑖�̂�𝑗)

𝜕𝑥𝑗

= − 𝜕𝑝
𝜕𝑥𝑖

+ 𝜇 𝜕

𝜕𝑥𝑗

(𝜕�̂�𝑖

𝜕𝑥𝑗

+ 𝜕�̂�𝑗

𝜕𝑥𝑖

) − 𝜌
𝜕𝜏𝑆𝐺𝑆

𝑖𝑗

𝜕𝑥𝑗

(3.30)

with the residual stress tensor, 𝜏𝑆𝐺𝑆
𝑖𝑗 , grouping all unclosed terms.

The primary objective is to address the unknown terms in the filtered Navier-Stokes
equations, identified as SGS stresses. They represent the effects of the smaller, unre-
solved scales on the resolved scales and are crucial for accurately capturing the dynam-
ics of turbulent flows. This SGS stress tensor is further decomposed into deviatoric
and its trace as follows

𝜏𝑆𝐺𝑆
𝑖𝑗 = 𝜏∗,𝑆𝐺𝑆

𝑖𝑗 + 2
3𝑘𝑟𝛿𝑖𝑗, (3.31)

where 𝑘𝑟 is the residual kinetic energy given by

𝑘𝑟 =
1
2𝜏

𝑆𝐺𝑆
𝑖𝑖 . (3.32)

Smagorinsky’s approach treats the deviatoric part of the stress tensor in a similar
way to the Boussinesq approximation (see Section 3.3.3), associating it with an eddy
viscosity as follows

𝜏∗,𝑆𝐺𝑆
𝑖𝑗 = −2𝜈𝑆𝐺𝑆𝑆𝑖𝑗. (3.33)

The Smagorinsky eddy viscosity is defined as

𝜈𝑆𝐺𝑆 = (𝐶𝑠Δ)2
⌉︂

2𝑆𝑖𝑗𝑆𝑖𝑗, (3.34)

where 𝐶𝑠 is the Smagorinsky constant. This provides a linear relation for the sub-grid
scale stress tensor expressed as

𝜏𝑆𝐺𝑆
𝑖𝑗 = −2𝜈𝑆𝐺𝑆𝑆𝑖𝑗 +

2
3𝑘𝑟𝛿𝑖𝑗. (3.35)

Recognizing that the physics modeled by the SGS stress tensor in LES significantly dif-
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fers from those in RANS is crucial. In LES, the energy contained in the sub-grid scales
constitutes a smaller portion of the total flow energy than in RANS. Consequently,
only the smallest isotropic scales need to be modeled, implying that model accuracy
may be less critical for SGS modeling than for (U)RANS computations, which must
consider anisotropic scales. For further details and a comprehensive understanding of
LES, readers are referred to Pope, 2000.

3.3.3. Reynolds Averaged Navier-Stokes equations
The RANS equations transform the Navier-Stokes equations into averaged forms that
depict the mean behavior of fluid flows. While these modified equations resemble their
initial counterparts, they include supplementary terms known as Reynolds stress terms.
Originating from the averaging procedure, these terms embody turbulent fluctuations
and are unknown. Therefore, developing turbulence models is imperative to achieve
closure of these equations.

Turbulence models approximate turbulence’s impact and are typically categorized
based on the number of supplementary equations they incorporate. The complexity
and fidelity of these models escalate by including more equations, ranging from sim-
ple algebraic expressions to intricate multi-equation systems. The RANS models are
extensively employed in industrial applications, primarily when pursuing steady-state
solutions. For scenarios involving moving components or periodic flow features, the
unsteady variant URANS offers an enhanced representation by resolving the transient
characteristics.

Reynolds averaging approach

The Reynolds averaging approach depends on the decomposition of the instantaneous
flow into a mean flow and turbulent fluctuations, a technique known as Reynolds
decomposition (Reynolds, 1895). It’s imperative to note that the term mean flow here
refers to the slowly varying flow behavior, which isn’t necessarily static over time. This
decomposition is subsequently integrated into the Navier-Stokes equations, followed
by an application of an averaging process. Among the various methods for averaging
the flow (time averaging, spatial averaging, and ensemble averaging), time averaging is
predominantly employed in engineering flows. Further insights into alternative methods
can be explored in literature (Wilcox, 1998).

Recalling the definitions in Section 3.2.1, the basic principle of Reynolds decomposition
involves splitting a flow variable, 𝜑, into its mean (time-averaged) component 𝜑 and
its fluctuating component 𝜑′. Mathematically, this is represented in Eq. 3.15. The
variables 𝜑, 𝜑, and 𝜑′ are consistently used to represent the instantaneous, mean, and
fluctuating terms, respectively. These variables are conceptually different from the ones
expressed in the LES approach discussed in Section 3.3.2.

In cases of statistically stationary turbulence, where the turbulent flow’s mean does
not fluctuate with time, the true time average of instantaneous variables is defined in
Eq. 3.12. The term 𝑇 →∞ implies that the integration period 𝑇 must be substantially
long compared to the period of the maximum fluctuation. For 𝜑 to be a well-defined
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term, the limit must be independent of the initial conditions at 𝑡0. This time averaging
of the instantaneous velocity decomposes into the time average of the mean flow, which,
due to its stationary nature, equates to the mean, and the time average of the turbulent
fluctuations, which are then zero, 𝜑′ = 0. It is critical to note that the time average
of the mean flow does not necessary equate to the stationary mean. This distinction
underscores the intricate nature of turbulence and the careful considerations needed in
its mathematical interpretation.

Nonetheless, it remains analytically challenging to determine an upper bound for 𝑇 .
In applying time-averaging in numerical simulations, the following formulation,

𝜑(𝑥) = 1
𝑇

𝑡0+𝑇

∫
𝑡0

𝜑(𝑥,𝑡)𝑑𝑡, (3.36)

is used. The sample time 𝑇 is selected to be significantly larger than the small-scale
fluctuations characteristic of turbulence but smaller than the scales of the mean flow
oscillations. This approach is based on the premise that time averaging is only valid
when the oscillation periods of the mean flow are substantially larger than the turbulent
motion’s timescales. This assumption is a complex aspect of turbulence, as turbulent
fluctuations can sometimes be quite pronounced. Nevertheless, as introduced in Sec-
tion 2.1.4, considering that the majority of characteristic flow features typically occur
at low non-dimensional frequencies (𝑆𝑡 < 10), it is often feasible to assume that the
turbulent fluctuations are relatively small for vortical flows.

By applying Reynolds decomposition, each instantaneous quantity is split into its time-
averaged and fluctuating components. The Navier-Stokes equations are then time-
averaged. Many terms derived from the Reynolds decomposition vanish due to the
time averaging of the turbulent fluctuations, where 𝜑′ = 0. Consequently, assuming
constant density and viscosity, the incompressible Navier-Stokes momentum equations
reads

𝜌
𝜕�̄�𝑖

𝜕𝑡
+ 𝜌𝜕(𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗

= − 𝜕𝑝
𝜕𝑥𝑖

+ 𝜇 𝜕

𝜕𝑥𝑗

(𝜕�̄�𝑖

𝜕𝑥𝑗

+ 𝜕�̄�𝑗

𝜕𝑥𝑖

) = − 𝜕𝑝
𝜕𝑥𝑖

+ 2𝜇𝜕𝑆𝑖𝑗

𝜕𝑥𝑗

, (3.37)

where 𝑆𝑖𝑗 is the mean rate of strain tensor evaluated using the mean velocity field.

However, this procedure introduces two new non-linear terms arising from the con-
vective term, due to the time-averaging of the product, 𝑢𝑖𝑢𝑗. Given that 𝑢′ = 0, this
yields

𝑢𝑖𝑢𝑗 = (�̄�𝑖 + 𝑢′𝑖) (�̄�𝑗 + 𝑢′𝑗) = �̄�𝑖�̄�𝑗 + �̄�𝑖𝑢′𝑗 + 𝑢′𝑖�̄�𝑗 + 𝑢′𝑖𝑢′𝑗 = �̄�𝑖�̄�𝑗 + 𝑢′𝑖𝑢′𝑗 (3.38)
In the context of stationary turbulence, the time-averaged mean flow equates to the
mean flow itself, thereby simplifying the term �̄�𝑖�̄�𝑗 to �̄�𝑖�̄�𝑗. The second term, 𝑢′𝑖𝑢′𝑗,
however, cannot be simplified in the same manner and is applicable to both station-
ary and non-stationary turbulence. Consequently, this introduces six new unknowns,
represented by −𝜌𝑢′𝑖𝑢′𝑗 = 𝜏𝑅

𝑖𝑗 , which constitute the Reynolds stress tensor. Accordingly,
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the RANS momentum equations for incompressible flow are formulated as follows

𝜌
𝜕�̄�𝑖

𝜕𝑡
+ 𝜌𝜕(𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗

= − 𝜕𝑝
𝜕𝑥𝑖

+ 2𝜇𝜕𝑆𝑖𝑗

𝜕𝑥𝑗

− 𝜌
𝜕𝑢′𝑖𝑢

′

𝑗

𝜕𝑥𝑖

, (3.39)

and 𝜏𝑖𝑗 = 2𝜇𝑆𝑖𝑗 is the mean viscous stress tensor (see Eq. 3.3). A comparable outcome
is achieved for the energy equation (Eq. 3.7).

Figure 3.3: RANS models

The nonlinear Reynolds stress term requires ad-
ditional modeling to close the RANS equation for
solving and lead to the development of various tur-
bulence models. Turbulence modeling methodolo-
gies are divided into EVMs and non-EVMs, of-
ten called second-moment closure models. The
first category includes turbulent viscosity models,
based on Boussinesq’s assumption and designed to
determine the eddy viscosity relative to the flow
field quantities. These models can be structured
either algebraically or using one or more transport
equations. The second category involves directly
modeling Reynolds stresses via dedicated transport equations. This approach elimi-
nates the need for an eddy viscosity term but introduces increased complexity, higher
computational demands, and potentially additional numerical instabilities. Fig. 3.3
catalogs the more common models, indicating the increasing computational cost.

Solution to the closure problem: the Boussinesq’s assumption

The Reynolds stresses introduce a closure problem, necessitating a new set of equa-
tions to compute them from known mean quantities. A prevalent strategy is founded
by Boussinesq, 1877. Boussinesq’s assumption establishes an analogy that equates the
influence of Reynolds stresses to viscous stress, as defined in Eq. 3.3 (Schmitt, 2007).
Specifically, Boussinesq’s assumption is often formulated as

𝜏𝑅
𝑖𝑗 = −𝜌𝑢′𝑖𝑢′𝑗 = 𝜇𝑡 (

𝜕�̄�𝑖

𝜕𝑥𝑗

+ 𝜕�̄�𝑗

𝜕𝑥𝑖

) − 2
3𝜌𝑘𝛿𝑖𝑗 = 2𝜇𝑡𝑆𝑖𝑗 −

2
3𝜌𝑘𝛿𝑖𝑗, (3.40)

where 𝜇𝑡 denotes the eddy viscosity, a quantity that is not an inherent fluid property
but must be modeled based on the flow field characteristics. Here, 𝑘 represents the
turbulent kinetic energy per unit mass, defined by 𝑘 = 1

2𝑢
′

𝑖𝑢
′

𝑖, effectively representing
half the trace of the Reynolds stress tensor. The first term on the RHS represents
the anisotropic or deviatoric part of the turbulent stresses, modeled similarly to the
viscous stresses but using the turbulent viscosity 𝜇𝑡, and the second term accounts for
the isotropic part, which is related to the turbulent kinetic energy 𝑘.

The terms anisotropy part and deviatoric part of the Reynolds stress tensor are related
but distinct concepts within the context of turbulence modeling and fluid dynamics.
Both refer to aspects of the Reynolds stress tensor that arise due to turbulence. The
anisotropy part of the Reynolds stress tensor refers to the component that specifically
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represents the directional dependence of the turbulent stresses. It essentially captures
how turbulence intensities vary in different directions. Anisotropy is critical in un-
derstanding and modeling complex turbulent flows because it dictates how energy is
distributed among various turbulent structures. In mathematical terms, the anisotropic
tensor 𝑎𝑖𝑗 can be derived from the Reynolds stress tensor normalized by the turbulent
kinetic energy 𝑘 (to make it dimensionless) and subtracting the isotropic part (which
is one third of the tensor’s trace), as follows

𝑎𝑖𝑗 =
𝑢′𝑖𝑢

′

𝑗

2𝑘 −
1
3𝛿𝑖𝑗. (3.41)

The deviatoric part of the Reynolds stress tensor, on the other hand, is a broader
concept that includes all the shear and normal stresses due to turbulence but excludes
the isotropic part. The deviatoric part is essentially the Reynolds stress tensor without
its isotropic component, and it focuses on the shear and distortion effects rather than
the volumetric expansion or contraction. It can be expressed as follows

𝜏∗𝑖𝑗 = −𝜌𝑢′𝑖𝑢′𝑗 −
1
3𝜌𝑘𝛿𝑖𝑗. (3.42)

The Boussinesq approximation fundamentally relies on two assumptions. Firstly, the
mean velocity gradients can characterize the anisotropic Reynolds stresses at each point
in space and time. Secondly, the turbulent eddy viscosity is a scalar property of the
flow, indicating a linear relationship between anisotropy and velocity gradients. Despite
these assumptions, the Boussinesq approximation offers the advantage of retaining the
same form as the Navier-Stokes equations for the Reynolds averaged equations and
simplifies the closure problem by reducing the unknowns in the system to one. The
turbulent eddy viscosity is often defined as the product of velocity and length scales.
Most (U)RANS turbulence models are applied in the direct or indirect calculation of the
eddy viscosity, with the specification of these scales differing among various models.

It’s worth noting that EVMs have significant limitations in accurately predicting flow
fields. The primary issue with EVMs is that they represent turbulence using a scalar
quantity and kinetic energy and employ the eddy viscosity assumption, disregarding
turbulence anisotropy. These models assume that the Reynolds stress tensor is instan-
taneously in equilibrium with the mean strain rate. This presumption forces the main
axes of 𝑢′𝑖𝑢′𝑗 and the main rate of deformation 𝑆𝑖𝑗 to align, which is valid in purely
stressed flows but not in flows with mean vorticity, such as delta wing flows.

Favre-averaging for compressible flows

Incorporating fluctuations in field variables for compressible flows introduces a sig-
nificant increase in the complexity of the Navier-Stokes equations. When applied to
these equations with density defined as the sum of its mean and fluctuating parts,
the Reynolds averaging procedure yields additional terms involving correlations with
fluctuating density, 𝜌′, necessitating more complex turbulence closure models.
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With a density-weighted averaging technique, this challenge was addressed by Favre,
1965. Like Reynolds averaging, the Favre-averaging method decomposes the instan-
taneous flow variables, 𝜑, into mass-averaged, 𝜑, and fluctuating components, 𝜑′′′, as
follows

𝜑(𝑥,𝑡) = 𝜑(𝑥) + 𝜑(𝑥,𝑡)′′′. (3.43)
The mass average of the variable field is defined as follows

𝜑(𝑥) = 1
𝜌

lim
𝑇→∞

1
𝑇

𝑡+𝑇

∫
𝑡

𝜌𝜑(𝑥,𝑡)𝑑𝑡, (3.44)

where 𝜌 is the time-averaged density. The mass average of the variables may be then
expressed as

𝜑 = 𝜌𝜑
𝜌
. (3.45)

Therefore, the time average of the product of the density and a variable, 𝜑, can be
represented in terms of the Reynolds-averaged density and the Favre-averaged variable
as follows

𝜌𝜑 = 𝜌𝜑. (3.46)
Applying Favre averaging to the momentum Navier-Stokes equation yields

𝜕(𝜌𝑢𝑖)
𝜕𝑡

+ 𝜕(𝜌𝑢𝑖𝑢𝑗)
𝜕𝑥𝑗

= − 𝜕𝑝
𝜕𝑥𝑖

+ 𝜕

𝜕𝑥𝑗

(𝜏𝑖𝑗 + 𝜏𝑅
𝑖𝑗 ) , (3.47)

These Favre-averaged equations are analogous to the incompressible RANS equations
but incorporate the Reynolds stress tensor defined as

𝜏𝑅
𝑖𝑗 = −𝜌𝑢′′′𝑖 𝑢

′′′

𝑗 . (3.48)

The Boussinesq approximation adapts accordingly by using the deviatoric strain-rate
tensor for calculating the anisotropic part as follows

𝑆∗𝑖𝑗 = 𝑆𝑖𝑗 −
1
3
𝜕𝑢𝑘

𝜕𝑥𝑘

𝛿𝑖𝑗. (3.49)

Despite the similarity of the Favre-averaged equations to RANS equations, it’s crucial
to understand that Favre averaging is a mathematical simplification and does not
eliminate the effects of density fluctuations on turbulence in the flow. The turbulent
closure and applicable turbulence models remain consistent due to the analogous form
of the equations.

3.3.4. Hybrid RANS/LES

Section 3.3.2 outlines LES as an approach to reduce the computational demands in-
herent in DNS. However, the applicability of LES is limited by several factors, most
notably its marginal increase in feasible Reynolds numbers, approximately only an or-
der of magnitude greater than that of DNS. These limitations primarily arise from the
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challenges of implementing LES near domain walls, where turbulent length scales di-
minish to the scale of the boundary layer. Precise modeling of flow behavior near walls
necessitates grid refinement approaching that of DNS, thereby reintroducing substan-
tial computational limitations. This is particularly pertinent in practical engineering
applications, such as aircraft simulations.

Various hybrid RANS/LES models have been developed to surmount these challenges.
These models combine the fidelity of LES with the computational efficiency of RANS in
contexts where exclusive use of LES would be prohibitively demanding. This approach
will be discussed and analyzed in Section 3.4, based on the methodology adopted in
the current manuscript.

3.4. Methodology for delta wing flow

A diverse range of turbulence models has evolved in RANS simulations, each garnering
a unique position among various user groups and application contexts. The nature of
turbulence, marked by its inherent complexity, unpredictable behavior, and non-linear
properties, is a critical factor in flow types relevant to industrial and academic research.
A spectrum of turbulence models with empirical foundations has been developed to ad-
dress specific flow categories (Wilcox, 2001). The decision-making process for selecting
the optimal turbulence model is often intricate, as the effectiveness of a model is closely
tied to the distinct features of the flow scenario in question.

The inherently unsteady behavior of delta wing vortical flows is discussed in Sec-
tion 2.1.4, highlighting the time-variant nature of the mean flow and its resultant
non-stationary turbulence. Despite the non-stationary nature, Reynolds decomposi-
tion remains applicable as elucidated in Section 3.3.3. The fluctuation of an unsteady
mean flow necessitates understanding turbulence models’ predictive capabilities regard-
ing the behavior of velocity gradients and turbulence production in such flows.

The velocity gradients in turbulent flows are components of a second-order tensor,
decomposable into isotropic, symmetric-deviatoric, and anti-symmetric parts. A com-
prehensive elucidation of second-order tensors is provided by Pope, 2000. The decom-
position of the velocity gradient tensor is elaborated in Eq. 3.50, wherein the symmetric
component is identified as the strain rate tensor, 𝑆𝑖𝑗, and the anti-symmetric compo-
nent is associated with the rotation tensor, 𝑊𝑖𝑗.

𝜕𝑢𝑖

𝜕𝑥𝑗

= 1
3
𝜕𝑢𝑘

𝜕𝑥𝑘

𝛿𝑖𝑗 + 𝑆∗𝑖𝑗
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

𝑆𝑖𝑗

+𝑊𝑖𝑗 (3.50)

The strain-rate tensor is defined in Eq. 3.4, and the rotation tensor is given by

𝑊𝑖𝑗 =
1
2 (

𝜕𝑢𝑖

𝜕𝑥𝑗

− 𝜕𝑢𝑗

𝜕𝑥𝑖

) . (3.51)
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This rotation tensor is directly related to the flow’s vorticity, as expressed in

𝜔𝑖 = −𝜖𝑖𝑗𝑘𝑊𝑗𝑘, (3.52)

where 𝜖𝑖𝑗𝑘 is the Levi-Civita symbol, defined as

𝜖𝑖𝑗𝑘 =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

1, if (𝑖,𝑗,𝑘) are cyclic, i.e., 123, 231, or 312
−1, if (𝑖,𝑗,𝑘) are anti-cyclic, i.e., 321, 132, or 213
0, otherwise

(3.53)

In shear layers, it is generally observed that the velocity gradients are dominated by
the normal gradients, rendering the strain rate and rotational tensors roughly equal.
However, as the flow approaches the vortex core, it tends towards a purely rotational
state, and the rotational tensor predominates.

The production of turbulent kinetic energy is defined as the product of the Reynolds
stress tensor and the velocity gradient, formulated as

𝑃𝑘 = 𝜏𝑅
𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

. (3.54)

This equation describes the energy transfer from the mean flow to the fluctuating veloc-
ity field, facilitated by the interaction between mean velocity gradients and Reynolds
stresses through vortex stretching. Notably, only the symmetric part of the velocity
gradient tensor and the anisotropic part of the Reynolds stress tensor contribute to tur-
bulent kinetic energy production. The kinetic energy production is then proportional
to the strain-rate tensor. In the context of delta wing vortical flows, this suggests
that turbulence production primarily occurs within the shear layer and surrounding
flow rather than the highly rotational vortex core, which may exhibit low turbulence
and approach a laminar state. An effective turbulence model for this flow type should
accurately predict such behavior.

The turbulence models and approaches adopted in this manuscript are elucidated
herein, aligning with the theoretical framework on turbulence modeling previously de-
lineated. As outlined in Section 1.2, both URANS and hRL simulations are conducted
using the DLR-TAU code for simulating the delta wing flows. Within the URANS
framework, two EVMs are utilized: the one-equation Spalart-Allmaras with negative
and Rotational/Curvature correction (SAnegRC) model, and the two-equation 𝑘 − 𝜔
Shear-Stress Transport model (𝑘𝜔SST). Furthermore, for the hRL approach, the Im-
proved Delayed Detached Eddy Simulation (IDDES) based on the SAneg model, in
addition to the Scale-Adaptive Simulation (SAS) based on the 𝑘𝜔SST model, are em-
ployed.

3.4.1. The Spalart-Allmaras turbulence model
The Spalart-Allmaras model for eddy viscosity turbulence is built around a solitary
transport equation for the eddy viscosity variable, 𝜈𝑡 (Spalart and Allmaras, 1992).
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Its design goals included numerical stability, local validity, and Galilean invariance.
The local approach of the model allows for the computation of 𝜈𝑡 at individual points
independently of the domain’s other points, significantly benefiting its application to
unstructured grid frameworks. The SA model is robust in handling both wall and free-
stream boundary conditions. Its convergence rate, stability, and accuracy efficiency
have been validated through numerous applications, especially in scenarios involving
attached or mildly separated flows, making it a popular choice in contemporary nu-
merical studies. The logic behind the SA is explained step by step in the following.
For the sake of clarity, the filtering operation is not explicitly detailed. The methodol-
ogy adopted adheres to the notation prevalent in the literature (Spalart and Allmaras,
1992; Wilcox, 1998).

SA formulation for free shear flows. The eddy viscosity in the SA model es-
tablishes a linear relation −𝑢𝑖𝑢𝑗 = 𝜈𝑡𝑆𝑖𝑗, aligning with the Boussinesq assumption (see
Section 3.3.3). Contrary to certain two-equation models, the 𝑘 term is neglected. The
material derivative of 𝜈𝑡 on the left-hand side (LHS) of the equation finds a balance
with the right-hand side (RHS) terms, incrementally added to an initial formulation
for free-shear flows, each signifying singular additional phenomena.

The RHS principally includes a production and a diffusion term in a free-shear flow sce-
nario. A scalar norm 𝑆, essential for evaluating the deformation tensor 𝜕𝑢𝑖⇑𝜕𝑥𝑗, must
accompany 𝜈𝑡. This norm is invariant, and in the original formulation, the vorticity
norm Ω was used mainly because, in the targeted applications, areas with dominant
vorticity usually exhibit significant turbulence. However, other metrics like strain rate
or the complete tensor norm could be equally effective. For consistency with the original
formulation, Ω will be represented as 𝑆. Thus, the baseline production term becomes
𝑐𝑏1𝑆𝜈𝑡.

The diffusion term is formulated based on the spatial derivative of the turbulent vis-
cosity, 𝜈𝑡, utilizing the operator ∇ ⋅ ((𝜈𝑡⇑𝜎)∇𝜈𝑡), where 𝜎 denotes the Prandtl number.
This diffusion term is further modified to (1⇑𝜎) (︀∇ ⋅ (𝜈𝑡∇𝜈𝑡) + 𝑐𝑏2⋃︀∇𝜈𝑡⋃︀2⌋︀, incorporating
the term 𝑐𝑏2⋃︀∇𝜈𝑡⋃︀2 to account for the enhanced diffusion effect. Therefore, the model
considered appropriate for free shear flow scenarios is expressed as

𝜕𝜈𝑡

𝜕𝑡
+ 𝑢𝑗

𝜕𝜈𝑡

𝜕𝑥𝑗

= 𝑐𝑏1𝑆𝜈𝑡 +
1
𝜎
⌊︀ 𝜕

𝜕𝑥𝑗

(𝜈𝑡
𝜕𝜈𝑡

𝜕𝑥𝑗

) + 𝑐𝑏2
𝜕𝜈𝑡

𝜕𝑥𝑖

𝜕𝜈𝑡

𝜕𝑥𝑖

}︀ . (3.55)

The term 𝑐𝑏2⋃︀∇𝜈𝑡⋃︀2 specifically accounts for the additional diffusion of 𝜈𝑡 due to the
turbulence itself, beyond what would be predicted by molecular diffusion alone. This
term ensures the model’s responsiveness to variations in the spatial gradients of 𝜈𝑡,
allowing for better adaptation to the evolving structure of turbulence. This adaptability
is crucial for accurately simulating complex flows that exhibit significant differences in
turbulence intensity and scale.

SA formulation for wall-bounded flows. Incorporating wall effects destroys the
Reynolds shear stress, dependent on the wall distance 𝑑. The term −𝑐𝑤1 (𝜈𝑡⇑𝑑)2 is
integrated for this purpose. This term becomes negligible in free-shear flows where
the distance approaches infinity, ensuring it does not modify the previous calibration
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suitable for free-shear flows. Applications demonstrate accurate replication of the log-
layer in boundary layers but tend to underestimate skin friction coefficients over flat
plate flows. To rectify this, a non-dimensional smoothing function 𝑓𝜔, based on the
dimensionless mixing length,

𝑟 = 𝜈𝑡

𝑆𝜅2𝑑2 , (3.56)

is applied to the destruction factor. The function is defined as follows

𝑓𝜔(𝑟) = 𝑔 ⌊︀
1 + 𝑐6

𝜔3
𝑔6 + 𝑐6

𝜔3
}︀

1
6

, where 𝑔 = 𝑟 + 𝑐𝜔2(𝑟6 − 𝑟). (3.57)

Spalart and Allmaras, 1992 also considered the buffer and viscous sub-layer modeling,
introducing a modified eddy viscosity1, 𝜈, equivalent to 𝜈𝑡 except in the viscous region.
A smoothing function 𝑓𝑣1 is applied, equalizing eddy viscosity to 𝜅𝑦𝑢𝜏 in both the log
and buffer layers, as follows

𝜈𝑡 = 𝜈𝑓𝑣1, where 𝑓𝑣1 =
𝜒3

𝜒3 + 𝑐3
𝑣1

with 𝜒 = 𝜈
𝜈
. (3.58)

The production term requires another smoothing function 𝑓𝑣2, ensuring appropriate
behavior across different boundary layer stages. Consequently, 𝑆 is replaced by 𝑆 as
follows

𝑆 = 𝑆 + 𝜈

𝜅2𝑑2𝑓𝑣2, with 𝑓𝑣2 = 1 − 𝜒

1 + 𝜒𝑓𝑣1
, (3.59)

to maintain log-layer dependence as 𝑆 = 𝑢𝜏⇑(𝜅𝑦).

The final formulation step considers laminar and transition regions. However, the
transition-triggering term is omitted here, as our research focuses on fully turbulent
cases for which the model is predominantly utilized. The addition for laminar regions
ensures 𝜈 = 0 as a stable solution of the model equation, assuming 𝜈 should be at most
of the order of 𝜈 in laminar conditions. The production term is thus modified with
1−𝑓𝑡2, and the destruction term is accordingly balanced. The function 𝑓𝑡2 is formulated
as follows

𝑓𝑡2 = 𝑐𝑡3 exp(−𝑐𝑡4𝜒
2). (3.60)

The term 𝑓𝑡2, which appears in both the production and destruction components, is
specifically designed to suppress turbulence in laminar regions.

In the end, after all the previous steps, the model’s equation for the modified eddy
viscosity, 𝜈, is presented in its incompressible form as follows

𝜕𝜈

𝜕𝑡
+𝑢𝑗

𝜕𝜈

𝜕𝑥𝑗

= 𝑐𝑏1 (1 − 𝑓𝑡2)𝑆𝜈−]︀𝑐𝑤1𝑓𝑤 −
𝑐𝑏1

𝜅2 𝑓𝑡2{︀ (
𝜈

𝑑
)

2
+ 1
𝜎
⌊︀ 𝜕

𝜕𝑥𝑗

((𝜈 + 𝜈) 𝜕𝜈
𝜕𝑥𝑗

) + 𝑐𝑏2
𝜕𝜈

𝜕𝑥𝑖

𝜕𝜈

𝜕𝑥𝑖

}︀ ,

(3.61)

1It is important to clarify that the notation employing the tilde should not be confused with the
Favre averaging discussed in Section 3.3.3.
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with
𝑐𝑏1 = 0.1355, 𝜎 = 2

3 , 𝑐𝑏2 = 0.622, 𝜅 = 0.41,

𝑐𝑤1 =
𝑐𝑏1

𝜅2 +
1 + 𝑐𝑏2

𝜎
, 𝑐𝑤2 = 0.3, 𝑐𝑤3 = 2.0,

𝑐𝑣1 = 7.1, 𝑐𝑡3 = 1.1, 𝑐𝑡4 = 0.5.

(3.62)

The original SA model, which does not explicitly include the density term, is applicable
to both incompressible and compressible flows and is considered the standard formu-
lation for compressible analysis. Nevertheless, an equivalent conservation form can be
derived by integrating the SA model with the mass conservation equation (Allmaras
and F. Johnson, 2012). For compressible flow simulations, additional compressibility
corrections are introduced in solvers such as the DLR-TAU code, exemplified by

𝐶𝜈 = −
1
𝜎
(𝜈 + 𝜈) 𝜕𝜌

𝜕𝑥𝑘

𝜕𝜈

𝜕𝑥𝑘

(3.63)

Consequently, the compressibility-corrected SA equation is expressed as

𝜕(𝜌𝜈)
𝜕𝑡

+ 𝜕(𝜌𝜈𝑢𝑗)
𝜕𝑥𝑗

= 𝑐𝑏1 (1 − 𝑓𝑡2)𝑆𝜌𝜈 − ]︀𝑐𝑤1𝑓𝑤 −
𝑐𝑏1

𝜅2 𝑓𝑡2{︀𝜌(
𝜈

𝑑
)

2

+ 1
𝜎
⌊︀ 𝜕

𝜕𝑥𝑗

(𝜌 (𝜈 + 𝜈) 𝜕𝜈
𝜕𝑥𝑗

) + 𝑐𝑏2𝜌
𝜕𝜈

𝜕𝑥𝑖

𝜕𝜈

𝜕𝑥𝑖

}︀

− 1
𝜎
(𝜈 + 𝜈) 𝜕𝜌

𝜕𝑥𝑘

𝜕𝜈

𝜕𝑥𝑘

.

(3.64)

This model has gained widespread usage in external aerodynamic flow studies, par-
ticularly in attached flow conditions, where it exhibits optimal performance in terms
of accuracy due to its formulation and calibration procedure. It demonstrates signifi-
cant numerical stability and robustness, with minimal sensitivity or critical outcomes
relative to initial and free-stream conditions. A typical free-stream value for 𝜈 is signif-
icantly larger than 𝜈, aiding in resolving potential solver issues where rounding errors
or divisions by 𝜈 are involved in the model’s implementation.

The SA model with negative eddy viscosity correction (SAneg), an extension of the
standard SA model proposed by Allmaras and F. Johnson, 2012, is activated when
the turbulence variable 𝜈 is negative, a condition that is physically non-realistic and
thus needs mitigation. Under these circumstances, the modified transport equation
becomes

𝜕𝜈

𝜕𝑡
+𝑢𝑗

𝜕𝜈

𝜕𝑥𝑗

= 𝑐𝑏1(1−𝑐𝑡3)Ω𝜈+𝑐𝑤1𝑓𝑤 (
𝜈

𝑑
)

2
+ 1
𝜎
⌊︀ 𝜕

𝜕𝑥𝑗

((𝜈 + 𝜈𝑓𝑛)
𝜕𝜈

𝜕𝑥𝑗

) + 𝑐𝑏2
𝜕𝜈

𝜕𝑥𝑖

𝜕𝜈

𝜕𝑥𝑖

}︀ , (3.65)

with
𝑓𝑛 =

𝑐𝑛1 + 𝜒3

𝑐𝑛1 − 𝜒3 and 𝑐𝑛1 = 16. (3.66)

The production term becomes positive because the coefficient 𝑐𝑡3 being set at 1.2.
Indeed, the factors multiplying 𝜈, and, 𝜈 itself, are negative.
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Shur et al., 2000 further augmented the SA model with a streamline curvature correc-
tion (SA-RC), modifying the production term with a rotation function as follows

𝑓𝑟1 = (1 + 𝑐𝑟1)
2𝑟∗

1 + 𝑟∗ )︀1 − 𝑐𝑟3t𝑎𝑛−1(𝑐𝑟2𝑟)⌈︀ − 𝑐𝑟1. (3.67)

Specifically, the first term on the RHS of the SA-RC equation is given by

𝑐𝑏1(𝑓𝑟1 − 𝑓𝑡2)𝑆𝜈. (3.68)

The various terms are defined as follows

𝑟∗ = 𝑆
𝜔
, 𝑟 = 2𝜔𝑖𝑘𝑆𝑗𝑘

𝐷4 (𝐷𝑆𝑖𝑗

𝐷𝑡
+ (𝜀𝑖𝑚𝑛𝑆𝑗𝑛 + 𝜀𝑗𝑚𝑛𝑆𝑖𝑛)Ω′𝑚) ,

𝑆𝑖𝑗 =
1
2 (

𝜕𝑢𝑖

𝜕𝑥𝑗

+ 𝜕𝑢𝑗

𝜕𝑥𝑖

) , 𝜔𝑖𝑗 =
1
2 ⌊︀(

𝜕𝑢𝑖

𝜕𝑥𝑗

− 𝜕𝑢𝑗

𝜕𝑥𝑖

) + 2𝜀𝑚𝑗𝑖Ω′𝑚}︀ ,

𝑆2 = 2𝑆𝑖𝑗𝑆𝑖𝑗, 𝜔2 = 2𝜔𝑖𝑗𝜔𝑖𝑗, 𝐷2 = 1
2
(𝑆2 + 𝜔2) ,

𝑐𝑟1 = 1.0, 𝑐𝑟2 = 12, 𝑐𝑟3 = 1.0.

(3.69)

3.4.2. Improved Delayed Detached Eddy Simulation
The DES approach proposed by Spalart, 1997 has become notably prominent among
the hRL method. DES integrates LES modeling in regions distant from wall boundaries
while transitioning to RANS modeling in near-wall boundary layer regions. Adopting
DES in industrial settings is increasingly preferred, as it addresses some of the intrinsic
limitations of RANS models and enhances solution quality.

The integration of the SA model within the DES framework is based on the interplay
between the production and destruction terms in the model’s governing partial differ-
ential equation, as delineated in Eq. 3.61. This interplay yields a relationship wherein
the eddy-viscosity, 𝜈, is proportional to the product of modified vorticity, 𝑆, and the
square of the distance to the nearest wall, 𝑑2, expressed as

𝜈 ∝ 𝑆𝑑2. (3.70)

The analogous nature of this relationship becomes evident when considering the SGS
model, particularly its formula for eddy viscosity. Here, a similar proportionality is
observed, with the grid spacing term, Δ (defined in Eq. 3.26), replacing the distance
𝑑, as indicated in

𝜈𝑆𝐺𝑆 ∝ 𝑆Δ2. (3.71)

This resemblance led to the proposition that substituting 𝑑 with Δ in the wall destruc-
tion term would enable the SA model to mimic a Smagorinsky LES model. Conse-
quently, for the SA model to exhibit both URANS and LES behavior, the distance 𝑑
is replaced with a modified distance 𝑑, defined as

𝑑𝐷𝐸𝑆 ≡min (︀𝑑,Δ𝐷𝐸𝑆⌋︀ , with Δ𝐷𝐸𝑆 = 𝐶𝐷𝐸𝑆ΨΔ. (3.72)
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Here, 𝐶𝐷𝐸𝑆 is a constant set to 0.65 as recommended for homogeneous turbulence
conditions, and Ψ is a low Reynolds number correction. This formulation enables
the model to function as a RANS model when 𝑑 ≪ Δ and as an SGS model when
𝑑 >>Δ, thereby localizing URANS to near-wall areas and facilitating LES application
elsewhere, as illustrated schematically in Fig. 3.4.

Figure 3.4: DES transition scheme (inspired
by Spalart, 1997).

Employing DES allows the application of
LES to the vortical regions above the
wing. The Boussinesq approximation is
limited to the unresolved scales and near
wall region, ensuring that all large-scale
rotations, stresses, and strains are fully
resolved on the grid. This leads to a
more accurate prediction of turbulence
production and the overall behavior of the
leading-edge vortex system. Typically,
the sub-grid contribution to turbulence
will be minimal, thereby maintaining low
and realistic turbulence levels within the
vortex core region. However, to ensure
this minimal contribution, the grid must
be adequately refined to resolve most flow
scales, significantly increasing the compu-
tational expense compared to traditional
RANS turbulence models.

A notable limitation of the original DES methodology manifests when the grid is locally
refined in multiple directions in regions not intended for scale-resolving. This situation
commonly occurs in areas of high geometric curvature or near junctures where multiple
solid surfaces converge. As the DES transition criterion (Eq. 3.72), directly contrasts
the RANS length scale with the maximum grid cell dimension, the eddy viscosity may
experience a significant reduction within the boundary layer without a corresponding
mechanism to convert the resolved turbulence energy into modeled energy. For a
typical RANS grid characterized by a high aspect ratio within the boundary layer,
where the wall-parallel grid spacing often surpasses the boundary layer thickness, 𝛿,
Eq. 3.72 ensures that the DES model operates in RANS mode throughout the entire
boundary layer. However, the DES limiter may inadvertently trigger the LES mode
within the boundary layer in scenarios characterized by an ambiguous grid definition,
specifically where Δ ≪ 𝛿. Such a situation is problematic as the grid might not be
sufficiently refined to support resolved turbulence. This poses a considerable constraint
for more complex flow applications, such as delta wing flows, where local refinements
are indispensable.

In response to these and other shortcomings of the original DES, several modifica-
tions to the basic DES concept are proposed in the literature. A notable evolution of
this methodology is the IDDES approach, as introduced by Shur et al., 2008. The
IDDES framework incorporates two major advancements beyond the standard DES
methodology.
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The first advancement, leading to the DDES approach as articulated by Spalart et al.,
2006, addresses the issue mentioned above by inhibiting the transition from RANS to
LES mode within attached boundary layers due solely to grid design specifics. This
modification is achieved by altering the DES length scale to include a flow-dependent
shielding function that upholds the RANS length scale in regions of attached boundary
layer flows. This ensures a more accurate and reliable simulation in complex geometric
configurations. DDES is specifically designed to maintain the RANS mode across the
entirety of the boundary layer, thereby mitigating premature transition to LES mode
due to sub-optimal grid definitions.

In the DDES model, the hybrid length scale, 𝑑, becomes

𝑑𝐷𝐷𝐸𝑆 ≡ 𝑑 − 𝑓𝑑 max (︀0, 𝑑 −Δ𝐷𝐸𝑆⌋︀ , (3.73)

where the shielding function 𝑓𝑑 is defined as

𝑓𝑑 = 1 − tanh ((8𝑟𝑑)3) , with 𝑟𝑑 =
𝜇 + 𝜇𝑡

𝜌(𝜅𝑑2)max ⌊︀
}︂

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

,10−10}︀
. (3.74)

The variable 𝑟𝑑 is designed to approximate unity within the sub-layer and logarithmic
regions of the boundary layer, and it asymptotically approaches zero near the boundary
layer’s edge. Consequently, 𝑓𝑑 remains near zero until the defect layer is encountered,
rapidly ascending towards unity as 𝑟𝑑 ≪ 1.

The second enhancement introduced by Shur et al., 2008 was incorporating Wall-
Modeled Large Eddy Simulation (WMLES) functionality into the IDDES formulation.
Generally, the IDDES framework can provide a WMLES response if resolved turbulent
content is available as an inflow or initial condition. The model defaults to a DDES
response without such resolved turbulence. This dual capability enables IDDES to
adaptively respond to the specifics of the flow field and the available simulation data,
thereby enhancing its applicability and accuracy for a broad range of complex flow
scenarios.

The WMLES branch of the IDDES is designed to activate only under specific condi-
tions. When the inflow conditions are resolved, turbulent content and the grid res-
olution are sufficient to resolve at least the largest energy-containing eddies of the
boundary layer. This branch employs the hybrid length scale, 𝑑𝑊 𝑀𝐿𝐸𝑆, defined as
follows

𝑑𝑊 𝑀𝐿𝐸𝑆 = 𝑓𝛽(1 + 𝑓𝑒)𝑑 + (1 − 𝑓𝛽)Δ𝐷𝐸𝑆. (3.75)
Here, 𝑓𝛽, the empirical blending function, is expressed as

𝑓𝛽 =min )︀2 exp(−9𝛼2),1⌈︀ , with 𝛼 = 0.25 − 𝑑Δ . (3.76)

This function transitions from 0 (LES mode) to 1 (RANS mode) and facilitates a rapid
switch between these modes as the wall distance spans 0.5Δ and Δ. The secondary em-
pirical function, 𝑓𝑒, is designed to prevent an excessive reduction of the RANS Reynolds
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stresses near the RANS/LES interface, thus addressing the log-layer mismatch common
in hRL models. It is defined as

𝑓𝑒 =max (︀(𝑓𝑒1 − 1),0⌋︀Ψ𝑓𝑒2, (3.77)

where 𝑓𝑒1 and 𝑓𝑒2 are given by

𝑓𝑒1 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

2 exp(−11.09𝛼2), if 𝛼 ≥ 0
2 exp(−9.0𝛼2), if 𝛼 < 0

𝑓𝑒2 = 1 −max )︀tanh{(𝑐2
𝑡 𝑟𝑑𝑡)3}, tanh{(𝑐2

𝑙 𝑟𝑑𝑙
)10}⌈︀ .

(3.78)

Here, Ψ represents an optional low Reynolds number correction, while 𝑟𝑑𝑡 and 𝑟𝑑𝑙
denote

the turbulent and laminar portions of the 𝑟𝑑 parameter (Eq. 3.74). The constants 𝑐𝑡

and 𝑐𝑙 ensure that 𝑓𝑒2 approaches zero when either 𝑟𝑑𝑡 or 𝑟𝑑𝑙
is close to 1.0. The

optimal values for these constants vary based on the specific RANS model employed.
For instance, Shur et al., 2008 determined that 𝑐𝑡 = 1.63 and 𝑐𝑙 = 3.55 are effective
with the SA model, as evidenced by fully developed channel flow simulations. The
correction Ψ is the same low Reynolds number correction introduced in the definition
of Δ𝐷𝐸𝑆 in Eq. 3.72 when employing the SA model. It is set to unity for RANS models
that do not incorporate low Reynolds number corrections.

The DDES and WMLES length scales, as denoted in Eq. 3.73 and Eq. 3.75, respectively,
are not readily blended in a manner that guarantees the realization of the desired
branch, contingent on the presence of resolved turbulent content within the boundary
layer. However, a modified DDES length scale expression allows for such a possibility
as follows

⧹︂𝑑𝐷𝐷𝐸𝑆 = 𝑓𝑑𝑑 + (1 − 𝑓𝑑)Δ𝐷𝐸𝑆, (3.79)
where

𝑓𝑑 =max (︀1 − 𝑓𝑑𝑡 , 𝑓𝛽⌋︀ , 𝑓𝑑𝑡 = 1 − tanh )︀(8𝑟𝑑𝑡)3⌈︀ . (3.80)
This functional replacement for the DDES length scale essentially facilitates the blend-
ing of the DDES and WMLES length scale definitions through the following expres-
sion:

𝑑𝐼𝐷𝐷𝐸𝑆 = 𝑓𝑑(1 + 𝑓𝑒)𝑑 + (1 − 𝑓𝑑)Δ𝐼𝐷𝐷𝐸𝑆. (3.81)

The IDDES hybrid length scale ensures the desired WMLES behavior in simulations
containing resolved turbulent content within the boundary layer (since 𝑟𝑑𝑡 ≪ 1⇒ 𝑓𝑑𝑡 ≈ 1
so that 𝑓𝑑 = 𝑓𝛽). Conversely, in simulations devoid of resolved turbulence within the
boundary layer, 𝑓𝑒 ≈ 0 and 𝑓𝑑𝑡 ≈ 0, which implies 𝑓𝑑 = 1.

Additionally, the DES filter width in the IDDES formulation is explicitly modified to
include the wall distance, 𝑑, as follows

Δ𝐼𝐷𝐷𝐸𝑆 =min {max (︀𝐶𝑤𝑑,𝐶𝑤Δ,Δ𝑛⌋︀ ,Δ} . (3.82)

Here, Δ𝑛 denotes the grid spacing in the wall-normal direction, which can be ambiguous
for complex geometries with multiple walls. A potential method to assess this quantity
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involves averaging the cell center values of the wall distance to grid nodes, facilitating
the computation of an effective wall-normal grid spacing as the discrepancy between
the maximum and minimum nodal values for each grid cell. Fully developed channel
flow simulations determined the coefficient 𝐶𝑤 = 0.15.

3.4.3. The Menter Shear Stress Transport turbulence model

Within the 𝑘−𝜔 model framework, the turbulent kinetic energy, 𝑘, and the dissipation
rate, 𝜔, are determined through the solution of their respective transport equations.
The transport equation for turbulent kinetic energy is given by

𝜕(𝜌𝑘)
𝜕𝑡

+ 𝜕(𝜌𝑘𝑢𝑗)
𝜕𝑥𝑗

= 𝑃𝑘 − 𝛽𝑘𝜌𝜔𝑘 + 𝜕

𝜕𝑥𝑗

⌊︀(𝜇 + 𝜎𝑘𝜇𝑡)
𝜕𝑘

𝜕𝑥𝑗

}︀ . (3.83)

Similarly, the transport equation for the dissipation rate is expressed as

𝜕(𝜌𝜔)
𝜕𝑡

+ 𝜕(𝜌𝜔𝑢𝑗)
𝜕𝑥𝑗

= 𝛾𝜔𝜔

𝑘
𝑃𝑘 − 𝛽𝜔𝜌𝜔2 + 𝜕

𝜕𝑥𝑗

⌊︀(𝜇 + 𝜎𝜔𝜇𝑡)
𝜕𝜔

𝜕𝑥𝑗

}︀ + 𝜌𝜎𝑑

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗

. (3.84)

The turbulent eddy viscosity is given by

𝜇𝑡 =
𝜌𝑘

𝜔
, (3.85)

and the turbulence production term 𝑃𝑘𝜔 is defined as

𝑃𝑘 = 𝜏𝑅
𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

, (3.86)

where the Reynolds stress tensor 𝜏𝑅
𝑖𝑗 is evaluated using the Boussinesq assumption

expressed in Eq. 3.40. In these equations 𝛽𝑘, 𝛽𝜔, 𝛾𝜔, 𝜎𝑘, 𝜎𝜔, and 𝜎𝑑 are closure
coefficients that vary between the different versions of the 𝑘 − 𝜔 model present in the
literature.

Menter baseline model. Menter, 1994 proposed a hybrid approach that combines
the 𝑘−𝜔 model in the near-wall regions with the standard 𝑘−𝜀 model in the free-stream.
This integration involves transforming the 𝜀-equation into a transport equation for 𝜔,
introducing the cross-diffusion term, which effectively suppresses the free-stream model
sensitivity. The 𝑘 − 𝜔 model enhances accuracy in near-wall regions, whereas the 𝑘 − 𝜖
model is more effective outside these areas. The transition between the 𝑘 −𝜔 and 𝑘 − 𝜀
models is facilitated through a smooth variation of the closure coefficients as defined
by

𝜑 = 𝐹1𝜑
(𝑖) + (1 − 𝐹1)𝜑(𝑜), (3.87)

where 𝜑 = {𝛽𝑘, 𝛽𝜔, 𝛾𝜔, 𝜎𝑘,𝜎𝜔,𝜎𝑑}, and the indices 𝑖 and 𝑜 denote values in the near-wall
(inner) and free-stream (outer) regions, respectively. The blending function, 𝐹1, is
determined as

𝐹1 = tanh(𝐺4
1), (3.88)
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where 𝐺1 is calculated by

𝐺1 =min (︀max (Γ1,Γ2) ,Γ3⌋︀ . (3.89)

The arguments are defined as

Γ1 =
⌋︂
𝑘

0.09𝜔𝑑, Γ2 =
500𝜇
𝜌𝜔𝑑2 , Γ3 =

2𝜎(𝑜)𝑑 𝑘

CD(𝑜)𝜔 𝑑2
, (3.90)

with
CD(𝑜)𝜔 =max(𝜎(𝑜)𝑑

𝜌

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗

,10−20) . (3.91)

Here, 𝑑 represents the distance from the wall, that is, the projected distance to the
nearest point on the wall. The function 𝐹1 is specifically designed to transition from
a value of 1 in close proximity to the wall, to 0 approximately at the midpoint of the
boundary layer. This design facilitates accurate modeling of turbulence dynamics from
the near-wall region to the outer layers of the boundary layer.

Menter SST model. Alongside the Baseline (BSL) model, Menter, 1993, 1994 in-
troduced the so-called SST model. This model represents an extension of the BSL
model, enhancing its sensitivity to positive pressure gradients and flow separation.
This enhancement is achieved by modulating the eddy viscosity as follows

𝜇𝑡 =
𝜌𝑎1𝑘

max(𝑎1𝜔,Ω𝐹2)
, (3.92)

with 𝑎1 = 0.31, and he blending function, 𝐹2, given by

𝐹2 = tanh (𝐺2
2) , with 𝐺2 =max (2Γ1,Γ2) . (3.93)

The function 𝐹2 assumes a value of 1 in proximity to walls and transitions to 0 at
the edge of the boundary layer. This gradation effectively confines the eddy-viscosity
reduction (SST limitation) to the boundary layers. Notably, the parameters for Γ1 and
Γ2 are consistent with those utilized for the 𝐹1 function in the BSL model.

3.4.4. Scale Adaptive Simulation

The SAS approach is an advanced technique that bridges traditional RANS models and
the more computationally intensive LES. Included within the hRL methods, SAS can
provide more accurate results than RANS in various scenarios but does not fully resolve
all the scales of turbulence as LES does. Consequently, it is considered a compromise
between the accuracy of LES and the computational efficiency of RANS. Developed
to enhance the accuracy of turbulence modeling while maintaining reasonable compu-
tational costs, SAS aims to adaptively resolve the larger energy-containing scales of
turbulence based on local flow conditions. Its advantage over traditional RANS lies
in its capability to capture unsteady and complex flow features without incurring the
complete computational expense of LES, proving particularly useful in the context of
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flows dominated by large, unsteady vortices. The employed SAS approach is based on
the Menter SST 𝑘 − 𝜔 model (Menter, 1994).

SAS’s turbulence model can alter its behavior depending on the local flow structure. It
incorporates an additional source term or function, 𝑄𝑆𝐴𝑆, into the turbulence dissipa-
tion rate equation (Eq. 3.84) that responds to locally resolved turbulence. This term
is mathematically expressed as

𝑄𝑆𝐴𝑆 =max ⌊︀𝜌𝜁2𝑆
2 ( 𝐿𝑚

𝐿𝑣𝐾

)
2
− 𝐹𝑆𝐴𝑆

2𝜌𝑘
𝜎𝜑

max( 1
𝑘2

𝜕𝑘

𝜕𝑥𝑗

𝜕𝑘

𝜕𝑥𝑗

,
1
𝜔2

𝜕𝜔

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗

) ,0}︀ , (3.94)

with 𝜁2 = 1.755, 𝜎𝜑 = 2
3 , and 𝐹𝑆𝐴𝑆 = 1.25. The length 𝐿𝑚 is defined as follows

𝐿𝑚 = 𝑐
−

1
4

𝜇

⌋︂
𝑘

𝜔
, (3.95)

with 𝑐𝜇 = 0.09 and 𝜅 = 0.41. The von Kármán length scale, 𝐿𝜈𝐾 , is defined as

𝐿𝜈𝐾 = 𝜅
𝑈 ′

𝑈 ′′
, where 𝑈 ′ =

⌈︂
2𝑆𝑖𝑗𝑆𝑖𝑗 and 𝑈 ′′ =

⟨
⧸︂⧸︂⟩𝜕2𝑢𝑖

𝜕𝑥2
𝑘

𝜕2𝑢𝑖

𝜕𝑥2
𝑗

. (3.96)

As proposed by Menter and Egorov, 2010, SAS represents an innovative methodology
to facilitate the partial resolution of turbulent structures in unsteady flow regimes.
Conceptualized as a URANS model with scale-resolving capabilities, SAS exhibits LES-
like behavior under certain conditions. In contrast to LES, a unique feature of SAS is
its well-defined nature, even on coarser mesh cells. When the flow is well-resolved (as
in LES), the model acts more like an LES model, resolving larger scales of turbulence.
Conversely, when the flow is not well-resolved (as in RANS), it behaves more like a
RANS model. This model’s adaptability stems from the integration of the von Kármán
length scale into the scale-determining equation. This inclusion facilitates a dynamic
transition from RANS to LES-like behavior in regions exhibiting unsteady flow, such
as vortices and shear stress regions observed in delta wing flows.
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4
Software and Numerical Strategy

This chapter outlines the software and numerical strategies. Section 4.1 introduces the
CFD codes utilized, while Section 4.2 addresses Evolutionary Computing (EC), specif-
ically presenting the GEP code and its CFD-driven framework. Finally, Section 4.3
discusses the numerical techniques, including the FVM and the numerical schemes.

4.1. CFD codes overview
The CFD simulations are conducted using two CFD codes, TAU and OpenFoam. These
tools are briefly described below, with pertinent references provided for more in-depth
exploration by the reader.

4.1.1. The DLR-TAU code
The German Aerospace Center has developed TAU, a widely recognized computational
tool in aerodynamics and fluid dynamics. It is a sophisticated CFD code that simulates
complex, three-dimensional flow fields. It is particularly notable for its versatility in
handling various types of flow, ranging from incompressible to hypersonic regimes.

TAU employs the FVM for discretizing the Navier-Stokes equations. One of its key
strengths lies in its ability to work with unstructured grids, which makes it highly
adaptable for complex geometries often encountered in aerospace applications. This
flexibility is crucial for accurately simulating flow over intricate designs, such as delta
wings, where the flow field can be highly irregular and challenging to model.

The code supports a range of turbulence models and boundary conditions and has
capabilities for both steady-state and transient simulations. Its robustness and effi-
ciency make it a tool for various aerodynamic research and industrial applications.
Flux computation is facilitated via either upwind or central schemes. Viscous fluxes
for one-equation turbulence models with central schemes are discretized using central
differences, while two-equation models employ an upwind-type discretization.

For those looking to delve deeper into its functionalities and applications, references
such as Gerhold, 2002 and Kroll et al., 2014 provide comprehensive insights and are
frequently cited in academic and industry research.
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4.1.2. OpenFoam
OpenFOAM Version 7.0 is an open-source CFD software widely utilized for modeling
complex fluid dynamics scenarios. OpenFOAM is, first and foremost, a C++ library
used primarily to create executables known as applications. The applications fall into
two categories: solvers, which are each designed to solve a specific problem in contin-
uum mechanics, and utilities, which are designed to perform tasks that involve data
manipulation. The interfaces to the pre-and post-processing are OpenFOAM utili-
ties, thereby ensuring consistent data handling across all environments (Greenshields,
2019).

Two distinct OpenFOAM solvers, simpleFoam and rhoPimpleFoam, each tailored to
specific types of fluid flow simulations, are employed in this thesis. simpleFoam is adept
at handling steady-state simulations in scenarios involving incompressible, turbulent
fluid flow. The principal characteristic of these simulations is the constancy of flow
over time, which necessitates a steady-state solution. The underlying algorithm of
simpleFoam is the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE). In
contrast, rhoPimpleFoam is engineered for simulations that demand the analysis of
compressible, turbulent flow, especially in cases characterized by unsteady dynamics
and high Mach numbers. The solver synthesizes methodologies from both the Pressure
Implicit with Splitting of Operators (PISO) and SIMPLE algorithms.

OpenFOAM is a tool of choice in academic research and is widely used in various
industrial applications due to its flexibility and capabilities. Users are encouraged
to refer to the official OpenFOAM documentation and community resources for more
detailed information (Greenshields, 2019).

4.2. Evolutionary computing
EC is a branch of artificial intelligence that draws inspiration from the mechanisms of
natural evolution to solve complex problems. It includes a variety of algorithms and
techniques, including evolutionary algorithms, genetic programming, and evolutionary
strategies, among others. These algorithms simulate the process of natural selection by
evolving solutions to problems over many generations, optimizing for the best possible
results.

4.2.1. Evolutionary algorithms
The fundamental objective of all EAs is to emulate the process of evolution (Langdon
et al., 2008). These algorithms incorporate numerous concepts from natural evolu-
tion into their codes. Initiating with a specific population, the pivotal concept is
the Darwinian principle of natural selection, colloquially known as the survival of the
fittest (Man et al., 2001). This principle is implemented via a fitness function applied
to potential solutions (individuals), which is iteratively refined across generations. The
fitness function, which may vary based on individual characteristics, must facilitate
a comparative evaluation of individuals concerning their problem-solving efficacy. An
individual’s fitness determines its likelihood of reproduction and prolonged survival

72



4.2 Evolutionary computing

across generations. In engineering contexts, fitness functions often use error metrics,
measuring the discrepancy between an individual’s performance, 𝐼, and the desired
solution across the problem’s domain, 𝑓 . Mathematically, this can be expressed as

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐼) = ∑
𝑑𝑜𝑚𝑎𝑖𝑛

⋃︀𝐼 − 𝑓 ⋃︀𝑛. (4.1)

Here, 𝑛 > 1 enhances the differentiation between similar individuals by amplifying the
error metric. In many engineering applications, the domain is three-dimensional, and
the computational efforts of calculating fitness for each individual escalates with the
domain’s size. Moreover, this computation must be repeated for every new individual
in each generation, making computational efficiency crucial while defining a fitness
function to be optimized.

Once individual fitness is assessed, a selection scheme determines which individuals
will reproduce to create the next generation. The fittest individuals are selected for
reproduction to produce offspring of the next generation. They operate through a se-
lection, crossover, mutation, and replacement cycle to evolve a population of candidate
solutions towards an optimal solution. The choice of selection scheme significantly
influences the selection pressure within the algorithm.

Terminology and methodologies

In EC, various processes are utilized across different segments. The terminology and
methodologies employed in basic EA, GP, and GEP are elucidated as referenced in the
literature (Ferreira, 2002; Holland, 1992; Koza, 1994). This discussion establishes the
foundation for comprehending EVE, the GEP code used in this dissertation.

The Search Space S is inherently defined by the problem at hand. EAs are typically
employed for problems with relatively large search spaces, where exhaustively trying
every possible solution is infeasible.

The population P is a subset of the search space S, consisting of all current com-
putational individuals. With a population size 𝑝𝑠, the population can be defined as
P = {𝐼1, ......, 𝐼𝑝𝑠}.

An individual 𝐼 represents a potential solution characterized by its chromosome and
fitness derived from that chromosome. After decoding the chromosome, its fitness is
typically calculated via a related fitness function.

A chromosome or genotype represents a sequence of parameters delineating a potential
solution, where each parameter is termed an allele. Chromosomes can be constructed
in various ways, with binary and string representations being common, as depicted in
Fig. 4.1. A chromosome comprises at least one gene but can contain multiple genes in
multi-genetic chromosome scenarios.

The phenotype is the tangible manifestation or solution corresponding to a genotype.
It is derived from the genotype through specific encoding and decoding functions.
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The genotype space G is translated into the search space S using a decoding function
𝑓𝑑𝑒𝑐𝑜𝑑𝑒 ∶ G → S. Conversely, phenotypes from the search space are converted back to
genotypes using an encoding function 𝑓𝑒𝑛𝑐𝑜𝑑𝑒 ∶ S→ G.

The concept of fitness is crucial to emulate survival of the fittest. Fitness functions or
cost functions calculate an individual’s fitness using its decoded chromosome, 𝑓𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ∶
S→ R, allowing for comparative evaluation of solutions relative to an exact solution or
a target condition.

Figure 4.1: Scheme of the different genotype representations with binary (left) and
string (right). A single allele is highlighted in green.

The concept of selection pressure plays a pivotal role in the evolution of solutions. It
is the driving force behind creating new individuals and is intrinsically linked to an
individual’s fitness. Selection pressure determines an individual’s likelihood of being
chosen as a parent based on their fitness. High selection pressure implies that individ-
uals with extreme fitness values (very high or very low, depending on the optimization
goal) have a significantly higher chance of being selected for reproduction. Conversely,
low selection pressure suggests that fitness has minimal or no influence on the selec-
tion probability. Various selection schemes are employed to regulate this pressure,
with some of the most common being the Roulette wheel, tournament, and truncation
selection.

The roulette wheel selection, a probabilistic selection mechanism in EAs, assigns a re-
productive probability to each individual based on fitness, as illustrated in Fig. 4.2a.
As elucidated by Baker, 1987, this method ensures that individuals with superior fit-
ness are more likely to be selected for reproduction, directly correlating fitness with
reproductive probability.

The truncation selection employs a fitness threshold to determine reproductive eligibil-
ity (Mühlenbein and Schlierkamp-Voosen, 2005), as illustrated in Fig. 4.2b. Individuals
exceeding this threshold (superior fitness in maximization problems or inferior fitness
in minimization problems) can reproduce. This selection method correlates fitness
with reproductive probability, as individuals must surpass a predefined fitness level to
contribute genetically to the subsequent generation.

The tournament selection is illustrated in Fig. 4.3. As discussed by Blickle and Thiele,
1996, it divides the population into groups (tournaments) of a specified size. In each
tournament, the individual exhibiting the highest fitness is identified as the winner and
granted the opportunity to reproduce. This selection method indirectly relates fitness
to reproductive probability by increasing the likelihood that individuals with superior
fitness will win their respective tournaments. The size of the tournament directly
influences the selection pressure; larger tournaments generally increase the chances of
the fittest individuals being selected, enhancing the overall selection pressure.
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(a) Roulette selection - Individuals are given a
probability of being selected for reproduction
based solely on their fitness.

(b) Truncation selection - Only individuals
surpassing a specified fitness threshold can re-
produce.

Figure 4.2: Selection schemes.

Figure 4.3: Tournament selection - The population is divided into 𝑚 tournaments,
each comprising 𝑡 individuals, with winners granted the opportunity to reproduce.

Crossover and mutation are two fundamental mechanisms in EAs. Crossover is a
process where two selected parents combine parts of their chromosomes to create a
new individual (Zaharie, 2009). The specific crossover mechanism can vary depending
on the EA type. Mutation introduces variability and innovation into the population
by altering the alleles of an individual’s chromosome. This process is crucial as it
maintains a low probability of discovering global optima and ensures the exploration
of the search space (Kramer, 2017).

Reinsertion is transitioning from one generation to the next while maintaining a portion
of the current population. This mechanism, known as the generation gap, allows for
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the continuity of genetic material across generations and is crucial for the stability and
convergence of the algorithm. However, it must be implemented cautiously to avoid
premature convergence to local optima (Pencheva et al., 2011; Pohlheim, 2013).

Diversity within a population is a critical measure of its health and evolutionary poten-
tial. It reflects the variation in genetic material and is essential for avoiding premature
convergence and encouraging exploration of the search space. Various strategies exist
to measure and maintain diversity, such as fitness uniform selection and other meth-
ods (Gupta and Ghafir, 2012; Hutter, 2002; Ursem, 2002). High diversity is generally
believed to enhance the algorithm’s ability to escape local optima and increase the
chances of finding global optima.

Evolutionary algorithms workflow

Figure 4.4 depicts the fundamental workflow of an EA in its simplest iteration (Pohlheim,
2013). The process begins with the zeroth generation, comprising an initial population,
and sequentially advances through predefined steps until the optimizations conclude at
the final generation. The various stages, numbered from 1 to 9, are elucidated below.

Figure 4.4: Evolutionary process in an EA.

1. Create initial population: the inception of an EA invariably involves generating
an initial population. While various specialized procedures exist, a prevalent
approach is to commence with a quasi-random initial population.

2. Calculate fitness: this step involves calculating the fitness of all individuals not
previously assessed. These individuals may be part of the random initial popu-
lation or newly created offspring.

3. Stop criterion: given finite computational resources, the optimizations must con-
clude at a certain juncture. Commonly employed termination criteria include a
predetermined number of generations or achieving a specific fitness value.
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4. Selection: through a defined selection scheme, individuals eligible for reproduc-
tion are chosen. This step is instrumental in regulating selection pressure.

5. Crossover: various crossover types combine genetic material from the selected
parents to create offspring. The algorithm typically allows setting probabilities
for different crossover types.

6. Mutation: post-crossover, the offspring can undergo mutation. The probability
of mutation can be preconfigured.

7. Remove individuals from generation 𝑗: while some EAs operate with variable
population sizes and employ alternative mechanisms, the fundamental concept is
to maintain a fixed population size. To accommodate new individuals, existing
ones must be removed. The remaining individuals from the current generation
are then carried forward to the next.

8. Add new individuals to generation 𝑗+1: following the removal of a predetermined
number of individuals, the generation is replenished with new individuals.

9. Select overall best individual: the optimizations process culminates with identify-
ing the best individual after a designated number of generations or upon reaching
a predetermined fitness level.

4.2.2. Gene expression programming
The Gene Expression Programming is detailed herein, particularly referring to the
CFD-driven framework. The EVE code is then introduced.

Genes and expression trees

In GEP, the gene is bifurcated into two segments: the head and the tail. This division
facilitates a diverse array of functional expression lengths while maintaining a fixed
gene length. The head segment can incorporate terminals and functions, whereas the
tail is restricted to terminals only. Terminals can be constants, variables, or inputs to
the problem being solved. They are called terminals because they represent the leaves
of the tree structure in GEP, where no further operations are performed on them.
Functions in GEP are operations that take a certain number of arguments (terminals
or the results of other functions) and perform calculations or operations on them. These
functions can include arithmetic operations (like addition, subtraction, multiplication,
division), logical operations, or any other domain-specific functions necessary for solv-
ing the problem at hand. The combination of terminals and functions in GEP allows
the formation of symbolic expressions that can model complex relationships or perform
computations. During the evolution process, GEP algorithms manipulate these sym-
bols through genetic operations (such as mutation, crossover, and selection) to evolve
solutions that best fit the given problem.

Given the head length ℎ, the requisite maximum tail length 𝑡 can be computed based
on the maximum arity 𝑛𝑚𝑎𝑥 (the number of input parameters of a function, e.g., 2 for
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"+" and 1 for "⌋︂") of all permissible functions as follows

𝑡 = ℎ(𝑛𝑚𝑎𝑥 − 1) + 1. (4.2)

Consequently, only the head length ℎ requires configuration, as the tail length 𝑡 is
derived from known variables. To illustrate the transformation of a chromosome into
a parsing tree, consider terminal (T) and function (F) sets as follows

𝑇 = {𝑎,𝑏,𝑐,𝑑,𝑒}, 𝐹 = {⌋︂,+,−,∗}. (4.3)

GEP may employ random constants generated during the initialization phase, symbol-
ized by "?" to denote a random numerical constant’s potential use. For simplicity, this
feature is omitted in the subsequent example. With a head length ℎ = 6, maximal arity
𝑛𝑚𝑎𝑥 = 2, and following Eq. 4.2, the tail length becomes 𝑡 = 7. The gene, split into head
and tail for presentation, could be expressed as in the following expression.

0 1 2 3 4 5 ⋃︀ 6 7 8 9 10 11 12⌋︂ ∗ ⌋︂ + − 𝑎 ⋃︀ 𝑏 𝑐 𝑑 𝑎 𝑐 𝑒 𝑏
(4.4)

Figure 4.5: Expression tree for
the chromosome in Eq. 4.4

An expression tree is constructed character by charac-
ter, commencing at the root node (the first allele of the
chromosome) until no free edges remain. The expres-
sion tree for the chromosome in Eq. 4.4 is illustrated
in Fig. 4.5, leading to the following formula:

{︂
(
⌋︂
𝑐 − 𝑑) ∗ (𝑎 + 𝑏). (4.5)

Notably, only the initial nine symbols of the expression
contribute to the formula and expression tree construc-
tion, demonstrating GEP’s ability to generate formu-
las of varying sizes. For instance, employing the same
head length ℎ = 6 and sets T and F as before, but
with a different chromosome configuration as Eq. 4.6,
yields a distinct resultant formula (Eq. 4.7) and ex-
pression tree (Fig. 4.6). This flexibility allows GEP
to create a broad spectrum of formulas based on the
functions used in the head and their respective arities,
integrating several aspects of GP.

0 1 2 3 4 5 ⋃︀ 6 7 8 9 10 11 12
+ ∗ − + − ∗ ⋃︀ 𝑏 𝑐 𝑑 𝑎 𝑐 𝑒 𝑏

(4.6)

((𝑐 + 𝑑) ∗ (𝑎 − 𝑐)) + ((𝑒 ∗ 𝑏) − 𝑏) (4.7)

In essence, GEP offers a robust and flexible framework for evolving diverse and complex
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solutions, effectively balancing the structured approach of GP with the linear dynamics
of GA, thereby marking its significance in evolutionary computation.

Figure 4.6: Expression tree for the chromosome in Eq. 4.6

Multi genetic chromosome

In GEP, similar to GP, it is feasible to amalgamate multiple genes into a multi-genetic
chromosome. This process necessitates defining a linking function possessing an arity of
two, such as the addition operator "+". An essential parameter in practical GEP imple-
mentation is the number of genes, denoted as 𝑛𝑔𝑒𝑛𝑒𝑠, which specifies the count of genes
comprising a multi-genetic chromosome. To illustrate the concept of a multi-genetic
chromosome, consider combining genes from Eq. 4.4 and Eq. 4.6 into the composite
structure shown in expression. 4.8.

0 1 2 3 4 5 ⋃︀ 6 7 8 9 10 11 12⌋︂ ∗⌋︂ + − 𝑎 ⋃︀ 𝑏 𝑐 𝑑 𝑎 𝑐 𝑒 𝑏
0 1 2 3 4 5 ⋃︀ 6 7 8 9 10 11 12
+ ∗ − + − ∗ ⋃︀ 𝑏 𝑐 𝑑 𝑎 𝑐 𝑒 𝑏

(4.8)

Using the linking function "+", the expressions derived from both genes in Eq. 4.5
and Eq. 4.7 can be concatenated to form a comprehensive multi-genetic expression as
follows {︂

(
⌋︂
𝑐 − 𝑑) ∗ (𝑎 + 𝑏) + ((𝑐 + 𝑑) ∗ (𝑎 − 𝑐)) + ((𝑒 ∗ 𝑏) − 𝑏) . (4.9)

This method effectively combines the individual gene expressions into a more complex,
multi-layered solution, increasing the versatility of GEP. This enhances the algorithm’s
capability to represent and evolve a more comprehensive array of solutions, thereby
increasing the scope and potential applications of GEP in solving complex problems.

4.2.3. Training frameworks: CFD-driven method
The CFD-driven training methodology, illustrated in Fig. 4.7, evaluates turbulence
models via RANS computations that subsequently guide the ML training iterations.
This framework can be divided into two main segments. The first relates to the CFD
solver, wherein OpenFOAM Version 7.0 is utilized to conduct RANS computations.
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The complement to the CFD solver is the ML module, and GEP is the preferred
choice.

Figure 4.7: CFD-driven training scheme (inspired by Zhao et al., 2020).

Due to the precise formulation of the model equations, combining the CFD-driven
training framework with the GEP method facilitates immediate integration into RANS
solvers during the training process. As a result, models emerging from the CFD-driven
approach are readily adaptable for use in industrial design tools. Another advantage of
CFD-driven training is its versatile cost function. Rather than being limited to specific
closure term components, the cost functions in CFD-driven training can be customized
to emphasize any flow feature considered critical by turbulence modelers.

The training begins by generating an array of random candidate models, called indi-
viduals, from a predefined set of mathematical symbols. For this purpose, the symbols
include mathematical operations, such as addition, subtraction, multiplication, vari-
ables, and constants (randomized or predefined). During each generational cycle, a
designated subset of individuals undergoes evaluation, influencing their evolutionary
trajectory. The chosen individuals are then integrated into RANS calculations. Inte-
grating GEP models into the solver is achieved by referencing coefficients and variables,
eliminating the need for solver recompilation with each new model candidate and thus
reducing computational demands. The equations for each candidate model are tran-
scribed to a file, which the RANS solver then accesses. The RANS solver initiates then
its iterative computation by employing the GEP equation in its turbulence model. The
CFD cycle concludes when either convergence is achieved, enabling the determination
of the cost function through a comparison of RANS results with the ground truth or in
cases of model non-convergence, where the cost function is assigned a higher value.

Since GEP operates as a global optimization approach, evaluating cost function values
is crucial in model selection. Fitness functions measure the mean square deviation be-
tween the numerical prediction and the ground truth (data derived from Hi-Fi simula-
tions, experimental results, or theoretical formulations). The GEP evolution algorithm
then uses these cost functions to generate a new set of models assessed then through
integrated CFD simulations. This iterative process is repeated, progressively refining
the model pool until a model in a generation meets the predefined cost-effectiveness
criterion.
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4.2.4. The EVE code

The GEP code, called EVE, refers to a specific software tool or algorithm developed
by Weatheritt and Sandberg, 2016. EVE is an academic code written in Python
3. Its framework implements the GEP algorithm by Ferreira, 2002, which evolves a
population of candidate solutions over various generations towards a specified training
objective. To use this framework without any expansions, the following settings have
to be defined.

• The stopping tolerance to define at which fitness level the optimization ends.

• Number of generations to run at maximum.

• The seed to define the quasi-random initial population.

• The size of the population.

• The number of genes used.

• The head length of one chromosome.

• The tournament size.

• The mating size.

• The terminal and function set.

• The probabilities for mutation: one-point crossover and two-point crossover.

• Optionally, the fitness function can be changed. The default fitness function is
the sum of the squared error of an individual.

After defining those values, the optimization starts with a quasi-random initial popu-
lation created based on the seed at the beginning of the run. It reads in the terminal
set as NumPy arrays and gets the dimensions of the terminals afterwards. This initial
population is quasi-random to ensure the repeatability of runs. From there on, the
steps depicted in Fig. 4.8 are done repeatedly for the set number of generations until
either the stopping tolerance or the number of generations is reached.

As a selection scheme, tournament selection with elitism is implemented in EVE. The
random tournament members of each tournament compete concerning the defined fit-
ness function, and the winners are allowed to reproduce with the given probabilities for
one- and two-point crossovers and mutation afterwards. Not all reproduction mecha-
nisms mentioned by Ferreira, 2002 are implemented in EVE. Consequently, the fitness
values of the newly created children are calculated after the translation into the pheno-
type space. For details on the translation process, see Weatheritt and Sandberg, 2016.
After the offspring of the current population is done, a diversity mechanism called flood
checks if the population is still diverse enough based on all the fitness values.
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Figure 4.8: EVE framework (inspired by Weatheritt and Sandberg, 2016)

4.3. Numerical techniques
Numerous numerical techniques are available for solving the non-linear Partial Dif-
ferential Equations (PDEs) that govern fluid motion. These techniques include Spec-
tral Methods (SMs), Finite Element Methods (FEMs), and Finite Difference Methods
(FDMs), among others.

SMs utilize a linear combination of continuous functions, such as sinusoids or Cheby-
shev polynomials, that span the entire solution domain. FEMs rely on piece-wise
continuous functions that are localized to smaller sub-domains. FEM generates equa-
tions for each element independently and considers interactions between elements only
when assembling these equations into a global system matrix. FDMs are based on
Taylor series expansions to approximate the differential equations. While FDM offers
several advantages in terms of numerical formulation, data preparation, and computa-
tional efficiency, it is generally less adaptable to complex geometries due to its inherent
reliance on regular grid structures.

In contrast to these methods, the FVM approaches the problem from a fundamentally
different perspective. Rather than directly solving the PDEs, the FVM focuses on the
conservation of physical quantities, such as energy, mass, or momentum, across finite
control volumes. This approach, which involves deriving discrete equations from the
integral conservation laws, provides a more physically intuitive framework than FDMs.
The control volume strategy inherent in FVM makes it particularly well-suited for
applications involving complex geometries and boundary conditions.

4.3.1. Finite volume method
The FVM constitutes a pivotal approach in the discretization of governing equations
within the field of CFD. Its widespread adoption and enduring popularity are attributed
to its intrinsic capability to include the physical and conservation principles that are
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fundamental to fluid flow dynamics. Notably, FVM are well-known for its congruence
with the integral formulations of the governing equations, providing a robust framework
for numerical simulation.

In employing FVM, the computational domain is subdivided into a finite number of
control volumes. It is within these volumes that the integral forms of the governing
equations are applied, thereby transforming the continuous domain into its discrete
counterpart. This methodology facilitates the direct application of conservation laws to
each control volume, effectively mirroring the physical behavior of real-world fluid flows.
The governing equations introduced in Section 3.1 are expressed in their conservative
form in Section 4.3.3.

The process of discretization culminates in the derivation of a system of algebraic equa-
tions that includes the entire computational domain. This system of equations repre-
sents the discretized physical phenomena and imposed boundary conditions, forming
the basis for subsequent numerical analysis. The solution of this algebraic system,
accomplished through suitable numerical methods, reveals the spatial distribution of
flow properties across the computational domain.

Control volumes (cells)

(a) Illustration of a three-dimensional control vol-
ume with central and adjacent nodes.

(b) A one-dimensional control volume highlighting
nodes and surfaces.

Figure 4.9: Control volume.

Control volumes, or cells, form the fun-
damental units for discretization in CFD
simulations. These cells can be either
structured or unstructured, and may fol-
low Cartesian or non-Cartesian geome-
tries. Fig. 4.9a shows a typical three-
dimensional control volume, which is
characterized by a node located at its cen-
ter, surrounded by adjacent nodes. Vari-
ables of interest, such as velocity or pres-
sure, are stored at these nodal points,
which are strategically placed at the con-
trol volumes’ centers to facilitate numer-
ical stability and accuracy.

Considering a control volume (𝑉 ) and
its nodal point (𝑃 ), the adjacent nodes
along the coordinate axes are typically
named with capitalized letters: East,
West, North, South, Higher, and Lower.
These designations aid in the conceptual
and computational identification of nodal
relations within the grid. Conversely,
lowercase letters are used to represent
the control volume’s surfaces, contribut-
ing to a standardized nomenclature that
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enhances clarity in mathematical formulations. The areas of the control volumes’ sur-
faces are denoted by 𝐴𝑤,𝐴𝑒,𝐴𝑛,𝐴𝑠,𝐴ℎ, and 𝐴𝑙, providing a basis for flux calculations
across the control volume boundaries. In the case of a one-dimensional control volume,
the central, eastern, and western nodes, along with the eastern and western surfaces,
are illustrated in Fig. 4.9b.

4.3.2. Overview of the dual mesh approach
The DLR-TAU code, renowned for its proficiency in simulating complex aerodynamic
flows, uses a Dual Mesh strategy to enhance the efficiency and accuracy of solving the
Navier-Stokes equations on unstructured grids (Kroll et al., 2014).

The Dual Mesh approach incorporates two interlinked mesh structures: the primary
mesh and the dual mesh, each serving a distinct purpose in the computational frame-
work. The primary mesh forms the computational domain’s backbone, composed of
various elements (e.g., tetrahedra, hexahedra, prisms, and pyramids in 3D) tailored to
the geometry of the object under investigation. This mesh directly applies the physi-
cal geometry and boundary conditions of the problem. Constructed from the primary
mesh, the dual mesh centers around the vertices of the primary elements. A control
volume is defined for each node on the primary mesh, extending to the midpoint of
adjacent nodes and element centers. This setup facilitates a node-centered solution
strategy, significantly impacting the computational efficiency and accuracy.

The Dual Mesh approach provides multiple advantages essential for simulating aero-
dynamic phenomena, which are summarized as follows (Gerhold, 2002).

• Accuracy and efficiency: by enabling a node-centered scheme on the dual mesh,
TAU achieves enhanced accuracy in flux calculations across control volume bound-
aries, thereby improving the solution’s fidelity.

• Complex geometry handling: the flexibility of the dual mesh in adapting to
complex geometries ensures accurate flow physics representation throughout the
computational domain.

• Parallel performance: the approach is inherently suitable for parallel comput-
ing, allowing for efficient workload distribution across multiple processors and
reducing computation times for large-scale simulations.

• Solution robustness: the dual mesh contributes to the solution process’s stability
and robustness, especially when addressing complex flow behaviors and boundary
conditions.
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4.3.3. Conservative form of the governing equations

The governing equations for fluid flow, introduced in Section 3.1, are expressed in their
conservative form as follows.

Mass conservation equation

𝜕𝜌

𝜕𝑡
+∇ ⋅ (𝜌u) = 0, (4.10)

where u represents the velocity vector.

Momentum conservation equations: in the x, y and z directions

𝜕(𝜌𝑢)
𝜕𝑡

+∇ ⋅ (𝜌𝑢u) = −𝜕𝑝
𝜕𝑥
+∇ ⋅ 𝜏x,

𝜕(𝜌𝑣)
𝜕𝑡
+∇ ⋅ (𝜌𝑣u) = −𝜕𝑝

𝜕𝑦
+∇ ⋅ 𝜏y,

𝜕(𝜌𝑤)
𝜕𝑡

+∇ ⋅ (𝜌𝑤u) = −𝜕𝑝
𝜕𝑧
+∇ ⋅ 𝜏z,

(4.11)

where 𝜏i represents the viscous stress vector, incorporating the components of the
viscous stress tensor, 𝜏𝑖𝑗, in the 𝑖-direction.

The conservative form emphasizes terms that represent the divergence of a quantity,
making it particularly suited for the finite volume method. This approach ensures
conservation of variables within each control volume and throughout the entire compu-
tational domain. The system consists of four equations and five unknowns: the three
velocity components, pressure, and density. An additional equation, the equation of
state, closes the system. Hence, the system can be solved for the unknown variables,
given appropriate auxiliary conditions, including initial and boundary conditions.

Similarly, the Energy conservation equation can be expresses as follows

𝜕(𝜌𝐸)
𝜕𝑡

+∇ ⋅ (𝜌u𝐸) = −∇ ⋅ (𝑝u) +∇ ⋅ (𝜏 ⋅ u) +∇ ⋅ q, (4.12)

where q and 𝜏 represent the heat flux vector and the Reynolds stress tensor, respec-
tively, expressed in tensor notation.

The generic form of the transport equations, applicable to the governing equa-
tions for a general scalar variable 𝜑, is given by

𝜕(𝜌𝜑)
𝜕𝑡

+∇ ⋅ (𝜌𝜑u) = ∇ ⋅ (Γ∇𝜑) + 𝑆𝜑. (4.13)

Here, 𝜑 represents a general scalar variable, encapsulating properties such as concen-
tration, temperature, or any scalar field within the flow. Notably, by setting 𝜑 equal
to 1, 𝑢, 𝑣, and 𝑤, representing the velocity components in the Cartesian coordinates,
and by selecting appropriate values for the diffusion coefficient Γ, this equation can be
transformed into the continuity and momentum governing equations.
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On the LHD, the first term represents the transient term, indicating the rate of change
of 𝜑 with time, and the second term represents the convective term, describing the rate
of decrease of 𝜑 due to convection. On the RHD, the first term is the diffusive term,
accounting for the rate of increase of 𝜑 due to diffusion, with Γ being the diffusion
coefficient, the second term is the source term, denoting the rate of generation or
destruction of 𝜑.

In FVM, the transport equation for a general scalar variable 𝜑 is integrated over each
control volume within the computational domain, as follows

∫
𝑉

𝜕(𝜌𝜑)
𝜕𝑡

𝑑𝑉 + ∫
𝑉

∇ ⋅ (𝜌𝜑u)𝑑𝑉 = ∫
𝑉

∇ ⋅ (Γ∇𝜑)𝑑𝑉 + ∫
𝑉

𝑆𝜑𝑑𝑉. (4.14)

This process involves converting the volume integrals of the convective and diffusive
terms into surface integrals over the entire bounding surface, 𝑆, of the control volume.
By using the Gauss’s divergence theorem, which allows for a more straightforward
evaluation of these terms, the equation transforms into

∫
𝑉

𝜕(𝜌𝜑)
𝜕𝑡

𝑑𝑉 + ∮
𝑆

𝜌𝜑u ⋅ n𝑑𝑆 − ∮
𝑆

Γ∇𝜑 ⋅ n𝑑𝑆 = ∫
𝑉

𝑆𝜑𝑑𝑉, (4.15)

where n is the outward unit normal vector on the surface 𝑆. In FVM, it is required to
compute fluxes at the surfaces of the control volumes, rather than at the nodes. The
values of 𝜑 on the control volume surfaces need to be estimated by using the values of
𝜑 stored in the nodes.

There exists several numerical integration method to approximate the definite integral
of a function over an interval. The Midpoint Rule can be applied to approximate
surface integrals, particularly when discretizing a surface into small patches. For a
surface divided into small elements 𝑆𝑖, the surface integral of a scalar field 𝜑 might be
approximated as follows

∬
𝑆

𝜑𝑑𝑆 ≈∑
𝑖

𝜑(r∗𝑖 )Δ𝑆𝑖,

where r∗𝑖 is the midpoint of the 𝑖th surface element 𝑆𝑖, and Δ𝑆𝑖 is the area of the 𝑖th
surface element.

4.3.4. Spatial discretization schemes

Discretization schemes play a crucial role in transforming FVM equations into alge-
braic equations amenable to numerical solution. Within this domain, both the upwind
and central differencing schemes emerge as particularly significant for approximating
spatial derivatives. The primary distinction between these schemes lies in their method-
ologies for representing flow direction and diffusion effects, which in turn significantly
influences the accuracy, stability, and fidelity of the resultant solutions.
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Central scheme

In the central differencing method the variable 𝜑 undergoes linear changes between
adjacent nodes. Assuming Cartesian equidistant grids, as illustrated in Fig. 4.9b, the
values of 𝜑 and its spatial derivative, (𝜕𝜑

𝜕𝑥
), at the control volume surface 𝐴𝑒 can be

approximated using linear interpolation as follows

𝜑𝑒 =
𝜑𝑃 + 𝜑𝐸

2 , and (𝜕𝜑
𝜕𝑥

)
𝑒

= 𝜑𝐸 − 𝜑𝑃

𝛿𝑥𝑒

, (4.16)

where 𝜑𝑃 and 𝜑𝐸 denote the values of 𝜑 at the central node and the node located to
the east of the control volume, respectively. This approach accentuates the simplicity
and effectiveness of the central differencing method in delineating the gradient of 𝜑
across the control volume faces. This methodology achieves second-order accuracy by
relying on the symmetric evaluation of neighboring points, highlighting its efficiency in
numerical schemes where high accuracy is imperative.

Artificial Dissipation in TAU. Unlike upwind schemes, which introduce numeri-
cal dissipation to stabilize the solution, central schemes use a centred stencil to ap-
proximate derivatives. They are second-order accurate and don’t inherently introduce
dissipation, making them useful for problems where maintaining solution accuracy is
critical.

While central schemes are less dissipative, they can be prone to non-physical oscilla-
tions near discontinuities (like shock waves) due to their non-dissipative nature. Ad-
ditional dissipation (artificial viscosity) must be introduced selectively to stabilize the
solution without overly smearing out physical features to counteract. The dissipation
has to be computed for each grid point. The approach follows the strategy described
by Mavriplis and Jameson, 1990 to obtain an adequate dissipation scaling for highly
stretched cells.

The matrix dissipation method introduces dissipation in a controlled manner, as pro-
posed by Blazek, 2015. It involves calculating eigenvalues and eigenvectors of the flux
Jacobian matrix, which are related to the wave speeds and modes of the system. The
dissipation is then added based on these eigenvalues, ensuring that it’s aligned with
the characteristic waves of the flow. This way, the dissipation acts more efficiently
and only where necessary, preserving the sharpness of shocks and interfaces. When
applying the matrix dissipation method with central schemes, the basic discretization
is done using a central scheme, and then the matrix-based dissipation is added to sta-
bilize the solution. The amount and direction of dissipation are informed by the local
flow characteristics, as determined by the Jacobian matrix of the system.

Upwind scheme

The upwind scheme modifies the computation of 𝜑 at the control volume surfaces
to explicitly incorporate the flow direction, thus ensuring an accurate depiction of
information propagation from upstream sources. In particular, the value of 𝜑 at the
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eastern face, 𝜑𝑒, is influenced by the flow velocity at this boundary, 𝑢𝑒. The assignment
of 𝜑𝑒 is governed by the following conditions:

𝜑𝑒 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝜑𝑃 , if 𝑢𝑒 > 0 (indicating flow from West to East),
𝜑𝐸, if 𝑢𝑒 < 0 (indicating flow from East to West).

(4.17)

This methodology guarantees that the value of 𝜑 on the eastern surface is exclusively
influenced by the upstream node relative to the flow direction, significantly improving
the simulation fidelity in the presence of directional convection. It offers a more precise
depiction of scalar transport within the computational domain.

Despite its first-order accuracy and straightforwardness, the upwind scheme is char-
acterized by its considerable diffusive nature, often referred to as false diffusion or
numerical viscosity. The extent of false diffusion correlates directly with the grid spac-
ing (𝛿𝑥), which decreases with grid refinement but does not completely disappear.

4.3.5. Time discretization - solution techniques

The conservation equations introduced in Section 4.3.3 can be converted into vector
form to simplify their application in computational methods. The Navier-Stokes equa-
tions for the three-dimensional case can be written in conservative form as follows

𝜕

𝜕𝑡 ∫
𝑉

W𝑑𝑉 = −∮
𝑆

F ⋅ n𝑑𝑆, (4.18)

where

W =

⎛
⎜⎜⎜⎜⎜⎜
⎝

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝜌𝐸

⎞
⎟⎟⎟⎟⎟⎟
⎠

(4.19)

is the vector of conserved quantities. The flux density tensor F is composed of the flux
vectors in the three coordinate directions as follows

F = (Fc
i +Fc

v) ⋅ ex + (Gc
i +Gc

v) ⋅ ey + (Hc
i +Hc

v) ⋅ ez, (4.20)

with 𝑒𝑥, 𝑒𝑦, and 𝑒𝑧 being unit vectors in the coordinate directions. The indices 𝑖 and
𝑣 denote the inviscid and viscous contributions, respectively. The viscous and inviscid
fluxes are given by

Fc
i =

⎛
⎜⎜⎜⎜⎜⎜
⎝

𝜌𝑢
𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌𝑢𝑤

𝑢(𝜌𝐸 + 𝑝)

⎞
⎟⎟⎟⎟⎟⎟
⎠

, Fc
v =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
𝜏𝑥𝑥

𝜏𝑥𝑦

𝜏𝑥𝑧

𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 +𝑤𝜏𝑥𝑧 + 𝑞𝑥

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (4.21)
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Gc
i =

⎛
⎜⎜⎜⎜⎜⎜
⎝

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
𝜌𝑣𝑤

𝑣(𝜌𝐸 + 𝑝)

⎞
⎟⎟⎟⎟⎟⎟
⎠

, Gc
v =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
𝜏𝑥𝑦

𝜏𝑦𝑦

𝜏𝑦𝑧

𝑢𝜏𝑥𝑦 + 𝑣𝜏𝑦𝑦 +𝑤𝜏𝑦𝑧 + 𝑞𝑦

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (4.22)

Hc
i =

⎛
⎜⎜⎜⎜⎜⎜
⎝

𝜌𝑤
𝜌𝑢𝑤
𝜌𝑣𝑤

𝜌𝑤2 + 𝑝
𝑤(𝜌𝐸 + 𝑝)

⎞
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⎠

, Hc
v =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
𝜏𝑥𝑧

𝜏𝑦𝑧

𝜏𝑧𝑧

𝑢𝜏𝑥𝑧 + 𝑣𝜏𝑦𝑧 +𝑤𝜏𝑧𝑧 + 𝑞𝑧

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (4.23)

The pressure is calculated by the equation of state as follows

𝑝 = (𝛾 − 1)𝜌(𝐸 − 𝑢
2 + 𝑣2 +𝑤2

2 ) . (4.24)

The terms 𝜏𝑖𝑗 in Eq. 4.21, 4.22, and 4.23 represent the viscous stress tensor components
while 𝑞𝑖 denotes the heat flux vector. These equations can be transformed into the
averaged equations simply by substituting, 𝜏𝑖𝑗+𝜏𝑅

𝑖𝑗 , for 𝜏𝑖𝑗 and, 𝑞𝑖+𝑞𝑅
𝑖 , for 𝑞𝑖 and taking

the flow variables as averaged quantities as defined in Chapter 3. In this formulation,
all quantities are non-dimensionalized as follows

𝑥 = 𝑥
∗

𝐿∗
, 𝑦 = 𝑦

∗

𝐿∗
, 𝑧 = 𝑧

∗

𝐿∗
,

𝜌 = 𝜌
∗

𝜌∗
∞

, 𝑝 = 𝑝
∗

𝑝∗
∞

, 𝜇 = 𝜇
∗

𝜇∗
∞

, (4.25)

𝑢 = 𝑢∗
}︂

𝑝∗

𝜌∗
, 𝑣 = 𝑣∗

}︂
𝑝∗

𝜌∗
, 𝑤 = 𝑤∗

}︂
𝑝∗

𝜌∗
,

where the superscript ∗ denotes the dimensional variables.

From Eq. 4.18, the temporal change of the conservative variables W is written as

𝜕

𝜕𝑡
W = −∮𝑆 F ⋅ n𝑑𝑆

∫𝑉 𝑑𝑉
. (4.26)

It describes the change in flow conditions within a control volume, determined by the
net flux F through the control volume boundary, normalized by the volume. For a
control volume that is stationary in both time and space and assuming W depending
only on time, Eq. 4.26 simplifies to

𝑑

𝑑𝑡
W = − 1

𝑉
⋅Q𝐹 , (4.27)

where Q𝐹 denotes the total fluxes crossing the boundaries of the control volume.

The temporal variation of the flow quantities at a generic point1 can be generalized
1The notation is simplified to improve clarity. The following considerations are valid for each specific

generic point.
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as
𝑑

𝑑𝑡
W +R = 0. (4.28)

Substituting from Eq. 4.27 yields an expression for the residual R:

R = 1
𝑉
⋅Q𝐹 . (4.29)

Temporal discretization involves segmenting the time continuum into discrete intervals,
a process essential for addressing problems characterized by variables that evolve over
time, such as in dynamic fluid flow scenarios.

Steady state problems

First, the so-called steady-state case, in which a time-independent solution exists, is
considered. From the steady-state condition 𝑑W

𝑑𝑡 = 0, Eq. 4.28 becomes

R = 0. (4.30)

This problem is solved by introducing the corresponding time-dependent problem with
fictitious pseudo-time 𝑡∗ and pursuing its steady-state solution as follows

𝑑

𝑑𝑡∗
W +R = 0. (4.31)

The discretization concerning the fictitious pseudo-time is performed using the low-
storage k-step Runge-Kutta scheme as described by Jameson et al., 1981, and it is
given by

W(0) =W(𝑛)
W(1) =W(0) − 𝛼1Δ𝑡∗R(0)𝑣

⋮ (4.32)
W(𝑎) =W(0) − 𝛼𝑎Δ𝑡∗R(𝑎−1)

𝑣

W(𝑛 + 1) =W(𝑎), (4.33)

with
R𝑣 = 𝑉 ⋅R, (4.34)

where Δ𝑡∗ denotes the pseudo-time step width. In this equation, the residual R equals
the fluxes Q𝐹 over the control volume boundaries (see Eq. 4.26).

Time-accurate computations: dual time-stepping in TAU.

For time-accurate solutions, both global and dual time-stepping schemes are imple-
mented in TAU. The numerical results presented in this dissertation have been achieved
by using the dual time-stepping, which follows the methodology by Jameson et al.,
1981, modifying the Runge-Kutta scheme to counteract instabilities associated with
small physical time-steps. The temporal accuracy of the dual-time discretization can
be first, second, or third order, with higher orders increasing computational demands.
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The dual time-stepping method represents a sophisticated numerical strategy for ef-
ficiently solving unsteady flow problems. By transforming transient simulations into
a series of quasi-steady states, this method significantly enhances the efficiency and
accuracy of CFD analyses. The method is predicated on the distinction between two
types of time advancement: physical time, the actual time scale over which the flow
dynamics evolve; and pseudo time, an artificial time scale introduced to facilitate the
attainment of steady-state solutions within each physical time step.

The workflow of the dual time-stepping method can be summarized as follows.

1. The simulation initiates with predefined flow conditions and sets the physical
time to its initial value.

2. Advancement through physical time steps is undertaken, treating the flow as
transient for each step to compute the flow field at subsequent time levels.

3. Within each physical time step, the flow equations undergo iterative solving in
pseudo time until convergence to a steady state is achieved, thereby representing
the flow field accurately at the current physical time step.

4. Upon reaching convergence in pseudo time, the solution is updated for the next
physical time step, and the iterative process repeats.

The dual time-stepping method offers the following multiple advantages.

• Efficiency: this approach allows for the rapid convergence of iterative solvers,
streamlining the simulation of transient flows.

• Flexibility: its compatibility with different mesh types and flow conditions en-
hances the method’s versatility for various aerodynamic analyses.

• Accuracy: the method ensures precise control over physical time advancement,
crucial for accurately capturing transient flow phenomena.

Mathematically, the dual time-stepping process can be expressed as follows. Denote
(︀0,𝑇 ⌋︀ the time interval and 𝑡0 = 0 < 𝑡1 < . . . < 𝑡𝑁 = 𝑇 a partition of (︀0,𝑇 ⌋︀. The
time-dependent problem is considered as follows

𝑑W
𝑑𝑡
= −R(W), (4.35)

where the notation R(W) indicates that the residual R for a generic dual cell was
computed using the vector of conservative variables W.

In the first step, a Backward Difference Formula (BDF) for discretizing the time deriva-
tive is employed to Eq. 4.35. The TAU-Code provides BDF of first, second, and third-
order accuracy. For example, the second-order accurate BDF reads

3
2Δ𝑡W

𝑛+1 − 4
2Δ𝑡W

𝑛 + 1
2Δ𝑡W

𝑛−1 = −R(W𝑛+1), (4.36)

where W𝑗 denotes the solution at the physical time 𝑡𝑗. Therefore, Eq. 4.36 represents
the advancement in physical time.
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The sequence of (nonlinear) steady-state problems is taken into account. Assuming
that W𝑛, W𝑛−1 have already been computed, W𝑛+1 is calculated. For this purpose,
the equation in pseudo time 𝑡∗ is considered as follows

𝑑W𝑛+1

𝑑𝑡∗
= −R𝐷𝑇 𝑆(W𝑛+1), (4.37)

with the modified residual given by

R𝐷𝑇 𝑆(W𝑛+1) ≡R(W𝑛+1) + 3
2Δ𝑡W

𝑛+1 − 4
2Δ𝑡W

𝑛 + 1
2Δ𝑡W

𝑛−1. (4.38)

This problem can be integrated using a k-stage Runge-Kutta scheme until a steady
state in fictitious pseudo-time has been reached. The steady-state solution of Eq. 4.37
is the solution of Eq. 4.36.
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5
Vortex-Dominated Flow over VFE-2 at
Transonic Speed

This chapter presents the main results obtained in Di Fabbio et al., 2022a, 2023. It
advances the prediction of vortex-dominated flows, enhancing the understanding of
various flow phenomena occurring over delta wings, particularly at transonic condi-
tions.

Simulations of the sharp leading-edge VFE-2 wing are performed at 𝑀𝑎∞ = 0.8, 𝑅𝑒∞ =
2×106, and 𝛼 = 20.5°. The vortex-dominated flow is investigated by comparing IDDES
and URANS outcomes with experimental data provided by the DLR (Konrath et al.,
2006, 2013). The IDDES method, based on the SAneg model, is applied in the scale-
resolving computations, while the SAnegRC is employed to close the RANS equations.
The simulations have been performed employing the DLR-TAU code.

Section 5.1 briefly introduces the VFE-2 test case. Section 5.1.1 details the mesh
characteristics, with a special focus on the requirements for HRL transition and LES
mesh quality. Section 5.1.2 describes the mesh convergence study and Section 5.1.3
provides the description of the numerical approach.

The flow physics is then described and illustrated, structured into the following sub-
topics. The overview of the leading-edge flow with the instantaneous flow features
is discussed in Section 5.2, while the analysis of mean flow features is presented in
Section 5.3. Section 5.3.1 emphasizes the validation of numerical results through com-
parison with experimental data, focusing on mean surface pressure. Location and
intensity of shock waves are also discussed. In Section 5.3.2, the vortex flow pattern
and vortex-shock interaction are investigated using scale-resolving results. Finally,
turbulence-related quantities, such as eddy viscosity, turbulence kinetic energy, and
components of the Reynolds-stress tensor, are presented in Section 5.4.

This chapter serves as a methodological foundation for performing URANS and Hi-Fi
simulations on delta wings. It also facilitates the validation of codes and approaches,
and particularly, it aids in gaining expertise and knowledge. These are subsequently
utilized for analyzing the flow physics of the ADS-NA2-W1 configuration, as detailed
in Chapter 6.
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5.1. Test case description
The VFE-2 wing is elaborated upon in Section 2.1.6, which also discusses experimental
data. The operating conditions used in the CFD analysis align with these experimental
conditions.

5.1.1. Mesh characteristics

Figure 5.1: VFE-2 geometry and mesh (Di
Fabbio et al., 2023)

Fig. 5.1 shows the computational mesh
utilized to investigate the VFE-2 delta
wing. Dimensionless Cartesian coordi-
nates are introduced as 𝜉 = 𝑥⇑𝐿, 𝜂 =
𝑦⇑(𝑥 tan(𝜙)), and 𝜓 = 𝑧⇑(𝑥 tan(𝜙)),
where 𝐿 denotes the chord length in the
symmetry plane.

The mesh’s outer boundary consists of a
spherical farfield boundary located 50𝐿
from the wing. Comprising approxi-
mately 32 million cells, the unstructured
mesh includes up to 30 prism layers along
the walls, with a wall-normal growth fac-
tor of 1.1 and the first cell thickness en-
suring that 𝑦+ < 1. Symmetry to the
plane 𝑦 = 0 is maintained across the mesh.
Cell sizes (Δ) within the computational
domain vary, with the finest cells, approx-
imately 0.002𝐿 in size, located within the
vortex region and near the leading-edge
to resolve the onset of the shear layer.

Figure 5.2: Vortex diameter (indicated by an
arrow) based on the mean vorticity, IDDES re-
sults at 𝜉 = 0.4.

To capture the development of turbulent
scales, mesh refinement closely follows the
vortex region over the wing. The grid res-
olution is demonstrated at 𝜉 = 0.4 by the
number of grid points inside the vortex
diameter 𝑑𝜔𝑥 , computed as 𝑁𝜔 ≈ 20, de-
rived from the mean 𝑥-vorticity distribu-
tion 𝜔𝑥

1. Although cell size slightly in-
creases along the wing span, the ratio of
the vortex diameter to cell size grows due
to vortex expansion. The number of grid
points inside the vortex diameter then in-
creases.

1The filtering operation, denoted by an overbar, is not explicitly detailed to enhance readability.
Unless specified otherwise, variables are to be interpreted as their mean values.
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Computational domain’s quality

The IDDES approach is selected for the scale-resolving simulations, owing to its effec-
tiveness for sharp leading-edge delta wings. In such configurations, turbulence gener-
ation typically begins shortly after leading-edge separation within the separated shear
layer, while still remaining in close proximity to the wall. The IDDES model is de-
signed to transition to URANS mode within the wall layer, while operating in LES
mode in the off-wall region. Mesh refinement at the onset of the turbulent shear layer
emanating from the leading-edge is instrumental in transitioning the IDDES model into
a WMLES mode, as described in Section 3.4.2. For this purpose, Fig. 5.3 depicts the
mean hybrid length scale relative to the RANS length scale, 𝑑⇑𝑑, where 𝑑 is expressed in
Eq. 3.81 and 𝑑 is the distance to the wall. Fig. 5.3 additionally presents the mesh, with
the exception of 𝜉 = 0.95, due to the mesh density complicating the visualization of the
variables under analysis. In the thin regions close to the wall, which are fully modeled
by the RANS mode, a ratio around unity is expected. Furthermore, the shear layer
transition occurs in the LES mode and it enhances the model’s capability to manage
the shift between RANS and LES modes in the region immediately following separa-
tion. This is aimed at mitigating the impacts of the grey-area phenomenon (Peng and
Jirasek, 2016; Probst et al., 2016). Besides, as the vortex core region is captured by
the LES mode, the RC correction is not employed within the HRL framework.

Figure 5.3: Mean hybrid length scale over RANS length scale, and mean 𝐿𝐸𝑆𝐼𝑄𝜈 ,
IDDES results at 𝜉 = 0.2, 0.6, 0.95.

Spatial resolution within the LES region is discussed next. To demonstrate that the
current mesh resolution is capable of resolving a significant portion of the turbulence
spectrum, the LES Index of Resolution Quality (𝐿𝐸𝑆𝐼𝑄𝜈 ) is illustrated in Fig. 5.3. The
𝐿𝐸𝑆𝐼𝑄𝜈 compares turbulent viscosity to laminar viscosity, utilizing the formulation
proposed by Celik et al., 2005. This index is a dimensionless number ranging between
zero and one, calibrated to simulate the ratio of resolved to total turbulent kinetic
energy. An index quality greater than 0.8 is considered indicative of a good LES,
while a value of 0.95 or higher is considered representative of DNS quality (Celik
et al., 2009). Overall, the plots suggest a satisfactory spatial resolution within the
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vortex region. Although slight weaknesses are observed in the downstream portions
of the shear layer, these areas are considered to be positioned too far downstream to
significantly affect the formation of the vortex core or the vortex breakdown.

5.1.2. Mesh convergence study

A study on grid resolution is undertaken
to scrutinize the impact of grid discretiza-
tion and to mitigate its effects. The
specifications of the employed meshes are
given in Table 5.1. The methodology in-
volves methodically reducing the size of
the finest mesh cell by half in successive
steps. To evaluate the impact of mesh
refinement, URANS simulations are exe-
cuted across all four mesh configurations.
In contrast, IDDES analyses are limited
to the two most refined meshes, verifying
the grid resolution’s sufficiency in captur-
ing essential flow dynamics.

Figure 5.4 presents the comparative de-
viation in lift (𝐶𝐿) and pitching mo-
ment (𝐶𝑚𝑦) coefficients against the re-
sults on the finest mesh. The analysis
spans both IDDES and URANS method-
ologies, revealing a consistent and signif-
icant diminution in grid-induced discrep-
ancies. Mesh convergence is particularly
discernible within the RANS analyses.

Table 5.1: VFE-2 computational do-
mains (Di Fabbio et al., 2023).

Acronym Min Size Cells
coarse 0.016 L 10 million

medium 0.008 L 21 million
fine 0.004 L 26 million

extra-fine 0.002 L 32 million

Figure 5.4: Relative deviation bar plot
of the aerodynamic coefficients. "I" de-
notes the comparison between the ID-
DES results on the fine and extra-fine
mesh (Di Fabbio et al., 2022a).

Moreover, an examination of the fine-I data demonstrates negligible variance in aerody-
namic coefficient predictions between the fine and extra-fine meshes under the IDDES
framework, substantiating the achievement of mesh convergence. Additional consider-
ations regarding grid sensitivity are discussed in Section 5.3, focusing on the analysis
of the mean surface pressure coefficient.

5.1.3. Numerical approach
An implicit dual-time stepping approach, utilizing a Backward-Euler/LUSGS implicit
smoother, is employed in the unsteady simulations. To ensure the convergence of the
inner iterations in the IDDES runs, Cauchy convergence criteria for several quantities,
namely, volume-averaged turbulence kinetic energy, maximum Mach number, and spe-
cific aerodynamic coefficients, is applied, with tolerance values set at 1×10−5. The ma-
trix dissipation model is selected for the computation of fluxes using a central scheme.
However, in the HRL approach, artificial dissipation is reduced to prevent excessive
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damping of the resolved turbulent structures. Consequently, a hybrid low-dissipation,
low-dispersion discretization scheme (LD2) is utilized (Probst et al., 2016).

Figure 5.5 illustrates the temporal evolution of the lift coefficient and specifies the
simulated time intervals for various cases. Time is characterized by the Convective
Time Unit (CTU), computed as follows:

𝐶𝑇𝑈 = 𝐿⇑𝑈∞ = 3790𝜇𝑠, (5.1)

where 𝐿 represents the characteristic length and 𝑈∞ denotes the free-stream velocity.

Figure 5.5: Time history of the lift coefficient, instantaneous (on the left) and run-
time averaged (on the right) (Di Fabbio et al., 2023).

For URANS simulations, the time step size (Δ𝑡) is set to 100𝜇𝑠. A period of ten CTUs
is simulated before initiating time-averaging to mitigate the initial transient effects,
and five flow-through times are considered in computing the mean flow field values.

To accurately resolve convective transport and capture flow characteristics, the maxi-
mum permissible time step size for IDDES runs is determined. On the extra-fine mesh,
a time step size of Δ𝑡 = 1𝜇𝑠 satisfactorily resolves the time scales of energy-containing
eddies in the region of interest while maintaining the convective Courant-Friedrichs-
Lewy number, CFL = 𝑈Δ𝑡⇑Δ, below one, as demonstrated in Fig. 5.6 (Spalart, 1997).
To enhance the efficiency of the simulation and save computational resources, a strat-
egy is implemented by augmenting the time step size to Δ𝑡 = 10𝜇𝑠. This adjustment
lead to the CFL number increasing by approximately an order of magnitude.

Figure 5.6: Mean convective CFL number at 𝜉 = 0.2, comparison between the IDDES
results with the time step size Δ𝑡 = 10𝜇𝑠 and Δ𝑡 = 1𝜇𝑠 (Di Fabbio et al., 2022a).
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The IDDES depicted in black is conducted on the extra-fine mesh, starting from a
steady-state condition. Subsequently, the simulation executes five CTUs with a time
step size of Δ𝑡 = 10𝜇𝑠. To calculate the flow variable statistics with an increased time
step size, ten overflows with Δ𝑡 = 10𝜇𝑠 are computed.

As illustrated in green, after the initial five overflows to bypass the transient phase,
five CTUs are executed with a reduced time step size of Δ𝑡 = 1𝜇𝑠 before commencing
time-averaging for the IDDES run with a reduced time step on the extra-fine mesh. For
the computation of mean flow properties, ten overflows with Δ𝑡 = 1𝜇𝑠 are subsequently
included. The effect of time step size is discernible when comparing the black and
green lines in Fig. 5.5. With a coarser temporal resolution, the lift coefficient exhibits
a near-constant behavior over time, contrasting with a noticeable decline observed upon
the reduction of the time step. This demonstrates that enhanced temporal accuracy
significantly improves the fidelity of the numerical results.

Figure 5.5 also presents the evolution of the IDDES run with the fine mesh, depicted
in magenta, which is initialized using URANS results. No variation in the duration of
the initial transient is observed. Notably, the time step sizes are doubled (as indicated
in the legend of Fig. 5.4) because the size of the finest cell is increased twofold relative
to the extra-fine reference mesh, as summarized in Table 5.1.

5.2. Flow overview: instantaneous flow features
As introduced in Section 2.1, over the delta wing, the flow separates at the leading-edge
and subsequently rolls up to form a stable, separation-induced primary vortex. The
flow reattaches to the surface as the primary vortex rolls up, and the span-wise flow
beneath subsequently separates a second time to form a counter-rotating secondary
vortex outboard of the primary one. The direct effect of these vortices is an additional
suction footprint and, consequently, increased lift, which ultimately results in a non-
linear dependence of the lift force on the angle of attack. Understanding and predicting
vortex and shock wave generation and evolution are of paramount importance. The
interaction between vortices and shock waves is a crucial aspect of the flow physics at
transonic conditions and, therefore, is assessed in detail.

Figure 5.7a presents the vortices by illustrating the instantaneous 𝑄-criterion iso-
surfaces, which are colored based on the normalized helicity, 𝐻𝑛. The 𝑄-criterion
is a scalar field derived from the velocity gradient tensor, ∇U, used to identify vortical
structures in fluid flows. It is defined as the positive second invariant of the velocity
gradient tensor, which can be expressed as

𝑄 = 1
2
(⋃︀⋃︀𝑊𝑖𝑗 ⋃︀⋃︀2 − ⋃︀⋃︀𝑆𝑖𝑗 ⋃︀⋃︀2) , (5.2)

where ⋃︀⋃︀𝑊𝑖𝑗 ⋃︀⋃︀2 represents the norm of the vorticity tensor, indicating the local rotation,
and ⋃︀⋃︀𝑆𝑖𝑗 ⋃︀⋃︀2 represents the norm of the rate-of-strain tensor, indicating the deformation
due to shear and elongational strains. Regions where 𝑄 > 0 are considered to be
dominated by rotational motion rather than deformation, signifying the presence of
vortical structures.
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The normalized helicity quantifies the alignment between the velocity field and the vor-
ticity vectors in a flow. Vorticity is defined as the curl of the velocity field, 𝜔 = ∇ × U,
and represents the local spinning motion of the fluid. The normalized helicity is ex-
pressed as follows

𝐻𝑛 =
U ⋅𝜔
⋃︀U⋃︀⋃︀𝜔⋃︀ , (5.3)

where, 𝐻𝑛 measures the cosine of the angle between the velocity and vorticity vectors,
ranging from −1 to 1. A value of 1 indicates that the velocity and vorticity vectors
are perfectly aligned, suggesting a coherent and potentially stable vortex structure. A
value of −1 implies perfect anti-alignment. A value of 0 indicates that the vectors are
orthogonal, showing no direct correlation between the flow’s direction and its local rota-
tion. As depicted in Fig. 5.7a, the helicity’s sign, with positive values depicted in blue
and negative in red, distinguishes the rotational direction, effectively differentiating
between primary and secondary vortices.

Furthermore, the 𝑄-criterion iso-surfaces enable a qualitative evaluation of turbulence
resolution within the LES domains of the IDDES simulations. The vortices exhibit
noticeable turbulent fluctuations, indicating that the resolution level of the simulation
is sufficient for an in-depth analysis of flow physics. The simulation grid has success-
fully resolved a broad spectrum of turbulent structures, facilitating a comprehensive
examination of the flow’s turbulent dynamics.

(a) Instantaneous Q-criterion iso-surface with
flood contour by normalized helicity (left); pres-
sure gradient in 𝑥-direction iso-surface with flood
contour by Mach number (right).

(b) Instantaneous total pressure and primary
vortex stream-traces (left); instantaneous 𝑥-
direction vorticity and secondary vortex stream-
traces (right).

Figure 5.7: IDDES (Δ𝑡 = 1𝜇𝑠) results for the VFE-2 geometry with 𝑀𝑎∞ = 0.8,
𝑅𝑒∞ = 2 × 106, 𝛼 = 20.5° (Di Fabbio et al., 2023).

At a transonic speed of 𝑀𝑎 = 0.8, the aerodynamics become considerably more intricate
compared to subsonic regimes due to the acceleration of flow above the delta wing to
supersonic velocities, resulting in the manifestation of shock waves. The visualization
provided in Figure 5.7a, featuring the iso-surface of the pressure gradient in the 𝑥-
direction, ∇𝑝𝑥, corroborates the existence of two primary shock waves: the sting fairing
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and the terminating shock waves. Cross-flow shock waves are also slightly visible;
however, they are analyzed in detail in the following sections.

The formation of the primary vortex, driven by the separation of the shear layer,
is depicted in Figure 5.7b, which displays the instantaneous total pressure alongside
the primary vortex’s stream-traces. Total pressure is employed here to signify an
energetic metric, offering insights into the vortex’s intensity and location. To elucidate
the distinct influences, streamlines in various colors are utilized. The genesis of the
primary vortex occurs just downstream of the wing apex, with its high-velocity core
exclusively constituted by the flow detaching from the shear layer that separates at the
wing apex, as depicted by the black streamlines. Subsequently, as illustrated by the
green, brown, and purple stream-traces in Figure 5.7b, the primary vortex expands in
diameter, fed continuously by the shear layer extending along the wing. This process
amplifies the core by encircling and infusing it with kinetic energy, thereby ensuring
the vortex’s sustenance and coherence.

Figure 5.7b elucidates the instantaneous 𝑥-vorticity, effectively differentiating between
the primary and secondary vortices through their rotation directions, and the secondary
vortex’s red stream-traces located in the right half of the image. This illustration assists
in examining the formation and disintegration of the secondary vortex, which is not a
direct result of shear layer separation. The stream-traces forming the secondary vortex
do not originate from the leading-edge’s immediate vicinity. Instead, the secondary
vortex emerges as a consequence of the dynamics induced by the primary vortex, with
their formations being interlinked; a well-defined secondary vortex materializes only
when the primary vortex exhibits sufficient strength. Subsequently, the breakdown of
the secondary vortex is observed in the latter portion of the wing, downstream from
the sting tip, a phenomenon that disrupts the shear layer’s ability to fully roll up and
merge into the primary vortex.

5.3. Mean flow features
The mean flow characteristics are scrutinized by prioritizing the validation of numerical
outcomes via comparison with experimental datasets, with a particular emphasis on
surface pressure. Additionally, the location and intensity of shock waves are examined.
Subsequently, the vortex flow pattern and the interaction between vortex and shock
are explored through the analysis of scale-resolving results2.

5.3.1. Result validation and shock-wave locations

The suction footprint on the wing surface is primarily caused by the high tangential
velocity around the inner vortex core. Figure 5.8 displays the mean surface pressure
coefficient, denoted as 𝑐𝑝. The pressure coefficient is a dimensionless parameter used in

2The filtering operation, denoted by a bar, is not explicitly detailed to enhance readability. Unless
specified otherwise, variables are to be interpreted as their mean values.
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aerodynamics to express the pressure variations in a flow field relative to the free-stream
pressure. It is defined as follows

𝑐𝑝 =
𝑝 − 𝑝∞
1
2𝜌∞𝑈

2
∞

, (5.4)

where 𝑝 is the static pressure at the point of interest in the flow field, 𝑝∞ is the free-
stream static pressure, 𝜌∞ is the free-stream density, and 𝑈∞ is the free-stream velocity.
The term 1

2𝜌∞𝑈
2
∞

corresponds to the dynamic pressure of the free-stream.

The critical or sonic pressure coefficient, 𝑐∗𝑝, is defined as the pressure coefficient at
the point on an airfoil where the local flow speed reaches the speed of sound for the
first time, indicating the onset of sonic conditions. Mathematically, it is expressed as
follows

𝑐∗𝑝 = ⌊︀(
𝛾 − 1
𝛾 + 1𝑀𝑎2

∞
+ 2
𝛾 + 1)

𝛾
𝛾−1
− 1}︀ 2

𝛾𝑀𝑎2
∞

, (5.5)

where 𝑀𝑎∞ is the free-stream Mach number (Houghton et al., 2013). For the inves-
tigated test case with a specific heat ratio 𝛾 = 1.4 and a Mach number 𝑀𝑎 = 0.8, it
follows that the sonic pressure coefficient 𝑐∗𝑝 is calculated to be −0.43.

To investigate the prediction of 𝑐𝑝, several slice planes have been extracted, as indicated
in Fig. 5.8a. The distribution of 𝑐𝑝 along the span-wise direction at chord-wise positions
𝜉 = 0.2, 0.4, 0.6, 0.8, 0.95 is plotted in Fig. 5.9, comparing experimental data and
simulation results (URANS, IDDES with Δ𝑡 = 10𝜇𝑠 and Δ𝑡 = 1𝜇𝑠 using the extra-fine
mesh, and IDDES with Δ𝑡 = 2𝜇𝑠 using the fine mesh).

(a) URANS and Experimental Data (b) IDDES with Δ𝑡 = 10𝜇𝑠 and Δ𝑡 = 1𝜇𝑠

Figure 5.8: Mean surface coefficient of pressure, comparison between experimental
and numerical data. The black contour lines indicate the sonic pressure coefficient
𝑐∗𝑝 = −0.43 (Di Fabbio et al., 2022a).

The plots underscore the sensitivity of the results to both spatial and temporal reso-
lution. The 𝑐𝑝 distribution reveals that differences emerge between the IDDES results
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obtained with the two finest meshes, despite Fig. 5.5 showing almost identical lift coef-
ficients. Comparing the green and magenta lines, significant discrepancies are evident
at the front wing for 𝜉 = 0.2, where the formation of the leading-edge vortex begins,
and the IDDES results on the "fine" mesh with Δ𝑡 = 2𝜇𝑠 predict a stronger secondary
vortex. This is reflected at 𝜉 = 0.8 , where the secondary vortex is still present on
the fine mesh. These discrepancies indicate that additional criteria might be necessary
for mesh convergence, as integral aerodynamic coefficients seem insufficient. However,
these differences are substantially mitigated across the aircraft, and the uncertainties
in the IDDES results due to mesh resolution are considered significantly reduced and
acceptable. Consequently, IDDES on the extra-fine mesh is regarded as the reference.
It is worth noting that, in this case, for such complex configurations, achieving and
demonstrating the convergence of the LES approach used in the vortex region would
require an exorbitant computational expense.

Figure 5.9: Mean surface coefficient of pressure at 𝜉 = 0.2, 0.4, 0.6, 0.8, 0.95 and at
symmetry plane 𝜂 = 0 (lower right), comparison between experimental, URANS and
IDDES data (Di Fabbio et al., 2022a).

Figure 5.9 demonstrates a satisfactory and suitable agreement between the IDDES
results (Δ𝑡 = 1𝜇𝑠) and experimental data. The IDDES results yield the closest match
to the experimental observations across all numerical outcomes, particularly on the
rear side of the wing. The IDDES outcomes significantly enhance the prediction of the
suction footprint caused by the vortices, although some discrepancies present in the
front part of the wing. The fine resolution proves especially advantageous in the apex
region for mitigating the grey-area issue, which is further discussed in subsection 5.4.
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The secondary and tertiary vortices, denoted by Roman numerals II and III, manifest
at the peaks of 𝑐𝑝 at 𝜂 ≈ 0.7 and 𝜂 ≈ 0.85, respectively, measured from the chord-
wise location 𝜉 = 0.2. The tertiary vortex then vanishes in the IDDES results with
Δ𝑡 = 1𝜇𝑠 at 𝜉 = 0.4, perfectly matching the experimental data, whereas it erroneously
persists in the URANS outcomes. The experimental data suggests the overall absence
of a tertiary vortex but, considering the data resolution, this phenomenon cannot be
entirely ruled out. The secondary vortex peak is weak at 𝜉 = 0.8 in the experimental
data and disappears at 𝜉 = 0.95, indicating a disintegration between these two locations.
Figure 5.9 shows that in the IDDES results with Δ𝑡 = 1𝜇𝑠, it bursts further upstream
(𝜉 < 0.8), as also discussed in Section 5.2. It should be emphasized that increasing the
time step size does not significantly impact the coefficient of pressure associated with
the primary vortex. In contrast, a larger time step (Δ𝑡 = 10𝜇𝑠) results in inaccurate
predictions of the secondary vortex.

The numerical outcomes accurately capture the trend of the 𝑐𝑝 curve at 𝜉 = 0.95, with
the notable exception of the primary vortex core region. The experiment shows a decay,
whereas the simulation still predicts a strong peak of 𝑐𝑝 caused by the vortex. The
weaker vortex in the experimental data could indicate a tendency to break down near
the trailing-edge. It must be acknowledged that the possibility of a measurement error
in the unique sample demonstrating this phenomenon cannot be excluded. Moreover,
as discussed in Section 5.3.2, close to the trailing-edge, the shear layer does not roll up
to form a stable leading-edge vortex over the wing, and the suction footprint abruptly
drops.

The investigation of the supersonic area over the wing and the consequent presence of
shock waves are observed in Fig. 5.8, where the sonic pressure coefficient 𝑐∗𝑝 = −0.43 is
indicated by black contour lines. The IDDES approach best replicates the experimental
results in terms of the predicted supersonic area. In the vicinity ahead of the secondary
vortex, a cross-flow shock wave is observed. Figure 5.8 illustrates that the outboard-
directed flow beneath the primary vortex, in close proximity to the surface, reaches
supersonic speeds, thereby inducing a shock wave. This observation is corroborated by
the analysis presented in Section 5.3.2. Additionally, a shock wave typical for transonic
free-stream conditions is captured close to the wing apex, where critical flow conditions
are reached. Finally, the contour lines of the sonic pressure coefficient indicate the
presence of shock waves in proximity to the sting fairing: a first one located at about
𝜉 = 0.55, and a second one closer to the trailing-edge downstream of 𝜉 = 0.9. These shock
waves are shown and enumerated in Fig. 5.7a. Furthermore, Fig. 5.9 displays the 𝑐𝑝

distribution at the symmetry plane 𝜂 = 0 to quantify the intensity of the aforementioned
shock waves. Although the simulation results predict a higher pressure peak close to
the wing apex (𝜉 = 0) and to the sting tip (𝜉 ≈ 0.62), the pressure trend and the position
of the shock waves above the wing are well captured by the numerical data.

5.3.2. Vortex pattern analysis
A detailed analysis of the IDDES results with Δ𝑡 = 1𝜇𝑠 is performed. It is essen-
tial to understand the vortex pattern itself and how it is modified by the interaction
between shock waves and vortices. For this purpose, Fig. 5.10 presents the field of
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mean 𝑥-direction vorticity, 𝜔𝑥, at 𝜉 = 0.5, 0.6, 0.7, 0.75, from both experimental and
IDDES outcomes. PIV data are collected only at these locations, as also illustrated
in Fig. 5.8b (Konrath et al., 2013). Subsequently, Fig. 5.11 displays the mean density
gradient magnitude ⋃︀⋃︀∇𝜌⋃︀⋃︀, the normalized mean 𝑥-direction velocity 𝑢⇑𝑈∞, and the
normalized mean in-plane tangential velocity 𝑢𝑡⇑𝑈∞ distribution, where 𝑢𝑡 =

⌋︂
𝑣2 +𝑤2.

Furthermore, Fig. 5.12 illustrates the primary vortex core line extracted by considering
the local maximum mean 𝑥-velocity.

Figure 5.10: Mean 𝑥-direction vorticity distribution at 𝜉 = 0.5, 0.6, 0.7, 0.75, com-
parison between experimental data (top) and IDDES outcomes (bottom). The black
contour lines in the experimental data are related to the divergence of the in-plane
velocity vector (Di Fabbio et al., 2022a).

Vortical structures arise from the concentration of low-energy components initially
present within the boundary layer, rendering the vortex a zone of rotational flow char-
acterized by stagnation conditions, particularly the pressure, that are inferior to those
in the surrounding flow field. Consequently, the vortex can be conceptualized as an
energy sink or an entropy peak, rendering it particularly susceptible to perturbations,
such as shock waves (Délery, 1994). An unburst vortex exhibits a coherent structure
marked by elevated axial and rotational velocities. As demonstrated in Fig. 5.10, the
IDDES outcomes precisely capture both the primary and secondary vortices. Between
𝜉 = 0.6 and 𝜉 = 0.7, a reduction in 𝑥-direction vorticity is observed, attributable to
the vortex not expanding uniformly along the stream-wise direction with an increase
in the 𝜂-coordinate. According to the self-induction breakdown theory (Srigrarom and
Kurosaka, 2000), the axial vorticity within the vortex induces an azimuthal velocity,
subsequently causing the vorticity vector to tilt toward the azimuthal direction. The
resultant gradient in azimuthal vorticity, due to enhanced circulation, prompts radial
expansion of the leading-edge vortex. This radial expansion is accompanied by a sign
reversal in azimuthal vorticity downstream of the vorticity gradient, where the rotation
is slower compared to the upstream region. These processes culminate at a juncture
where vortex filaments inwardly turn, leading to a sign reversal in axial vorticity. This
phenomenon is more accurately illustrated in Fig. 5.7b, which displays the instanta-
neous 𝑥-vorticity.
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Figure 5.11: Mean density gradient magnitude, mean normalized 𝑥-direction velocity,
and mean normalized in-plane tangential velocity distribution, IDDES results at 𝜉 =
0.5, 0.6, 0.7, 0.8, 0.9 (Di Fabbio et al., 2023).

Figure 5.10 delineates regions exhibiting negative divergence of the in-plane velocity
vectors, as inferred from experimental observations, providing insights into the location
and morphology of the separation shock, the so-called cross-flow shock discussed in Sec-
tion 2.1.5. This shock is accurately captured from the IDDES approach, as evidenced
by the altered distribution of 𝑢𝑡, visible through the iso-contour lines in Fig. 5.11. Ad-
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ditionally, the mean density gradient magnitude further elucidates this occurrence. A
complex shock system is then situated beneath the leading-edge vortex. The separation
shock, primarily induced by the flow acceleration in this region, substantially modifies
the local flow topology. The interaction between this shock and the boundary layer on
the wing’s upper surface precipitates flow separation, thereby fostering the formation
of the secondary vortex, as illustrated in Fig. 5.11 at 𝜉 = 0.6. Besides, at transonic
conditions, the leading-edge vortex assumes a kidney shape, with cross-flow shocks
manifesting around the leading-edge vortex and atop the shear layer. These shocks
notably influence the velocity profile and they are purportedly a consequence of the
curved flow trajectories, leading to accelerations that reach thermophysical limits (Riou
et al., 2010). It should be observed that the vortex shape at 𝜉 = 0.9 is circular, akin
to the subsonic case (analyzed in Section 2.1.1), suggesting a substantial reduction in
Mach number.

Post-interaction with the shock wave in proximity of the sting tip (𝜉 = 0.62), the vor-
tex exhibits increased vulnerability and a propensity towards breakdown. The shock
interacts with the vortex core, reducing 𝑥-velocity (as seen in Fig. 5.12b at 𝜉 = 0.62),
and consequently diminishing the suction footprint (see Fig. 5.9 at 𝜉 = 0.8). A sim-
ilar trend in 𝑢𝑚𝑎𝑥 is observed near other shock-vortex interactions (approximately at
𝜉 = 0.2 and 𝜉 = 0.35). The shock wave’s width is comparable to the local mean free
path of fluid particles, allowing the shock to act as a sharp discontinuity in typical
aerodynamic flows. Consequently, the Mach number and normal velocity experience
an abrupt reduction across the shock. The gradual nature of this drop in the plotted
mean variables indicate slight temporal fluctuations in shock location on the wing.
Additionally, the in-plane (tangential) velocity, ideally parallel to the shock surface,
remains largely unaffected by the shock wave, as demonstrated in Fig. 5.11. Under
the current flow conditions, the shock wave fails to precipitate an immediate vortex
breakdown. The shock intensity escalates with an increase in the angle of attack, given
its direct dependency on the incoming Mach number. Therefore, a rise in the angle
of attack could provoke vortex breakdown. In cases where the shock wave does not
induce vortex breakdown following shock interaction, the leading-edge vortex demon-
strates a propensity to restore stability and overcome the disturbance. This resilience
is attributed to the continuous sustenance of the main vortex along the wing by the
shear layer originating from the leading-edge, as depicted in Fig. 5.7b. Consequently,
the 𝑥-velocity within the vortex core begins to increase once more, a phenomenon
observable in Figs. 5.11 and 5.12b.

Moreover, Fig. 5.11 reveals critical phenomena occurring at the rear side of the wing.
As discussed in Section 5.3.1, the secondary vortex undergoes breakdown within the
range of 0.7 < 𝜉 < 0.8 and becomes indiscernible for 𝜉 > 0.8. Consequently, in this
region, the primary vortex, no longer supported by the shear layer, becomes increasingly
vulnerable. This behavior is corroborated by the analyses of plots at 𝜉 = 0.7 and
𝜉 = 0.8. At 𝜉 = 0.7, the separation shock wave is still present beneath the primary
vortex; the vortex sheet interacts with and feeds the primary vortex, and the secondary
vortex is well-formed and coherent. In contrast, at 𝜉 = 0.8, the stream-wise boundary
layer separation is identified, replacing the separation shock; the secondary vortex
disappears, and there is no interaction between the primary vortex and the vortex

106



5.4 Turbulence-related variables

sheet. The stream-wise boundary layer separation identified at 𝜉 > 0.8 may thus act as
a precursor to vortex breakdown. Indeed, the disintegration of the secondary vortex
initiates chaotic motions within the shear layer, precluding its coiling and thereby
affecting the sustenance and stability of the primary vortex, as observed at 𝜉 = 0.9.

This observation, coupled with the analyses presented in Section 5.2, substantiates
the hypothesis regarding the mechanism responsible for the primary vortex breakdown
observed at increased angles of attack at transonic conditions. As the flow over the wing
separates at the leading-edge and rolls up, it forms a stable, separation-induced primary
vortex. Typically, the flow reattaches when the primary vortex reaches the wing surface.
Under specific conditions, the span-wise flow beneath the primary vortex separates
again, generating a counter-rotating secondary vortex located outward of the primary
vortex. The separation shock leads to a recirculation zone and fosters the formation of
the secondary vortex. The secondary vortex’s existence facilitates the incorporation of
the shear layer into the primary vortex. However, when the shock wave, induced by the
sting tip, interacts with the primary vortex, it alters the flow dynamics, rendering the
secondary vortex unsustainable. The phenomenon triggers a sudden decrease in axial
velocity and results in the damping of the separation shock, which ceases to interact
with the boundary layer, thereby leading to the disintegration of the secondary vortex.
The fluid, previously part of the secondary vortex, transitions into turbulent motion
on smaller scales, preventing the shear layer from coalescing into the primary vortex.
Instead, it feeds into the turbulent flow, diminishing the primary vortex’s kinetic energy
source and increasing its susceptibility. This sequence is considered the beginning of
the primary vortex breakdown, which becomes fully apparent at slightly higher angles
of attack, as demonstrated by experimental findings (Konrath et al., 2006, 2013).

(a) Vortex core location - 𝑥𝑦 plane (b) Normalized maximum mean 𝑥-velocity.

Figure 5.12: Primary vortex core line extracted from the IDDES outcomes (Di Fabbio
et al., 2023).

5.4. Turbulence-related variables
Figure 5.13 depicts the contours of the turbulence ratio 𝑅𝑡 = 𝜇𝑡⇑𝜇, where 𝜇 represents
the molecular dynamic viscosity. The modeled turbulent eddy viscosity, 𝜇𝑡, is com-
pared between URANS and IDDES methodologies. It is observed that the URANS
model tends to predict significantly elevated levels of turbulent eddy viscosity within
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the vortex core. The areas exhibiting high values of 𝜇𝑡 in the RANS model are in-
dicative of vortex motions characterized by intense turbulence energy production, a
result of pronounced flow rotation and deformation. As demonstrated in Fig. 5.13, the
RC-correction mechanism mitigates the overprediction of eddy viscosity in the frontal
section of the wing. Nevertheless, this correction fails to sufficiently mitigate the exces-
sive generation of turbulent viscosity in the rear region of the vortex, which is almost
an order of magnitude greater than the corresponding values observed in the HRL
outcomes. The IDDES method, by using SGS eddy viscosity in regions away from
the wall, highlights a significantly reduced 𝜇𝑡 compared to its RANS equivalent. This
reduction in modeled 𝜇𝑡 within the LES regime is attributed to the local fine grid res-
olution that LES necessitates. Conversely, areas displaying elevated 𝜇𝑡 values within
the LES framework signal strong local flow rotation or deformation and/or a relatively
coarse grid resolution. Such conditions typically lead to enhanced energy dissipation
of the resolved large-scale turbulence.

Figure 5.13: Turbulent viscosity ratio, com-
parison between URANS and IDDES results.

Figure 5.14a illustrates the resolved tur-
bulence kinetic energy normalized by the
square of the free-stream velocity, 𝐾 =
𝑘𝑡⇑𝑈2

∞
. The term 𝑘𝑡 could include both

the modeled and resolved turbulence ki-
netic energy. However, since the SA
model is employed, the modeled compo-
nent is approximated to zero. Statistics
from the resolved fluctuations are uti-
lized to compute the resolved turbulent
kinetic energy. It is important to high-
light that the variable 𝑘, used in the
𝑘𝜔SST model, refers to the turbulent ki-
netic energy as modeled by the turbulence
model approach. The turbulence primar-
ily influences the region surrounding the
primary vortex core and the vortex sheet.
The initial slice plane suggests, given the
challenges associated with the grey-area issue, that 𝐾 is likely underestimated during
the early stages of vortical flow development, indicating a delayed emergence of re-
solved turbulence. This delay, known as the grey-area issue, is inherent to the IDDES
modeling approach and impacts the downstream evolution of the turbulent processes,
including the onset of vortex breakdown. The problem arises as the vortex formation
initially occurs in near-wall regions, predominantly modeled by RANS mode. The tran-
sition from RANS to LES mode is then considered as a primary cause for the observed
discrepancies in the 𝑐𝑝 results at the wing’s front, leading to a less accurate resolved
vortex motion and subsequently a postponed vortex breakdown. Towards the wing’s
rear, the resolved turbulence kinetic energy captures the separated shear layer and
turbulent transport downstream close to the leading-edge, while the separation shock
modifies the 𝐾 distribution beneath the primary vortex. It is important to observe the
behavior of the primary vortex: in the front part, it remains stable with a low value
of 𝐾, while in the rear part, particularly after interaction with the sting fairing shock,
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it becomes more unstable. This instability and unsteadiness are visibly manifested
through the increased magnitude of the turbulent kinetic energy.

Figure 5.14 elucidates the components of the normalized specific Reynolds stress tensor,
𝑅𝑖𝑗, illustrating the intensity of turbulent fluctuations across three dimensions and their
covariance. The components of the Reynolds-stress tensor are normalized by the free-
stream velocity and the local mean density thus equating their magnitude with that
of 𝐾 and emphasizing turbulent fluctuations independent of their energy transport
contributions. To ascertain the resolved Reynolds stresses statistics from the resolved
fluctuations are computed.

(a) Normalized turbulence kinetic energy, 𝐾. (b) Normalized Reynolds stresses, 𝑅11 and 𝑅22.

(c) Normalized Reynolds stresses, 𝑅12 and 𝑅33. (d) Normalized Reynolds stresses, 𝑅13 and 𝑅23.

Figure 5.14: Resolved turbulence-related quantities along the wing from the IDDES
results (note the different scale in the legend boxes).

Fig. 5.14b illustrates 𝑅11 and 𝑅22, with 𝑅11 depicting the turbulent dynamics of the
transported turbulent shear layer, intensifying post-secondary vortex breakdown and
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subsequently dispersing downstream without enriching the primary vortex. The anal-
ysis also highlights the delay in turbulence generation associated with the grey-area
issue, as well as the heightened unsteadiness of the primary vortex subsequent to its
interaction with the sting fairing shock. 𝑅22 signals fluctuations originating from the
leading-edge, contributing significantly to the vortex core’s turbulence kinetic energy.
The vortex sheet is distinctly visible, along with the separation shock wave situated
beneath the primary vortex.

Fig. 5.14c presents the covariance 𝑅12 and the normal component 𝑅33, with 𝑅12 serving
to identify the core of primary and secondary vortices via positive values (negative on
the opposing wing side) and delineating the primary vortex boundary through peak
values. A potential behavior of this component, immediately upstream of the vortex
breakdown, may be discernible in the last slice plane, where positive and negative
values mix in proximity to the primary vortex. This trend becomes more pronounced
as it progresses downstream over the wing and is not evident in the forward section.
The 𝑧-directional turbulence fluctuations are evident from 𝑅33, indicating that elements
transported downstream across the wing do not contribute to primary vortex formation
but diverge from the wing.

Lastly, Fig. 5.14d shows covariances 𝑅13 and 𝑅23, with 𝑅13 elucidating the shear layer’s
location, thickness, and vortex coherence, which diminishes towards the the rear wing.
𝑅23, the strongest covariance component, predominantly occurs within the vortex sheet,
highlighting the complex separation and roll-up processes, and is positively centered
within the core (negatively on the opposite wing side), albeit less localized than 𝑅12.
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6
Investigation of Transonic Aerodynamics on
a Triple-Delta Wing in Side-Slip Conditions

This chapter presents the main results obtained from the studies by Di Fabbio et al.,
2022b,d. It aims to contribute to the field of HRL, seeking to understand their ap-
plicability to simulations of complex delta wing configurations under transonic flow
conditions. For this purpose, the vortex-dominated flow around the triple-delta wing
ADS-NA2-W1 aircraft is investigated by comparing URANS with Hi-Fi numerical re-
sults and experimental data provided by ADS (Hövelmann et al., 2020). The SAnegRC
and 𝑘𝜔SST model are employed to close the RANS equations, while in the scale-
resolving computations, the SAneg-based IDDES and the 𝑘𝜔-based SAS approaches
are applied. The DLR-TAU code is used to perform the simulations.

Section 6.1 offers a concise introduction to the ADS-NA2-W1 test case. Section 6.1.1
elaborates on the mesh resolution, emphasizing the criteria for the transition between
RANS and LES and the quality of the LES mesh. Section 6.1.2 discusses the mesh
convergence study, while Section 6.1.3 delineates the numerical approach employed.

The transonic regime characterized by a Mach number of 0.85 and a Reynolds number
of 12.53 × 106 is selected. The free-stream conditions are representative of highly agile
delta-wing aircraft, and thus relevant to aerodynamic design topics such as maneuver-
ability, stability, and control. Various URANS simulations are conducted at a constant
side-slip angle of 𝛽 = 5°, focusing on the asymmetry of the turbulent flow and varying
the angle of attack within the range 12° < 𝛼 < 28°. Scale-resolving simulations are
performed exclusively for 𝛼 = 20°, 24°, 28° due to the high computational costs.

The vortex development is analyzed in Section 6.2. The three angles of attack are
categorized into distinct flow regimes and a detailed examination of the flow physics
is provided. Various flow field variables are plotted to facilitate a comparison among
the different datasets available. The flow physics is elucidated, with the analysis of
the unsteady (instantaneous) and the mean flow features. It is important to note
that the instantaneous variable capture a snapshot in time and do not account for
the instability inherent to delta wing flows. The goal is to significantly advance the
prediction of flow around multiple-delta wings, thereby enhancing the understanding
of various flow physics phenomena that occur over the aircraft.
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6.1 Computational domain and numerical approach

In Section 6.3, the numerical and experimental data are compared, focusing on the
integral force and moment coefficients. Specifically, the curves for the lift, rolling,
and pitching moment coefficients are presented. Furthermore, based on the distinctive
behavior of the aerodynamic coefficients, several conclusions are drawn, and four dif-
ferent flow regimes are identified. The analyses confirm that, among the simulations
presented, SAnegRC-based URANS simulations are the least accurate for modeling
vortical flow over delta wings. This reinforces the need to improve the SA turbulence
model’s predictive accuracy using the RANS method, aiming for broader application
in both academic and industry settings.

6.1. Computational domain and numerical approach

Figure 6.1 shows the ADS-NA2-W1 geometry, a 1:30-scaled version of a generic combat
aircraft. A triple-delta wing characterizes this configuration, which is introduced in
Section 2.1.7. The following labeling is used: leeward wing (𝑦 > 0) and windward wing
(𝑦 < 0). For this configuration, the dimensionless Cartesian coordinates are introduced
as follows 𝜉 = 𝑥⇑𝐿, 𝜂 = 𝑦⇑(𝑏⇑2), 𝜓 = 𝑧⇑(𝑏⇑2).

(a) Slice plane 𝜂 = 0 (b) Slice plane 𝜉 = 0.3

Figure 6.1: ADS-NA2-W1 geometry and mesh (Di Fabbio et al., 2024a).

The unstructured mesh for investigating the ADS-NA2-W1 geometry comprises ap-
proximately 40 million cells. It is constructed with 35 prism layers close to the aircraft,
with the first cell layer thickness is set such that 𝑦+ ≈ 1, and tetrahedral volumes in all
other areas. The mesh is symmetric to the plane 𝑦 = 0. The domain’s size is 50 times
the characteristic length 𝐿, the aircraft’s characteristic length in the symmetry plane.
The computational domain is discretized using an unstructured mesh with varying cell
sizes. The mesh is most refined near the leading-edge, where the inboard and outboard
vortex formation begins. The finest cells are approximately 0.001 times the charac-
teristic length, Δ ≈ 0.001𝐿. This cell refinement tracks the vortices to capture strong
gradients and the resolved turbulent fluctuations in the scale-resolving simulations.
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Figure 6.2: Vortex diameter (indicated by an
arrow) based on the mean vorticity, IDDES re-
sults at chord-wise location 𝜉 = 0.55.

To provide insights into the grid resolu-
tion, the number of grid points inside the
vortex diameter is analyzed at chord-wise
location 𝜉 = 0.55. The vortex diameter is
computed from the vorticity distribution
𝜔𝑥, as presented in Chapter 5. Figure 6.2
shows the qualitative vortex measures of
the diameter, indicated by an arrow, and
the computational domain at chord-wise
location 𝜉 = 0.55. The number of grid
points inside the vortex diameter is equal
to 𝑁𝜔𝑥 ≈ 25.

6.1.1. Analysis of the mesh resolution

To enhance the understanding of the grid resolution, an analysis of essential parameters
is conducted. This analysis is performed in a manner similar to that described in
Chapter 5 for the VFE-2 delta wing. These considerations are based on the results
obtained using the IDDES model, which necessitates the highest level of spatial and
temporal accuracy. Furthermore, they are focused on the windward side of the wing,
which exhibits more challenging flow conditions.

To demonstrate that the current mesh resolution is adequate for resolving a major
part of the turbulence spectrum, the LES Index of Resolution Quality is illustrated in
Fig. 6.3. The 𝐿𝐸𝑆𝐼𝑄𝜈 parameter is introduced in Chapter 5 and the plots indicate that
the spatial resolution within the vortex region is adequate, exhibiting still acceptable
values downstream of the vortex breakdown. Besides, the 𝐿𝐸𝑆𝐼𝑄𝜈 ≈ 0.7 within the
vortex sheet region at 𝜉 = 0.55 indicate potential studies for refinement studies in future
work. Additionally, the mean cell size over the hybrid length scale, Δ⇑𝑑, depicted in
Fig. 6.3, maintains a value close to unity in the vortex core, indicating the mesh’s
capability to effectively capture and resolve turbulent flow structures. A potential
for mesh refinement is suggested where the ratio exceeds unity near the wing apex
and fuselage. The regions subject to these refinements are partially incorporated into
RANS mode and are not expected to significantly impact the accuracy of the simulation
results. Nevertheless, a mesh refinement could enhance the transition between RANS
and LES modes, thereby mitigating the grey-area issue.

Finally, Fig. 6.3 presents the mean ratio of the hybrid length scale to the RANS length
scale, denoted as 𝑑⇑𝑑. It elucidates the transition in the IDDES approach from RANS
to LES modes. Near-wall regions, governed entirely by the RANS mode, show a ratio
approaching unity. Conversely, the development of the vortex occurs within the LES
domain. The transition between the two modes highlights the grey-area issue, as
the vortex formation initially occurs in near-wall layers modeled by the RANS mode.
The challenges associated with the grey-area, its impact on the results, and potential
mitigation strategies have been extensively analyzed in the literature (Peng and Jirasek,
2016).
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Figure 6.3: Mean 𝐿𝐸𝑆𝐼𝑄𝜈 , mean cell size over hybrid length scale, and mean hybrid
over RANS length scale, IDDES results at 𝜉 = 0.35, 0.55, 0.75 (Di Fabbio et al., 2024a).

Considering the computational demands and challenges associated with conducting
a mesh convergence study for the HRL approach, and building upon the previous
analysis performed on the VFE-2, the mesh configuration is deemed appropriate for a
LES within the vortex region.

6.1.2. Mesh convergence study
Three additional grid levels are considered for the SAnegRC-based URANS simulations
to analyze grid effects. This approach balances computational feasibility with the
need for meaningful resolution analysis. The lift and pitching moment coefficients are
compared. Table 6.1 summarizes the main mesh characteristics and the values of the
aerodynamic coefficients.

Table 6.1: Meshes details and aerodynamic coefficients (Di Fabbio et al., 2022d).

Mesh Acronym Finest Cell Size Tot. Points 𝐶𝐿 𝐶𝑚𝑦

3M 0.004 L 3 million 1.122 0.0025
13M 0.002 L 13 million 1.161 -0.015
35M 0.001 L 35 million 1.149 -0.013

40M (reference) 0.001 L 40 million 1.146 -0.011
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Figure 6.4: Absolute deviation bar plots (Di
Fabbio et al., 2022d).

Figure 6.4 shows the absolute deviation of
the aerodynamic coefficients with respect
to the 40M mesh for which results are pre-
sented. Even if the 35M mesh is already
adequate to perform URANS, it is fur-
ther refined to build the 40M mesh that is
used to perform the simulations for both
approaches, in order to mitigate any in-
fluence of the mesh between URANS and
scale-resolving simulation outcomes.

6.1.3. Numerical setup and solution techniques

Drawing on the experience gained from the VFE-2 investigation, an implicit dual-time
stepping approach employing a Backward-Euler/LUSGS implicit smoother is selected.
The flux computation is performed with a central scheme. To stabilize the URANS
runs, an artificial dissipation for the central scheme is added with the matrix dissipation
method. However, in scale-resolving simulations, IDDES and SAS, the artificial dissi-
pation is reduced to prevent excessive damping of the resolved turbulent structures. A
(hybrid) low-dissipation low-dispersion discretization scheme (HLD2) and a vorticity-
sensitive sub-grid filter scale, which enhances the development of turbulent structures
on anisotropic meshes, is used for the IDDES runs. A low-dissipation discretization
scheme (LD) is used in the SAS runs (Probst and Reuß, 2016).

In unsteady simulations, it is crucial to account for the time a fluid element takes to
traverse the aircraft, which determines the requisite physical or computational time
for a reliable solution. The CTU is computed as 𝐿⇑𝑈∞ = 2000𝜇𝑠, where 𝐿 denotes the
characteristic length, and 𝑈∞ the free-stream velocity.

For URANS simulations, a time step size of 100𝜇𝑠 is selected. To mitigate initial
transients, ten CTUs are calculated preceding five flow-through times of time-averaging
until reaching statistical convergence of the mean flow properties. In Hi-Fi simulations,
the maximum allowed time step size is determined to resolve convective transport and
accurately capture flow characteristics. The chosen time step size, Δ𝑡 = 1𝜇𝑠, adequately
resolves the time scales of the energy-containing eddies in the flow of interest, ensuring
the convective CFL number remains below unity in the focus region (Spalart, 1997).
The simulations are initialized with the URANS results to reduce the initial transient.
Fifteen CTUs are computed to reach a statistically steady flow. Subsequently, another
fifteen overflows are considered to calculate statistics of the flow properties.

The CFL number is depicted in Fig. 6.5. It slightly exceeds unity near the wing apex,
where the highest velocities occur. Consequently, there is a rationale for further re-
ducing the time step size in this region. However, to balance the accuracy of the
simulations with computational efficiency, the current time step value is deemed suffi-
cient, particularly considering the temporal and sensitivity studies performed for the
VFE-2 delta wing in Chapter 5. Furthermore, the CFL number decreases significantly
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downstream over the aircraft due to a reduction in axial velocity, suggesting the po-
tential for an increased time step size in these regions. For future studies, a strategy
combining two different time step sizes can be devised to accelerate scale-resolving
simulations without compromising accuracy.

Figure 6.5: Mean convective CFL number, IDDES results at 𝜉 = 0.35, 0.55, 0.75.

6.2. Vortex development: flow physics analysis

As introduced in Section 2.1 and further detailed in Chapter 5 regarding the VFE-2
delta wing, the generated vortex sheet of low aspect ratio delta wings separates at the
swept leading-edge, roll-up to form a coherent vortex and induces a local low-pressure
region on the suction side, contributing to the overall lift. The phenomenon known as
vortex lift reaches a limiting AoA at which the vortex breaks down, characterized by an
abrupt change in flow topology where the flow decelerates and diverges. This section
presents the vortex development by varying the angle of attack. In particular, a relation
to the discussion on vortex development can be identified, as detailed in Section 2.1.2
for the VFE-2 delta wing. The three angles of attack analyzed are categorized into
distinct flow regimes (discussed in Section 6.3) and a detailed examination of the flow
physics is provided.

The flow pattern of the ADS-NA2-W1 test case is further complicated by the presence
of vortex merging, caused by multiple sweep angles. The side-slip angle of 𝛽 = 5°
introduces an asymmetry in the flow, generating two distinct flow conditions on the
leeward and windward wings. Moreover, the transonic condition creates a supersonic
area over the wing, leading to various shock waves that interact with the vortices and
trigger the vortex breakdown. To elucidate these phenomena, simulation results at
𝛼 = 20°, 24°, and 28° are analyzed with comparisons made between URANS, Hi-Fi
results, and experimental data (where available).

6.2.1. Vortex breakdown on the windward wing: 𝛼 = 20°

The analysis of vortex development commences with the second flow regime, as high-
lighted in Section 6.3. Specifically, numerical results for 𝛼 = 20° obtained from employ-
ing the SAnegRC-based URANS and SAneg-based IDDES approaches are presented.
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Instantaneous flow features

Over the aircraft, the flow undergoes primary separation at the leading-edge and sub-
sequently rolls up to form a stable, separation-induced leading-edge vortex. As shown
in Figs. 6.6 and 6.7, two well-distinguished vortices are present on the leeward wing,
while two less distinguished (more merged) vortices are observed on the windward
wing. The two vortices (outboard and inboard) are generated corresponding to the
increasing sweep angles on the first and third leading-edge sections. The primary vor-
tex induces reattached flow over the wing, and the span-wise flow under this primary
vortex separates a second time to form a counter-rotating secondary vortex outboard
of the primary one.

Figure 6.6: 𝑄-criterion instantaneous iso-surface with flood contour by instantaneous
normalized helicity, comparison between SAnegRC-based URANS (left) and SAneg-
based IDDES (right) results with 𝛼 = 20○ and 𝛽 = 5○.

Figure 6.7: Instantaneous 𝑥-vorticity and vortex stream-traces, comparison between
SAnegRC-based URANS (left) and SAneg-based IDDES (right) results with 𝛼 = 20○
and 𝛽 = 5○.
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Figure 6.6 illustrates the vortices using the 𝑄-criterion iso-surface, which is colored
by the normalized helicity, 𝐻𝑛, with positive and negative values represented in red
and blue, respectively. The sense of rotation of a vortex is determined by the sign
of the helicity, enabling the differentiation between counter-rotating vortices. This
distinction allows for the separation of primary from secondary vortices (Levy et al.,
1990), identified with the numbers 1 and 2. The inboard secondary vortex on both
wings is located beneath the primary vortex. The flow under the vortices induces
significant upper surface suction, resulting in large vortex-induced lift increments. Two
fuselage vortices, rotating in opposite directions, are also observed, originating at the
apex of the aircraft fuselage.

The onset of the inboard vortex is visualized in Fig. 6.7 from the vortex stream-traces
shown together with instantaneous 𝑥-vorticity. The inboard vortex formation starts
immediately downstream of the wing apex. The particles contained in the separated
shear layer emanating from the leading-edge at the apex form the core of the inboard
vortex and travel along the wing at very high speed. The inboard vortex then grows
in size because it is fed by the shear layer all along the wing. This flow reinforces
the main core by rotating around it and feeding it with kinetic energy. In this way
the vortex is sustained, remains coherent and the axial velocity increases. However,
this process stops at the second sweep angle increment. Indeed, the same mechanism
discussed for the inboard vortex can also be seen for the outboard vortex, whose core
is mainly caused by the shear layer separation at the second sweep angle increment.
This leads to the conclusion that resolving separation and turbulence close to the wing
apex is of primary importance for delta wing flow simulations.

On the leeward wing near the trailing-edge, as depicted in Fig. 6.7, two vortex cores are
observed to be stacked atop each other, accompanied by a large separation zone near the
leading-edge. An energy exchange between the vortices within the turbulent structure
is noted, wherein the outboard vortex loses kinetic energy, potentially feeding and
stabilizing the inboard vortex. As evidenced by the streamlines, the IDDES outcomes
predict a stronger vortex-vortex interaction that leads to vortex merging.

The vortices break down within the second half of the aircraft on the windward wing.
Downstream of the breakdown, the flow becomes incoherent and turbulent, as depicted
only by the HRL outcomes. Examining Fig. 6.6, a preliminary qualitative assessment
of the turbulence resolution in the LES regions is provided. Turbulent fluctuations
within the vortices are evident, with the resolution level deemed adequate for the aims
of this investigation. Larger turbulent structures are resolved by the grid, especially
on the windward wing. Furthermore, Fig. 6.7 illustrates how the smaller scales are
captured and resolved by the IDDES following the breakdown, showcasing the onset of
turbulence fluctuations. Upstream of this phenomenon, smaller turbulence scales are
not resolved, but there is no rationale for their presence, since, in principle, a coherent
vortex does not constitute a turbulent phenomenon. This HRL behavior becomes
even more evident when analyzing the analogous plot presented in Section 6.2.2, which
features an angle of attack of 24°.

As illustrated in Fig. 6.8, where the instantaneous iso-surface of the 𝑥-direction pressure
gradient, ∇𝑝𝑥, is shown with a flood contour by instantaneous Mach number, several
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shock waves are present over the aircraft. The interaction between leading-edge vortices
and shock waves, crucial for understanding flow physics at transonic conditions, needs
detailed assessment due to its potential impact on vortex breakdown. A noteworthy
difference between the two approaches is the effect of the highlighted shock wave in the
IDDES results, which is not evident in the URANS outcomes. Across the shock wave,
pressure, density, temperature, and entropy all increase, while Mach number, velocity,
normal velocity component, and total pressure decrease. This indicates that the vortex
core loses velocity and kinetic energy across the shock wave.

The shock wave, proximate to the leading edge, is identified as the lambda shock, and
its interaction with the vortex core can induce the breakdown of the inboard vortex on
the windward wing. This phenomenon is exclusively captured by the IDDES. Figure 6.8
also shows the reduction of the Mach number behind the shock in combination with the
onset of chaotic structures indicative of vortex breakdown. Therefore, the breakdown in
the transonic regime could then result from a shock-vortex interaction and an accurate
prediction of the shock wave location is then crucial. This aspect is further addressed
in Chapter 7, by comparing these results with additional two-equation model results,
namely 𝑘𝜔SST-based URANS and SAS.

Figure 6.8: Instantaneous 𝑥-pressure gradient iso-surface with flood contour by in-
stantaneous Mach number, comparison between SAnegRC-based URANS (left) and
SAneg-based IDDES (right) results with 𝛼 = 20○ and 𝛽 = 5○. Vortex stream-traces
depicted in red.

Mean flow features

Fig. 6.9 depicts the mean surface coefficient of pressure on the aircraft. Three slice
planes are extracted. The distribution of the mean surface coefficient of pressure, 𝑐𝑝,
along the span-wise direction, and the mean normalized 𝑥-velocity, 𝑢⇑𝑈∞, contour at
chord-wise positions 𝜉 = 0.35, 0.55, 0.75 are presented in Fig. 6.10.

In the front part of the aircraft, the IDDES approach significantly enhances the results
on both wings, as evidenced by the 𝑐𝑝 at 𝜉 = 0.35 in Fig. 6.10. The 𝑥-velocity contour
plot at this location reveals that only the HRL approach is capable of capturing the
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flow separation and the reversed flow, a phenomenon that could elucidate the superior
prediction of the experimental data in this area. Nonetheless, the simulations struggle
to accurately predict the flow physics proximate to the fuselage (around −0.1 < 𝜂 < 0.1).
The erroneous prediction of 𝑐𝑝 near the fuselage is attributed to fuselage vortices, as
indicated by the 𝑄-criterion in Fig. 6.6. Given these vortices’ proximity to the fuselage
surface, they fall into the URANS region, which fails to resolve the turbulent flow
accurately. Mesh refinement may ameliorate this inaccurate prediction. A detailed
analysis of the HRL behavior, particularly how the hybrid model transitions from
RANS to LES, is presented in Section 6.1.1.

The HRL approach captures the formation of the secondary vortex, particularly on the
leeward wing at the chord-wise station 𝜉 = 0.55. However, the accuracy is not as high
as desired, with the negative coefficient of pressure being overestimated, as depicted
in Fig. 6.10 (0.45 < 𝜂 < 0.35). Furthermore, the same figure illustrates a better concor-
dance between URANS results and experimental data on the windward wing, where
the secondary vortex is accurately captured. The counter-rotating secondary vortex
impacts the velocity field; the opposite sign of the vorticity field induces a negative
𝑥-velocity, leading to a reduction in the total 𝑥-velocity. This effect is observable in
Fig. 6.10, near the leading-edge, where areas of low-speed flow are visible. In con-
trast, the IDDES outcomes predict a stream-wise separation region and the absence of
the secondary vortex; a similar phenomenon observed in Chapter 5. At this location,
the fuselage vortices are well-captured by the numerical outcomes, and they can also
be visualized in the 𝑥-velocity contour plots. It is worth noting that other vortices
are present below the aircraft, a flow region that is not investigated but can lead to
potential new findings in further studies.

As previously mentioned, the onset of shear layer separation occurs in correspondence
with the two sweep angles (𝜙1 and 𝜙3), as illustrated in Fig. 2.8, on the first and third
leading-edge sections. The interaction of the inboard and outboard vortices occurs
in the rear part of the aircraft. In the HRL results, these two primary vortices are
distinguishable in Fig. 6.10 at 𝜉 = 0.75, where two peaks of axial velocity are located.
The presence of two peaks of negative 𝑐𝑝 in the experimental results for 0.4 < 𝜂 < 0.8
confirms the separate vortices, though their suction footprints are overestimated by
the IDDES outcomes.

Figure 6.9: Mean surface coefficient of pressure, comparison between experimental
data (left), SAnegRC-based URANS (middle) and SAneg-based IDDES (right) results
with 𝛼 = 20○ and 𝛽 = 5○. Vortex stream-traces depicted in black.
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Figure 6.10: Mean surface coefficient of pressure and mean normalized 𝑥-velocity con-
tour plots at chord-wise locations 𝜉 = 0.35, 0.55, 0.75, comparison between experimental
data, SAnegRC-based URANS and SAneg-based IDDES with 𝛼 = 20○ and 𝛽 = 5○.

The scenario is different in the rear part of the windward wing, where the vortices break
down, as discussed in the analysis of instantaneous flow features. The surface pressure
coefficient in Fig. 6.10 at 𝜉 = 0.75 indicates that vortex breakdown is observable in
both experiment and IDDES data, albeit the suction is overestimated in the latter.
The two vortices do not disintegrate simultaneously; the inboard vortex bursts first,
followed by the breakdown of the outboard vortex. Indeed, the experimental data show
the outboard vortex remaining coherent at location 𝜉 = 0.75, evidenced by the nega-
tive peak of 𝑐𝑝 for 𝜂 ≈ −0.6. The HRL outcomes predict the initial vortex breakdown,
accompanied by an expansion of the vortex core and a sudden decrease in axial (and
rotational) velocity. As demonstrated in Di Fabbio et al., 2022d, at chord-wise location
𝜉 = 0.85, the HRL approach accurately replicate the breakdown of both main vortices,
whereas the onset of vortex breakdown commences to manifest in the URANS results.
The variation in the predicted onset of vortex breakdown is attributed to the upstream
conditions of the vortex, with particular emphasis on the behavior of the secondary
vortex. A theory underlying the mechanism of vortex breakdown is presented in Chap-
ter 5, while Chapter 7 further elucidates this concept, advancing the understanding of
vortex breakdown for improved RANS turbulence modeling.
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6.2.2. Vortex breakdown fixed on the windward apex: 𝛼 = 24°
Figures analogous to those discussed in the previous section for 𝛼 = 20° are herein
presented for 𝛼 = 24°, corresponding to the third flow regime highlighted in Section 6.3.
At 𝛼 = 24°, the vortex breakdown on the windward wing remains stationary at the
wing apex, a finding further corroborated by the results observed at 𝛼 = 28°. Numerical
results obtained from employing the SAnegRC-based URANS and SAneg-based IDDES
approaches are presented.

Instantaneous flow features

As illustrated by the instantaneous 𝑄-criterion iso-surface in Fig. 6.11, the inboard
and outboard vortices are identified on the leeward wing, along with a burst vortex
on the windward wing. The normalized helicity reveals that, on the leeward wing, the
span-wise flow beneath the primary vortex undergoes a secondary separation, forming
a counter-rotating secondary vortex outboard of the primary vortex.

The inboard and outboard vortices on the leeward wing are visualized in Fig. 6.12,
as demonstrated by the vortex stream-traces alongside the instantaneous 𝑥-vorticity.
Streamlines are particularly useful for identifying the core of leading-edge vortices,
vortex-vortex interaction phenomena, and fuselage vortices. Comparing the outcomes
depicted in Fig. 6.7 for 𝛼 = 20° with results at 𝛼 = 24°, several observations emerge.
Notably, the HRL approach predicts a weaker vortex-vortex interaction at 𝛼 = 24°. The
streamlines of the two vortices no longer merge at the aircraft’s rear. The inboard and
outboard vortices appear also more separated in the 𝑥-vorticity contours, especially
in the penultimate slice plane. These findings suggest that the vortex interaction
theory, as discussed in Section 2.1.8, does not hold at high angles of attack on the
leeward wing for the tested configuration under these flow conditions. Furthermore,
fuselage vortices, absent at 𝛼 = 20°, become visible at higher angles of attack, suggesting
increased strength due to the generated region of lower total pressure. These vortices
originate from the airflow around the fuselage nose and are situated over the fuselage.
Additionally, the IDDES outcomes indicate a more chaotic flow behavior on the rear
side of the wing, especially near the leading edge. This observation can signify an
increased vulnerability of the primary vortex, as discussed in Chapter 5.

On the windward wing, the HRL outcomes highlight the chaotic behavior of the burst
vortex and the lack of coherent vortex formation from the shear layer emanating from
the leading-edge. The shear layer emanating from the leading edge no longer rolls
up to form a leading-edge vortex over the wing, but is instead transported down-
stream without inducing additional velocities on the wing surface. An immediate
consequence of this phenomenon is an increase in pressure over the wing. This alter-
ation significantly impacts the prediction of aerodynamic coefficients, a topic analyzed
in Section 6.3. Moreover, a qualitative assessment of turbulence resolution within the
turbulence-resolving areas reveals that turbulent fluctuations are clearly visible within
the transported shear layer or burst vortex. The resolution level appears then to be
suitable for an IDDES computation, as it resolves even smaller turbulent structures
within the grid. As also depicted by the instantaneous 𝑥-vorticity in Fig. 6.12, the
presence of chaotic structures suggests that the burst vortex impacts the leeward wing
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in the rear part of the aircraft, potentially affecting the accuracy of numerical outcomes
on the opposite wing. Furthermore, this effect intensifies with the angle of attack, as
demonstrated in Section 6.2.3. The SAnegRC-based URANS approach fails to accu-
rately capture this process, erroneously predicting the presence of a vortex near the
windward wing apex. This method appears to stabilize and promote the presence of a
coherent structure, rather than accurately simulating turbulent behavior.

Figure 6.11: 𝑄-criterion instantaneous iso-surface with flood contour by instantaneous
normalized helicity, comparison between SAnegRC-based URANS (left) and SAneg-
based IDDES (right) results with 𝛼 = 24○ and 𝛽 = 5○.

Figure 6.12: Instantaneous 𝑥-vorticity and vortex stream-traces, comparison between
SAnegRC-based URANS (left) and SAneg-based IDDES (right) results with 𝛼 = 24○
and 𝛽 = 5○.

Fig. 6.13 shows the instantaneous 𝑥-pressure gradient iso-surface, which reveals several
shock waves over the leeward wing. In this scenario, the shock waves do not induce a
vortex breakdown but interact with the inboard vortex core on the leeward wing. This
interaction results in a reduction of velocity and suction footprint over the wing, as
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discussed in Chapter 5. Furthermore, the vortex stream-traces depicted in Fig. 6.13
lead to additional conclusions. It is evident how the fuselage vortices converge toward
the leeward wing and appear to interact with the primary vortices, thereby influencing
the overall flow behavior. This observation is crucial for the analysis of the outcomes
at 𝛼 = 28○. Moreover, the IDDES findings illustrate how the terminating vortex moves
downstream over the wing, compared to its location at 𝛼 = 20○. It is found precisely at
the point where the inboard and outboard vortices merge, specifically near the trailing
edge, as confirmed by Fig. 6.14. At 𝛼 = 20○, the vortices interact and merge upstream
over the wing. This interaction, stronger at 𝛼 = 20○, results in the terminating shock
also moving upstream. This phenomenon can likely be attributed to the increased
velocity generated by the merging of vortices over the wing.

Figure 6.13: Instantaneous 𝑥-pressure gradient iso-surface with flood contour by in-
stantaneous Mach number, comparison between SAnegRC-based URANS (left) and
SAneg-based IDDES (right) results with 𝛼 = 24○ and 𝛽 = 5○. Vortex stream-traces
depicted in red.

Mean flow features

Figures 6.14 and 6.15 illustrate the surface coefficient of pressure over the aircraft.
Regarding the leeward wing, the front part of the aircraft demonstrates how the IDDES
approach enhances the simulation results. The normalized mean 𝑥-velocity, 𝑢⇑𝑈∞,
contour plot in Fig. 6.15 at the chord-wise location 𝜉 = 0.35 indicates that only the
IDDES approach is capable of capturing the separation and reversed flow. A similar
observation was made for the test case with 𝛼 = 20○, highlighting a significant difference
between URANS and HRL methods in predicting the suction footprint in the front part
of the wing. Accurately predicting this flow behavior is crucial, and Chapter 7 provides
a detailed elucidation of the underlying reasons.

The HRL results successfully capture the secondary vortex formation, but the coef-
ficient of pressure is still overestimated, as shown in Fig. 6.15 at 𝜉 = 0.55 near the
leading-edge of the leeward wing (𝜂 > 0.35). Conversely, the URANS simulations fail
to accurately capture the secondary vortex formation in the 𝑐𝑝 distribution; this phe-
nomenon is only depicted in the 𝑥-velocity contour plot. The HRL results reveal a
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pronounced shock beneath the primary vortex, accompanied by multiple fuselage vor-
tices around the aircraft, significantly influencing the flow field. The location of the
fuselage vortices differs from that observed at 𝛼 = 20○, leading to the consideration that
it is influenced by the angle of attack.

Figure 6.14: Mean surface coefficient of pressure, comparison between experimental
data (left), SAnegRC-based URANS (middle) and SAneg-based IDDES (right) results
with 𝛼 = 24○ and 𝛽 = 5○. Vortex stream-traces depicted in black.

Figure 6.15: Mean surface pressure coefficient and normalized mean 𝑥-velocity contour
plots at chord-wise locations 𝜉 = 0.35, 0.55, 0.75, comparison between experimental
data, SAnegRC-based URANS and SAneg-based IDDES with 𝛼 = 24○ and 𝛽 = 5○.
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Considering the IDDES results, the inboard and outboard vortices are indistinguish-
able and interact with each other at 𝜉 = 0.75, where only a single peak in the 𝑐𝑝 is
observed. However, these vortices are distinguishable in the velocity range, complicat-
ing the interpretation of numerical results. Examination of the experimental confirm
the presence of two distinct vortices at this location. The pressure coefficient reveals
that the inboard vortex appears weaker and the outboard vortex stronger, compared
to those observed at 𝛼 = 20○. The observed energy exchange between the vortices
is hypothesized to underlie this phenomenon. This vortex-vortex interaction mecha-
nism is contingent upon the angle of attack. At a lower angle of attack (𝛼 = 20°),
the inboard vortex, experiencing a gain in kinetic energy (manifested as an increase
in velocity within the core), is theorized to be sustained by energy from the outboard
vortex. This process stabilizes and accelerates the inboard vortex, maintaining its sta-
bility. However, at higher angles of attack, this interactive mechanism diminishes in
efficacy, leading to a propensity for the inboard vortex to breakdown in the rear portion
of the wing. The same consideration is achieved by analyzing the instantaneous flow
features.

The SAnegRC-based URANS simulations inaccurately predict the pressure distribution
over the windward wing, especially near the wing apex. While capturing the forma-
tion of a leading-edge vortex, this approach fails to accurately replicate the actual flow
behavior, which is characterized by high turbulence and chaotic motion, as previously
discussed. In contrast, the IDDES approach successfully predicts the shear layer ema-
nating from the leading-edge and its chaotic transport downstream over the wing, albeit
with a slight overestimation of the intensity of the suction footprint, as particularly
shown in Fig. 6.15. The enhanced simulation of the burst vortex over the windward
wing in the IDDES outcomes substantially improves the prediction of the pitching
moment coefficient, as discussed in Section 6.3. It is also noteworthy that the region
impacted by vortex breakdown appears more extensive in the IDDES results, which
additionally predict a fuselage vortex at 𝜉 = 0.35 on the windward wing. This vortex
is located between the fuselage and the turbulent flow following the breakdown.

Particularly on the windward wing, the discrepancy between the IDDES and the exper-
imental suction footprints is nearly constant. The IDDES approach entails significant
approximations and assumptions regarding the resolved turbulent scales, and this con-
stant disparity could be attributed to the high energy content of the unresolved scales
of turbulence. A grid refinement study, aimed at enhancing the grid resolution, might
yield improved IDDES results. Nevertheless, as discussed in Chapter 2.1.6, studies
by Konrath et al., 2006, 2013 indicate that the PSP suction peak heights are under-
estimated due to temperature effects in certain VFE-2 test campaigns. Consequently,
this issue cannot be completely disregarded.

Furthermore, a detailed analysis of the surface pressure coefficient at 𝜉 = 0.75 reveals
how the URANS results converge towards the IDDES results in terms of suction foot-
print prediction on the windward wing. This issue is less pronounced in the 𝑘𝜔-based
URANS outcomes analyzed for 𝛼 = 28○ in Section 6.2.3. The SA-based simulations
appear then to have an inherent limitation in accurately capturing this type of flow
behavior. Analysis of the SAnegRC-based URANS outcomes reveals anomalous flow
behavior between the vortex breakdown region and the aircraft surface on the windward
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6.2 Vortex development: flow physics analysis

wing. A thin layer within the structured grid, where turbulence is unpredicted and the
flow remains attached to the surface, is observed. This behavior likely depends on the
SA turbulence model formulation. Specifically, a new formulation of the destruction
term, incorporating a different wall treatment, could be beneficial for improving the
numerical results. Indeed, the issue appears to originate in the boundary layer, then
in the treatment of the turbulence variable near the surface.

6.2.3. Vortex breakdown on the leeward wing: 𝛼 = 28°
The analysis of vortex development progresses to the fourth flow regime, as outlined
in Section 6.3, with a detailed discussion of the outcomes at 𝛼 = 28°. Numerical
results derived from the 𝑘𝜔SST-based URANS and SAS approaches are presented.
The IDDES approach has not been applied to the 𝛼 = 28° test case, owing to the
overall superior predictive performance of the two-equation models, a topic further
elaborated in Chapter 7.

Instantaneous flow features

Figure 6.16 shows instantaneous surfaces from 𝑄-criterion colored by Mach number.
No coherent vortices are present on the windward wing. By a rough and qualitative
assessment of the resolution of turbulence in the turbulence-resolving areas, turbulent
fluctuations are clearly visible in the transported shear layer or burst vortex and the
level of resolution seems to be appropriate for an SAS computation, since even smaller
turbulent structures appear to be resolved by the grid, as corroborated by Fig. 6.17.
The chaotic structures captured by SAS show how the burst vortex affects also the
leeward wing in the aft part of the aircraft.

Figure 6.16: 𝑄-criterion instantaneous iso-surface with flood contour by instantaneous
normalized helicity, comparison between 𝑘𝜔SST-based URANS (left) and SAS (right)
results with 𝛼 = 28○ and 𝛽 = 5○.

Vortex breakdown on the leeward wing is illustrated only through the SAS outcomes
in Fig. 6.17. The URANS results do not predict this phenomenon. The 𝑥-vorticity
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undergoes a change in sign, and a chaotic motion becomes visible, replacing the previ-
ously coherent vortex structure. Specifically, only the breakdown of the inboard vortex
is predicted, confirming it as the first vortex to undergo bursting. Conversely, the
outboard vortex appears to remain coherent.

Figure 6.17 illustrates also the fuselage vortices. Their formation is influenced by both
the side-slip angle and the angle of attack, with their strength and size increasing at
higher angles of attack. The fuselage vortices align with the direction of the free-
stream flow and progress towards the leeward wing, significantly impacting the flow
dynamics in this region. Notably, the interaction between the fuselage and the leading-
edge vortex on the leeward side undergoes profound changes, as the leeward fuselage
vortex eventually merges with the inboard leading-edge vortex. As corroborated by
Fig. 6.18, this merging may be attributed to the occurrence of vortex breakdown. The
vortex stream-traces depicted in Fig. 6.18 unequivocally illustrate the merging of the
fuselage vortex with the inboard vortex, followed immediately by vortex breakdown.
Furthermore, there is no observable interaction between the inboard and the outboard
vortex at this angle of attack, substantiating the theory that vortex interaction on the
leeward wing becomes less effective when the AoA is increased from 20○ to 28○.

Furthermore, Fig. 6.17 illustrates that the vortex sheet becomes increasingly turbulent
at higher angles of attack, influencing the formation and stability of the secondary
vortex. Additionally, a more pronounced stream-wise flow separation is predicted near
the leading edge on the rear leeward wing at 𝛼 = 28○, compared to that observed at
lower angles, highlighting the increased vulnerability of the vortices.

Figure 6.17: Instantaneous 𝑥-vorticity and vortex stream-traces, comparison between
𝑘𝜔SST-based URANS (left) and SAS (right) results with 𝛼 = 28○ and 𝛽 = 5○.

The shock waves occurring over the aircraft on the leeward wing are depicted in
Fig. 6.18. In the SAS outcomes, the terminating shock moves in correspondence with
the vortex breakdown location. This position, therefore, differs from that predicted at
𝛼 = 24○. However, in both cases, the shock occurs upon the merging of two vortices:
at 𝛼 = 24○, it involves the inboard and outboard vortices, whereas at 𝛼 = 28○, it is
between the inboard and fuselage vortices. Furthermore, both approaches predict the
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interaction of the lambda shock with the inboard vortex on the leeward wing, and the
location of this shock appears to remain consistent across test cases at various angles
of attack. Therefore, its position is primarily determined by the wing geometry and
the free-stream Mach number.

Figure 6.18: Instantaneous 𝑥-pressure gradient iso-surface with flood contour by in-
stantaneous Mach number, comparison between 𝑘𝜔SST-based URANS (left) and SAS
(right) results with 𝛼 = 28○ and 𝛽 = 5○. Vortex stream-traces depicted in red.

Mean flow features

Figures 6.19 and 6.20 depict the surface coefficient of pressure across the aircraft. The
stream-wise separation is observed at 𝜉 = 0.35 on the leeward wing, a phenomenon
that was previously documented at 𝛼 = 20° on the windward wing. Analysis of the
surface pressure coefficient reveals that a distinction between the URANS and SAS
outcomes lies in the secondary peak at 𝜉 = 0.55, where the SAS outcomes predict a more
pronounced secondary vortex. This observation suggests that a distinct mechanism
may be responsible for the vortex breakdown on the leeward wing.

The leeward wing breakdown is exclusively predicted at 𝛼 = 28° according to the SAS
outcomes, illustrating that the pressure coefficient peak associated with the inboard
vortex vanishes at the chord-wise location 𝜉 = 0.75. Concurrently, the 𝑥-velocity plot
evidences reversed flow. The breakdown of the outboard vortex, occurring subsequent
to that of the inboard vortex, leaves the 𝑐𝑝 peak of the outboard vortex intact at 𝜉 = 0.75
for 𝜂 ≈ 0.6. This is corroborated by the 𝑥-velocity contour plot, which depicts the
velocity peak of the outboard vortex. In contrast, the URANS method fails to predict
the breakdown, and two velocity peaks corresponding to the inboard and outboard
vortices are observed at 𝜉 = 0.75.

Additionally, as illustrated in the 𝑥-velocity plots in Fig. 6.20, the vortex shape is also
dependent on the angle of attack. The kidney-shaped configuration anticipated under
transonic conditions becomes more pronounced at higher angles of attack, which may
indicate an increased vulnerability of the vortex to disturbances (Riou et al., 2010).
Fig. 6.20 also demonstrates how the breakdown on the windward wing affects the flow
fields on the leeward wing. Particularly, at 𝜉 = 0.55, the SAS outcomes reveal the
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fuselage vortex bursting on the leeward wing, where the turbulent flow merges with
the chaotic motion from the windward wing. This phenomenon, not predicted by the
URANS outcomes, may be associated with the breakdown experienced by the inboard
vortex on the leeward wing. A similar behavior near the fuselage on the leeward wing
is only visible in the URANS results at 𝜉 = 0.75.

Figure 6.19: Mean surface coefficient of pressure, comparison between experimental
data (left), 𝑘𝜔SST-based URANS (middle) and SAS (right) results with 𝛼 = 28○ and
𝛽 = 5○. Vortex stream-traces depicted in black.

Figure 6.20: Mean surface coefficient of pressure and normalized mean 𝑥-velocity con-
tour plots at chordwise locations 𝜉 = 0.35, 0.55, 0.75, comparison between experimental
data, 𝑘𝜔SST-based URANS and SAS with 𝛼 = 28○ and 𝛽 = 5○.
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Both 𝑘𝜔SST-based URANS and SAS simulations accurately predict the flow pattern
over the windward wing, especially near the wing apex. They effectively capture the
shear layer originating from the leading-edge and its subsequent chaotic transport
downstream across the wing, albeit with a minor overestimation of the suction foot-
print’s intensity. The 𝑘𝜔SST model demonstrates then superior accuracy compared to
the SAnegRC turbulence model in predicting such flow behavior. Possible explanations
for the remaining discrepancies between the numerical predictions and experimental
observations are outlined in Section 6.2.3, where they are examined in the context of
the outcomes from the one-equation model.

6.3. Aerodynamic characteristic curves
Aerodynamic coefficients are dimensionless numbers that describe the aerodynamic
forces and moments acting on a body in a fluid flow. These coefficients are crucial
for analyzing and designing aerodynamic vehicles, such as aircraft, by allowing for
comparisons across different sizes and flow conditions. Among these, the lift coefficient
and the coefficients for rolling and pitching moments are of particular importance for
the selected test case.

The lift, denoted by 𝐿𝑓 to avoid confusion with the characteristic length defined as 𝐿, is
the component of the total aerodynamic force perpendicular to the free-stream velocity
vector, 𝑈∞, and can be determined by integrating the pressure, 𝑝, over the aircraft’s
surface area, 𝐴𝑟𝑒𝑓 , considering the orientation of each surface element relative to the lift
direction. The local lift force, 𝑑𝐿𝑓 , generated by a small surface element 𝑑𝐴𝑟𝑒𝑓 from
the local pressure difference and its orientation can be related back to the pressure
coefficient and the dynamic pressure. The total lift is obtained by integrating these
local contributions over the entire surface as follows

𝐿𝑓 =∬
𝐴𝑟𝑒𝑓

𝑑𝐿𝑓 𝑑𝐴𝑟𝑒𝑓 =∬
𝐴𝑟𝑒𝑓

(𝑝 − 𝑝∞) cos(𝛼) 𝑑𝐴𝑟𝑒𝑓 =∬
𝐴𝑟𝑒𝑓

𝐶𝑝
1
2𝜌∞𝑈

2
∞

cos(𝛼) 𝑑𝐴𝑟𝑒𝑓 , (6.1)

where 𝛼 is the angle of attack of each surface element, and the cos(𝛼) term projects
the force in the lift direction. The lift coefficient, 𝐶𝐿, is calculated by normalizing the
lift force by the dynamic pressure of the free-stream, 1

2𝜌∞𝑈
2
∞

, and the reference area
𝐴𝑟𝑒𝑓 of the aircraft as follows

𝐶𝐿 =
𝐿𝑓

1
2𝜌∞𝑈

2
∞
𝐴𝑟𝑒𝑓

(6.2)

This methodology requires precise knowledge of the pressure distribution over the air-
craft, attainable through experimental or CFD simulations. The lift coefficient is then a
dimensionless number that quantifies the lift force generated by a body, acting perpen-
dicular to the relative wind, relative to the fluid density around the body, the velocity
of the fluid, and a reference area.

The pitching moment, 𝑀𝑦, is a moment about the lateral axis of the aircraft, influencing
its pitch attitude. The sign of 𝑀𝑦 indicates whether the moment tends to rotate the
aircraft nose-up (positive) or nose-down (negative). Conversely, the rolling moment is
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a moment about the longitudinal axis, impacting the aircraft’s roll angle. The pitching
and rolling moments are defined as follows

𝑀𝑦 = 𝐿𝑓 ⋅ 𝑑𝑦, and 𝑀𝑥 = (𝐹left − 𝐹right) ⋅ 𝑑𝑥. (6.3)

Here, 𝑑𝑦 represents the distance (moment arm) from the center of gravity (CG) to the
point where the lift force is applied (center of pressure, CP). 𝐹left and 𝐹right denote
the aerodynamic forces on the left and right wings, respectively, and 𝑑𝑥 refers to the
distance from the aircraft’s longitudinal axis to the points of force application. The
rolling moment coefficient, 𝐶𝑚𝑥 , and the pitching moment coefficient, 𝐶𝑚𝑦 , are dimen-
sionless quantities characterizing 𝑀𝑥 and 𝑀𝑦, respectively, per unit dynamic pressure,
aircraft span (𝑏, for the rolling moment) or mean aerodynamic chord of the wing (𝑐𝑎𝑐,
for the pitching moment), and reference area. These coefficients are pivotal for analyz-
ing roll stability and control, as well as pitch stability and control effectiveness. They
are defined as follows

𝐶𝑚𝑥 =
𝑀𝑥

1
2𝜌∞𝑈

2
∞
𝐴𝑟𝑒𝑓𝑏

, 𝐶𝑚𝑦 =
𝑀𝑦

1
2𝜌∞𝑈

2
∞
𝐴𝑟𝑒𝑓𝑐𝑎𝑐

. (6.4)

Figure 6.21 presents the lift coefficient curve, as well as the curves for the rolling and
pitching moment coefficients, respectively. The experimental data, according to Hövel-
mann et al., 2020, are plotted in comparison with the numerical results. This com-
parison reveals interesting behavior of the force and moment coefficients, from which
several conclusions can be drawn. Four distinct regimes can be identified.

1. 𝛼 ≤ 17.5°, no vortex breakdown. Within this range, the lift coefficient increases
almost linearly with AoA, the pitching moment is negative, stable, and decreases
slowly, while the rolling moment remains nearly constant.

2. 17.5° ≤ 𝛼 ≤ 22.25°, vortex breakdown on the windward wing. The vortex break-
down occurs on the windward, moving upstream from the trailing-edge to the
leading-edge as AoA increases. This results in a gradual reduction of lift on the
windward, which is not markedly evident in Fig. 6.21 because the lift on the
leeward wing increases (though not with the same slope as before). This dual
effect leads to a positive increase in the rolling moment. The pitching moment
initially increases due to the breakdown location near the trailing-edge, causing a
reduction in lift in that specific area and, consequently, a nose-up pitching of the
aircraft. This effect stabilizes into a plateau of the pitching moment coefficient
as the phenomenon approaches the 𝑥-coordinate of the aerodynamic center. The
test case with 𝛼 = 20° falls into this regime, with results presented in Section 6.2.1.

3. 22.25° ≤ 𝛼 ≤ 27.5°, vortex breakdown fixed on the windward apex. At 𝛼 ≈ 22.25°,
the vortex breakdown on the windward reaches the leading-edge apex and remains
fixed in that position. This condition are confirmed by simulation results at 𝛼 =
24° in Section 6.2.2. This leads to abrupt changes in the aerodynamic coefficients,
with a significant drop in the lift and pitching moments, and a drastic increase
in the rolling moment. Within this regime, also referred to as the post-stall
regime, the shear layer emanating from the leading-edge no longer rolls up to
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form a leading-edge vortex over the wing but is transported downstream without
inducing additional velocities on the wing surface. As AoA increases, the lift
begins to rise again due to the suction footprint on the leeward wing, with no
significant changes in the integral moment coefficients.

4. 𝛼 ≥ 27.5°, vortex breakdown on the leeward wing. Section 6.2.3 presents the
numerical results at 𝛼 = 28°. The vortex breaks down on the leeward wing and
moves upstream from the trailing-edge to the leading-edge with increasing AoA.
The observations made for the windward wing are applicable to the leeward wing.
The lift reduction in the rear part of the leeward wing leads to a nose-up pitching
moment and a significant decrease in the rolling moment, which is of opposite
sign compared to the consequence of stall on the windward wing.

Figure 6.21: Comparison of lift, rolling,
and pitching moment coefficients across
AoA: experimental versus numerical data at
𝑀𝑎∞ = 0.85, 𝑅𝑒∞ = 12.53 × 106, and 𝛽 = 5○.

The URANS and HRL results overesti-
mate the experimental lift coefficient, but
it is worth noting that the HRL results
are closer to the experimental ones. The
sole exception lies in the 𝑘𝜔SST out-
comes, which underestimate the lift co-
efficient at 𝛼 = 20°. A smooth transition
between the URANS and HRL points is
illustrated, but the phenomena occurring
in between are not well documented in the
literature and are discussed in Section 6.2.
Although the sharp drop in the curve at
𝛼 = 24° is not clearly predicted, the HRL
results improve the prediction of the lift
curve.

The rolling and pitching moment coeffi-
cient curves are particularly interesting in
the presence of a non-zero side-slip an-
gle. Indeed, the integral moments re-
spond more sensitively to variations in
the flow pattern than the force coefficients
do. The numerical results, except for the
𝑘𝜔SST, underestimate the experimental
rolling moment for 𝛼 < 28°. A significant
deviation between the CFD results is ob-
served at 𝛼 = 20°, attributed to the on-
set of vortex breakdown on the windward
wing. The 𝑘𝜔SST outcomes predict an
upstream location for the vortex break-
down, leading to an overestimation of 𝐶𝑚𝑥 , while the HRL predicts this phenomenon
more downstream compared to the experimental data. The SAnegRC outcomes fail to
capture the vortex breakdown entirely.
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The HRL results also show a good improvement in the pitching moment values. They
correctly predict the sign of 𝐶𝑚𝑦 , indicating a nose-up pitching for 𝛼 = 20° and nose-
down pitching for 𝛼 = 24°. Conversely, the SAnegRC model significantly mispredicts
this coefficient owing to an inaccurate representation of the vortex breakdown over the
windward wing. In contrast, the 𝑘𝜔SST model exhibits improved accuracy within the
URANS outcomes. Generally, the HRL approach enhances the prediction of aerody-
namic coefficients, achieving a notable reduction in deviations compared to the URANS
results. Furthermore, significant discrepancies between the CFD results are observable
at 𝛼 = 28° due to varying predictions of vortex breakdown onset on the leeward wing.
Similar observations made for 𝛼 = 20° are applicable.

These analyses confirm that the SAnegRC-based URANS simulations exhibit the lowest
accuracy in predicting vortical flow over delta wings. This finding underscores the
significance of the main objective outlined in this manuscript. Following the analysis
of vortex development, this manuscript shifts then focus to examining the limitations
of the SA model. Subsequently, Chapter 7 proposes a straightforward and robust
modification to enhance the SA model’s capability in predicting vortex breakdown,
with a particular emphasis on the condition at 𝛼 = 20°.
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7
Towards the Understanding of Vortex
Breakdown for Improved RANS Turbulence
Modeling

Building upon the discussion in Chapter 6, this chapter further investigates the aero-
dynamics of the triple-delta wing configuration, ADS-NA2-W1, under transonic and
side-slip conditions. The findings reported in Di Fabbio et al., 2022c, 2024a are further
elucidated.

Outcomes from five distinct simulations employing various turbulence models are pre-
sented, including the URANS simulations utilizing the SAnegRC and the Menter
𝑘𝜔SST models, complemented by high-fidelity results from IDDES and SAS. The dif-
ferent treatment of the unclosed Reynolds stresses by these models impacts both the
accuracy of the solutions and the computational demands. A novel enhancement to
the one-equation SA turbulence model is then introduced, referred to herein as PK,
an acronym for Production-𝑘, denoting the modeled turbulent kinetic energy. The PK
model represents an evolution of the existing SA model by incorporating an additional
expression for the turbulent kinetic energy into the Boussinesq assumption.

The present analysis pays attention to the flow conditions at 𝛼 = 20○, highlighting
the profound influence of vortex breakdown on the aerodynamic characteristics of the
windward wing. It aims to illuminate the occurrence of vortex breakdown and its un-
derlying mechanisms, with an intent to identify and rectify the deficiencies inherent
in the SA turbulence model when applied to delta wing aerodynamics, as discussed in
Chapter 6. Improving the accuracy of this model necessitates an understanding and
meticulous examination of the factors leading to its prediction inaccuracies, includ-
ing both physical phenomena and modeling challenges. This inquiry further explores
the impact of turbulence modeling on CFD outcomes, highlighting the significance of
turbulence-related variables.

Findings obtained using the PK model are detailed in Section 7.2, where aerody-
namic coefficients and surface pressure measurements are juxtaposed against exper-
imental (Hövelmann et al., 2020) and CFD benchmarks presented in Chapter 6. Com-
parative analyses with the different numerical approaches, emphasizing the complexi-
ties of flow physics and turbulence modeling, are presented in Sections 7.3 and 7.4.
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7.1 Extension of the Boussinesq assumption

These sections aim to explore the limitations and shortcomings of the SA model,
thereby justifying the introduction of the PK model. Finally, a discussion on the
enhancements in terms of flow physics afforded by the PK model is provided in Sec-
tion 7.5.

7.1. Extension of the Boussinesq assumption
As discussed in Section 3.4.1, the SA turbulence model is constructed around a single
transport equation for the eddy viscosity variable, 𝜈𝑡. This eddy viscosity establishes
a linear relationship, −𝑢𝑖𝑢𝑗 = 𝜈𝑡𝑆𝑖𝑗, in accordance with the Boussinesq assumption
(Eq. 3.40). Unlike two-equation models, the SA model neglects the 𝑘 term, representing
turbulent kinetic energy.

An enhancement to the Boussinesq approximation within the SA model framework
is proposed, introducing a modification termed the PK model. This model aims to
address the original model’s omission of turbulent kinetic energy by incorporating a
new variable, 𝑘𝑆𝐴, specifically designed for integration with the SA model.

By equating the production and destruction of turbulent kinetic energy (Eq. 3.83), a
simplified equation for 𝑘, akin to the methodology employed in the QCR model (Rum-
sey et al., 2020a), is derived as follows

𝛽𝑘𝑘2

𝜈𝑡

= 𝜏𝑅
𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

⇒ 𝑘 = 1⌈︂
𝛽𝑘

}︂
𝜈𝑡𝜏𝑅

𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

, (7.1)

where 𝜏𝑅
𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

≈ ⋃︀⋃︀𝑆𝑖𝑗 ⋃︀⋃︀ (7.2)

However, applications of the QCR model have encountered numerical challenges, es-
pecially in wake zones where the turbulent viscosity, 𝜇𝑡, is significant. To mitigate
these issues, a strategy that suggests substituting strain rate with vorticity has been
proposed (Rumsey et al., 2020b). Consequently, the revised expression for 𝑘𝑆𝐴, repre-
senting turbulent kinetic energy within the SA model, is defined as follows

𝑘𝑆𝐴 = 𝐶𝑘𝜇𝑡

⌈︂
2𝑊𝑚𝑛𝑊𝑚𝑛, (7.3)

The calibration of the coefficient 𝐶𝑘 is critically examined in Section 7.5, with empirical
analysis determining that a value of 𝐶𝑘 = 3 yields optimal results under the specified
conditions and objectives of this dissertation. Eq. 7.3 is then incorporated into the
Boussinesq assumption, resulting in the following formulation:

−𝜌𝑢′𝑖𝑢′𝑗 = 𝜏𝑅
𝑖𝑗 = 2𝜇𝑡 𝑆

∗

𝑖𝑗 − 𝑘𝑆𝐴𝛿𝑖𝑗. (7.4)

7.2. Data comparison: validation of the CFD results
Although the flow field above the aircraft at 𝛼 = 20○ has been discussed in Section 6.2.1,
an overview is briefly given herein. Leading-edge vortices, depicted in Fig. 7.1, arise

136



7.2 Data comparison: validation of the CFD results

from the separation of the shear layer at the wing’s leading-edge. This process initiates
the formation of a stable, primary vortex that induces flow reattachment over the wing.
Under certain conditions, a secondary counter-rotating vortex develops outboard of the
primary one. Furthermore, fuselage vortices, illustrated in Fig 7.1, manifest on both
wings, correlating with the different sweep angles of the leading-edges. The vortices on
the windward wing are notably susceptible to breakdown, characterized by an abrupt
change in flow topology, marked by deceleration and divergence. The location of vortex
breakdown is unstable, exhibiting buffeting behavior. While a comprehensive under-
standing of this behavior requires analyzing the instantaneous flow characteristics due
to their unsteady effects, this chapter examines the mean flow features to explore better
the turbulence treatments’ effects on the RANS results. The mechanisms underlying
vortex breakdown are explored to enhance the understanding of both the phenomenon
itself and its numerical modeling.

Figure 7.1: 𝑄-criterion instantaneous iso-surface with flood contour by instantaneous
normalized helicity 𝐻𝑛, IDDES results with 𝛽 = 5○ and 𝛼 = 20○ (Di Fabbio et al.,
2024a).

7.2.1. Enhancement of the aerodynamic coefficients
In the context of evaluating result accuracy within the field of aerodynamics, the curves
of the rolling and pitching moment coefficients are presented. Fig. 7.2 shows the results
from URANS simulations using the SAnegRC and 𝑘𝜔SST models, and outcomes from
scale-resolving simulations such as IDDES and SAS. These CFD outcomes are discussed
in Chapter 6.

In addressing the significant discrepancies observed between the outcomes of various
modeling approaches at 𝛼 = 20°, the differences are largely attributed to differing pre-
dictions of vortex breakdown on the windward wing. Hi-Fi data significantly refine the
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accuracy of aerodynamic coefficient predictions, with the SAS methodology emerging
as particularly reliable for the investigated configurations. Comparative analysis re-
veals that the two-equation 𝑘𝜔SST model outperforms the SA model in terms of flow
field prediction accuracy, especially by predicting the occurrence of the vortex break-
down at 𝛼 = 20°. As discussed in Chapter 6, the SAnegRC model is unable to predict
the vortex breakdown on the windward wing at 𝛼 = 20°. In contrast, the PK model ex-
hibits a significant improvement in the accuracy of aerodynamic coefficient predictions,
attributed to its precise prediction of the vortex breakdown onset location.

Furthermore, across other AoAs, the PK model’s performance consistently matches or
surpasses that of the original SAnegRC model, thereby offering a promising solution
to the constraints of the one-equation model. Even at 𝛼 = 28°, the PK outcomes
represent an advancement since the model can reproduce the vortex breakdown on
the leeward wing, albeit predicted too upstream compared to the experimental results.
The SAnegRC model fails to replicate this phenomenon under these flow conditions
(𝛼 = 28°) as well. A comprehensive assessment of the PK model’s efficacy, including a
quantitative analysis of the enhancements achieved, is given in Section 7.5.

Figure 7.2: Comparison between state-of-the-art and PK model, experimental and
numerical data with 𝑀𝑎∞ = 0.85, 𝑅𝑒∞ = 12.53 × 106 and 𝛽 = 5○. Hi-Fi results are
represented in red, while standard URANS results are in blue. PK turbulence model in
green. One-equation and two-equation results are denoted with circle and star markers,
respectively (Di Fabbio et al., 2024a).

7.2.2. Investigation of the suction footprint
The leading-edge vortex on delta wings triggers a localized decrease in pressure under
the vortex, significantly enhancing the aircraft’s lift, particularly at higher angles of
attack. This phenomenon, referred to as the suction footprint, is critical for the wing’s
aerodynamic performance. The distribution of the mean surface pressure coefficient,
𝑐𝑝, on the aircraft’s surface is illustrated in Fig. 7.3. An in-depth analysis of the mean
surface pressure coefficient distributions is conducted across the wing’s span at various
chord-wise positions 𝜉 = 0.35, 0.55, 0.75, as shown in Fig. 7.4.

The investigation presented in Fig. 7.4 for 𝜉 = 0.35 reveals that the numerical simula-
tions capture the intricate flow characteristics over the aircraft. Among the evaluated
modeling strategies, the 𝑘𝜔SST model and Hi-Fi simulations stand out for their accu-
racy in replicating surface pressure data, closely matching experimental observations.
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On the contrary, the SAnegRC model shows significant deviations, highlighting its de-
ficiencies in accurately predicting the aerodynamic behaviors noted in experimental
findings. The PK model slightly improves the prediction of the SAnegRC on the wind-
ward wing, while it matches the baseline model on the leeward wing. This behavior
was expected since the PK model does not modify the turbulence production term in
the SA equation but simply models the isotropic part of the Reynolds stress tensor (the
turbulence kinetic energy), which is still not observable over the front wing. This was
discussed in Section 5.4 for the VFE-2 configuration and will be further discussed in
Section 7.4 for the present configuration. Noteworthy are the variances in simulating
the fuselage vortices, particularly at 𝜂 ≈ ⋃︀0.1⋃︀ on either wing.

At the windward wing’s chord-wise position of 𝜉 = 0.55, the suction effect resulting
from the primary inboard vortex demonstrates remarkable consistency in the outcomes
derived from both the 𝑘𝜔-based and SA-based models, when considered within their
individual categories. However, significant variances are observed in the representation
of the secondary vortex and the flow dynamics proximal to the leading-edge. The
simulations’ accuracy in capturing the secondary vortex does not reach the desired
level of precision, with the negative pressure coefficient being inaccurately predicted
for ⋃︀𝜂⋃︀ > 0.35. In particular, the intensity of the secondary vortex, as indicated by the
peak 𝑐𝑝 values in the SAS results, tends to amplify the vortex’s strength beyond what is
observed in experimental data. In contrast, the 𝑘𝜔SST model operates in the opposite
manner, predicting a weaker secondary vortex.

Figure 7.3: Mean surface pressure coefficient, experimental and numerical data at
𝛽 = 5○ and 𝛼 = 20○. The black lines show the extracted slice planes (Di Fabbio et al.,
2024a).
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Figure 7.4: Mean pressure coeffi-
cient profiles at 𝜉 = 0.35, 0.55, 0.75,
experimental and CFD data at 𝛽 = 5○
and 𝛼 = 20○ (Di Fabbio et al., 2024a).

Accurately capturing the strength of the sec-
ondary vortex is crucial for a correct representa-
tion of the vortex breakdown process, as discussed
in Chapter 5. Underestimation of the secondary
vortex’s intensity, characterized by a lower than
expected ⋃︀𝑐𝑝⋃︀ from the secondary vortex, leads to
a premature prediction of vortex breakdown lo-
cations. In the context of the one-equation model
analyses, the secondary vortex is consistently iden-
tified over the windward wing in both the SAne-
gRC and PK model outcomes, yet it becomes in-
discernible in the IDDES simulations. However,
the PK model results indicate a sharp decrease in
⋃︀𝑐𝑝⋃︀ near the leading-edge, suggesting a possible on-
set of stream-wise flow separation. This behavior
underscores the IDDES and PK models inclination
towards predicting vortex breakdown, in contrast
to the relative stability observed in the SAnegRC
predictions. Furthermore, at 𝜉 = 0.55, the fuse-
lage vortices are well predicted by all the CFD
outcomes on both wings.

At the chord-wise position of 𝜉 = 0.75 on the wind-
ward wing, vortex breakdown is notably observed.
The breakdown of the inboard and outboard vor-
tices occurs sequentially, with the inboard vor-
tex disintegrating before the outboard one. The
SAnegRC model fails to capture this vortex break-
down accurately, in contrast to the PK model,
which demonstrates a substantial capability to ac-
curately simulate this critical phenomenon. With
the exception of the 𝑘𝜔SST model, which predicts
the onset of vortex breakdown earlier, the other
simulations tend to capture the breakdown onset
occurring further downstream on the wing than
what is supported by experimental evidence. Such discrepancies in the predicted loca-
tions of vortex breakdown markedly affect the variations in aerodynamic coefficients,
as depicted in Fig. 7.2.

7.3. Vortex breakdown and turbulence modeling
Improving a turbulence model necessitates a thorough comprehension of the funda-
mental reasons for its shortcomings. Fig. 7.5 illustrates the airflow patterns over the
aircraft, facilitating a comparison between the outcomes of the SAnegRC and 𝑘𝜔SST
models, thereby highlighting the impact of varying turbulence modeling approaches.
Hi-Fi data are presented as the benchmark for comparison.
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Figure 7.5: Iso-surfaces from streamwise pressure gradient and Q-criterion colored by
Mach number, and slice planes showing the normalized 𝑥-velocity (Di Fabbio et al.,
2024a).

A fundamental distinction exists between the examined methods, primarily highlighted
by the effect of shock waves, as depicted in Fig. 7.5. This figure meticulously illustrates
the interaction between shock waves and vortices, with a focus on the condition of the
inboard vortex pre- and post-interaction. As the vortex core passes through the shock
wave, it experiences a reduction in both velocity and kinetic energy. However, the
interaction of the shock wave with the inboard vortex core is not the singular cause
behind the observed breakdown. It is noteworthy that the SAnegRC model predicts
the presence of the shock wave at the correct location but fails to capture the vortex
breakdown, leading to the conclusion that the presence of a shock wave does not
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invariably result in vortex breakdown. The vortex’s inherent strength plays a crucial
role in this process (Erlebacher et al., 1997). A vortex is susceptible to breakdown due
to shock interaction only if it is intrinsically unstable and prone to such a breakdown.

As investigated in a collaborative research project (Rajkumar et al., 2024), the vortex
breakdown location is unstable, and a buffeting behavior can be observed over the wing,
leading to oscillation of the aerodynamic coefficients. For this reason, Fig. 7.5 shows the
mean location of the breakdown onset for the different CFD outcomes and demonstrates
how these locations distinguish themselves by influencing the value of the integral
forces and moments investigated in Section 7.2.1. Based on these observations, the
onset location of the breakdown phenomenon predicted by experimental data should
be situated between the locations captured by the 𝑘𝜔SST and SAS outcomes.

The mechanism elucidating the phenomenon of vortex breakdown, as delineated in
Chapter 5, is employed to explain the discrepancies between the URANS outcomes,
thereby demonstrating its validity to a certain extent. The inboard vortex core pre-
dominantly consists of flow from the shear layer that separates at the wing’s apex.
The continuous contribution of the shear layer to the inboard vortex along the wing
span results in the vortex’s enlargement. This incoming flow envelops the primary
core, enhancing its structural integrity and maintaining its unity. This emphasizes the
necessity of precisely simulating separation and turbulence near the apex in simula-
tions of delta-wing flows. The existence of a secondary vortex lends support to this
observed behavior. When this secondary vortex becomes unsustainable, it leads to
the detachment of the boundary layer in the direction of the flow, resulting in the
formation of a recirculation zone. Rather than merging with the secondary vortex,
the fluid shifts into smaller-scale turbulent movements. This shift prevents the shear
layer from integrating into the primary vortex, thus initiating a turbulent flow pattern.
Consequently, the primary vortex, deprived of its kinetic energy source, is rendered
more susceptible to breakdown. This hypothesis is corroborated through the analysis
of Figs. 7.6 and 7.7.

Figure 7.6: 𝑥-pressure gradient contour field with Mach number contour lines and
mean 𝑥-direction friction coefficient. Black lines indicate zero mean friction coeffi-
cient (Di Fabbio et al., 2024a).

Figure 7.7 illustrates the 𝑥-vorticity on the windward side of the wing, primarily de-
picting the formation and degradation of the secondary vortex. Figure 7.6 reveals the
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dynamics of shock-vortex interaction within the plane of the vortex core line, show-
casing the presence of the lambda shock that plays a role in vortex breakdown, and
displays the mean friction coefficient, 𝑐𝑓𝑥 , in the 𝑥-direction, delineating the region of
stream-wise separation.

Figure 7.7: Mean and instantaneous 𝑥-vorticity, URANS, and Hi-Fi results (Di Fabbio
et al., 2024a).

The analysis of SAnegRC outcomes indicates a less pronounced stream-wise separation
on the wing preceding vortex disruption, with the shear layer adequately feeding the
primary vortex. The consistently positive friction coefficient, except for a small area,
suggests that the flow remains nearly attached to the wing’s surface, maintaining vortex
stability. Moreover, the velocity in the vortex core exhibits an increase following the
abrupt shock interaction. The depiction of 𝑥-vorticity also portrays a stable and fully
developed secondary vortex, whose formation is postponed, preventing its breakdown.
In contrast, the 𝑘𝜔SST model displays notable differences in flow behavior near the
apex, including evident stream-wise flow separation, the lack of a coherent secondary
vortex, and a larger area of negative friction coefficient, indicating the leading-edge
vortex’s pre-existing weakened state prior to interaction with the shock wave. Thus,
the vortex depicted in the 𝑘𝜔SST results is inherently more prone to breakdown than
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in the SAnegRC findings, highlighting a potential shortfall in the SAnegRC model’s
predictive accuracy. Hi-Fi data in Fig. 7.7 substantiates and enhances this analysis,
particularly when examining instantaneous plots. The illustrations demonstrate the
emergence of turbulence at smaller scales, resulting from the disintegration of the
secondary vortex coupled with stream-wise detachment. These fluid particles influence
the behavior of the vortex sheet and begin to encircle the primary vortex, ultimately
leading to its subsequent breakdown.

7.4. Model impact on turbulence-related quantities
This section presents an analysis of the impact of the turbulence model on turbulence-
related quantities. A detailed discussion on eddy viscosity, including its production
and destruction, is followed by an analysis of the Reynolds stress tensor. This includes
understanding the effects of omitting the turbulence kinetic energy in the Boussinesq
assumption within the one-equation model.

7.4.1. Eddy viscosity: turbulence production and destruction
Figure 7.8 presents the viscosity ratio contours, defined by 𝑅𝑡 = 𝜇𝑡⇑𝜇, by comparing the
URANS outcomes. The RC correction strategy effectively reduces the overproduction
of eddy viscosity at the wing’s leading-edge. Nonetheless, this approach shows limita-
tions at the aft portion of the vortex core, where the SAnegRC model tends to produce
significantly higher eddy viscosity levels. The instability, especially subsequent to the
position of the lambda shock, is somewhat mitigated by the viscous damping effects
introduced by the SAnegRC model. High levels of turbulent viscosity stand in contrast
to the absence of predictions for vortex breakdown, which is identified as the primary
mechanism driving the generation of turbulent motion.

Figure 7.8: Viscosity ratio in the windward inboard vortex (Di Fabbio et al., 2024a).

The 𝑘𝜔SST model exhibits comparable magnitudes of eddy viscosity upstream of the
vortex-shock interaction, albeit manifesting generally diminished levels downstream.
Prior to the vortex breakdown, an increase in eddy viscosity is predominantly noted
within the separating shear layer as it forms the primary vortex. Post shock-vortex in-
teraction and ensuing breakdown, there’s a rising in eddy viscosity attributable to the
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vortex’s loss of coherence and the ensuing turbulent fluid motion. This phenomenon
is indicative of the model’s capability to accurately simulate the breakdown of vortex
structure through turbulent fluctuations. Within the RANS framework, zones exhibit-
ing elevated 𝜇𝑡 values typically denote vortex movements distinguished by substantial
turbulence energy generation, a consequence of pronounced flow rotation and defor-
mation (Peng and Jirasek, 2016). Consequently, areas where the vortex maintains its
coherence are expected to display reduced turbulence levels. The formation of the
leading-edge vortex is a naturally occurring process, independent of turbulence, as it
does not involve any velocity fluctuations.

Figure 7.9 delineates the production and dissipation metrics from the 𝜈 and 𝑘 tur-
bulence equations. In particular, by examining the one-equation model, this analysis
delineates the combination of SA and SAneg terms as articulated in Eqs. 3.61 and 3.65,
with a summary provided in Table 7.1. Additionally, the rotation correction coefficient,
𝑓𝑟1, as defined in Eq. 3.67, is depicted to offer further insights.

Figure 7.9: Source terms of the turbulence equations written in Table 7.1. All the
values have been normalized (Di Fabbio et al., 2024a).

Near the apex and leading-edge of the wing, where the vortex originates, the SA model
exhibits negligible turbulence production. "These outcomes corroborate the discrepan-
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cies highlighted in capturing the flow behavior near the leading edge on the windward
wing at 𝛼 = 24○ in Chapter 6. Within the vortex core, especially post shock interac-
tion, the production term becomes significantly pronounced, explaining the heightened
turbulent viscosity observed in this region. The model also oscillates between positive
and negative values, a phenomenon attributed to the RC correction. Such fluctuations
underscore the challenges in accurately quantifying turbulent viscosity, with additional
efforts to avoid negative values, which are both unrealistic and non-physical, resulting
in an increase in the absolute turbulent viscosity measure.

Moreover, the term associated with wall production elucidates that turbulence is pre-
dominantly generated at the site of the secondary vortex, which is observed to be stable
and well-formed. This scenario contrasts with the relatively inconsequential role of the
destruction term, which only partially offsets the impact of wall production. Further-
more, despite the RC factor’s efficacy in delineating the vortex core, it does not curtail
turbulence generation adequately. The SAnegRC model produces excessive turbulence
within the coherent core of the vortex, leading to its erroneous stabilization. Since
eddy viscosity acts to attenuate rotational motion, a more viscous flow exhibits slower
rotation. An increase in the Rossby number, the ratio of axial to tangential velocity,
is then generated signifying enhanced vortex stability (Riou et al., 2010).

The 𝑘𝜔SST model accurately predicts turbulence production in the region of flow
separation and somewhat reduces turbulence within the vortex core due to its specific
formulation, as detailed in Section 3.4.3. Furthermore, the observation that the destruc-
tion term manifests where the turbulent kinetic energy is both generated and reaches
peak levels, underscores the two-equation model’s inherent ability to self-regulate and
adjust the levels of turbulent viscosity. This self-balancing feature is less pronounced
in the one-equation model, especially within the context of vortical flows, suggesting
the need for a differentiated strategy in dealing with such complex configurations in
CFD simulations.

Table 7.1: Source terms of the turbulence equations illustrated in Fig. 7.9

Production Term Wall Production Term
SA 𝑃Ω𝑆𝐴

= (︀𝑐𝑏1 (1 − 𝑓𝑡2)Ω − 𝑐𝑏1𝑓𝑡2𝑠⌋︀𝜈 𝑃𝑤𝑎𝑙𝑙𝑆𝐴
= 𝑐𝑏1𝑠𝜈

SAneg 𝑃Ω𝑆𝐴𝑛𝑒𝑔
= 𝑐𝑏1 (1 − 𝑐𝑡3)Ω𝜈 𝑃𝑤𝑎𝑙𝑙𝑆𝐴𝑛𝑒𝑔

= 0
SA-RC 𝑃Ω𝑆𝐴−𝑅𝐶

= 𝑓𝑟1𝑃Ω𝑆𝐴
𝑃𝑤𝑎𝑙𝑙𝑆𝐴−𝑅𝐶

= 𝑓𝑟1𝑃𝑤𝑎𝑙𝑙𝑆𝐴

𝑘-eq 𝑃𝑘𝜔 = 𝜏𝑅
𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

-

(Wall) Destruction Term

SA 𝐷𝑤𝑎𝑙𝑙𝑆𝐴
= ]︀𝑐𝑤1𝑓𝑤 −

𝑐𝑏1

𝜅2 𝑓𝑡2{︀ (
𝜈

𝑑
)

2

SAneg 𝐷𝑤𝑎𝑙𝑙𝑆𝐴𝑛𝑒𝑔
= −𝑐𝑤1𝑓𝑤 (

𝜈

𝑑
)

2

SA-RC 𝐷𝑤𝑎𝑙𝑙𝑆𝐴−𝑅𝐶
=𝐷𝑤𝑎𝑙𝑙𝑆𝐴

𝑘-eq 𝐷𝑘 = 𝛽∗𝜌𝜔𝑘
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7.4.2. Boussinesq assumption and Reynolds stress tensor
A comparative examination of the Reynolds stresses between the SAnegRC and 𝑘𝜔SST
models highlights the significance of turbulence modeling, and more precisely, the im-
plications of omitting explicit turbulence kinetic energy in the SA model. Indeed,
the potential influence of Reynolds stress anisotropy on the inaccuracies observed in
URANS simulations is unable to explain the variances observed between the results
obtained by SA and 𝑘𝜔SST models, as both models incorporate the Boussinesq ap-
proximation. Hi-Fi data is utilized for benchmark purposes.

Reynolds stresses quantify the intensity of turbulent fluctuations across three dimen-
sions. These stresses comprise both the resolved and the modeled components. Within
the context of the mean flow-field, the modeled Reynolds stresses are derived utiliz-
ing the Boussinesq approximation presented in Eq. 3.40. To compute the resolved
Reynolds stresses statistics from the resolved fluctuations are computed. Figures 7.10
and 7.11 illustrate two normalized normal components of the Reynolds stress tensor,
𝑅(𝑖𝑗), on the windward wing. As introduced in Chapter 5, they are normalized against
the free-stream velocity and local mean density, reflecting the variance of the velocity
components.

Figure 7.10: Normalized specific Reynolds stresses, 𝑅11 (Di Fabbio et al., 2024a).

The outcomes derived from the SAnegRC model exhibit non-physical positive values
for 𝑅(𝑖𝑖), contradicting the expectation for these values to be negative, a consequence
of the negative sign applied to squared velocity fluctuations. This discrepancy is no-
tably absent in the findings associated with the 𝑘𝜔SST model. The inclusion of 𝑘, as
delineated in Eq. 3.40 and depicted in Fig. 7.12, accounts for the observed difference in
the 𝑘𝜔SST results, ensuring a more accurate representation of turbulence characteris-
tics. In the one-equation turbulence model, the turbulent kinetic energy is assumed to
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be zero, a simplification that leads to inaccuracies in predicting the normal Reynolds
stresses. This observation underscores the importance of the isotropic term from the
Boussinesq approximation, represented as 2⇑3𝜌𝑘𝛿𝑖𝑗. The absence of this term may
result in a significant disparity in the Reynolds stress magnitudes observed between
different modeling approaches, indicating the need for an alternative approach to in-
corporate the isotropic term of the Boussinesq hypothesis into one-equation models.

Figure 7.11: Normalized specific Reynolds stresses, 𝑅22 (Di Fabbio et al., 2024a).

Additionally, the 𝑅11 component highlights the turbulent characteristics of the shear
layer, particularly within the 𝑘𝜔SST model outcomes. The stream-wise turbulent
motion becomes increasingly noticeable in the separated boundary layer and intensi-
fies following the vortex breakdown, facilitating the downstream transport of turbu-
lence kinetic energy. Prior to the breakdown, velocity fluctuations within the leading-
edge vortex core are observed, attributed to the stochastic displacement of the vortex
core (Menke and Gursul, 1997). 𝑅22 highlights the genesis of fluctuations as the flow
transitions away from the leading-edge, serving as a significant contributor to the tur-
bulence kinetic energy within the vortex core.

In the context of the SAnegRC model, 𝑅11 exhibits significant negative values down-
stream of the shock-vortex interaction, emphasizing the transient nature of these phe-
nomena. The averaged Navier-Stokes equations primarily account for the divergence
of the Reynolds stress tensor. The influence of turbulence on the averaged momentum
equation is represented by the body force 𝑓 = 𝜕𝜏𝑅

𝑖𝑗 ⇑𝜕𝑥𝑖, as discussed in Section 3.3.3.
This observation implies that a positive gradient within the Reynolds stress tensor
serves as a propulsive force, accelerating the airflow over the aircraft, and conversely,
a negative gradient indicates a deceleration force. Consequently, the turbulence model
might erroneously augment the stability of a coherent vortex subsequent to its inter-
action with the shock wave. In contrast, a negative gradient is observed in the vicinity
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of the interaction, signifying the sudden deceleration of the flow. Furthermore, the 𝜏22
values are markedly lower when compared to those from the 𝑘𝜔SST model, indicating
a discrepancy in the turbulence modeling between the two approaches.

Figure 7.12: Normalized turbulent kinetic en-
ergy, 𝐾 (Di Fabbio et al., 2024a).

To deepen the discussion on Reynolds
stress and facilitate a comprehensive un-
derstanding of the associated dynamics,
Figs. 7.13, 7.14 and 7.15 are introduced
to exhibit the covariance components of
the Reynolds stress tensor. These visual-
izations provide insights into the under-
lying turbulence structure and its impact
on vortex dynamics.

The Reynolds stress 𝑅12 primarily indi-
cates the vortex core and the region of the
separated shear layer near the leading-
edge, where its value is positive, and con-
sequently, the covariance 𝑢′𝑣′ is negative.
This signifies that fluctuations in the 𝑥
and 𝑦 directions are opposite in sign. The
SAnegRC outcomes exhibit lower values
of 𝑅12 compared to other CFD outcomes,
especially in the region of the secondary
vortex. Here, it is possible to visual-
ize its formation and disintegration, fol-
lowed by the consequent stream-wise sep-
aration, which leads to high levels of tur-
bulence generation. It is also noteworthy
to highlight the opposite sign of this com-
ponent predicted at the location of the
shock wave by the SAnegRC results, as
marked in Fig. 7.13.

The Reynolds stress 𝑅13 is positive within the stream-wise separated boundary layer
but turns negative within the same region after the occurrence of the shock wave. This
effect is observed in correspondence with the interruption of the primary vortex feeding
process by the vortex sheet and is not present in the SAnegRC outcomes. It is also
noteworthy to highlight how this component is divided into two parts inside the vortex
core in the URANS outcomes; on the upper side, it is positive, with fluctuations in
the 𝑥 and 𝑧 directions being opposite in sign, while on the lower side, it is negative,
with fluctuations concordant in sign. This trend is not as evident in the Hi-Fi data,
where the behavior of this component is more chaotic within the vortex core region.
Furthermore, the color scale shows that 𝑅13 is the weakest covariance component.

As illustrated in Fig. 7.15, 𝑅23 primarily influences the shear layer, where the complex
separation process and vortex rolling-up occur. Within the shear layer, it is negative,
whereas it becomes positive in the vortex core. The Hi-Fi data provide a more accurate
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prediction of the vortex sheet, including its thickness and location. Furthermore, a
peak in this component is discernible in correspondence with the secondary vortex
disintegration, which causes a reduction in the vortex sheet length and decreases its
effectiveness in feeding the primary vortex. The SAnegRC model does not exhibit these
processes and phenomena, showcasing only a high value of this component inside the
vortex core.

Figure 7.13: Normalized specific Reynolds stress, 𝑅12.

Figure 7.14: Normalized specific Reynolds stress, 𝑅13.
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Figure 7.15: Normalized specific Reynolds stress, 𝑅23.

7.5. Improved one-equation results

As outlined in Section 7.1, calibrating the constant 𝐶𝑘 necessitates an analysis of the
turbulence kinetic energy, which is illustrated in Fig. 7.12. The initial estimate for 𝐶𝑘

has been then derived through the application of findings from the 𝑘𝜔SST model .By
reversing Eq. 7.3, the coefficient 𝐶𝑘 can be expressed as follows

𝐶𝑘 =
𝑘

𝜇𝑡

⌋︂
2𝑊𝑚𝑛𝑊𝑚𝑛

, (7.5)

where the variables on the RHS are computed from the 𝑘𝜔SST outcomes. Figure 7.16
shows the values of the coefficient 𝐶𝑘 calculated by applying Eq. 7.5. The results show
the relation between vorticity magnitude and turbulent kinetic energy in the vortex
core and suggest setting the value to 3.

Furthermore, a range of 𝐶𝑘 values is tested to identify the optimal value, thereby sub-
stantiating the credibility of the proposed enhancement. A quantitative assessment
is conducted to compare simulation outcomes with empirical data, involving the cal-
culation of the aerodynamic coefficient’s relative deviation for 𝛼 = 20○, as depicted in
Fig. 7.17. This comparison included 𝐶𝑘 values of 𝐶𝑐𝑟2 = 2.5, derived from the QCR
methodology (Rumsey et al., 2020b), 3.0, and 1⇑

⌈︂
𝛽∗𝑐 = 3.3, based on the Bradshaw

hypothesis (Bradshaw et al., 1967), alongside the CFD results previously elucidated.
Considering outcomes from previous research (Di Fabbio et al., 2022c), the novel model
also exhibits enhanced stability and robustness compared to the QCR model, charac-
terized by a more efficient convergence rate.
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Figure 7.16: Relation between vorticity mag-
nitude and turbulent kinetic energy through
𝐶𝑘 (Di Fabbio et al., 2024a).

By analyzing the results achieved with
the variation of 𝐶𝑘, several conclusions
can be drawn regarding the behavior of
this coefficient and its impact on the flow
physics. Firstly, the calibration of 𝐶𝑘 is
identified as pivotal, requiring precise ad-
justments to accurately predict the loca-
tion of vortex breakdown onset. With
an increase in 𝐶𝑘, the breakdown point
moves further up the wing, ultimately
aligning with the experimentally observed
position. Beyond this point, the pitching
moment coefficient shows reduced sensi-
tivity to changes in 𝐶𝑘. Conversely, the
rolling moment coefficient, 𝐶𝑚𝑥 , exhibits considerable sensitivity to variations in 𝐶𝑘,
reflecting its significant influence on the aerodynamic characteristics of the leeward
wing. The implementation of the PK turbulence model notably improves the precision
in predicting aerodynamic coefficients, thereby achieving a substantial reduction in
deviations when compared to those observed with the SAnegRC model. Optimal per-
formance is attained when 𝐶𝑘 is set to 3, and further detailed analysis are provided.

Figure 7.17: Aerodynamic coefficients deviation at 𝛼 = 20○ (Di Fabbio et al., 2024a).

Figure 7.18 shows the flow dynamics above the aircraft as predicted by the PK turbu-
lence model, with 𝐶𝑘 set at 3. The PK model excels in predicting the behavior and
instability of the secondary vortex, evidenced by a more distinct stream-wise separation
initiating at the leading-edge, as illustrated by the 𝑥-direction friction coefficient.
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7.5 Improved one-equation results

Figure 7.18: PK outcomes: leading-edge
vortices, vortex-shock interaction, stream-wise
separation, and vortex breakdown (Di Fabbio
et al., 2024a).

Additionally, this model achieves a more
precise representation of the lambda
shock, thereby enhancing the fidelity of
shock-vortex interaction predictions. The
Mach contour delineations generated by
the PK model exhibit a closer resem-
blance to those obtained by the 𝑘𝜔SST
model shown in Fig. 7.6, albeit with
the vortex breakdown transpiring fur-
ther downstream. In the 𝑘𝜔SST-based
URANS results, the breakdown appears
at the exact location of the interac-
tion with the lambda shock, whereas in
the PK outcomes, its location is further
downstream. This behavior may be at-
tributed to the intensity and extent of
the separation area close to the leading-
edge, which is decidedly more pronounced
in the 𝑘𝜔SST outcomes. Nonetheless, the
PK model proficiently predicts the vortex
breakdown location on the wing, align-
ing closely with experimental findings and
achieving a position that more accurately
reflects the Hi-Fi data.

Figure 7.19 presents the turbulence-
related metrics derived from the PK
model outcomes, highlighting its en-
hanced turbulence modeling. Notably,
the viscosity ratio predictions more
closely align with those recorded by the
𝑘𝜔SST model, indicating a significant
improvement in modeling fidelity. This
model identify the turbulence within the
vortex core, especially after the interac-
tion with the lambda shock, and particu-
larly near the leading-edge where the vor-
tex sheet appears. The normal Reynolds
stresses and the turbulent kinetic energy also depict the chaotic motion subsequent to
the stream-wise separation following the burst of the secondary vortex.

By extending Boussinesq’s hypothesis, the PK model effectively overcomes the limita-
tions observed in traditional one-equation RANS approaches, accurately predicting the
Reynolds normal stresses without yielding to the inaccuracies previously noted, such as
unjustified and non-physical positive values. Through this advancement, the PK model
significantly refines the understanding of the flow physics around a delta wing under
transonic conditions, marking a pivotal enhancement over conventional one-equation
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RANS models. The ongoing refinement of the PK model, particularly through the op-
timization of the coefficient 𝐶𝑘 via a process that incorporates a flow field-dependent
variation function, may represent a promising route for further research. Such advance-
ments could potentially lead to even more accurate and reliable predictions of complex
aerodynamic behaviors, while maintaining efficiency and robustness, thereby contribut-
ing valuable insights into the design and analysis of aerospace vehicles operating under
a wide range of conditions.

Figure 7.19: PK outcomes: viscosity ratio; normalized turbulent kinetic energy and
normalized normal Reynolds stresses (Di Fabbio et al., 2024a).

Finally, as illustrated by the aerodynamic coefficients in Fig. 7.2, the PK model does
not significantly improve numerical predictions at 𝛼 = 24°. However, it successfully
captures the vortex breakdown at 𝛼 = 20° and 28° on the windward and leeward wings,
respectively. This discrepancy may be attributed to multiple factors, with no universal
solutions readily apparent. However, considering the analysis conducted at 𝛼 = 24°
in Section 6.2.2 and the observed flow physics on the wing, it may be hypothesized
that the primary challenge lies in capturing the turbulent motion generated on the
windward wing. In this scenario, no coherent vortex is generated, and the breakdown
has reached the wing’s apex. As discussed in Section 6.2.2, the SAnegRC model does
not accurately capture this phenomenon, and the PK model exhibits similar limita-
tions. This issue stems from the intrinsic limitations of the model’s formulation, which
fails to generate the necessary turbulence near the leading-edge, as corroborated from
the analysis conduced in Section 7.4.1. To address this challenge, new formulations of
the one-equation model are explored through modifications of the production and de-
struction terms and the incorporation of machine learning techniques. The significant
outcomes are detailed in Chapter 8.
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8
Towards an Enhanced One-Equation
Turbulence Model by Gene Expression
Programming

This chapter elucidates the findings reported in Di Fabbio et al., 2024b, aiming to
enhance RANS modeling capabilities through two innovative methodologies, which are
introduced in Section 8.1. The first strategy involves extending the linear Boussinesq
hypothesis to more accurately capture and model Reynolds stress anisotropy, thereby
improving the predictive accuracy, as detailed in Section 8.1.1. The second strategy
focuses on the development of an enhanced one-equation turbulence model, discussed
in Section 8.1.2, aiming to more accurately represent turbulence production and de-
struction within the flow field. In both strategies, the SA model is employed, either
in its standard form for the first strategy or with modifications for the second. These
modifications involve adjusting coefficients in the production and destruction terms of
the original SA equation and potentially developing a new formulation of these terms,
leading to a novel eddy viscosity turbulence equation.

A machine learning techniques is employed, specifically GEP, which is introduced in
Section 4.2.2. As described in Section 4.2.3, a CFD-driven framework is used to in-
tegrate GEP with the OpenFOAM solver for computing the RANS simulations. This
integration enables the real-time evaluation of expressions generated by the machine
learning algorithm.

At the initial stage, as presented in Section 8.2, four fundamental flows from the NASA
challenge validation cases, the flat plate, channel, jet, and wall-mounted hump (acces-
sible at https://turbmodels.larc.nasa.gov), are considered to evaluate the perfor-
mance of the proposed models. These cases, characterized by complex flow dynamics
such as significant wall curvature, pronounced flow separation, and exceptionally high
Reynolds numbers, are crucial for the optimization phase of the model. The flow cases
are analyzed individually, in a single-case CFD-driven training approach, followed by a
comprehensive analysis of the derived model expressions. Following the evaluation and
validation of the methodologies based on these fundamental cases, Section 8.3 discusses
the training and numerical investigation of the VFE-2 delta wing configuration.
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8.1. Methodology for improved one-equation model
The two methodologies applied for improving the one-equation turbulence model pre-
dictions are presented. Section 8.1.1 discusses the extension of the linear Boussinesq
hypothesis to more accurately capture and model Reynolds stress anisotropy. Sec-
tion 8.1.2 elucidates the development of an advanced one-equation turbulence model.

8.1.1. Extra-Anisotropic Reynolds Stress Modeling

Advancements in turbulence modeling have led to the exploration of EARSMs, which
offer a refined approach over the traditional Boussinesq hypothesis by incorporating an
additional anisotropic stress component, 𝑎𝑖𝑗, into the Reynolds stress tensor represen-
tation as follows1

𝜏𝑅
𝑖𝑗 =

2
3𝜌𝑘𝛿𝑖𝑗 − 2𝜇𝑡𝑆

∗

𝑖𝑗 + 𝑎𝑖𝑗. (8.1)

Such EARSM-based closures can be represented in a dimensionless form, as given by

𝑎∗𝑖𝑗 =∑
𝑘

𝑓 (𝑘)(𝐼1, 𝐼2, . . . , 𝐼𝑛)𝑉 𝑘
𝑖𝑗 , (8.2)

which involves a summation of basis tensors, 𝑉 𝑘
𝑖𝑗 , each multiplied by functions of the

invariants, 𝑓 (𝑘). Considering the purpose of this work and the selected test cases, three
basis tensors and two invariants are utilized. Indeed, the application of three funda-
mental basis tensors alongside two invariants constitutes the standard methodology
for analyzing two-dimensional flows (Pope, 1975). Furthermore, extending this frame-
work to encompass three-dimensional cases, such as the VFE-2 delta wing, effectively
simplifies the model’s complexity. The employed basis tensors and invariants are thus
defined as follows

𝑉 1
𝑖𝑗 = 𝑠𝑖𝑗, 𝑉 2

𝑖𝑗 = 𝑠𝑖𝑘𝜔𝑘𝑗 − 𝜔𝑖𝑘𝑠𝑘𝑗, 𝑉 3
𝑖𝑗 = 𝑠𝑖𝑘𝑠𝑘𝑗 −

1
3𝛿𝑖𝑗𝑠𝑚𝑛𝑠𝑚𝑛,

𝐼1 = 𝑠𝑚𝑛𝑠𝑚𝑛, 𝐼2 = 𝜔𝑚𝑛𝜔𝑚𝑛.
(8.3)

The dimensionless anisotropic stress tensor, 𝑎∗𝑖𝑗, represented by a combination of basis
tensor, 𝑉 𝑘

𝑖𝑗 , and scalar invariants, 𝐼𝑘, is formulated through symbolic regression via the
GEP framework (Weatheritt and Sandberg, 2016). This technique aims to identify the
coefficients 𝑓 (𝑘), which are functions of the invariants, utilizing training datasets.

The tensors and invariants originate from the dimensionless strain rate tensor 𝑠𝑖𝑗 = 𝑡𝑙𝑆∗𝑖𝑗
and rotation rate tensor 𝜔𝑖𝑗 = 𝑡𝑙𝑊𝑖𝑗. Following the methodology proposed by Weatheritt
and Sandberg, 2016, the turbulence timescale, 𝑡𝑙, must be derived when applying the
SA turbulence model, due to the inability to compute the specific dissipation ratio,
𝜔, directly from its equation (Eq. 3.84). Drawing inspiration from the QCR ap-
proach (Rumsey et al., 2020a), the timescale is computed based on the magnitude

1The sign of the Boussinesq equation has been inverted relative to Eq. 3.40 to align with the model’s
implementation in OpenFOAM, thereby ensuring easier implementation and facilitating a better
understanding of the obtained results.
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of the velocity gradient tensor as follows

𝑡𝑙 =
1⌉︂

𝜕𝑢𝑚

𝜕𝑥𝑛

𝜕𝑢𝑚

𝜕𝑥𝑛

, (8.4)

where
}︂

𝜕𝑢𝑚

𝜕𝑥𝑛

𝜕𝑢𝑚

𝜕𝑥𝑛

=
⌉︂
𝑢2

𝑥 + 𝑢2
𝑦 + 𝑢2

𝑧 + 𝑣2
𝑥 + 𝑣2

𝑦 + 𝑣2
𝑧 +𝑤2

𝑥 +𝑤2
𝑦 +𝑤2

𝑧 . (8.5)

Subsequently, the dimensionalized anisotropic stress tensor 𝑎𝑖𝑗 is derived from the
modeled dimensionless form 𝑎∗𝑖𝑗 as follows

𝑎𝑖𝑗 =
2𝜇𝑡𝑎∗𝑖𝑗
𝑡𝑙

, (8.6)

resulting in a revised Reynolds stress tensor equation given by

𝜏𝑅
𝑖𝑗 =

2
3𝜌𝑘𝛿𝑖𝑗 − 2𝜇𝑡𝑆

∗

𝑖𝑗 +
2𝜇𝑡𝑎∗𝑖𝑗
𝑡𝑙
= 2

3𝜌𝑘𝛿𝑖𝑗 − 2𝜇𝑡 (𝑆∗𝑖𝑗 −
𝑎∗𝑖𝑗
𝑡𝑙
) . (8.7)

The model employing this methodology is designated as SA+𝑎𝑖𝑗. The training of the
GEP model commences with an initial set of EASMs. Throughout the optimization,
the basis tensor 𝑉 𝑘

𝑖𝑗 remain unaltered, whereas the coefficients 𝑓 (𝑘), subject to 𝐼𝑘, are
determined. These functions are generated randomly, presenting distinct functional
structures and arbitrary constants. Each candidate model has 4 genes, representing
unique coefficients for 𝑉 𝑘

𝑖𝑗 . The expression length for the coefficient function is primarily
governed by the gene’s head length and the truncation level of its expression tree. In
this investigation, the head length is set to 5, the maximum size of the expression tree
is limited to 12, and the population size is established at 400. For a comprehensive
insight into the configuration parameters of GEP, readers are referred to the following
references (Fang et al., 2023; Weatheritt and Sandberg, 2016, 2017; Zhao et al., 2020).
In addition, the EVE code, which is utilized in this work and based on the GEP
algorithms, is introduced in Section 4.2.

8.1.2. The enhanced one-equation model

The predominant source of numerical prediction error in the SA model is attributed to
the production and destruction terms, which are expected to counterbalance each other,
as elucidated and addressed by Moioli et al., 2019, 2022. Similar considerations are
discussed in the dissertation towards the end of Chapter 6. Consequently, the diffusion
terms of the standard SA turbulence model in Eq. 3.61 remains unaltered without
further derivation or modification. The focus will be on devising a novel formulation
for the terms of production and destruction. The enhancement of the SA model is
then explored by adjusting these terms via GEP optimization. The modified equation,
henceforth referred to as SA+PD, is proposed as follows

𝜕𝜈

𝜕𝑡
+ 𝑢𝑗

𝜕𝜈

𝜕𝑥𝑗

= 𝐶𝑃𝑆𝜈 −𝐶𝐷 (𝜈
𝑑
)

2
+ 1
𝜎
⌊︀ 𝜕

𝜕𝑥𝑗

((𝜈 + 𝜈) 𝜕𝜈
𝜕𝑥𝑗

) + 𝑐𝑏2
𝜕𝜈

𝜕𝑥𝑖

𝜕𝜈

𝜕𝑥𝑖

}︀ , (8.8)
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where the coefficients 𝐶𝑃 (𝐼1, 𝐼2) and 𝐶𝐷(𝐼1, 𝐼2) are functions of invariants 𝐼1 and 𝐼2,
as defined in Eq. 8.3. The same GEP settings detailed in Section 8.1.1 are kept for
this methodology as well, even though, in this case, the optimization process aims
to find the best values for the coefficients 𝐶𝑃 and 𝐶𝐷 in front of the production and
destruction terms of the original SA model. Therefore, using the standard Boussinesq
assumption, an attempt has been made to modify the turbulence’s production and
destruction, optimizing the SA equation for various case studies.

Alternatively, an enhanced one-equation turbulence model is derived from the well-
established 𝑘 − 𝜔 model, introduced in Section 3.4.3. By substituting the 𝑘 and 𝜔
equations, Eq. 3.83 and Eq. 3.84 respectively, the 𝜈𝑡 equation can be derived as follows

𝐷𝜈𝑡

𝐷𝑡
= 1
𝜔
(𝐷𝑘
𝐷𝑡
− 𝜈𝑡

𝐷𝜔

𝐷𝑡
) = (1 − 𝛾𝜔)

𝜏𝑅
𝑖𝑗

𝜔

𝜕𝑢𝑖

𝜕𝑥𝑗

− 𝛽𝑘𝑘 + 𝛽𝜔𝜈𝑡𝜔 + . . . , (8.9)

where the dissipation terms are omitted because, as previously explained, the scope is
to derive a new formulation for the production and destruction terms. The Reynolds
stress tensor 𝜏𝑅

𝑖𝑗 is computed using the Boussinesq assumption, where the isotropic term
2⇑3𝜌𝑘𝛿𝑖𝑗 is neglected. However, it does not play any role in incompressible cases.

The terms on the RHS can be reformulated by substituting 𝑘 = 𝜈𝑡𝜔, resulting in the 𝜈𝑡

equation as follows

𝐷𝜈𝑡

𝐷𝑡
= 2(1 − 𝛾𝜔)𝜈𝑡

𝑆∗𝑖𝑗
𝜔

𝜕𝑢𝑖

𝜕𝑥𝑗

− (𝛽𝑘 − 𝛽𝜔)𝜈𝑡𝜔 +
1
𝜎
⌊︀ 𝜕

𝜕𝑥𝑗

((𝜈 + 𝜈) 𝜕𝜈
𝜕𝑥𝑗

) + 𝑐𝑏2
𝜕𝜈

𝜕𝑥𝑖

𝜕𝜈

𝜕𝑥𝑖

}︀ , (8.10)

which include the original formulation of the SA diffusion terms. It is worth noting
that the new production term has the advantage that changes of 𝜏𝑅

𝑖𝑗 are reflected in
itself as well, and not just in the Boussinesq assumption. In this way, a kind of double
optimization is possible while modeling the anisotropy of the Reynolds stress.

The specification of 𝜔 requires a distinct formulation, since the 𝜔 equation cannot
be applied to appropriately model the production and destruction terms in Eq. 8.10.
Firstly, the destruction term is considered. The turbulence length scale, 𝑙𝑡, is equated to
the wall distance, 𝑙𝑡 = 𝑑, within the context of the one-equation model. This assumption
facilitates the scaling of turbulence kinetic energy as 𝑘 ∝ 𝜈2

𝑡 ⇑𝑑2, as demonstrated by
Bradshaw et al., 1967. Consequently, the relationship between 𝜔 and the wall distance
is derived as follows

𝑘 ∝ 𝜈2
𝑡

𝑑2 and 𝜔 ∝ 𝑘

𝜈𝑡

→ 𝜔 ∝ 𝜈𝑡

𝑑2 . (8.11)

Accordingly, the formulation of the destruction term aligns with the original model
as outlined in Eq. 3.61, where 𝐷 = (𝛽𝑘 − 𝛽𝜔) (𝜈𝑡⇑𝑑)2, introducing a new coefficient or
function to calibrate the term.

In terms of the production term, the specific dissipation rate, 𝜔, is conceptualized
as a parameter used to render the deviatoric strain rate tensor, 𝑆∗𝑖𝑗, dimensionless.
Considering the analyses presented in Section 8.1.1, 𝜔 is reformulated based on the
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magnitude of the velocity gradient tensor, expressed as 𝜔 = 1⇑𝑡𝑙, with the timescale 𝑡𝑙
in Eq. 8.4.

Adhering to the definitions stipulated in the baseline SA model (Spalart and Allmaras,
1992) and presented in Section 3.4.1,

𝜈𝑡 = 𝜈𝑓𝑣1, where 𝑓𝑣1 =
𝜉3

𝜉3 + 𝑐3
𝑣1
, and 𝜉 = 𝜈

𝜈
, (8.12)

and maintaining the original form of the diffusion term, the enhanced one-equation
turbulence model for the variable 𝜈 is delineated as follows

𝐷𝜈

𝐷𝑡
= 2(1−𝛾𝜔)𝑡𝑙𝑆∗𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜈−(𝛽𝑘−𝛽𝜔) (𝜈
𝑑
)

2
+ 1
𝜎
⌊︀ 𝜕

𝜕𝑥𝑗

((𝜈 + 𝜈) 𝜕𝜈
𝜕𝑥𝑗

) + 𝑐𝑏2
𝜕𝜈

𝜕𝑥𝑖

𝜕𝜈

𝜕𝑥𝑖

}︀ . (8.13)

To mitigate the dependency on wall distance and enhance the model’s versatility, a
novel formulation of the destruction term is introduced, analogous to the original SA
model but with modifications to better address flows distant from walls. This ad-
justment is particularly crucial in HRL methodologies (Spalart et al., 2006), where a
blending function, 𝑓𝑑, facilitates a smooth transition between RANS and LES modes
based on the proximity to the wall. The blending function, expressed in Eq. 3.74,
facilitates the dynamic adjustment of the destruction term, enabling it to accurately
represent both near-wall and free-stream behaviors, through the following expression:

�̃� = 𝜈

𝑑2 − 𝑓𝑑 ⋅min( 𝜈
𝑑2 −

⌈︂
𝛽∗⋃︀𝑆𝑖𝑗 ⋃︀2𝑡𝑙,0) . (8.14)

Here, 𝛽∗ = 0.09, as identified by Wilcox, 1998, and ⋃︀𝑆𝑖𝑗 ⋃︀ =
⌈︂

2𝑆𝑖𝑗𝑆𝑖𝑗 represents the
magnitude of the strain rate tensor. Therefore, �̃� = 𝜈⇑𝑑2 when 𝑓𝑑 = 0 (near the wall)
and transitions to �̃� =

⌋︂
𝛽∗⋃︀𝑆𝑖𝑗 ⋃︀2𝑡𝑙 when 𝑓𝑑 = 1 (away from the wall), ensuring that the

destruction term’s value is not only preserved but potentially increased in areas with
significant strain rates to adequately counterbalance the production term.

The enhanced model, denoted as CSA (Coupled Spalart-Allmaras model), integrates
these modifications while retaining the core structure of the original SA formulation
and it is written as follows

𝐷𝜈

𝐷𝑡
= 2𝑐𝑏1𝑡𝑙𝑆

∗

𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜈 − 𝑐𝑤1𝑓𝑤�̃�𝜈 +
1
𝜎
⌊︀ 𝜕

𝜕𝑥𝑗

((𝜈 + 𝜈) 𝜕𝜈
𝜕𝑥𝑗

) + 𝑐𝑏2
𝜕𝜈

𝜕𝑥𝑖

𝜕𝜈

𝜕𝑥𝑖

}︀ , (8.15)

where the production and destruction coefficients are substituted with the original ones
from the SA model, as presented in Section 3.4.1. Indeed, the original coefficient formu-
lations from the SA model have been successfully tested, demonstrating the balanced
and well-constructed nature of the new equation. For this reason, they are utilized in
the new formulation, although significant potential remains for further improvements
by employing the CSA equation.

Modeling the anisotropy of Reynolds stresses following the first approach has been
conducted using both the SA model in Eq. 3.61 and the new CSA model in Eq. 8.15
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as turbulence closure equation. The same GEP settings detailed in Section 8.1.1 are
employed. The CSA turbulence equation enables the simultaneous optimization of
Reynolds stresses and the production term, similar to the approach taken for the two-
equation 𝑘𝜔SST model (Weatheritt and Sandberg, 2016). The model employing this
methodology is designated as CSA+𝑎𝑖𝑗. The two approaches discussed above are then
interconnected.

8.2. NASA validation cases
This section details the outcomes of extensive optimizations of RANS turbulence mod-
els, aimed at enhancing their predictive accuracy for a range of fundamental flows. The
following four NASA challenge validation cases are considered to perform the training
process.

• 2DZP: 2D Zero Pressure Gradient Flat Plate.

• 2DFDC: 2D Fully-Developed Channel Flow at a high Reynolds number.

• 2DWMH: 2D NASA Wall-Mounted Hump with Flow Separation.

• ASJ: Axisymmetric Subsonic Jet.

The computational domain is not discussed herein, as it can be downloaded from
https://turbmodels.larc.nasa.gov, where all necessary information is provided.
These are standard validation cases that are well-known in the field of turbulence
modeling research.

For each case, specific quantities are meticulously defined for computing the cost func-
tions. For the flat plate case, emphasis is placed on the stream-wise friction coefficient
and the velocity profile at a stream-wise position of 𝑥⇑𝐿 = 0.97, measured relative to
the distance from the wall. The training for the channel flow case is informed by the
velocity profile at a stream-wise location of 𝑥⇑ℎ = 500, also relative to the wall dis-
tance. The axisymmetric subsonic jet case focuses on the stream-wise velocity and
shear stress profiles at downstream positions 𝑥⇑𝐷jet = 15 and 20. Lastly, for the wall-
mounted hump case, the cost function incorporates both the friction and pressure
coefficients along the surface of the hump, as well as the stream-wise velocity profiles
at axial positions immediately before and after the separation bubble, specifically at
𝑥⇑𝑐 = 0.9, 1.0, and 1.1.

For the RANS simulations, the rhoPimpleFoam solver is explicitly used for the com-
pressible jet, while the other cases utilize simpleFoam within the OpenFOAM frame-
work, discussed in Section 4.1. In this OpenFOAM simulation configuration, the nu-
merical schemes are tailored for a steady-state analysis. The gradient computations
default to a Gaussian linear approach, with a specific cell-limited modification applied
to the velocity gradient to enhance numerical stability. The divergence schemes are
meticulously selected for different variables: a bounded linear upwind scheme is used
for velocity fluxes, ensuring accuracy while preventing numerical oscillation; an up-
wind scheme is adopted for the turbulence model variable, 𝜈, favoring stability; and a
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standard Gauss linear scheme is applied for the effective viscosity multiplied by the de-
viatoric tensor of velocity gradient, aiming for a balance between accuracy and stability.
The Laplacian terms employ a Gauss linear corrected scheme to improve accuracy by
correcting for mesh non-orthogonality. Linear interpolation is used as the default for
intermediate values, and the surface normal gradients are corrected to account for mesh
irregularities, ensuring that the simulation results are both accurate and reliable2.

Five simulation results have been compared with the experimental data. The method-
ologies presented in Section 8.1 are thus tested.

1. SA: SA turbulence model by applying the Boussinesq assumption.

2. SA+𝑎𝑖𝑗 : SA turbulence model by optimizing 𝜏𝑅
𝑖𝑗 modeling the Reynolds stress

anisotropy, as introduced in Section 8.1.1. GEP provides the coefficients 𝑓 (1),
𝑓 (2), 𝑓 (3) that multiply the basis tensors 𝑉 1

𝑖𝑗 , 𝑉
2

𝑖𝑗 , 𝑉
3

𝑖𝑗 for modeling 𝑎𝑖𝑗.

3. SA+PD: Boussinesq assumption applied with an optimized version of the SA
turbulence model in Eq. 8.8. The original production and destruction coefficients
of the SA equation, 𝑐𝑏1 and 𝑐𝑤1𝑓𝑤 respectively, have been substituted with 𝐶𝑃

and 𝐶𝐷 found through GEP optimization.

4. CSA: new CSA one-equation turbulence model in Eq. 8.15 by applying the
Boussinesq assumption.

5. CSA+𝑎𝑖𝑗 : new CSA one-equation turbulence model in Eq. 8.15 by optimizing
𝜏𝑅

𝑖𝑗 modeling the Reynolds stress anisotropy, as introduced in Section 8.1.1. The
modeled 𝑎𝑖𝑗 is also included in the new turbulence production term in Eq. 8.15
by noticing that 2𝜈𝑆∗𝑖𝑗 = 𝜏𝑅

𝑖𝑗 ⇑𝑓𝜈1. It allows to optimize with the same 3 coefficients
(𝑓 (1), 𝑓 (2), 𝑓 (3)) both the anisotropy tensor and the turbulence production term.
The employed production term thus becomes 𝑃 = 2𝑐𝑏1 (𝑆∗𝑖𝑗𝑡𝑙 − 𝑎∗𝑖𝑗)

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜈.

Some variables related to the boundary layer theory need to be defined before present-
ing the results. In turbulent boundary layers, the dimensionless variables 𝑢+ and 𝑦+

are commonly defined to facilitate the analysis of velocity profiles and the scaling of
turbulence near walls. The non-dimensional velocity, 𝑢+, is defined as follows

𝑢+ = 𝑢

𝑢𝜏

, (8.16)

where 𝑢 denotes the local fluid velocity parallel to the wall, and 𝑢𝜏 is the friction
velocity, given by

𝑢𝜏 =
}︂

𝜏𝑤

𝜌
, (8.17)

with 𝜏𝑤 representing the wall shear stress and 𝜌 the fluid density. Similarly, the dimen-
sionless wall-normal distance, 𝑦+, is given by

𝑦+ = 𝑦𝑢𝜏

𝜈
, (8.18)

2The numerical approach is described by following the OpenFOAM parameters nomenclature, en-
suring ease of understanding and reproducibility.

161



8.2 NASA validation cases

where 𝑦 is the physical distance from the wall, and 𝜈 is the kinematic viscosity of the
fluid. These definitions are essential for the characterization of flow dynamics in the
viscous sub-layer of turbulent boundary layers. These dimensionless parameters are
crucial in the analysis of near-wall turbulent flows, facilitating the universal represen-
tation of velocity profiles and the scaling of turbulence statistics.

Furthermore, the momentum thickness, 𝜃, is a fundamental parameter in boundary
layer theory that characterizes the velocity profile relative to the free-stream. It is
defined as follows

𝜃 =
𝛿

∫
0

(1 − 𝑢

𝑈∞
)( 𝑢

𝑈∞
)𝑑𝑦, (8.19)

where 𝑢 is the fluid velocity parallel to the wall at a distance 𝑦 from the wall, 𝑈∞ is
the free-stream velocity, and 𝛿 represents the boundary layer thickness. The parameter
𝑦 denotes the distance normal to the wall, extending from the wall to the edge of
the boundary layer where the flow velocity is approximately 99% of the free-stream
velocity, 𝑈∞.

The Reynolds number based on momentum thickness, 𝑅𝑒𝜃, is a dimensionless quantity
used to characterize the flow within the boundary layer, defined as follows

𝑅𝑒𝜃 =
𝜌𝑈𝜃

𝜇
. (8.20)

This Reynolds number is crucial for understanding the transition from laminar to tur-
bulent flow, with higher values indicating increasingly turbulent flow characteristics.

8.2.1. Flat plate
Figure 8.1 presents the comparison of the friction coefficient, 𝑐𝑓 , along the flat plate
and the velocity profile at 𝑥⇑𝐿 = 0.97 as functions of the distance from the wall. These
numerical results are compared against experimental data from White and Majdalani,
2006. Table 8.1 summarizes the expressions found by the GEP training.

The SA model provides velocity predictions that align well with theoretical expecta-
tions concerning the distance from the wall. However, the model tends to underpredict
or overpredict the 𝑐𝑓 for 𝑅𝑒𝜃 below or above 7500, respectively. Except for the CSA+𝑎𝑖𝑗

model, all models exhibit certain deviations in accurately predicting the friction coef-
ficient, yet conform to the logarithmic velocity profile. The SA+PD modifications fail
to enhance the performance of the SA model for the flat plate test case. This outcome
is attributed to the coefficients already being tailored for such conditions. Conversely,
integrating the SA+𝑎𝑖𝑗 modification substantially improves the prediction of the 𝑐𝑓

only in the downstream region of the flat plate. Finally, the development of a new
formulation for the one-equation turbulence model (referred to as CSA) emerges as a
viable solution in this context. It demonstrates stability and consistency with the SA
model, while also facilitating more precise optimization through GEP. The enhanced
optimization capability of the CSA+𝑎𝑖𝑗 model can be attributed to the optimization
of Reynolds stress anisotropy coupled with the production term.
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Figure 8.1: 2DZP: friction coefficient and velocity profile (Di Fabbio et al., 2024b).

Table 8.1: 2DZP: GEP expressions. Numbers rounded to the third decimal place.

𝑓 (1) 𝑓 (2) 𝑓 (3)

SA+𝑎𝑖𝑗 −0.097𝐼2𝐼2
1 − 0.097𝐼2𝐼1 −𝐼2𝐼2

1 − 2.15𝐼2𝐼1 −
0.183𝐼2

3.903𝐼1 + 8.153

CSA+𝑎𝑖𝑗 −0.01𝐼2
2 + 0.001𝐼1𝐼2 −

0.002𝐼2 + 0.0001𝐼1 −
0.0001

0.097𝐼1−5𝐼2+0.294 0.43𝐼1 + 2.21894

𝐶𝑃 𝐶𝐷

SA+PD 0.097𝐼1 − 0.097𝐼2 + 0.43 1.911𝐼1 + 𝐼2 + 3.546

8.2.2. Channel flow

Figure 8.2: 2DFDC: law of the wall (Di Fab-
bio et al., 2024b).

The velocity profile at 𝑥⇑ℎ = 500 is de-
picted in Fig. 8.2. All models demon-
strate close agreement with the theoret-
ical results (White and Majdalani, 2006).
Each model accurately represents then
the vertical stratification across the vis-
cous sub-layer, logarithmic layer, and tur-
bulent core, even in scenarios charac-
terized by very high Reynolds numbers.
Such findings underscore the efficacy of
the HRL blending function integrated
into the destruction term of the CSA
model, confirming its ability to maintain
the integrity of the law of the wall with a
well-represented velocity profile. The ex-
pressions derived through GEP training
are summarized in Table 8.2.
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Table 8.2: 2DFDC: GEP expressions. Numbers rounded to the third decimal place.

𝑓 (1) 𝑓 (2) 𝑓 (3)

SA+𝑎𝑖𝑗 0.205𝐼2
1 +

0.205𝐼2𝐼1 − 0.001𝐼1

2𝐼1𝐼2
2 + 0.216𝐼2 − 0.089 2𝐼2

2 +𝐼1𝐼2+7𝐼2+2𝐼1+6

CSA+𝑎𝑖𝑗 0.097𝐼2 − 0.005 −0.15𝐼2
1 + 0.087𝐼1 − 2𝐼2 −1.15𝐼2 − 2.527

𝐶𝑃 𝐶𝐷

SA+PD 0.205𝐼2 + 1.485 −0.43𝐼2𝐼1 − 2.198𝐼1 + 2.518𝐼2 + 12.870

8.2.3. Wall-mounted hump
Figures 8.3, 8.4, and 8.5 juxtapose the numerical results with experimental data from
Seifert et al. (2002) for the wall-mounted hump test case.

Figure 8.3: 2DWMH: friction and pressure coefficients (Di Fabbio et al., 2024b).

Figure 8.4: 2DWMH: velocity and Reynolds stress profiles (Di Fabbio et al., 2024b).
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Figure 8.5: 2DWMH: velocity contour
plots (Di Fabbio et al., 2024b).

Figure 8.3 presents the pressure and fric-
tion coefficients along the surface. The
reattachment point, indicative of the sep-
aration bubble’s extent, is delineated at
the juncture where 𝑐𝑓 = 0. Notable dis-
crepancies are observed adjacent to and
beyond the separation bubble. Specifi-
cally, the SA model tends to underesti-
mate both coefficients following the bub-
ble, mirroring the deviation observed for
the flat plate. However, the discrepan-
cies in the friction coefficient for the hump
case are more pronounced compared to
those in the flat plate scenario.

Figure 8.4 illustrates the velocity and
shear stress profiles at selected locations
around the hump. Analysis of the ve-
locity profiles reveals increased deviation
near the hump’s surface, while the shear
stress profiles exhibit significant differ-
ences in the vicinity of the separation
bubble. Despite not being explicitly in-
cluded in the cost functions, the Reynolds
stress profile are accurately represented
by the CSA+𝑎𝑖𝑗 and SA+PD models.
The CSA model exhibits slight deviations
from the SA model but demonstrates
alignment with the results of the 𝑘𝜔SST
model reported in the literature (Rumsey
and Coleman, 2022). With the exception
of the SA+𝑎𝑖𝑗, all models subjected to
training enhance the accuracy of numerical predictions. Thus, the modification of
Reynolds stresses through the modeling of the anisotropic tensor alone proves inade-
quate for accurately predicting the reattachment point. Enhancement in the prediction
necessitates the modification and the training of the production term. Notably, the
CSA+𝑎𝑖𝑗 model achieves outcomes highly consistent with the reference data, marking
one of the most accurate predictions rendered by a one-equation model to date (Rumsey
and Coleman, 2022).

Figure 8.5 illustrates the efficacy of the trained models through the contour of the
velocity flow field. Streamlines are utilized to illustrate separation bubbles, facilitating
a comparison between experimental and numerical data. As indicated in Figs. 8.3
and 8.5, experimental analyses approximate the reattachment point at 𝑥⇑𝑐 = 1.1,
whereas the SA model predicts it at 𝑥⇑𝑐 = 1.2. Flow fields generated by the CSA+𝑎𝑖𝑗

and SA+PD models exhibit notable congruence, adjusting the reattachment closer to
𝑥⇑𝑐 = 1.12, whereas the SA+𝑎𝑖𝑗 model does not significantly alter it. The trained
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models, except for SA+𝑎𝑖𝑗, accurately depict the flow dynamics along the hump’s
down ramp, closely mirroring experimental observations. Expressions derived from
GEP training for the hump case are written in Table 8.3, warranting a comprehensive
analysis.

Table 8.3: 2DWMH: GEP expressions. Numbers rounded to the third decimal place.

𝑓 (1) 𝑓 (2) 𝑓 (3)

SA+𝑎𝑖𝑗 −2𝐼2𝐼2
1 − 𝐼1 + 𝐼2 + 0.205 −𝐼2

2 + 𝐼1𝐼2 −
0.097𝐼2 − 2𝐼1 + 1

−2.160

CSA+𝑎𝑖𝑗 −𝐼2
1 − 0.911𝐼2𝐼1 +

1.911𝐼2
2

0 𝐼2𝐼1 − 0.903𝐼1 − 0.108

𝐶𝑃 𝐶𝐷

SA+PD −0.205𝐼1 + 𝐼2 − 0.170 4 − 𝐼1𝐼2

Figure 8.6: 2DWMH: 𝑓 (1), 𝐶𝑃 , and 𝐶𝐷 con-
tours and streamlines (Di Fabbio et al., 2024b).

Figure 8.6 presents the 𝑓 (1) contour along
with streamlines for the CSA+𝑎𝑖𝑗 model,
alongside the coefficients 𝐶𝑃 and 𝐶𝐷

for the SA+PD model. As elucidated
by Fang et al., 2023, the coefficient 𝑓 (1)
plays a pivotal role in Eq. 8.2, meriting an
in-depth examination. Within the sepa-
ration zone, 𝑓 (1) demonstrates oscillatory
behavior, ranging from 0.6 to −0.6, in-
dicative of simulation unsteadiness. It is
suggested that these results could benefit
from time-averaging to mitigate such os-
cillations. For the SA+PD model, coeffi-
cients 𝐶𝑃 and 𝐶𝐷 exhibit stable values of
approximately 0.3 and 3.7, respectively,
with 𝐶𝑃 exceeding the original model’s
coefficient, 𝑐𝑏1. The negative value of 𝑓 (1)
leads to an increase in turbulence production, a similar effect to that caused by the 𝐶𝑃

coefficient. These expressions are derived as functions of the invariants 𝐼1 and 𝐼2.

The dynamic interplay between these invariants is graphically illustrated in Fig. 8.7.
Given that the invariants are normalized by the velocity gradient tensor’s magnitude,
the axes are limited to unity. The function 𝑓 (1) assumes a positive value when the
magnitude of vorticity (𝐼2) surpasses that of the strain rate (𝐼1), and vice versa. In the
separation zone, 𝐼1 and 𝐼2 are closely matched, leading to oscillations of 𝑓 (1) between
positive and negative values. This trend is less pronounced for the 𝐶𝑃 coefficient, which
shows steadiness. Furthermore, the 𝐶𝐷 coefficient peaks at a value of 4 and diminishes
with increasing invariants, suggesting that enhancing the production term is crucial
when vorticity dominance over strain rate is observed, and conversely, the destruction
term should be attenuated.
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Figure 8.7: 2DWMH: expressions as function of the invariants (Di Fabbio et al.,
2024b).

8.2.4. Axisymmetric subsonic jet

Figure 8.8: ASJ: velocity profiles along the
jet axis (Di Fabbio et al., 2024b).

Figures 8.8 and 8.9 illustrate the ve-
locity and shear stress profiles of the
jet case along the jet axis and at se-
lected cross-sections. The CSA+𝑎𝑖𝑗 and
SA+PD models demonstrate notable im-
provements, effectively reducing diffusion
and enhancing the accuracy of mean flow
and second-moment profiles.

While the improvements in shear stress
profiles are not as marked as those in the
velocity profiles, they remain significant,
especially considering that RANS mod-
els are primarily focused on mean flow
characteristics. In the jet case, the SA
model’s destruction term, as delineated
in Eq. 3.61, exhibits limited relevance due
to its dependency on wall distance. The
CSA model, which incorporates the HRL blending function, effectively addresses this
limitation. Furthermore, the SA+𝑎𝑖𝑗 model does not achieve convergence and demon-
strates undesirable non-stationary effects, highlighting the need for further research to
understand the contributing factors to these observations.

Figure 8.10 presents the flow field contours to evaluate the performance of the trained
models. The flow fields predicted by the CSA+𝑎𝑖𝑗 and SA+PD models show significant
similarities, notably narrowing the jet radius and extending the jet length compared
to the baseline simulation. Along the jet centerline, the velocity exhibits a slower
decrement, which is indicative of diminished diffusion effects (Fang et al., 2023).

It is important to acknowledge that these modifications uniformly influence the entire
jet, rather than implementing different adjustments across the laminar (𝑥⇑𝐷𝑗𝑒𝑡 ≤ 5),
transition (5 < 𝑥⇑𝐷𝑗𝑒𝑡 ≤ 10), and fully turbulent (10 < 𝑥⇑𝐷𝑗𝑒𝑡 ≤ 25) regions. Notably,
a less precise prediction of stream-wise velocity in the transition region is observed for
all trained models in Fig. 8.9. However, this outcome aligns with expectations, given
that the trained model prioritizes turbulence mixing, supported by a cost function
centered on velocity profiles within the fully turbulent zone.
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Figure 8.9: ASJ: velocity and Reynolds stress profiles (Di Fabbio et al., 2024b).

Figure 8.10: ASJ: normalized velocity contour plots (Di Fabbio et al., 2024b).

Table 8.4 presents the expressions derived through GEP training. Figures 8.11 depicts
the 𝑓 (1) contour for the CSA+𝑎𝑖𝑗 model, alongside the coefficients 𝐶𝑃 and 𝐶𝐷 for the
SA+PD model. Fig. 8.12 shows these expressions as functions of the invariants, 𝐼1
and 𝐼2. In the jet region, the function 𝑓 (1) is characterized by a uniform value of 0.01.
Indeed, considering its dependence on the two invariants, 𝐼1 and 𝐼2, the function 𝑓 (1)

exhibits a negligible value, except under conditions of high vorticity and significant
strain-rate stress.

The coefficients 𝐶𝑃 and 𝐶𝐷 maintain positive values, except when 𝐼1 exceeds 𝐼2 by
at least an order of magnitude. Upon examining the contour field, the coefficients
𝐶𝑃 and 𝐶𝐷 are observed to remain stable at values of approximately 0.1 and 0.195,
respectively, with 𝐶𝑃 being lower than the original model’s coefficient, 𝑐𝑏1, suggest-
ing that the trained model necessitates reduced production compared to the original
model. Similarly, the small positive value of 𝑓 (1) leads to a decrease in turbulence
production. This contrasts with the results analyzed for the hump case, which indicate

168



8.3 GEP training on the VFE-2 delta wing

a need for decreased turbulence production. Such behavior underscores the difficulty
of developing a generic model capable of accurately representing multiple scenarios.
Notable variations of these parameters are detected near the jet axis. They are likely
attributable to velocity gradient values corresponding to the boundary condition.

Table 8.4: ASJ: GEP expressions. Numbers rounded to the third decimal place.

𝑓 (1) 𝑓 (2) 𝑓 (3)

SA+𝑎𝑖𝑗 −0.205𝐼2 − 0.0307 −𝐼2 − 0.163 −𝐼2
2 − 2𝐼1𝐼2 − 2.971𝐼2 −

6.174𝐼1 + 0.358
CSA+𝑎𝑖𝑗 0.144𝐼3

1 + 0.776𝐼2𝐼2
1 −

0.056𝐼2
1 − 0.3𝐼2𝐼1

𝐼1𝐼2 − 2𝐼2 + 0.081 −𝐼1 − 0.85

𝐶𝑃 𝐶𝐷

SA+PD 0.218𝐼2 − 0.013𝐼1 0.038𝐼1𝐼2 − 0.003𝐼2 + 0.185

Figure 8.11: ASJ: 𝑓 (1), 𝐶𝑃 , and 𝐶𝐷 contours and streamlines (Di Fabbio et al.,
2024b).

Figure 8.12: ASJ: expressions as function of the invariants (Di Fabbio et al., 2024b).

8.3. GEP training on the VFE-2 delta wing
Upon the assessment of methodologies across the foundational cases, the CFD-driven
GEP training is performed on the VFE-2 delta wing configuration, illustrated in
Fig. 8.13 and introduced in Section 2.1.6. The analysis has been conducted at an
angle of attack of 23○, operating at 𝑅𝑒 = 1 × 106 and 𝑀𝑎 = 0.07. The selected cost
function incorporated the evaluation of pressure coefficients across the wing’s surface
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at diverse span-wise locations, specifically at 𝜉 = 0.2, 0.4, 0.6, 0.8, and 0.95. The exper-
imental data can be found in the literature (Furman and Breitsamter, 2009) and are
further discussed by Tangermann et al., 2012. The flow over the wing is characterized
by a vortex system on its upper surface and it is discussed in detail in Chapter 5. At a
sufficiently high angles of attack (𝛼 = 23○), vortex breakdown occurs, significantly alter-
ing the downstream flow field. Traditional eddy viscosity models struggle to accurately
capture such vortex breakdown phenomena. Therefore, in line with the methodologies
applied to the NASA validation cases, the new turbulence models are evaluated, with
CFD-driven training undertaken to refine the predictions of the one-equation model.

Figure 8.13: VFE2: geometry and
mesh.

The computational grid, depicted in Figure 8.13,
employs an unstructured mesh comprising approx-
imately 661.000 cells, featuring 30 prism layers ad-
jacent to the wing surface to ensure a first cell layer
thickness that achieves 𝑦+ = 1, while polyhedral
volumes populate the remaining domain. Given
the symmetrical flow conditions, simulations were
restricted to the half-wing to save computational
resources. Cell size within the computational do-
main is variable, with areas necessitating height-
ened resolution, specifically around and atop the
wing, receiving focused refinement. The lead-
ing and trailing-edges received particular attention
during mesh design. To enhance mesh quality and
ensure well-defined surface normal, the sharp lead-
ing edge was slightly rounded in the model, a mod-
ification that negligibly affects flow dynamics. The
primary aim of the mesh design was not to probe
mesh convergence but rather to illustrate the GEP
method’s capacity to develop turbulence models
for such configurations, even without high mesh
resolution. Regarding the numerical approach, the
same settings applied for the investigation of the
NASA validation cases are used with the excep-
tion of the turbulence variable, 𝜈, where in this
test case, the linear interpolation is employed.

Figure 8.14 presents cross-sectional plots of the surface pressure coefficient, 𝑐𝑝, at vari-
ous stream-wise locations along the wing, as illustrated in the top view in Fig. 8.15. At
the first cross-section (𝜉 = 0.2), the suction peak is slightly underpredicted by all simu-
lations, except for the results from the SA+𝑎𝑖𝑗 model. This suggests that the resolution
near the vortex formation area is adequate, leading to accurate vortex strength pre-
dictions, except for the SA baseline and CSA models, which indicate a weaker vortex.
Notably, with the exception of the SA+𝑎𝑖𝑗 model, neither simulations nor experiments
capture a second peak indicative of a secondary vortex, suggesting its absence over the
wing. Notably, the SA+𝑎𝑖𝑗 model predicts a stronger primary vortex compared to other
models, which in turn successfully induces the presence of the secondary vortex.
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Figure 8.14: VFE2: surface pressure
coefficient at different 𝜉 locations over
the wing.

At 𝜉 = 0.4, only the SA+𝑎𝑖𝑗 and CSA+𝑎𝑖𝑗 mod-
els accurately match the primary peak observed
experimentally. This accuracy implies that
modeling anisotropy enhances vortex forma-
tion and turbulence production near the leading
edge. This behavior also corroborates the con-
clusions drawn at the end of Chapter 7. While
the isotropic part of the Reynolds stress ten-
sor enables the prediction of vortex breakdown,
it does not enhance turbulence production near
the wing apex. In contrast, the anisotropic part
effectively fulfills this role, predicting an en-
hanced vortical motion of the flow in proximity
to the wing apex. The secondary peak is dis-
cernible in the numerical results from SA+𝑎𝑖𝑗

and SA+PD models, whereas the CSA+𝑎𝑖𝑗

model predict the secondary vortex breakdown,
indicative of the primary vortex’s increased in-
stability. Indeed, Figs. 8.15 and 8.16 reveal that
this model predicts a vortex breakdown further
upstream over the wing, compared to the other
CFD outcomes.

In the third cross-section at 𝜉 = 0.6, the GEP
models excellently capture the experimental
data, accurately predicting the pressure pea as-
sociated with the primary vortex. Although
the primary peak is slightly underpredicted, the
improvement over baseline SA results is sig-
nificant, and the position of the primary vor-
tex closely matches the experimental observa-
tions. Furthermore, the SA+𝑎𝑖𝑗 model predicts
a strong and stable secondary vortex, diverg-
ing from other observations. The subsequent
cross-section at 𝜉 = 0.8 is located downstream
of the primary vortex breakdown, as predicted
by the experiments. Indeed, as investigated
by Tangermann et al., 2012, the experimental
flow field visualizations indicate vortex break-
down occurring at approximately 60% of the
root chord length. However, even though the
CFD outcomes do not predict the vortex break-
down at this location, no significant discrep-
ancies are observable between the experimen-
tal and the numerical data. Finally, in the
last cross-section, only a weak indication of the
primary vortex is detected before reaching the
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trailing edge, with all simulations, except for SA+PD, accurately predicting the pres-
sure peak location consistent with experimental findings.

To facilitate a comprehensive analysis of the flow field and visualize the onset of vortex
breakdown, velocity field cutting planes are depicted in Figs. 8.15 and 8.16. Specifically,
Fig. 8.16 presents the normalized axial velocity, 𝑢⇑𝑈∞, at 𝜉 = 0.5, 0.6, 0.7, 0.8, 0.95.
Initial observations from the slice planes indicate that both experimental and simulation
data identify an axial velocity peak within the vortex core. However, the experiment
shows the high-velocity region extending closer to the wing surface, contrasting with
the simulations’ depiction of a more circular area projecting upwards (Tangermann
et al., 2012). Moreover, the new models generate a more robust and stable vortex with
enhanced core velocity compared to the baseline SA results, attributed to increased
turbulence production near the leading edge. This adjustment is critical for accurately
predicting the surface pressure coefficient, as illustrated in Fig. 8.14.

Figure 8.15: VFE2: surface pressure coefficient and normalized 𝑥-velocity.

Figure 8.15 reveals that vortex breakdown is notably pronounced in the numerical re-
sults of the SA+PD and CSA+𝑎𝑖𝑗 models, with the CSA model surpassing the SA
model in predicting the flow field above the wing. Conversely, the SA+𝑎𝑖𝑗 model pre-
dicts a downstream vortex breakdown, owing to its depiction of a more stable and
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robust secondary vortex. Although the simulations do not predict the onset of vor-
tex breakdown at 𝜉 = 0.6 as observed in experiments (Furman and Breitsamter, 2009;
Tangermann et al., 2012), signs of breakdown become apparent around 𝜉 = 0.8. Advanc-
ing to 𝜉 = 0.95, the vortex breakdown is more distinctly captured in RANS simulations,
demonstrating flow separation that leads to the formation of a vortex breakdown. A
noticeable reduction in the primary vortex core velocity accompanies the stream-wise
separation in the secondary vortex region at 𝜉 = 0.8. Unlike experimental observations,
simulations do not showcase the classic signs of vortex breakdown, characterized by
an abrupt drop in velocity within the vortex core. The discrepancy between the ac-
curate prediction of the surface pressure coefficient and the less precise prediction of
the velocity flow field may arise from the formulation of the fitness function, which
focuses solely on the surface pressure coefficient. Incorporating velocity profiles into
the training process, akin to the approach for the jet and hump cases, could offer a
potential solution. Moreover, the coarse mesh resolution could be responsible for the
behavior observed in the CFD results, and a mesh convergence study can be conducted
to address this possibility.

Figure 8.16: VFE2: normalized 𝑥-velocity, contour and in-plane vectors at locations
𝜉 = 0.5, 0.6, 0.7, 0.8, 0.95.

Table 8.5 presents the expressions derived through GEP training. Figures 8.17 depicts
the 𝑓 (1) contour for the CSA+𝑎𝑖𝑗 model, alongside the coefficients 𝐶𝑃 and 𝐶𝐷 for
the SA+PD model. Fig. 8.18 shows these expressions as functions of the invariants.
The function 𝑓 (1) response to variations in 𝐼2 (representing vorticity magnitude) is
relatively stable, yet it exhibits an escalation with an increase in 𝐼1 (denoting strain
rate magnitude), especially outside the vortex region. It predominantly shows positive
values, with exceptions occurring in areas of diminished strain stress magnitude, typi-
cally coinciding with the vortex core’s location. In fact, within the formulation of the
production term in the CSA+𝑎𝑖𝑗 model, a positive value coincides with a decrease in
production, and vice versa.
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8.3 GEP training on the VFE-2 delta wing

Table 8.5: VFE2: GEP expressions. Numbers rounded to the third decimal place.

𝑓 (1) 𝑓 (2) 𝑓 (3)

SA+𝑎𝑖𝑗 −0.152𝐼2𝐼1 + 2𝐼1 −
0.152𝐼2 + 0.063

0.089𝐼1 − 0.089𝐼1𝐼2 3𝐼2
1 − 1.038𝐼1

CSA+𝑎𝑖𝑗 0.388𝐼2𝐼2
1 + 0.388𝐼2

1 −
0.15𝐼2𝐼1 − 0.15𝐼1

1.43𝐼1 − 𝐼2 − 1.089 −2.01455𝐼1 −
0.702983𝐼2 − 0.15

𝐶𝑃 𝐶𝐷

SA+PD 2𝐼1𝐼2 4𝐼2
1 +4𝐼2𝐼1+21.388𝐼1+5𝐼2+20.485

Figure 8.17: VFE2: 𝑓 (1), 𝐶𝑃 , and 𝐶𝐷 contours and streamlines.

Figure 8.18: VFE2: expressions as function of the invariants.

The coefficients 𝐶𝑃 and 𝐶𝐷 consistently exhibit positive values. Specifically, 𝐶𝑃 demon-
strates a significant rise with the augmentation of both invariants, whereas 𝐶𝐷 shows
heightened sensitivity to variations in 𝐼1. The coefficients effectively delineate the
vortex region, adjusting their magnitudes to reflect the flow physics. An increase in
turbulence production within the vortex sheet and a reduction within the vortex core
are observed. The original model coefficient, 𝑐𝑏1, appears to be adequate in the vor-
tex region but insufficient to reproduce the turbulence generation in the vortex sheet,
as also discussed in Section 7.4.1. Conversely, the destruction coefficient exhibits an
upward trend moving from the vortex core towards the free-stream.
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9
Conclusions and Outlook

The objectives of the thesis are concisely articulated in bullet points in Section 1.2.1,
presented logically and sequentially. The conclusions are structured to follow the same
order ensuring readability and ease of understanding.

Chapter 5 provides deep insights into the transonic flow field around the VFE-2 delta
wing. Outcomes from SAnegRC-based URANS and SAneg-based IDDES are utilized.
The flow physics is elucidated by examining both mean and instantaneous flow features
in detail. This chapter establishes a methodological foundation for performing URANS
and Hi-Fi simulations on delta wings, facilitating the validation of computational codes
and methodologies. Moreover, it is instrumental in acquiring expertise and knowledge,
which are subsequently applied to analyze the flow physics of the ADS-NA2-W1 con-
figuration.

The IDDES approach is highlighted as a promising approach for simulating flow around
delta wings at transonic conditions, potentially standing as a reference model for such
cases across more demanding conditions and configurations. Appropriate cell and time
step sizes unveil critical flow characteristics, establishing these simulations as a vital
tool for enhancing understanding of delta wing aerodynamics under transonic condi-
tions. The sensitivity of outcomes to temporal and spatial resolutions are thoroughly
addressed, ensuring high predictive accuracy. The numerical results are validated
against experimental data, with a specific focus on the mean surface pressure coef-
ficient. Furthermore, shock wave behaviors are explored, resulting in both surface
pressure distributions and shock wave positions being accurately captured by the nu-
merical simulations.

The interaction between leading-edge vortices and shock waves is analyzed, demon-
strating the capability of the scale-resolving method to replicate these complex inter-
actions. The formation of the primary vortex, driven by the separated shear layer from
the leading edge, is examined and revels the importance of capturing turbulence at
the leading-edge apex. Additionally, the formation and breakdown of the secondary
vortex are investigated, offering hypotheses to elucidate the underlying processes and
mechanisms of vortex breakdown.

As the flow over the wing separates at the leading-edge and rolls up, it forms a stable,
separation-induced primary vortex. Typically, the flow reattaches when the primary
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vortex reaches the wing surface. Under specific conditions, the span-wise flow beneath
the primary vortex separates again, generating a counter-rotating secondary vortex
located outward of the primary vortex. The separation shock leads to a recirculation
zone and fosters the formation of the secondary vortex. The secondary vortex’s exis-
tence facilitates the incorporation of the shear layer into the primary vortex. However,
when the shock wave, induced by the sting tip, interacts with the primary vortex,
it alters the flow dynamics, rendering the secondary vortex unsustainable. The phe-
nomenon triggers a sudden decrease in axial velocity and results in the damping of the
separation shock, which ceases to interact with the boundary layer, thereby leading to
the disintegration of the secondary vortex. The fluid, previously part of the secondary
vortex, transitions into turbulent motion on smaller scales, preventing the shear layer
from coalescing into the primary vortex.

Discussions expand to encompass turbulence-related variables. The modeled turbulent
eddy viscosity is compared between URANS and IDDES methodologies. It is observed
that the URANS model tends to predict significantly elevated levels of turbulent eddy
viscosity within the vortex core. The components of the Reynolds stress tensor are
utilized to visualize various flow phenomena over the wing, including the vortex sheet,
primary and secondary vortices, and the separation shock wave. A slight delay in
the onset of resolved turbulence development is unveiled, characterized by an initial
underestimation of resolved turbulent kinetic energy. This underestimation influences
the development of downstream turbulent processes. This observation, in conjunction
with recognized challenges in the grey-area of turbulence modeling within HRL frame-
works, indicates the potential need for adjustments to HRL turbulence models in future
research.

The investigation of vortex-dominated flow around the triple-delta wing ADS-NA2-W1,
aimed at enhancing the understanding of flow physics phenomena at transonic speeds,
is detailed in Chapter 6. Employing both URANS and scale-resolving simulations, it
examines the applicability of current CFD methods. URANS simulations are conducted
with a constant side slip angle (𝛽 = 5○), highlighting the asymmetric turbulent flow
across a range of attack angles (12○ < 𝛼 < 28○), whereas high-fidelity simulations are
limited to 𝛼 = 20○, 24○, 28○ due to computational constraints.

Detailed discussions of the flow field are segmented into analyses of both instantaneous
and mean flow features, inclusive of aerodynamic integral coefficients. The vortex
development is elaborated. At 𝛼 = 20○, two distinct vortices on the leeward wing
and two less distinct (merged) vortices undergoing breakdown on the windward wing
are documented. For 𝛼 = 24○, distinct vortices on the leeward wing and a burst or
incoherent vortex at the leading edge apex on the windward wing are observed. At
𝛼 = 28○, a breakdown of the vortices on the leeward wing is also noted.

Employing the IDDES and SAS numerical methods shows promising improvements,
enhancing aerodynamic coefficient predictions and significantly reducing deviations
from experimental results. The accuracy of integral moment coefficients (pitching and
rolling) is closely associated with the prediction of the vortex breakdown onset position,
influencing the suction footprint over the wings and the surface pressure coefficient
distribution post-vortex breakdown across the aircraft. Particularly for 𝛼 = 20○, the
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predicted vortex breakdown by the IDDES approach represents a notable improvement.
This phenomenon is not captured by the SAnegRC-based URANS outcomes.

On the windward wing at 𝛼 = 24○, the HRL outcomes highlight the chaotic behavior
of the burst vortex and the lack of coherent vortex formation from the shear layer
emanating from the leading-edge. The shear layer emanating from the leading edge no
longer rolls up to form a leading-edge vortex over the wing, but is instead transported
downstream without inducing additional velocities on the wing surface. An immediate
consequence of this phenomenon is an increase in pressure over the wing. This alter-
ation significantly impacts the prediction of aerodynamic coefficients. The SAnegRC-
based URANS approach fails to accurately capture this process, erroneously predicting
the presence of a vortex near the windward wing apex. Therefore, the SAnegRC-based
URANS simulations inaccurately predict the pressure distribution over the windward
wing, especially near the wing apex. This method appears to stabilize and promote
the presence of a coherent structure, rather than accurately simulating turbulent be-
havior.

The fuselage vortices converge toward the leeward wing and appear to interact with the
primary vortices, thereby influencing the overall flow behavior. The IDDES findings
illustrate how the terminating vortex moves downstream over the wing, compared to its
location at 𝛼 = 20○. It is found precisely at the point where the inboard and outboard
vortices merge, specifically near the trailing edge. At 𝛼 = 20○, the vortices interact and
merge upstream over the wing. This interaction results in the terminating shock also
moving upstream.

Vortex breakdown on the leeward wing is illustrated only through the SAS outcomes
at 𝛼 = 28○. The formation of fuselage vortices is influenced by both the side-slip
angle and the angle of attack, with their strength and size increasing at higher angles
of attack. The interaction between the fuselage and the leading-edge vortex on the
leeward side undergoes profound changes, as the leeward fuselage vortex eventually
merges with the inboard leading-edge vortex. This merging is followed immediately by
vortex breakdown and then may be attributed to the occurrence of this phenomenon.
Furthermore, there is no observable interaction between the inboard and the outboard
vortex at this angle of attack, substantiating the theory that vortex interaction on the
leeward wing becomes less effective when the angle of attack is increased from 20○ to
28○.

Both 𝑘𝜔SST-based URANS and SAS simulations accurately predict the flow pattern
over the windward wing, especially near the wing apex. They effectively capture
the shear layer originating from the leading-edge and its subsequent chaotic trans-
port downstream across the wing, albeit with a minor overestimation of the suction
footprint’s intensity. The 𝑘𝜔SST model demonstrates then superior accuracy compared
to the SAnegRC turbulence model in predicting such flow behavior. These analyses
demonstrate that SAnegRC-based URANS simulations exhibit the lowest accuracy in
predicting vortical flow over delta wings. Following the analysis of vortex development,
this manuscript then shifts its focus to examining the reasons behind the limitations
of the SA model, aiming to improve its accuracy.
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Chapter 7 presents further insights into the findings of transonic flow around the ADS-
NA2-W1 aircraft at 𝛼 = 20○. In addition to the simulations introduced in Chapter 6,
the PK model is presented. It introduces a novel and simplified extension to the
Boussinesq assumption, conceived for the SAnegRC turbulence model, to emulate the
turbulent kinetic energy effect observed in the 𝑘𝜔SST outcomes. While the SAne-
gRC model fails to predict vortex breakdown, the PK model accurately captures this
phenomenon, markedly improving the prediction of aerodynamic coefficients and sub-
stantially reducing deviations observed with the SAnegRC results.

Vortex breakdown occurs due to shock interaction only if the primary vortex is in-
herently unstable and predisposed to such breakdown. The variable predictions of the
vortex breakdown onset location are ascribed to the vortex’s upstream conditions, with
the shear-layer separation near the wing apex and secondary vortex formation being
particularly significant. The SAnegRC model displays weaker stream-wise separation
on the wing upstream of the vortex breakdown, in contrast to the 𝑘𝜔SST results, which
show pronounced stream-wise flow separation near the wing apex without a coherent
secondary vortex. The leading edge’s shear-layer does not adequately feed then the
primary vortex. The primary vortex predicted by the 𝑘𝜔SST model is intrinsically
more susceptible to breakdown than that predicted by the SAnegRC model. The PK
model effectively captures more pronounced stream-wise separation near the leading
edge, achieving a more accurate depiction of the lambda shock shape and enhancing
the reliability of shock-vortex interaction predictions.

The SAnegRC model fails to generate turbulence near the wing apex or leading edge
where vortex formation occurs. Additionally, within the vortex core, particularly post-
shock encounter, the production term becomes highly active, resulting in elevated
turbulent viscosity levels. The 𝑘𝜔SST model accurately predicts turbulence generation
in the separation region and partially mitigates production within the vortex. The PK
model aligns viscosity ratio values more closely with those observed in the 𝑘𝜔SST
model. In the one-equation model, assuming 𝑘 to be zero leads to non-physical values
for normal Reynolds stresses. The isotropic component of the Boussinesq assumption,
crucial in this case, is then integrated into the one-equation PK model.

The PK method shows promise in improving the physics predicted by one-equation
RANS around delta wings in transonic conditions. Further research is essential to re-
fine the 𝑘𝑆𝐴 function, a critical step to enhance the model’s applicability and accuracy
across various flow conditions. Notably, the PK model successfully captures also the
vortex breakdown at 28° on the leeward wing, yet it does not significantly enhance
numerical predictions at 𝛼 = 24°. This discrepancy may be attributed to multiple fac-
tors, with no universal solutions readily apparent. However, considering the analysis
conducted at 𝛼 = 24° in Chapter 6, and the observed flow physics on the wing, it may
be hypothesized that the primary challenge lies in capturing the turbulent motion gen-
erated on the windward wing. In this scenario, no coherent vortex is generated, and
the breakdown has reached the wing’s apex. The SAnegRC model does not accurately
capture this phenomenon, and the PK model exhibits similar limitations. This issue
stems from the intrinsic limitations of the model’s formulation, which fails to generate
the necessary turbulence near the leading-edge. To address this challenge, new formu-
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lations of the one-equation model are explored through modifications of the production
and destruction terms and the incorporation of machine learning techniques.

Chapter 8 explores enhancements to RANS modeling capabilities through two method-
ologies by using a CFD-driven GEP framework. The first method employs the standard
SA model to close the RANS equations, aiming to improve predictive accuracy by ex-
tending the linear Boussinesq hypothesis to model the Reynolds stress anisotropy. The
second method builds upon the Boussinesq hypothesis to augment RANS modeling
performance, conceptualizing an enhanced one-equation turbulence model designed to
refine turbulence production and destruction mechanisms.

Four fundamental flows from the NASA challenge validation cases are utilized for the
training process. Following the evaluation of these fundamental cases, the VFE-2 delta
wing configuration is numerically trained and analyzed. The flow cases are considered
individually, leading to an in-depth analysis of the derived model expressions.

In the context of NASA validation cases, the SA+𝑎𝑖𝑗 model consistently fails to out-
perform the baseline and sometimes demonstrates instability. Thus, merely modifying
Reynolds stresses through anisotropic tensor modeling proves insufficient for enhanc-
ing the RANS capability using the SA turbulence model for the investigations at hand.
The CSA model performs similarly to SA, but its formulation effectively couples with
anisotropic formulations for Reynolds stresses in the CSA+𝑎𝑖𝑗 model. The introduc-
tion of a new production term is advantageous as changes in 𝜏𝑖𝑗 reflect not only in the
Boussinesq assumption but also in itself, enabling a sort of double optimization while
modeling Reynolds stress anisotropy. Likewise, as demonstrated by the results accu-
racy of the SA+PD model, adjustments to the production and destruction terms in
the SA model facilitate effective optimization of model performance. The expressions
found through GEP underscore the need for a significant alteration in the production
term contingent on vorticity or strain stress magnitude, explaining the superior results
of the CSA+𝑎𝑖𝑗 and SA+PD models over the SA+𝑎𝑖𝑗 model.

Considering the VFE-2 configuration, vortex breakdown is most apparent in the nu-
merical outcomes of SA+PD and CSA+𝑎𝑖𝑗. The CSA model also surpasses the SA
model in flow field prediction above the wing. The SA+𝑎𝑖𝑗 model predicts a more
downstream vortex breakdown, attributed to its predicting of a more stable and robust
secondary vortex. This analysis underscores CFD-driven GEP’s capacity to develop
turbulence models for such intricate configurations without excessive and prohibitive
mesh resolution.

In summary, the CSA+𝑎𝑖𝑗 and SA+PD models exhibit superior accuracy, suggesting
two research directions for optimizing the SA model: either through refining the co-
efficients in its original formulation or by introducing a new version that incorporates
the Reynolds stress tensor in the production term to model its anisotropy. Addition-
ally, optimizing the baseline CSA model by training its coefficients and/or constants
presents an opportunity for further enhancements. Future studies may aim to improve
the generalizability of data-driven turbulence models, focusing on optimizing their per-
formance across various flow conditions and configurations during the training phase.
However, it is worth noting that, for instance, outcomes from jet simulations suggest a
need for increased turbulence production, whereas results for the hump case indicate a
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need for decreased turbulence production. This contrast underscores the challenge in
developing a generic model capable of accurately representing multiple scenarios.

In subsequent studies, the efficacy of these models and their integrations will be evalu-
ated across more intricate configurations, such as the ADS-NA2-W1 triple delta wing,
to ascertain their applicability and potential for further refinement. A meticulous ex-
amination of the outcomes will facilitate a comprehensive understanding of the merits
and demerits of the proposed models, thereby enriching the knowledge surrounding
turbulence modeling. This dissertation lays then the groundwork and motivates future
efforts to develop a modified constitutive relation for specific applications, focusing on
devising a one-equation turbulence model adept at accurately simulating leading-edge
vortices.

Finally, the CFD-driven framework can be expanded to incorporate the DLR-TAU code
through the development of interfacing code, thereby facilitating the coupling with the
GEP code. Such an enhancement would afford increased versatility in selecting test
cases for training, as well as the capability to tailor turbulence models specifically for
applications on military aircraft operating under transonic conditions.
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A
Implementation-Ready Turbulence Models

A.1. Boussinesq Extension Models
A.1.1. The PK Model
An enhancement to the Boussinesq approximation within the SA model framework is
proposed, introducing a modification termed the PK (production of turbulent kinetic
energy) model.

The Boussinesq assumption is extended to include the isotropic term, proposing a new
formulation for the turbulent kinetic energy, 𝑘𝑆𝐴, within the SA turbulence model:

−𝜌𝑢′𝑖𝑢′𝑗 = 𝜏𝑅
𝑖𝑗 = 2𝜇𝑡𝑆

∗

𝑖𝑗 − 𝑘𝑆𝐴𝛿𝑖𝑗, (A.1)

where
𝑘𝑆𝐴 = 𝐶𝑘𝜇𝑡

⌈︂
2𝑊𝑚𝑛𝑊𝑚𝑛. (A.2)

The coefficient 𝐶𝑘 is calibrated through empirical analysis, with a recommended value
of 3.

A.1.2. Extra-Anisotropic Reynolds Stress Model
EARSMs refine the traditional Boussinesq hypothesis by incorporating an anisotropic
stress component, 𝑎𝑖𝑗, into the Reynolds stress tensor:

𝜏𝑅
𝑖𝑗 =

2
3𝜌𝑘𝛿𝑖𝑗 − 2𝜇𝑡𝑆

∗

𝑖𝑗 + 𝑎𝑖𝑗. (A.3)

This anisotropic component 𝑎𝑖𝑗 is represented in dimensionless form as follows

𝑎∗𝑖𝑗 =∑
𝑘

𝑓 (𝑘)(𝐼1, 𝐼2, . . . , 𝐼𝑛)𝑉 𝑘
𝑖𝑗 . (A.4)

The functions 𝑓 (𝑘) are optimized using GEP based on training datasets. Since, the
application of 3 fundamental basis tensors alongside 2 invariants constitutes the stan-
dard methodology for analyzing 2D flows, the basis tensors 𝑉 𝑘

𝑖𝑗 and invariants 𝐼𝑛 are
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expressed as

𝑉 1
𝑖𝑗 = 𝑠𝑖𝑗, 𝑉 2

𝑖𝑗 = 𝑠𝑖𝑘𝜔𝑘𝑗 − 𝜔𝑖𝑘𝑠𝑘𝑗, 𝑉 3
𝑖𝑗 = 𝑠𝑖𝑘𝑠𝑘𝑗 −

1
3𝛿𝑖𝑗𝑠𝑚𝑛𝑠𝑚𝑛,

𝐼1 = 𝑠𝑚𝑛𝑠𝑚𝑛, 𝐼2 = 𝜔𝑚𝑛𝜔𝑚𝑛.
(A.5)

The tensors and invariants originate from the dimensionless strain rate tensor 𝑠𝑖𝑗 = 𝑡𝑙𝑆∗𝑖𝑗
and rotation rate tensor 𝜔𝑖𝑗 = 𝑡𝑙𝑊𝑖𝑗. The turbulence timescale 𝑡𝑙 is computed as

𝑡𝑙 =
1⌉︂

𝜕𝑢𝑚

𝜕𝑥𝑛

𝜕𝑢𝑚

𝜕𝑥𝑛

, (A.6)

and the dimensionalized anisotropic stress tensor 𝑎𝑖𝑗 is derived as

𝑎𝑖𝑗 =
2𝜇𝑡𝑎∗𝑖𝑗
𝑡𝑙

, (A.7)

leading to the modified Reynolds stress tensor

𝜏𝑅
𝑖𝑗 =

2
3𝜌𝑘𝛿𝑖𝑗 − 2𝜇𝑡 (𝑆∗𝑖𝑗 −

𝑎∗𝑖𝑗
𝑡𝑙
) . (A.8)

The formulation of 𝑎∗𝑖𝑗 is presented in Chapter 8.

A.2. RANS Turbulence Models
A.2.1. Spalart-Allmaras
SA formulation for free shear flows.

𝜕𝜈𝑡

𝜕𝑡
+ 𝑢𝑗

𝜕𝜈𝑡

𝜕𝑥𝑗

= 𝑐𝑏1𝑆𝜈𝑡 +
1
𝜎
⌊︀ 𝜕

𝜕𝑥𝑗

(𝜈𝑡
𝜕𝜈𝑡

𝜕𝑥𝑗

) + 𝑐𝑏2
𝜕𝜈𝑡

𝜕𝑥𝑖

𝜕𝜈𝑡

𝜕𝑥𝑖

}︀ . (A.9)

SA formulation for wall-bounded flows.

𝜕𝜈

𝜕𝑡
+𝑢𝑗

𝜕𝜈

𝜕𝑥𝑗

= 𝑐𝑏1 (1 − 𝑓𝑡2)𝑆𝜈−]︀𝑐𝑤1𝑓𝑤 −
𝑐𝑏1

𝜅2 𝑓𝑡2{︀ (
𝜈

𝑑
)

2
+ 1
𝜎
⌊︀ 𝜕

𝜕𝑥𝑗

((𝜈 + 𝜈) 𝜕𝜈
𝜕𝑥𝑗

) + 𝑐𝑏2
𝜕𝜈

𝜕𝑥𝑖

𝜕𝜈

𝜕𝑥𝑖

}︀ ,

(A.10)
with

𝑐𝑏1 = 0.1355, 𝜎 = 2
3 , 𝑐𝑏2 = 0.622, 𝜅 = 0.41,

𝑐𝑤1 =
𝑐𝑏1

𝜅2 +
1 + 𝑐𝑏2

𝜎
, 𝑐𝑤2 = 0.3, 𝑐𝑤3 = 2.0,

𝑐𝑣1 = 7.1, 𝑐𝑡3 = 1.1, 𝑐𝑡4 = 0.5.

(A.11)

A non-dimensional smoothing function 𝑓𝜔, based on the dimensionless mixing length,

𝑟 = 𝜈𝑡

𝑆𝜅2𝑑2 , (A.12)
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is applied to the destruction factor. The function is defined as follows

𝑓𝜔(𝑟) = 𝑔 ⌊︀
1 + 𝑐6

𝜔3
𝑔6 + 𝑐6

𝜔3
}︀

1
6

, where 𝑔 = 𝑟 + 𝑐𝜔2(𝑟6 − 𝑟). (A.13)

A smoothing function 𝑓𝑣1 is applied as follows

𝜈𝑡 = 𝜈𝑓𝑣1, where 𝑓𝑣1 =
𝜒3

𝜒3 + 𝑐3
𝑣1

with 𝜒 = 𝜈
𝜈
. (A.14)

𝑆 is expressed as follows

𝑆 = 𝑆 + 𝜈

𝜅2𝑑2𝑓𝑣2, with 𝑓𝑣2 = 1 − 𝜒

1 + 𝜒𝑓𝑣1
. (A.15)

The function 𝑓𝑡2 is formulated as follows

𝑓𝑡2 = 𝑐𝑡3 exp(−𝑐𝑡4𝜒
2). (A.16)

For compressible flow simulations, additional compressibility corrections are intro-
duced, exemplified by

𝐶𝜈 = −
1
𝜎
(𝜈 + 𝜈) 𝜕𝜌

𝜕𝑥𝑘

𝜕𝜈

𝜕𝑥𝑘

(A.17)

Consequently, the compressibility-corrected SA equation is expressed as

𝜕(𝜌𝜈)
𝜕𝑡

+ 𝜕(𝜌𝜈𝑢𝑗)
𝜕𝑥𝑗

= 𝑐𝑏1 (1 − 𝑓𝑡2)𝑆𝜌𝜈 − ]︀𝑐𝑤1𝑓𝑤 −
𝑐𝑏1

𝜅2 𝑓𝑡2{︀𝜌(
𝜈

𝑑
)

2

+ 1
𝜎
⌊︀ 𝜕

𝜕𝑥𝑗

(𝜌 (𝜈 + 𝜈) 𝜕𝜈
𝜕𝑥𝑗

) + 𝑐𝑏2𝜌
𝜕𝜈

𝜕𝑥𝑖

𝜕𝜈

𝜕𝑥𝑖

}︀

− 1
𝜎
(𝜈 + 𝜈) 𝜕𝜌

𝜕𝑥𝑘

𝜕𝜈

𝜕𝑥𝑘

.

(A.18)

The SA model with negative eddy viscosity correction (SAneg) is expressed as

𝜕𝜈

𝜕𝑡
+𝑢𝑗

𝜕𝜈

𝜕𝑥𝑗

= 𝑐𝑏1(1−𝑐𝑡3)Ω𝜈+𝑐𝑤1𝑓𝑤 (
𝜈

𝑑
)

2
+ 1
𝜎
⌊︀ 𝜕

𝜕𝑥𝑗

((𝜈 + 𝜈𝑓𝑛)
𝜕𝜈

𝜕𝑥𝑗

) + 𝑐𝑏2
𝜕𝜈

𝜕𝑥𝑖

𝜕𝜈

𝜕𝑥𝑖

}︀ , (A.19)

with
𝑓𝑛 =

𝑐𝑛1 + 𝜒3

𝑐𝑛1 − 𝜒3 and 𝑐𝑛1 = 16. (A.20)

The coefficient 𝑐𝑡3 is set at 1.2.

The SA model with a streamline curvature correction (SA-RC), modifying the pro-
duction term with a rotation function as follows

𝑓𝑟1 = (1 + 𝑐𝑟1)
2𝑟∗

1 + 𝑟∗ )︀1 − 𝑐𝑟3t𝑎𝑛−1(𝑐𝑟2𝑟)⌈︀ − 𝑐𝑟1. (A.21)
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Specifically, the first term on the RHS of the SA-RC equation is given by

𝑐𝑏1(𝑓𝑟1 − 𝑓𝑡2)𝑆𝜈. (A.22)

The various terms are defined as follows

𝑟∗ = 𝑆
𝜔
, 𝑟 = 2𝜔𝑖𝑘𝑆𝑗𝑘

𝐷4 (𝐷𝑆𝑖𝑗

𝐷𝑡
+ (𝜀𝑖𝑚𝑛𝑆𝑗𝑛 + 𝜀𝑗𝑚𝑛𝑆𝑖𝑛)Ω′𝑚) ,

𝑆𝑖𝑗 =
1
2 (

𝜕𝑢𝑖

𝜕𝑥𝑗

+ 𝜕𝑢𝑗

𝜕𝑥𝑖

) , 𝜔𝑖𝑗 =
1
2 ⌊︀(

𝜕𝑢𝑖

𝜕𝑥𝑗

− 𝜕𝑢𝑗

𝜕𝑥𝑖

) + 2𝜀𝑚𝑗𝑖Ω′𝑚}︀ ,

𝑆2 = 2𝑆𝑖𝑗𝑆𝑖𝑗, 𝜔2 = 2𝜔𝑖𝑗𝜔𝑖𝑗, 𝐷2 = 1
2
(𝑆2 + 𝜔2) ,

𝑐𝑟1 = 1.0, 𝑐𝑟2 = 12, 𝑐𝑟3 = 1.0.

(A.23)

A.2.2. Menter 𝑘 − 𝜔 Shear Stress Transport

The transport equation for turbulent kinetic energy is given by

𝜕(𝜌𝑘)
𝜕𝑡

+ 𝜕(𝜌𝑘𝑢𝑗)
𝜕𝑥𝑗

= 𝑃𝑘 − 𝛽𝑘𝜌𝜔𝑘 + 𝜕

𝜕𝑥𝑗

⌊︀(𝜇 + 𝜎𝑘𝜇𝑡)
𝜕𝑘

𝜕𝑥𝑗

}︀ . (A.24)

Similarly, the transport equation for the dissipation rate is expressed as

𝜕(𝜌𝜔)
𝜕𝑡

+ 𝜕(𝜌𝜔𝑢𝑗)
𝜕𝑥𝑗

= 𝛾𝜔𝜔

𝑘
𝑃𝑘 − 𝛽𝜔𝜌𝜔2 + 𝜕

𝜕𝑥𝑗

⌊︀(𝜇 + 𝜎𝜔𝜇𝑡)
𝜕𝜔

𝜕𝑥𝑗

}︀ + 𝜌𝜎𝑑

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗

. (A.25)

The turbulent eddy viscosity is given by

𝜇𝑡 =
𝜌𝑘

𝜔
, (A.26)

and the turbulence production term 𝑃𝑘𝜔 is defined as

𝑃𝑘 = 𝜏𝑅
𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

, (A.27)

where the Reynolds stress tensor 𝜏𝑅
𝑖𝑗 is evaluated using the Boussinesq assumption.

Menter Baseline. Menter’s Baseline model combines the 𝑘 − 𝜔 model for near-wall
regions with the 𝑘 − 𝜀 model for the free-stream. The transition between these models
is smoothly handled by blending the closure coefficients 𝜑 (where 𝜑 represents the set
{𝛽𝑘, 𝛽𝜔, 𝛾𝜔, 𝜎𝑘, 𝜎𝜔, 𝜎𝑑}) using the blending function 𝐹1:

𝜑 = 𝐹1𝜑
(𝑖) + (1 − 𝐹1)𝜑(𝑜), (A.28)

where 𝐹1 = tanh(𝐺4
1) and 𝐺1 is calculated using:

𝐺1 =min (︀max (Γ1,Γ2) ,Γ3⌋︀ . (A.29)
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The arguments are defined as

Γ1 =
⌋︂
𝑘

0.09𝜔𝑑, Γ2 =
500𝜇
𝜌𝜔𝑑2 , Γ3 =

2𝜎(𝑜)𝑑 𝑘

CD(𝑜)𝜔 𝑑2
, (A.30)

with
CD(𝑜)𝜔 =max(𝜎(𝑜)𝑑

𝜌

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗

,10−20) . (A.31)

Menter SST. The SST model is an extension of the BSL model, improving its response
to adverse pressure gradients and flow separation by modifying the eddy viscosity 𝜇𝑡:

𝜇𝑡 =
𝜌𝑎1𝑘

max(𝑎1𝜔,Ω𝐹2)
, (A.32)

where 𝑎1 = 0.31 and 𝐹2 = tanh(𝐺2
2) with 𝐺2 =max (2Γ1,Γ2).

The standard values for the constants in the Menter SST model are:

𝛾 = 0.553, 𝛽 = 0.075, 𝛽∗ = 0.09, 𝜎𝑘 = 0.85, 𝜎𝜔1 = 0.5, 𝜎𝜔2 = 0.856 (A.33)

A.2.3. Spalart-Allmaras with trained Production and Destruc-
tion

The modified equation, henceforth referred to as SA+PD, is proposed as follows

𝜕𝜈

𝜕𝑡
+ 𝑢𝑗

𝜕𝜈

𝜕𝑥𝑗

= 𝐶𝑃𝑆𝜈 −𝐶𝐷 (𝜈
𝑑
)

2
+ 1
𝜎
⌊︀ 𝜕

𝜕𝑥𝑗

((𝜈 + 𝜈) 𝜕𝜈
𝜕𝑥𝑗

) + 𝑐𝑏2
𝜕𝜈

𝜕𝑥𝑖

𝜕𝜈

𝜕𝑥𝑖

}︀ , (A.34)

where the coefficients 𝐶𝑃 (𝐼1, 𝐼2) and 𝐶𝐷(𝐼1, 𝐼2) are functions of invariants 𝐼1 and 𝐼2,
and are optimized using GEP based on training datasets. The formulations of 𝐶𝑃 and
𝐶𝐷 are presented in Chapter 8.

A.2.4. Coupled Spalart-Allmaras

The enhanced model, denoted as CSA, is written as follows

𝐷𝜈

𝐷𝑡
= 2𝑐𝑏1𝑡𝑙𝑆

∗

𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜈 − 𝑐𝑤1𝑓𝑤�̃�𝜈 +
1
𝜎
⌊︀ 𝜕

𝜕𝑥𝑗

((𝜈 + 𝜈) 𝜕𝜈
𝜕𝑥𝑗

) + 𝑐𝑏2
𝜕𝜈

𝜕𝑥𝑖

𝜕𝜈

𝜕𝑥𝑖

}︀ . (A.35)

The original coefficient formulations from the SA model have been successfully tested,
demonstrating the balanced and well-constructed nature of the new equation.

The dynamic adjustment of the destruction term, enabling it to accurately represent
both near-wall and free-stream behaviors, is obtained through the following expres-
sion:

�̃� = 𝜈

𝑑2 − 𝑓𝑑 ⋅min( 𝜈
𝑑2 −

⌈︂
𝛽∗⋃︀𝑆𝑖𝑗 ⋃︀2𝑡𝑙,0) , (A.36)
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where the shielding function 𝑓𝑑 is defined as

𝑓𝑑 = 1 − tanh ((8𝑟𝑑)3) , with 𝑟𝑑 =
𝜇 + 𝜇𝑡

𝜌(𝜅𝑑2)max ⌊︀
}︂

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

,10−10}︀
. (A.37)

Here, 𝛽∗ = 0.09, and ⋃︀𝑆𝑖𝑗 ⋃︀ =
⌈︂

2𝑆𝑖𝑗𝑆𝑖𝑗 represents the magnitude of the strain rate tensor.
Besides, the turbulence timescale 𝑡𝑙 is computed as

𝑡𝑙 =
1⌉︂

𝜕𝑢𝑚

𝜕𝑥𝑛

𝜕𝑢𝑚

𝜕𝑥𝑛

. (A.38)

A.2.5. Coupled Spalart-Allmaras with trained extra-anisotropy

The new CSA one-equation turbulence model is coupled with the optimization of 𝜏𝑅
𝑖𝑗

by modeling the Reynolds stress anisotropy. The modeled 𝑎𝑖𝑗 is also included in the
new turbulence production term which thus becomes

𝑃 = 2𝑐𝑏1 (𝑆∗𝑖𝑗𝑡𝑙 − 𝑎∗𝑖𝑗)
𝜕𝑢𝑖

𝜕𝑥𝑗

𝜈. (A.39)

The CSA+𝑎𝑖𝑗 turbulence model equation then reads

𝐷𝜈

𝐷𝑡
= 2𝑐𝑏1 (𝑆∗𝑖𝑗𝑡𝑙 − 𝑎∗𝑖𝑗)

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜈 − 𝑐𝑤1𝑓𝑤�̃�𝜈 +
1
𝜎
⌊︀ 𝜕

𝜕𝑥𝑗

((𝜈 + 𝜈) 𝜕𝜈
𝜕𝑥𝑗

) + 𝑐𝑏2
𝜕𝜈

𝜕𝑥𝑖

𝜕𝜈

𝜕𝑥𝑖

}︀ . (A.40)

The formulation of 𝑎∗𝑖𝑗 is presented in Chapter 8.

A.3. Hybrid RANS/LES Turbulence Models

A.3.1. SA-based Improved Delayed Detached Eddy Simulation

DES integrates LES modeling in regions distant from wall boundaries while transi-
tioning to RANS modeling in near-wall boundary layer regions. For integrating the
SA model within the DES framework to exhibit both URANS and LES behavior, the
distance 𝑑 is replaced with a modified distance 𝑑, defined as

𝑑𝐷𝐸𝑆 ≡min (︀𝑑,Δ𝐷𝐸𝑆⌋︀ , with Δ𝐷𝐸𝑆 = 𝐶𝐷𝐸𝑆ΨΔ. (A.41)

Here, 𝐶𝐷𝐸𝑆 is a constant set to 0.65 as recommended for homogeneous turbulence
conditions, and Ψ is a low Reynolds number correction.

In the DDES model, the hybrid length scale, 𝑑, becomes

𝑑𝐷𝐷𝐸𝑆 ≡ 𝑑 − 𝑓𝑑 max (︀0, 𝑑 −Δ𝐷𝐸𝑆⌋︀ , (A.42)
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where the shielding function 𝑓𝑑 is defined as

𝑓𝑑 = 1 − tanh ((8𝑟𝑑)3) , with 𝑟𝑑 =
𝜇 + 𝜇𝑡

𝜌(𝜅𝑑2)max ⌊︀
}︂

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

,10−10}︀
. (A.43)

The WMLES branch of the IDDES is designed to activate only under specific condi-
tions. It employs the hybrid length scale, 𝑑𝑊 𝑀𝐿𝐸𝑆, defined as follows

𝑑𝑊 𝑀𝐿𝐸𝑆 = 𝑓𝛽(1 + 𝑓𝑒)𝑑 + (1 − 𝑓𝛽)Δ𝐷𝐸𝑆. (A.44)

Here, 𝑓𝛽, the empirical blending function, is expressed as

𝑓𝛽 =min )︀2 exp(−9𝛼2),1⌈︀ , with 𝛼 = 0.25 − 𝑑Δ . (A.45)

The secondary empirical function, 𝑓𝑒, is defined as

𝑓𝑒 =max (︀(𝑓𝑒1 − 1),0⌋︀Ψ𝑓𝑒2, (A.46)

where 𝑓𝑒1 and 𝑓𝑒2 are given by

𝑓𝑒1 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

2 exp(−11.09𝛼2), if 𝛼 ≥ 0
2 exp(−9.0𝛼2), if 𝛼 < 0

𝑓𝑒2 = 1 −max )︀tanh{(𝑐2
𝑡 𝑟𝑑𝑡)3}, tanh{(𝑐2

𝑙 𝑟𝑑𝑙
)10}⌈︀ .

(A.47)

Here, Ψ represents an optional low Reynolds number correction, while 𝑟𝑑𝑡 and 𝑟𝑑𝑙
denote

the turbulent and laminar portions of the 𝑟𝑑 parameter. The constants 𝑐𝑡 = 1.63 and
𝑐𝑙 = 3.55 are effective with the SA model.

A modified DDES length scale expression allows for blending in a manner that guar-
antees the realization of the desired branch, contingent on the presence of resolved
turbulent content within the boundary layer, as follows

⧹︂𝑑𝐷𝐷𝐸𝑆 = 𝑓𝑑𝑑 + (1 − 𝑓𝑑)Δ𝐷𝐸𝑆, (A.48)

where
𝑓𝑑 =max (︀1 − 𝑓𝑑𝑡 , 𝑓𝛽⌋︀ , 𝑓𝑑𝑡 = 1 − tanh )︀(8𝑟𝑑𝑡)3⌈︀ . (A.49)

This functional replacement for the DDES length scale essentially facilitates the blend-
ing of the DDES and WMLES length scale definitions through the following expres-
sion:

𝑑𝐼𝐷𝐷𝐸𝑆 = 𝑓𝑑(1 + 𝑓𝑒)𝑑 + (1 − 𝑓𝑑)Δ𝐼𝐷𝐷𝐸𝑆. (A.50)

The IDDES hybrid length scale ensures the desired WMLES behavior in simulations
containing resolved turbulent content within the boundary layer.
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Additionally, the DES filter width in the IDDES formulation is explicitly modified to
include the wall distance, 𝑑, as follows

Δ𝐼𝐷𝐷𝐸𝑆 =min {max (︀𝐶𝑤𝑑,𝐶𝑤Δ,Δ𝑛⌋︀ ,Δ} , with 𝐶𝑤 = 0.15. (A.51)

Here, Δ𝑛 denotes the grid spacing in the wall-normal direction, which can be ambiguous
for complex geometries with multiple walls.

A.3.2. 𝑘𝜔-based Scale Adaptive Simulation
SAS’s turbulence model incorporates an additional source term or function, 𝑄𝑆𝐴𝑆, into
the turbulence dissipation rate Eq. A.25 that responds to locally resolved turbulence.
This term is mathematically expressed as

𝑄𝑆𝐴𝑆 =max ⌊︀𝜌𝜁2𝑆
2 ( 𝐿𝑚

𝐿𝑣𝐾

)
2
− 𝐹𝑆𝐴𝑆

2𝜌𝑘
𝜎𝜑

max( 1
𝑘2

𝜕𝑘

𝜕𝑥𝑗

𝜕𝑘

𝜕𝑥𝑗

,
1
𝜔2

𝜕𝜔

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗

) ,0}︀ , (A.52)

with 𝜁2 = 1.755, 𝜎𝜑 = 2
3 , and 𝐹𝑆𝐴𝑆 = 1.25. The length 𝐿𝑚 is defined as follows

𝐿𝑚 = 𝑐
−

1
4

𝜇

⌋︂
𝑘

𝜔
, (A.53)

with 𝑐𝜇 = 0.09 and 𝜅 = 0.41. The von Kármán length scale, 𝐿𝜈𝐾 , is defined as

𝐿𝜈𝐾 = 𝜅
𝑈 ′

𝑈 ′′
, where 𝑈 ′ =

⌈︂
2𝑆𝑖𝑗𝑆𝑖𝑗 and 𝑈 ′′ =

⟨
⧸︂⧸︂⟩𝜕2𝑢𝑖

𝜕𝑥2
𝑘

𝜕2𝑢𝑖

𝜕𝑥2
𝑗

. (A.54)
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