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Abstract

The doctoral thesis centers on exploring the damage and failure behavior of
anisotropic ductile metals through a combined approach of experimental and
numerical analyses. The research involves a series of experiments with both
uniaxially and biaxially loaded specimens, emphasizing different loading ratios
and loading directions. Digital image correlation is used to analyze the strain
fields in critical areas of the specimens, while scanning electron microscopy is
employed to analyze fractured surfaces, providing insights into various damage
mechanisms. The thermodynamically consistent anisotropic continuum dam-
age model, developed by Brünig [22], is further enhanced to incorporate the
influence of plastic anisotropy on the damage behavior. Hoffman yield crite-
rion, taking strength-differential into account, is used to model the anisotropic
plastic behavior of the investigated aluminum alloy sheets. Using this yield
criterion, generalized anisotropic stress invariants along with the generalized
stress triaxiality and the generalized Lode parameter are introduced to char-
acterize the stress state in the anisotropic ductile metal.
Moreover, a damage criterion expressed in terms of the anisotropic stress in-
variants is proposed. To understand the effect of plastic anisotropy on damage
evolution on the micro-level, numerical simulations of a unit-cell containing a
spherical void are performed. With the help of micro-mechanical studies, the
stress-state and loading direction dependent parameters are determined, which
describe the evolution of macroscopic damage strains.

The constitutive relations of the proposed continuum damage model are im-
plemented into the commercial software package Ansys Classic APDL through
a user-defined subroutine (UMAT). This involves employing a numerical algo-
rithm based on the inelastic predictor-elastic corrector approach. The results
obtained from experiments are then compared with corresponding numerical
simulations, demonstrating the utility of the experimental-numerical method-
ology in gaining insights into the impact of plastic anisotropy on ductile damage
and fracture behavior.
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Kurzfassung

In dieser Arbeit wird das Schädigungs- und Versagensverhalten anisotroper
duktiler Metalle durch einen kombinierten Ansatz aus experimentellen und
numerischen Analysen untersucht. Die Forschung umfasst eine Reihe von Ex-
perimenten mit einachsig und zweiachsig belasteten Proben, wobei unterschied-
liche Belastungsverhältnisse und Belastungsrichtungen berücksichtigt werden.
Mit Hilfe der digitalen Bildkorrelation werden die Dehnungsfelder in kritischen
Bereichen der Proben analysiert, während die Rasterelektronenmikroskopie
zur Analyse von Bruchflächen eingesetzt wird, was Einblicke in verschiedene
Schädigungsmechanismen ermöglicht. Das thermodynamisch konsistente an-
isotrope Kontinuumsschädigungsmodell, das von Brünig [22] entwickelt wurde,
wird erweitert, um den Einfluss der plastischen Anisotropie auf das Schädi-
gungsverhalten einzubeziehen. Zur Modellierung des anisotropen plastischen
Verhaltens der untersuchten Bleche aus einer Aluminiumlegierung wird das
Hoffman-Fließkriterium verwendet, das unterschiedliches Verhalten bei Zug-
und Druckbelastung berücksichtigt. Unter Verwendung dieses Fließkriteriums
werden verallgemeinerte anisotrope Spannungsinvarianten sowie die verallge-
meinerte Spannungstriaxialität und der verallgemeinerte Lode-Parameter ein-
geführt, um den Spannungszustand in dem anisotropen duktilen Metall zu
charakterisieren.

Darüber hinaus wird eine Schädigungbedingung vorgeschlagen, die mit den
anisotropen Spannungsinvarianten formuliert ist. Um die Auswirkungen der
plastischen Anisotropie auf die Schädigungsentwicklung auf der Mikroebene zu
untersuchen, werden numerische Simulationen mit repräsentativen Volumen-
elementen mit einer kugelförmigen Pore durchgeführt. Mit Hilfe dieser mikro-
mechanischen Untersuchungen werden die vom Spannungszustand und von der
Belastungsrichtung abhängigen Parameter bestimmt, die die Entwicklung der
makroskopischen Schädigungsverzerrungen beschreiben.

Die konstitutiven Gleichungen des Kontinuumsschädigungsmodells werden in
das kommerzielle Softwarepaket Ansys Classic APDL durch ein benutzerdefi-
niertes Unterprogramm (UMAT) implementiert. Dabei wird ein numerischer
Algorithmus verwendet, der auf dem Ansatz des inelastischen Prädiktors und
des elastischen Korrektors basiert. Die aus Experimenten gewonnenen Ergeb-
nisse werden dann mit denen aus entsprechenden numerischen Simulationen
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verglichen, um die Effektivität der experimentell-numerischen Methodik für
die Gewinnung von Erkenntnissen über die Auswirkungen der plastischen An-
isotropie auf das duktile Schädigungs- und Bruchverhalten zu demonstrieren.
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1 Introdcution

Recent technological advancements have led to the development of more
advanced and sophisticated materials. These materials are not only re-
quired to meet strength and ductility standards but also need to be
as lightweight as possible. Lightweight materials, such as aluminum
and its alloys, are widely utilized in various fields including automotive,
aerospace, building construction, and offshore platforms. This widespread
usage is attributed to their favorable strength-to-density ratio, contribut-
ing to improved fuel efficiency. However, to fully realize their potential,
it is crucial to comprehend their elastic-plastic, damage, and fracture be-
havior under various loading conditions. For instance, damage induced
by deformation and load can adversely affect the stiffness of ductile met-
als [76, 78] or the failure of the entire structure due to the fatigue [89].
Therefore, it is imperative to carefully analyze the inelastic behavior of
the material for accurate numerical modeling that can effectively describe
the deformation and failure behavior of structures.
Puttick [93] conducted the experimental investigation of the ductile frac-
ture process in metals in 1959. Furthermore, McClintock [82] developed
a fracture criterion by studying the growth and coalescence of voids.
Since then, numerous researchers have conducted studies to comprehend
the damage processes that lead to ductile fracture in metals. It is well
established that primary damage mechanism in ductile metals involves
the nucleation, growth and coalescence of micro-defects, coupled with the
subsequent development of macro-cracks leading to the complete failure.
Moreover, ductile damage is characterized by the occurrence of signifi-
cant plastic strains prior to the progression of damage [50].
In addition, it has been demonstrated that the plastic anisotropy in sheet
metals is a consequence of the manufacturing processes. The plastic be-
havior of anisotropic ductile metals plays a significant role on the devel-
opment of damage and the failure process as well as on the magnitude of
the load at the fracture of the material. In this context, it is essential to
systematically explore the plastic, damage and fracture behavior, as well
as the failure mechanisms of specimens fabricated from anisotropic met-
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2 Introdcution

als. This should be achieved through reproducible tests covering a broad
range of relevant uniaxial and multiaxial loads. With these experimen-
tal findings, it becomes possible to develop phenomenological material
models and conduct numerical simulations to predict the properties of
materials under various loading conditions. This, in turn, facilitates the
assessment of safety, service life, and load-bearing capacity of innovative
structures in lightweight construction.
In this doctoral thesis, the primary focus is on further development and
implementation of a phenomenological continuum damage model. The
objective is to understand and characterize the damage and failure be-
havior of anisotropic ductile sheet metals, with a specific emphasis on
plastic anisotropy. Moreover, a series of novel experiments is carried
out to investigate the influence of material anisotropy, and the outcomes
from the developed material model are validated against the experimen-
tal results.

1.1 Scientific background

The investigation of the origin and behavior of voids in various materials
has been a significant focus of interest for more than five decades. In
particular, this attention is driven by the importance of understand-
ing the impact of void growth leading to the material failure. This
section provides an overview of scientific work on the deformation and
damage behavior of ductile metals. First, the experimental findings of
micro-mechanical damage mechanisms are summarized and correspond-
ing constitutive modeling approaches are presented. Subsequently, plas-
tic anisotropy and its influence on the damage and failure behavior are
discussed in particular. This overview is followed by the specific objec-
tives of the work.

1.1.1 Damage mechanisms in ductile metals

Fig. 1.1 illustrates X-ray tomography images of a round notched bar
captured at various stages of tensile loading [92]. In the initial stage
(Fig. 1.1(a)), numerous voids of varying shapes and sizes are dispersed.
Upon further plastic deformation, voids enlarge, and a cluster of voids
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forms, resulting in coalescence as can be observed in Fig. 1.1(c). Eventu-
ally, a macro-crack is generated at a certain point (Fig. 1.1(d)). Similar
investigations have been performed in [60, 80, 115] to study the mecha-
nism of pore growth and coalescence under tensile stress. Furthermore,
extensive research has been conducted on ductile damage under shear
loading [1, 108]. Voids nucleate due to the detachment of the ductile
matrix from the second-phase particles, leading to the rotation and elon-
gation of these particles and the development of micro-cracks. At the
material’s failure, a localized band of plastic deformation is formed [97].
According to the findings by Anand and Spitzig [2], this failure under
shear stress is induced by local plastic bands, where the formation or
growth of pores does not necessarily have to occur within them.

(a) (b)

(c) (d)

Figure 1.1: X-ray tomography of an aluminum alloy showing damage
process leading to the cracking [92].

1.1.2 Numerical ductile damage models

In the context of modeling ductile damage and failure in metals, two
fundamental approaches are commonly utilized. The first approach in-
volves micro-mechanical studies focusing on voids and micro-defects. In
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this method, one or more internal variables, which represent the volume
fraction of voids, serve as a representation of damage in the material.
McClintock [82] and Rice and Tracey [95] examined and simulated the
progression of microvoids within an elastoplastic matrix. They noted
that the expansion of voids is mainly influenced by the stress triaxiality.
However, the phenomenon of void interaction and coalescence was not
studied in detail in prior studies. Therefore, Needleman [87] analyzed
the tensile deformation of a square with periodic cylindrical voids, con-
sidering an elastic-plastic medium and plane strain conditions.
Furthermore, Gurson [55] carried out numerical studies on a representa-
tive volume element containing a spherical void and proposed a constitu-
tive model for a ductile porous medium. The model introduced a single
parameter, the void volume fraction, on a yield criterion interpreted as
a damage variable. This model can predict only the growth of voids,
while the coalescence of voids was not taken into account. Therefore,
additional terms were introduced by Tvergaard [110, 111], enhancing the
flexibility and accuracy of Gurson’s model resulting in popular model
known as the Gurson-Tvergaard-Needleman (GTN) model. Since then,
numerous modifications have been made in various aspects, including
the effects of the shape of the void [53, 54] and its size [117]. Similarly,
void shearing mechanism was incorporated in [120], material failure un-
der shear loading was accounted in [84, 86].
The alternative approach is based on the continuum damage mechan-
ics (CDM) framework, where damage processes are phenomenologically
described. Damage variables, whether scalars, vectors, or tensors, are
introduced into the macroscopic constitutive material laws, accounting
for local phenomena such as microvoids and micro-cracks. Kachanov
[66] introduced an internal scalar variable to measure the ongoing de-
terioration (damage) of the material and the concept of effective stress.
Rabotnov [94] then provided a physical interpretation for the damage
variable as the decrease in the effective cross-section area due to the
evolution of micro-cracks. Building upon the concepts of the aforemen-
tioned authors, Lemaitre [76] introduced a continuum damage model
in which the effective stress and strain equivalence concept allowed for
damage measurements, representing the reduction in elastic properties
[78]. Moreover, numerous researchers [3, 18, 106, 109] extended and
modified the original Lemaitre model to incorporate various phenomena.
Nevertheless, the models mentioned rely on a scalar-valued damage rep-
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resentation, which, as noted by Chow and Wang [42, 43], may lead to
questionable conclusions in the failure analysis of ductile metals, par-
ticularly when considering damage-induced material anisotropy. In this
context, several authors [48, 71, 104] used vectors as damage variables.
Furthermore, the approach of describing material anisotropy induced by
damage using a second-order damage tensor was explored, as seen in [16,
44, 67]. Similarly, Boehler [17] used fourth-order tensor to describe the
damage in elastic materials.
Moreover, the damage behavior of ductile sheet metals is influenced by
plastic anisotropy. In metal forming processes, the anisotropic plastic be-
havior significantly influences the localization of plastic strains, leading to
the initiation of anisotropic damage. Benzerga and Besson [15] included
plastic anisotropy in their constitutive model for porous materials. The
Hill yield criterion [57], which accounts for the anisotropic plastic behav-
ior, was incorporated in Rousselier [98] and Gurson type damage model
for ductile metals. It was observed that plastic anisotropy might affect
void growth and have detrimental effects in aluminum sheets. Addition-
ally, a new yield function, an extension of the isotropic Gurson model,
was proposed in studies such as [68, 69, 83], to investigate the impact of
void shape and size effects on anisotropic ductile metals. Furthermore,
Badreddine and Saanouni [7] and Badreddine et al. [8] introduced an
anisotropic ductile damage model that considers significant anisotropic
plastic deformation. The damage was described using a second-order
symmetric tensor, while the anisotropic plasticity was characterized by
the quadratic Hill yield criterion. Numerical studies have shown that
even small changes in the yield condition caused by anisotropies have an
effect on ductile damage. It should be noted that the identification of
the material parameters and the validation of the model presented in [7,
8] was only based on one-dimensional tensile and deep drawing tests, so
that the general validity of the constitutive equations for a wide range
of stress conditions is not assured.

1.2 Objectives

While there has been extensive research on the damage and fracture
behavior of isotropic ductile metals, there is a limited body of studies
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specifically addressing the damage behavior of anisotropic ductile met-
als. Furthermore, the specimens and experimental methods used to in-
vestigate the influence of plastic anisotropy on damage behavior across a
wide range of stress-states are not well-developed. A key objective of this
work is to develop novel experimental series that facilitate the analysis
of the deformation and damage behavior, as well as the anisotropic dam-
age development of anisotropic metallic specimens under varying stress
triaxialities. To achieve this goal, a comprehensive experimental method-
ology is developed and presented, allowing for a systematic study of the
loading-direction-dependent damage and failure mechanisms.
Moreover, the phenomenological model developed by Brünig [22, 24, 25]
has so far been successfully used in numerical simulations of various ex-
periments with isotropic ductile metals. The effectiveness of the contin-
uum damage model for various loading conditions and stress-states has
been well demonstrated, e.g., [33, 35, 36, 39, 40]. However, the extension
of this damage model for anisotropic ductile metals, commonly encoun-
tered in real-life applications, has not been explored yet. Therefore,
another main task of this thesis is to modify the damage model taking
plastic anistoropy into account. The anisotropic plastic behavior is mod-
eled using the Hoffman yield criterion [58] taking the strength-differential
effect into account. The evolution of isochoric plastic strains is deter-
mined by Hill’s plastic potential function, resulting in a non-associated
flow rule. Utilizing the Hoffman criterion, generalized anisotropic stress
invariants, as well as the generalized stress triaxiality and the general-
ized Lode parameter, have been introduced. The damage condition for
anisotropic ductile metals is expressed in terms of the generalized stress
invariants.
Additionally, micro-mechanical numerical analyses of a representative
volume element (RVE) containing micro-defects are conducted. This nu-
merical study aids in comprehending the impact of anisotropic behavior
on various damage and failure processes at the micro-scale, as well as
their influence on macroscopic damage laws. Material parameters are
identified from the numerical results of the RVE and incorporated into
the damage model to account for stress-state and loading-direction de-
pendence.
Ultimately, the enhanced continuum damage model, considering plastic
anisotropy, is implemented in Ansys through a user-defined subroutine.
A comparative analysis is conducted between the numerical results and
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experimental data.

1.3 Outline of the thesis

The thesis is organized as follows: Chapter 2 provides a concise overview
of the constitutive framework of the phenomenological continuum dam-
age model, including the necessary modifications to capture the damage
behavior of anisotropic ductile metals. Chapter 3 focuses on the finite
element method and the numerical implementation of the derived con-
stitutive equations. The experimental procedure is presented in Chapter
4 and the method to identify the material parameters from the exper-
iments is discussed in Chapter 5. Chapter 6 describes the numerical
aspects to further identify the material parameters. The experimental
and numerical results including the biaxial specimens are presented in
Chapter 7 and in the concluding Chapter 8, the work is summarized and
future research topics are suggested.



2 Continuum damage model

Brünig [24] developed a novel continuum damage model to describe de-
formations and damage behavior of ductile metals. However, this phe-
nomenological model only considers isotropic plasticity. In this work, the
continuum model is enhanced to describe the effect of anisotropic plas-
tic behavior on damage and failure mechanisms. The fundamentals and
the required mechanical quantities to adequately define the macroscopic
phenomenological damage model are discussed in the following section.

2.1 Kinematics

Fig. 2.1 shows the basic idea behind the continuum damage model. The
kinematics of the damage mechanics is based on the different configura-
tions, which follows the previous ideas of Murakami [85]. The key points

damaged

Q 
pd

o

B

o

R

Q̄
pl

Q̄
el

?

E

Q̄
o

E

fictitious 
undamaged

Q

Qel

?

R
R

E

?

B

B

Figure 2.1: Configurations and metric transformation tensors.

are summarized as follows:
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Kinematics 9

• Introduction of the initial undeformed configuration
o

B, which might
have initial damage in the material and the current damaged con-
figuration B. Additionally, a fictitious stress free state is considered
in the damaged configurations

?

B.

• Usage of the base vectors and the associated metric coefficients
containing the scalar products.

• Introduction of the fictitious undamaged configurations
o

E ,
?

E and E
by removing the damage in the three previously introduced dam-
aged configurations.

• Metric transformation tensors in a mixed variant representation are
employed to describe and relate the kinematics of undamaged and
damaged configurations, respectively.

2.1.1 Damaged configurations

As shown in the Fig. 2.1, the continuum body in the initial configuration
o

B may contain micro-defects due to the manufacturing process. The
quantities related to this configuration are based on the stretched base
vectors o

gi and the metric coefficients are given as
o

Gij =
o
gi · o

gj . Moreover,
the base vectors corresponding to elastic-plastic-damaged and fictitious
stress free configuration are gi and ?

gi, respectively. Similarly, Gij = gi·gj
and

?

Gij =
?
gi · ?

gj are the associated metric coefficients to the base vectors
gi and ?

gi, respectively. The total deformations between the initial and
current configuration are given by the metric transformation tensor

Q = Qi
.jgi ⊗ gj

=
o

GikGkjgi ⊗ gj

=
o

Gijgi ⊗ gj = FFT = B,

(2.1)

where F = gi ⊗ o
gi is the deformation gradient and related to both the

reference and current configuration. As can be seen in Eq. (2.1), Q is
equal to the left Cauchy-Green or Finger deformation tensor B in the
mixed variant representation.
The metric transformation tensor Q is multiplicatively decomposed into
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its inelastic (plastic and damage) and elastic parts

Q = QpdQel (2.2)

with the elastic metric transformation tensor

Qel =
(
Qel

)i
.j
gi ⊗ gj =

?

GikGkjgi ⊗ gj (2.3)

and the inelastic metric transformation tensor

Qpd =
(
Qpd

)i
.j
gi ⊗ gj =

o

Gik ?

Gkjgi ⊗ gj . (2.4)

It is evident that Qel is symmetric while Qpd is a non-symmetric tensor.
With the help of Q, the logarithmic Hencky strain tensor is defined as

A =
1

2
lnQ =

1

2
(lnQ)i.jgi ⊗ gj = Ai

.jgi ⊗ gj (2.5)

and to describe the reversible deformations, the elastic part of the Hencky
strain tensor

Ael =
1

2
lnQel (2.6)

is introduced. Furthermore, following Lehmann [75], the symmetric
strain rate is described by

Ḣ =
1

2
Q−1Q̇ = Ḣi

.jgi ⊗ gj . (2.7)

Moreover, utilizing the non-symmetric metric transformation tensor Q
and its Oldroyd rate

Q̇ =
o

GikĠkjgi ⊗ gj (2.8)
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the symmetric strain rate Ḣ can be additively decomposed as follows

Ḣ =
1

2
Q−1Q̇

=
1

2
Qel−1Qpd−1(Q̇pdQel +QpdQ̇el)

=
1

2
Qel−1Qpd−1Q̇pdQel +

1

2
Qel−1Q̇el

= Ḣpd + Ḣel

(2.9)

where Ḣpd and Ḣel are the inelastic and elastic strain rate, respectively.

2.1.2 Fictitious undamaged configurations

The damage that occurred in the body is hypothetically removed, and
the fictitious undamaged configurations are introduced. In particular, re-
moving the pre-existing initial damage that might be present in the initial
configuration

o

B, we get the initial fictitious undamaged configuration
o

E
with base vectors o

ei. Similarly, E is the current fictitious undamaged
configuration with base vectors ei and

?

E is the stress free intermedi-
ate configuration with base vectors ?

ei. Only elastic-plastic deformations
take place in these configurations. Analog to the metric coefficients in
damaged configurations, the corresponding metric coefficients for the un-
damaged fictitious configurations are

o

Eij =
o
ei · o

ej ,

Eij = ei · ej ,
?

Eij =
?
ei · ?

ej .

(2.10)

Furthermore, using these metric coefficients, the undamaged metric trans-
formation tensor is given as

Q̄ = Q̄i
.jei ⊗ ej =

o

EikEkjei ⊗ ej . (2.11)

With the help of the damage deformation gradient

F̃ = gi ⊗ ei (2.12)
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the undamaged metric transformation tensor can be pushed forward to
the current damaged configuration B as done in Brünig [24]. Hence,
the effective metric transformation tensor with respect to the current
configuration base vectors is given as

Q̄ = Q̄i
.jgi ⊗ gj (2.13)

which is multiplicatively decomposed, as shown in Fig. 2.1

Q̄ = Q̄plQ̄el (2.14)

into its undamaged elastic part

Q̄el =
?

EikEkjgi ⊗ gj (2.15)

and into its undamaged plastic part

Q̄pl =
o

Eik ?

Ekjgi ⊗ gj . (2.16)

Again, similar to the definition of strain tensors in the damaged config-
urations, the effective Hencky strain tensor is introduced as

Ā =
1

2
ln Q̄ =

1

2
(ln Q̄)i.jgi ⊗ gj = Āi

.jgi ⊗ gj (2.17)

and the elastic part of the effective Hencky strain tensor is given by

Āel =
1

2
ln Q̄el. (2.18)

Similarly, the effective strain rate is additively decomposed into

˙̄H =
1

2
Q̄−1 ˙̄Q

=
1

2
Q̄el−1Q̄pl−1 ˙̄QplQ̄el +

1

2
Q̄el−1 ˙̄Qel

= ˙̄Hpl + ˙̄Hel

(2.19)

where ˙̄Hpl is the plastic strain rate tensor and ˙̄Hel is the elastic one.
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2.1.3 Damage metric transformation tensor

To describe the damage between the damaged and undamaged config-
urations in a kinematic way, the damage metric transformation tensors
are introduced as

o

R =
o

Ri
.jgi ⊗ gj =

o

Eik o

Gkjgi ⊗ gj

?

R =
?

Ri
.jgi ⊗ gj =

?

Eik ?

Gkjgi ⊗ gj

R = Ri
.jgi ⊗ gj = EikGkjgi ⊗ gj

(2.20)

where
o

R characterizes the initial damage present in the initial configura-
tion

o

B. Similarly, the metric transformation tensors
?

R and R represent
the internal state variable describing the current damage state of the
material. Following Murakami [85] and Brünig [24], unless the elastic
deformations are small, the damage should be characterized by

?

R, as
R depends on the current state of deformation and cannot properly de-
scribe the damage. The damage metric transformation tensor

?

R describes
the actual damage state in the current configuration, irrespective of the
current elastic deformation and relates the elastically unloaded configu-
ration

?

B and the corresponding elastically unloaded configuration
?

E in
the damaged and undamaged configurations, respectively. Hence, using
?

R, the corresponding Hencky damage strain tensor is given as

Ada =
1

2
ln

?

R (2.21)

and the damage strain rate can be defined as

Ḣda =
1

2

?

R−1
?̇

R. (2.22)

2.1.4 Total deformation

Using the kinematics as shown in Fig. 2.1, the total deformation between
the initial configuration

o

B and the final configuration B is characterized
with the help of the metric transformation tensor Q. Furthermore, Q
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can be multiplicatively decomposed as

Q =
o

R−1Q̄pl
?

RQel (2.23)

which includes the multiplicative decomposition of the damage and the
metric transformation tensors. Thus, the deformations due to pre-existing
damage, plastic deformation, complete damage and the elastic deforma-
tions are defined. Using the equations Eq. (2.23) and Eq. (2.7) and with
some manipulations

Ḣ =
1

2
Q−1Q̇

= Ḣel + R−1 ˙̄HplR+Qel−1ḢdaQel
(2.24)

where the strain rate tensor is additively decomposed into an elastic,
an effective plastic and a damage part. According to Murakami [85]
and Brünig [24], the mechanical state of the material in the current
damaged configuration B is equivalent to that one in the corresponding
fictitious undamaged configurations E . This means that the elastic and
the effective elastic metric transformation tensor coincide

Qel = Q̄el (2.25)

which leads to the equivalence of the elastic strain tensors Ael = Āel as
well as the equivalence of the elastic strain rates Ḣel = ˙̄Hel.

2.2 Thermodynamics

The constitutive equations characterizing the material behavior are re-
stricted by thermodynamics theory. Hence, the continuum damage model
should be thermodynamically consistent. Using the basic equations of
thermodynamics, we can relate the energies with the stresses and defor-
mations. Thus, by considering the undamaged configurations, the consti-
tutive equations for the elastic-plastic material behavior are formulated.
Moreover, the constitutive equations for the elastic-plastic-damaged ma-
terial behavior are established using the damaged configurations. In this
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thesis, only the isothermal processes are taken into account so that the
temperature is not considered as the state variable.

2.2.1 Fictitious undamaged configurations

In this section, the thermodynamics of elastic-plastic behavior related to
the effective undamaged configuration is discussed. The effective Kirch-
hoff stress tensor with respect to the base vectors of the current damaged
configuration is introduced as

T̄ = T̄ i
.jgi ⊗ gj . (2.26)

The scalar product of T̄ with its work conjugate pair ˙̄H gives us the rate
of the effective specific mechanical work ˙̄w as

ρ0 ˙̄w = T̄ · ˙̄H (2.27)

where ρ0 is the density of the material in the initial configuration. The
work rate ˙̄w can be additively decomposed into elastic and plastic parts
using Eq. (2.19)

ρ0 ˙̄w = ρ0 ˙̄wel + ρ0 ˙̄wpl = T̄ · ˙̄Hel + T̄ · ˙̄Hpl. (2.28)

Moreover, the specific Helmholtz free energy φ̄ for the undamaged con-
figuration is the summation of effective elastic and plastic part. As the
hardening of the material has no effect on the elastic behavior, see Brünig
[22], the specific free energy is given as

φ̄ = φ̄el(Āel) + φ̄pl(γ) (2.29)

where γ is a internal scalar variable characterizing plastic material be-
havior. Then, the rate of the specific free energy ˙̄φ is obtained as

˙̄φ =
∂φ̄el

∂Āel
· ˙̄Ael + ˙̄φpl. (2.30)

Hence, the second law of thermodynamics or the Clausius-Duham in-
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equality can be written as

T̄ · ˙̄Hel + T̄ · ˙̄Hpl − ρ0
∂φ̄el

∂Āel
· ˙̄Ael − ρ0

˙̄φpl ≥ 0. (2.31)

According to Lehmann [74] and Brünig [22], considering the isotropic
elastic material behavior, one reaches at the hyperelastic constitutive
law

T̄ = ρ0
∂φ̄el

∂Āel
. (2.32)

The irreversible parts remaining in Eq. (2.31), T̄ · ˙̄Hpl − ρ0
˙̄φpl ≥ 0, form

the Kelvin inequality characterizing the internal dissipation.

2.2.2 Damaged configurations

In addition to the elastic and plastic parts, for the damaged configu-
ration, damage deformation processes are also taken into account as in
Eq. (2.24). Similarly, the rate of the specific mechanical work ẇ consists
of elastic, plastic and damage parts. Moreover, the scalar product of the
Kirchhoff stress tensor for the damaged configuration T = T i

.jgi⊗gj and
its work conjugate part Ḣ gives the specific mechanical work

ρ0ẇ = T · Ḣ. (2.33)

Using Eq. (2.24) we obtain

ρ0ẇ = T · Ḣel + RTR−1 · ˙̄Hpl + T̃ · Ḣda (2.34)

where T̃ = QelTQel−1 represents the work conjugate stress tensor of
the damage strain rate Ḣda introduced in Eq. (2.22). Furthermore, the
specific free energy function for the damaged configurations can be de-
composed into the elastic, plastic and damage parts as

φ = φel(Ael,Ada) + φpl(γ) + φda(µ). (2.35)

As demonstrated by Lemaitre [76] and Cordebois and Sidoroff [44], dam-
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age affects the elastic properties of the material. Consequently, the elastic
part of specific free energy function φel is dependent on both elastic and
damage variables. The internal plastic state variable γ corresponds to
the formation of dislocations in crystal lattices along certain slip planes
and the internal damage variable µ describes the formation, growth and
coalescence of microdefects. It is also assumed that the damage and plas-
tic phenomena are independent of each other, see Lemaitre [77]. Hence,
using Eq. (2.34) and Eq. (2.35), the Clausisus-Duham inequality can be
written as

ρ0ẇ − ρ0φ̇ = T · Ḣel + RTR−1 · ˙̄Hpl + T̃ · Ḣda

− ρ0
∂φel

∂Ael
· Ȧel − ρ0

∂φel

∂Ada
· Ȧda − ρ0φ̇

pl − ρ0φ̇
da ≥ 0.

(2.36)

This, for the reversible part leads to

T · Ḣel − ρ0
∂φel

∂Ael
· Ȧel = 0 (2.37)

which as in Eq. (2.32), results in thermic state equation given as

T = ρ0
∂φel

∂Ael
. (2.38)

Assuming that the plastic and damage behavior can be separated into
two parts, we arrive at the restriction for damage behavior

T̃ · Ḣda − ρ0
∂φel

∂Ada
· Ȧda − ρ0φ̇

da ≥ 0. (2.39)

The remaining plastic dissipation part in Eq. (2.36) has been considered
in the undamaged configurations and is already given in Eq. (2.31).

2.3 Constitutive equations

Within the framework of the thermodynamic considerations discussed
above, constitutive laws for the undamaged and fictitious damaged con-
figurations are formulated.
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2.3.1 Undamaged configurations

The elastic and plastic material laws for the undamaged material are for-
mulated considering the undamaged configurations. This effective elastic
material law is completely unaffected by the damage mechanisms. The
isotropic material behavior is given by the Helmholtz free energy function
as

ρ0φ̄
el
(
Āel

)
= GĀel · Āel +

1

2

(
K − 2

3
G

)(
tr Āel

)2 (2.40)

where G is the shear modulus and K the bulk modulus of the matrix ma-
terial. Making use of the hyperelastic relation in Eq. (2.32), the effective
stress tensor is given as

T̄ = ρ0
∂φ̄el

∂Āel
= 2GĀel +

(
K − 2

3
G

)
tr Āel1. (2.41)

Further, differentiating to the corresponding strain the elastic tangent
modulus is given as

C̄el =
dT̄

dĀel
= 2G1+

(
K − 2

3
G

)
1⊗ 1 (2.42)

where 1 is the fourth order identity tensor.
Due to the manufacturing processes like rolling, the sheet metals undergo
severe plastic deformations. These processes introduce preferential ori-
entations to the grains, leading to a direction-dependent behavior known
as anisotropy [59], which is difficult to avoid [65]. The other origin of
anisotropy is alignment in the microstructure and especially the distri-
bution of second phase particles such as inclusions. Material anisotropy
significantly influences the distribution of stresses and strains, impacting
the shape of the final parts, their thickness, and potential instabilities,
such as wrinkling in deep-drawn parts.
Furthermore, experimental studies done by Spitzig and Richmond [101],
Wilson [119], Bai and Wierzbicki [9] and Wei et al. [116], revealed that the
yield stresses in aluminum alloys were different for uniaxial tension and
compression tests. This difference in yield stresses known as strength-
differential (SD) effect should be taken into account for the investigated
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material. Hence, including anisotropy and SD effect, the beginning of
plastic yielding is modeled using the Hoffman yield criterion [58]

fpl = C · T̄+

√
1

2
T̄ ·DT̄− c = 0 (2.43)

where C = Ci
.j gi⊗gj is the second order tensor containing the coefficients

characterizing the SD effect. The components are

[
Ci

.j

]
=

C1 0 0
0 C2 0
0 0 C3

 .

Similarly, D = Di. k
.j. l gi⊗gj ⊗gk⊗gl is the fourth order tensor including

anisotropic material parameters of the Hoffman yield criterion and the
components can be written in the matrix form as

[
Di. k

.j. l

]
=


C4 + C5 −C4 −C5 0 0 0
−C4 C4 + C6 −C6 0 0 0
−C5 −C6 C5 + C6 0 0 0
0 0 0 C7 0 0
0 0 0 0 C8 0
0 0 0 0 0 C9


and c is the equivalent yield stress of the undamaged material. It is
supposed that the principal axes of anisotropy coincide with the principal
axes of stress tensor. These principal axes lie in the x-direction of rolling
direction (RD, 0◦), in the y-direction transversely in the plane of the
sheet (TD, 90◦) and in the z-direction normal to this plane as shown
in Fig. 2.2. Stress invariants have been extensively used to describe the
stress state expressed in terms of principal stresses, namely the stress
triaxiality and the Lode parameter, of the isotropic ductile metals in
McClintock [82], Rice and Tracey [95] and in Bao and Wierzbicki [10].
Brünig et al. [30] performed micro-simulations and developed stress state
dependent functions using stress invariants for isotropic metals. However,
for the case of anisotropy, all the stress components should be used to
define the stress state of anisotropic materials.
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Rolling direction (RD)

Transverse direction (TD)
x

y
z

Figure 2.2: Schematic of rolling direction (RD) and transverse direction
(TD) in a metal sheet.

Therefore, the stress triaxiality and the Lode parameter have to be de-
fined for anisotropic materials. Park et al. [90] and Rickhey and Hong
[96] defined the stress triaxiality taking anisotropic equivalent stress into
account but the mean stress was still calculated utilizing the principal
stresses. Also, the principal stresses are used to calculate the Lode pa-
rameter. In this context, using the Hoffman yield condition (Eq. (2.43)),
the first stress invariant is newly defined as

ĪH1 =
1

a
C · T̄ with a =

1

3
trC. (2.44)

Similarly, the second deviatoric stress invariant taking Hoffman yield
condition into account is given as

J̄H
2 =

1

2
T̄ ·DT̄ (2.45)

and finally the third deviatoric stress invariant is

J̄H
3 = det(DT̄). (2.46)

With these generalized stress invariants based on the Hoffman yield con-
dition, the stress triaxiality

η̄H =
ĪH1

3
√
3J̄H

2

(2.47)
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and the Lode Parameter

L̄H =
−3

√
3 J̄H

3

2
(
J̄H
2

)(3/2) (2.48)

are newly introduced to characterize the stress state of the anisotropic
materials. Making use of Eqs. (2.44) and (2.45), the yield condition
Eq. (2.43) can be rewritten as

fpl = aĪH1 +
√

J̄H
2 − c = 0 . (2.49)

Only a small change in plastic volume was observed during the experi-
ments done by Spitzig et al. [103]. Therefore, ignoring the effect of ĪH1 ,
a plastic potential function is chosen as

gpl =
√
J̄H
2

(2.50)

which leads to the non-associated flow rule and the effective plastic strain
rate tensor is given as

˙̄Hpl = λ̇
∂gpl

∂T̄
= λ̇

1

2
√
J̄H
2

DT̄ = γ̇N̄ (2.51)

where γ̇ is a non-negative scalar factor and N̄ is the normalized effective
deviatoric stress tensor given by

γ̇ = λ̇

∥∥D T̄
∥∥

2
√
J̄H
2

and N̄ =
D T̄∥∥D T̄

∥∥ . (2.52)

2.3.2 Damaged configurations

Based on the thermodynamic consideration of the damaged configu-
rations, the constitutive equations for the deformation behavior of an
anisotropically damaged material are formulated. Under external load-
ing, the presence of microdefects leads to an elevation of stress levels in
the remaining effective load-carrying area. Conversely, it causes a re-
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duction in the stored energy in the damaged material compared to the
undamaged material. To describe these phenomena within the constitu-
tive framework of a phenomenological elastic–plastic–damage model, the
damaged elastic strain energy φel, representing the elastic behavior of the
damaged aggregate, is selected as a function of Ael and Ada. Assuming
isotropic linear-elastic material in the initial undamaged state, the func-
tion φel is assumed to be a quadratic function of the elastic strain and a
linear function of the damage and given as

ρ0φ
el
(
Ael,Ada

)
= GAel · Ael +

1

2

(
K − 2

3
G

)(
trAel

)
2

+ η1 trA
da
(
trAel

)
2 + η2 trA

daAel · Ael

+ η3 trA
elAda · Ael + η4 A

el ·
(
AelAda

)
.

(2.53)

The additional parameters η1 to η4 consider worsening effect of damage
on the elastic material behavior as seen in experiments. Again, differen-
tiation of Eq. (2.53) to the corresponding strain, like in Eq. (2.32), gives
the Kirchhoff stress tensor as

T = ρ0
∂φel

∂Ael
= 2

(
G+ η2 trA

da
)
Ael

+

[(
K − 2

3
G+ 2η1 trA

da

)
trAel + η3

(
Ada · Ael

)]
1

+ η3 trA
elAda + η4

(
AelAda + AdaAel

)
.

(2.54)

Furthermore, the total differential of Eq. (2.54) is given by

dT =
∂T

∂Ael
dAel +

∂T

∂Ada
dAda

= CeldAel + CdadAda
(2.55)
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which leads to the elastic-damage tangent modulus

Cel =
∂T

∂Ael
= 2

(
G+ η2 trA

da
)
1

+

(
K − 2

3
G+ 2η1 trA

da

)
1⊗ 1

+ η3

(
Ada ⊗ 1+ 1⊗ Ada

)
+ η4Ada

(2.56)

with the fourth-order damage tensor

Ada =
[
(Ada)i··lδ

k·
·j + (Ada)k··j δ

i·
·l
]
gi ⊗ gj ⊗ gk ⊗ gl (2.57)

and the damage tangent modulus

Cda =
∂T

∂Ada
= 2η1 trA

el1⊗ 1+ 2η2 A
el ⊗ 1+ η3 1⊗ Ael

+ η3 trA
el1+ η4 Ael

(2.58)

with the fourth-order elastic tensor given by

Ael =
[
(Ael)i··lδ

k·
·j + (Ael)k··j δ

i·
·l
]
gi ⊗ gj ⊗ gk ⊗ gl. (2.59)

In analogy to the yield criterion for plasticity (Eq. (2.43)), to characterize
the onset and evolution of damage in metals with plastic anisotropy, the
damage condition

fda = αIH1 + β
√
JH
2 − σ = 0 (2.60)

is introduced, where IH1 and JH
2 are the generalized first and second de-

viatoric Hoffman invariants of the Kirchhoff stress tensor in Eq. (2.54)
taking the hydrostatic and deviatoric stress effects caused by the shape
and orientation of micro-defects. σ is the equivalent damage stress which
can be seen as the material resistance to the propagation of micro-cracks.
The effective Kirchhoff stress tensor T̄ and the Kirchhoff stress tensor T
are identical at the onset of damage meaning that at this point the gen-
eralized Hoffman invariants are equal. Similarly, the stress triaxiality
(ηH) and the Lode parameter (LH) with respect to the damage configu-
rations, coincide at the onset of damage with η̄H and L̄H with respect to
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the undamaged configurations (i.e, ηH = η̄H, LH = L̄H).

As has been discussed and shown in several literature, Bao and Wierzbicki
[10], Bonora et al. [19], and Brünig et al. [26], damage mechanisms are
strongly stress-state dependent. High positive stress triaxialities indi-
cate that the damage process is mainly by void growth and coalescence
whereas for small positive or negative stress triaxialities, damage is due
to the formation of micro-shear-cracks. Between these two regions, for
moderate positive stress triaxialities, both damage mechanisms play a
role, see Fig. 2.3. Furthermore, Bao and Wierzbicki [11] and Brünig et
al. [34] concluded that the damage doesn’t occur after certain value of
high negative stress triaxialities.

No damage Micro-shear-
cracks cracks and

voids

Micro-shear- Voids

ηc ηt
η0

Figure 2.3: Various damage processes categorized based on stress tri-
axiality η.

In addition, for the isotropic ductile metals, the damage mode parame-
ters α and β are only dependent on the stress-state [30]. For anisotropic
ductile metals, Brünig et al. [38] conducted a series of experiments and
showed that the damage mode parameters are not only stress-state de-
pendent, but also depend on the loading direction with respect to the
rolling direction. Therefore, in this work, α and β are function of stress-
state and loading direction. The identification procedure of these param-
eters will be discussed in the later part.
The damage rule models the growth in macroscopic strains resulting from
the nucleation, growth, and coalescence of micro-defects. Given that the
strength-differential (SD) effect is already incorporated in the damage
condition (Eq. (2.60)), it is not explicitly considered in the damage po-
tential function. This choice not only simplifies the derivation but also
facilitates the numerical implementation of the damage law. Therefore,
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the damage potential function is selected as follows

gda
(
I1, J

H
2

)
= α̃I1 + β̃

√
JH
2

(2.61)

where I1 = trT is the first stress invariant of the Kirchhoff stress tensor
T and JH

2 = 1
2T · DT is the second stress invariant based on Hoffman

yield criteria related to the damaged configurations. For the anisotropic
materials, α̃ and β̃ are the stress and loading direction dependent pa-
rameters, whose detailed process of identifying is elaborated in Chapter
6. This leads to the non-associated anisotropic damage rule, to describe
the macroscopic irreversible strains caused by different damage processes
(Fig. 2.3) on the micro-level, as

Ḣda = µ̇
∂gda

∂T

= µ̇

(
α̃√
3
1+ δβ̃N

) (2.62)

where µ̇ is the equivalent damage strain rate. δ is a scalar and N is the
normalized deviatoric part of Kirchhoff stress tensor given by

δ =
‖DT‖
2
√
JH
2

and N =
DT

‖DT‖
. (2.63)
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The finite-element method (FEM) is used to solve the discretized equi-
librium equations. The numerical simulations are carried out with the
commercial finite-element software Ansys classic Mechanical (APDL)
version 18.0. The mechanical constitutive laws used in this work, are
implemented as a user material routine (UMAT) within the Ansys inter-
face [4]. At the starting of the time increment, the actual strain incre-
ment, stresses, strains and other state variables are passed to the UMAT
whereas, the updated stresses, state variables and the material Jacobian
matrix must be returned to the Ansys at the end of the time step. In the
following, only fundamentals of FEM are discussed while the numerical
integration of the constitutive model is provided in detail.

3.1 Finite element method

The finite-element method is a popular tool to solve the mathematical
model of a physical problem which generally is nonlinear in nature. In
engineering, the physical problem often includes a structure or a body
under certain loads [14]. To solve the mathematical problem, the body
or the domain is divided into different sub-domains or finite elements.
Then, the loads are applied incrementally and within these elements
satisfying the equilibrium requirements, the solution is approximated
using polynomial form. The force equilibrium on a body, for quasi-static
condition, is given by balance of momentum as

div

(
ρ

ρ0
T

)
+ ρb = 0 (3.1)

where b is the vector of body force density. Multiplying Eq. (3.1) by a
test function δu, which can be interpreted as a virtual displacement and
integrating over the volume, one gets the weak form of the equilibrium
equation. Furthermore, with the boundary condition and the divergence

26
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theorem, the variational formulation of the weak form of the equilibrium
equation

δΠ =

∫
o
B

(
ρ

ρ0
T

)
· gradT δud

o
v − ρ0

∫
o
B
b · δud

o
v −

∫
∂

o
B
t̄ · δud

o
a = 0

(3.2)

is obtained, where B is a initial volume, ∂B its initial surface and t̄
is the stress vector on the initial surface. Newton-Raphson method is
used to solve the nonlinear equations. For this purpose, the nonlinear
equations are approximated by the linear ones, incremental quantities
are determined and the process is repeated until the original nonlinear
equations are satisfied. Using a consistent linearization procedure [64],
Eq. (3.2) is expanded using Taylor series and neglecting the higher order
terms

δΠ (δu,u+∆u) = δΠ (δu,u) +
∂δΠ

∂u
·∆u = 0. (3.3)

Moreover, using the shape functions and the material law, the stiffness
matrix and the load vector at the element level are obtained. In addition,
assembling the element stiffness matrices and the load vectors, we obtain
the system of linearized equations as

K∆U = R (3.4)

where K is the tangent stiffness matrix, ∆U denotes the vector of the
displacement increment and R is a force vector representing the residual
or unbalanced force which is given by the difference between the applied
and the internal forces. Eq. (3.4) is solved iteratively using Newton-
Raphson until R is less than the prescribed tolerance value.
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3.2 Numerical integration of the constitutive rate
equations

3.2.1 Scalar rate equations

Fictitious undamaged configurations

The rate of the plastic strain is determined as only elastic-plastic defor-
mation occur in this configuration. Using the plastic consistency condi-
tion ḟpl = 0 we arrive at

ċ =

∥∥D T̄
∥∥

2
√
DT̄ · T̄

N̄ · ˙̄T+ C · ˙̄T. (3.5)

The rate of the effective stress tensor is given as

˙̄T =
∂T̄

∂Ael
˙̄Hel = 2G ˙̄Hel +

(
K − 2

3
G

)
tr ˙̄Hel1. (3.6)

Assuming the plastic incompressibility tr ˙̄H = tr ˙̄Hel, making use of the
scalar product N̄ · ˙̄T = 2GN̄ · ˙̄Hel and Eq. (2.19), the plastic consistency
condition can be written further as

ċ = G̃ (ε̇− kγ̇)

= G̃k

(
1

k
ε̇− γ̇

) (3.7)

with

G̃ =

∥∥D T̄
∥∥

2
√
DT̄ · T̄

G and k =

(
2G

G̃
C · N̄+ 1

)
. (3.8)

Similarly, the scalar strain rate measure ε̇ is given by

ε̇ =

(
2G

G̃
C+ N̄

)
· ˙̄H+

1

G̃

(
K − 2

3
G

)
tr ˙̄H trC (3.9)
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Damaged configurations

In the damaged configurations, the total strain rate contains extra dam-
age strain as can be seen in Eq. (2.24). Following the plastic consistency
condition, the equivalent stress rate ċ is given by

ċ = G̃N̄ · Ḣel + G̃C · Ḣel +

(
K − 2

3
G

)
tr Ḣel trC

= C3 · Ḣel

= C3 · Ḣ− R−1C3R · ˙̄Hpl −Qel−1C3Q
el · Ḣda

= ε̇1 − k1γ̇ − k2µ̇

(3.10)

with the tensor

C3 =

[
G̃N̄+ 2GC+

(
K − 2

3
G

)
1 trC

]
(3.11)

and the scalars as

ε̇1 = C3 · Ḣ, (3.12)

k1 = R−1C3R ·N (3.13)

and

k2 = Qel−1C3Q
el ·

(
α̃1+ β̃N

)
. (3.14)

The time derivative of the damage condition (Eq. (2.60)) results in the
damage consistency condition ḟda = 0, which makes sure that the current
stress-state fulfills the current damage condition. Making use of the
damage consistency condition, the rate of the equivalent damage stress
is given as

σ̇ = αC · Ṫ+ β

√
DT ·DT√
T ·DT

N · Ṫ . (3.15)
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The rate of the Kirchhoff stress tensor in Eq. (2.60) is given by

Ṫ = 2
(
G+ η2trAda

)
Ḣel +

(
K − 2

3
G+ 2η1 trA

da

)
tr Ḣel1

+ η3

(
Ada · Ḣel

)
1+ η3 tr Ḣ

elAda + η4

(
ḢelAda + AdaḢel

)
+ 2η2 tr Ḣ

daAel + 2η1 tr Ḣ
da trAel1+ η3

(
Ḣda · Ael

)
1

+ η3 trA
elḢda + η4

(
AelḢda + ḢdaAel

)
.

(3.16)

Furthermore, the scalar product between the normalized deviatoric stress
tensor and the rate of the Kirchhoff stress tensor from the Eq. (3.15) can
be determined as

N · Ṫ = 2
(
G+ η2 trA

da
)
N · Ḣel + η3

(
N · Ada

)
tr Ḣel

+ η4

(
NAda + AdaN

)
· Ḣel + 2η2

(
N · Ael

)
tr Ḣda

+ η3 trA
elN · Ḣda + η4

(
NAel + AelN

)
· Ḣda.

(3.17)

Similarly, the scalar product between the tensor C (Eq. (2.43)), which
characterizes the SD effect, and the rate of the Kirchhoff stress tensor is
given as

C · Ṫ = 2
(
G+ η2trAda

)
C · Ḣel + η3 trC

(
Ada · Ḣel

)
+

(
K trC− 2

3
G trC+ 2η1 trC trAda

)
tr Ḣel

+ η3 tr Ḣ
el
(
Ada · C

)
+ 2η4C ·

(
ḢelAda

)
+ 2η2 tr Ḣ

daC · Ael + 2η1 trC tr Ḣda trAel

+ η3 trC
(
Ḣda · Ael

)
+ η3 trA

elC · Ḣda + 2η4C ·
(
AelḢda

)
(3.18)
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Furthermore, arranging the common terms in Eq. (3.18)

C · Ṫ =

(
K trC− 2

3
G trC+ 2 trCη1 trA

da + η3A
da · C

)
tr Ḣel

+
(
[2G+ 2η2trAda]C+ η3 trCA

da
)
· Ḣel

+ 2η4C ·
(
ḢelAda

)
+
(
2η1 trC trAel + 2η2C · Ael

)
tr Ḣda

+ η3 trC
(
Ḣda · Ael

)
+ η3 trA

elC · Ḣda

+ 2η4C ·
(
AelḢda

)
.

(3.19)

Taking the common terms from both the scalar product in Eq. (3.17)
and Eq. (3.19), the rate of the equivalent damage stress can be further
manipulated as

σ̇ =

[
α

a

(
K trC− 2

3
G trC+ 2 trCη1 trA

da + η3A
da · C

)
+ βkN · Ada

]
tr Ḣel

+
[α
a

(
[2G+ 2η2trAda]C+ η3 trCA

da + 2η4A
daC

)
+ βk

(
2G+ 2η2 trA

da
)
N+ βkη4

(
NAda + AdaN

)]
· Ḣel

+
[α
a

(
2η1 trC trAel + 2η2C · Ael

)
+ 2βkη2N · Ael

]
tr Ḣda

+
[α
a

(
η3 trA

elC+ 2η4A
elC+ η3 trCA

el
)

+ βkη3 trA
elN+ βkη4

(
NAel + AelN

)]
· Ḣda.

(3.20)

As shown above (Eq. (2.24)), the strain rate in the damaged configura-
tions is additively decomposed as

Ḣel = Ḣ− R−1 ˙̄HplR−Qel−1ḢdaQel. (3.21)

Furthermore, replacing tr Ḣel and tr Ḣda in Eq. (3.20) with 1 · Ḣel and
1 · Ḣda, respectively, Eq. (3.20) is simplified and can be written in a
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compact form as

σ̇ = C1 · Ḣ− R−1C1R · ˙̄Hpl −
(
Qel−1C1Q

el − C2

)
· Ḣda (3.22)

where C1 and C2 are the two second-order tensors given as

C1 =

[
α

a

(
K trC− 2

3
G trC+ 2 trCη1 trA

da + η3A
da · C

)
+ βkN · Ada

]
1+

α

a

[(
2G+ 2η2trAda

)
C+ η3 trCA

da

+ 2η4A
da trC

]
+ βk

(
2G+ 2η2 trA

da
)
N

+ βkη4

(
NAda + AdaN

)
(3.23)

and

C2 =
[α
a

(
2η1 trC trAel + 2η2C · Ael

)
+ 2βkη2N · Ael

]
1

+
α

a

(
η3 trA

elC+ 2η4A
elC+ η3 trCA

el
)

+ βkη3 trA
elN+ βkη4

(
NAel + AelN

)
.

(3.24)

Furthermore, utilizing the Eq. (2.51) and Eq. (2.62), the rate of the
equivalent damage stress (Eq. (3.22)) can be written as follows

σ̇ = ε̇2 − k3γ̇ − k4µ̇ (3.25)

with the scalar coefficients

ε̇2 = C1 · Ḣ, (3.26)

k3 = R−1C1R · ˙̄N (3.27)

and

k4 =
(
Qel−1C1Q

el − C2

)
·
(

α̃√
3
1+ δβ̃N

)
. (3.28)
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3.2.2 Numerical integration

The task of the numerical integration algorithm is to calculate the incre-
mental quantities over each incremental load or the time increment, using
the current values of the deformations, stresses and other state variables
together with the constitutive equations. Since the inelastic constitutive
relations are formulated in rate form, it is necessary to do time discretiza-
tion over the time interval ∆t = tn+1 − tn. In the current work, all the
quantities are known at time tn = t. Furthermore, a suitable integration
algorithm has to be chosen to numerically integrate the constitutive rate
equations discussed above. For this, some implicit and explicit meth-
ods are possible. Wilkins [118] introduced the radial return technique
for the elastic-plastic problems, which uses an elastic predictor followed
by plastic corrector. It was further generalized by Krieg and Krieg [72]
and Hughes [63]. Furthermore, Doghri [47] and de Souza Neto et al. [45]
used radial return method for solving elastoplastic damage problems in
ductile metals. However, these methods are primarily applicable to as-
sociated material laws, which makes them less suitable for the theory of
the continuum damage model presented here. An explicit method using
inelastic predictor followed by elastic corrector integration algorithm is
used in this work, which gives good approximation of the succeeding yield
surface in a less number of increments. This method was introduced by
Nemat-Nasser and Li [88] for the elastic-plastic problems and then ex-
tensively used in [23, 24] for solving elastic-plastic-damage problems in
ductile metals. In this method, all of the incremental deformation is first
considered as an inelastic one (plastic-damage) and then subsequently
corrected to account for the elastic deformation, which generally is small
for metals. One of the advantages of this method is the numerical stabil-
ity for both small and large step sizes. In the following part, using the
scalar rate equations for both configurations, the numerical integration
is discussed in detail.

Fictitious undamaged configurations

The effective plastic strain rate is determined in this configuration. For
that purpose, the scalar rate equation given in Eq. (3.7) is numerically
integrated over the time interval tn < Θ ≤ tn+1 with tn+1 = tn + ∆t,
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which leads to

∆c = G̃k

(
1

k
∆ε−∆γ

)
. (3.29)

In the inelastic predictor step, assuming that the total strain increment
is only plastic, the effective plastic strain increment is given by

∆γpr =
1

k
∆ε (3.30)

and the predictor of the associated effective stress is given as

cpr = c (γn +∆γpr) . (3.31)

Obviously, this assumption results to an overestimation of increment of
both the effective plastic strain ∆γ and the corresponding effective stress
∆c. This overestimation is corrected by an elastic corrector step as

∆erγ =
1

k
∆ε−∆γ (3.32)

and

∆erc = cpr − cn+1 = cpr − cn − G̃k∆erγ. (3.33)

In addition, as shown in Fig. 3.1, another way to estimate the error of
the effective stress is

∆erc ≈
∂c

∂γpr
∆erγ. (3.34)

Now, from equations Eq. (3.33) and Eq. (3.34), the error of effective
plastic strain increment can be calculated as

∆erγ = (cpr − cn)

[
∂c

∂γpr
+ G̃k

]−1

. (3.35)
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Thus, the total current effective plastic strain increment is given as

∆γ =
∆ε

k
− (cpr − cn)

[
∂c

∂γpr
+ G̃k

]−1

. (3.36)

Similarly, the total current effective plastic strain is determined as

γn+1 = γn +∆γ. (3.37)

and the current effective stress can be calculated using

cn+1 = cn +∆c . (3.38)

cpr
cn+1

cn

∆erc

∆erγ

γn γn+1 γpr
γ

c

Figure 3.1: Illustration of the integration algorithm.

Damaged configurations

Similar to the integration algorithm in the undamaged configurations,
the scalar rate equations Eq. (3.10) and Eq. (3.22) are integrated over
the time interval tn < Θ ≤ tn+1 with tn+1 = tn +∆t leading to

∆c = ∆ε1 − k1∆γ − k2∆µ (3.39)
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and

∆σ = ∆ε2 − k3∆γ − k4∆µ. (3.40)

It is assumed that in the inelastic predictor step, all the elastic increments
∆εel = 0, Eq. (3.39) and Eq. (3.40) lead to

k∆fpr = ∆e (3.41)

where k is the matrix with coefficients

k =

[
k1 k2
k3 k4

]
, (3.42)

fpr denotes the vector of inelastic predictor strain increments

∆fpr =

[
∆γpr
∆µpr

]
(3.43)

and ∆e represents the vector of strain increments of the undamaged
matrix and the damaged material, respectively

∆e =

[
∆ε1
∆ε2

]
. (3.44)

At the end of the time increment, the predictor equivalent stresses are
given as

cpr = c (γn +∆γpr) (3.45)

and

σpr = σ (µn +∆µpr) . (3.46)

Again, these assumptions result in overestimation of the equivalent in-
elastic strain increments and the respective equivalent stresses, the cor-
responding errors are approximated by the elastic corrector steps

∆erc ≈
∂c

∂γpr
∆erγ = cpr − cn+1 = cpr − cn −∆c (3.47)
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and

∆erσ ≈ ∂σ

∂µpr
∆erµ = σpr − σn+1 = σpr − σn −∆σ. (3.48)

Using Eqs. (3.39), (3.40), (3.47) and (3.48) the errors in inelastic strains
∆erγ and ∆erµ can be calculated using the system of equations as

a∆erf = ∆cpr. (3.49)

with

a =

[
k1 +

∂c
∂γpr

k2

k3 k4 +
∂σ
∂µpr

]
, (3.50)

∆erf =

[
∆erγ
∆erµ

]
(3.51)

and

∆cpr =

[
cpr − cn
σpr − σn

]
. (3.52)

Solving the given system of equations, the increment of equivalent strains
is given by

∆f = ∆fpr −∆fer. (3.53)

Hence, the current equivalent inelastic strains are calculated by

γn+1 = γn +∆γ and µn+1 = µn +∆µ. (3.54)

and the corresponding equivalent stresses as

cn+1 = cn +∆c and σn+1 = σn +∆σ. (3.55)
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3.2.3 Tensorial quantities

Fictitious undamaged configurations

With the help of the determined effective plastic strain, the respective
tensorial quantities are calculated. The increment of the effective plastic
strain tensor Eq. (2.51) is written as

∆H̄pl = ∆γN̄m (3.56)

where the mean value of the normalized stress tensor N̄m is calculated
using the midpoint method as

N̄m =
1

2

(
N̄n + N̄n+1

)
. (3.57)

It can be seen that at current time step, N̄n is known but N̄n+1 is un-
known. Using the definition of the normalized stress tensor (Eq. (2.52))

∥∥D T̄n+1

∥∥N̄n+1 = D T̄n+1 and
∥∥D T̄n

∥∥N̄n = D T̄n (3.58)

the change in the normalized effective deviatoric stress tensor is given as

∥∥D T̄n+1

∥∥N̄n+1 −
∥∥D T̄n

∥∥N̄n = D
(
T̄n+1 − T̄n

)
= D

[
2G ˙̄H−G∆γ

(
N̄n + N̄n+1

)
+

(
K − 2

3
G

)
tr ˙̄H1

]
.

(3.59)

After some manipulations

N̄n+1 =
1∥∥D T̄n+1

∥∥[2GD ˙̄H+

(
K − 2

3
G

)
tr ˙̄HD1

+
∥∥D T̄n

∥∥N̄n −G∆γD
(
N̄n + N̄n+1

) ]
.

(3.60)

As we can see in Eq. (3.60), N̄n+1 also appears on the right side of the
equation, which is not known at the current step. One possibility is to



Numerical integration of the constitutive rate equations 39

use the approach by Nemat-Nasser and Li [88], where it was shown that
the final orientation of the stress direction is coaxial with the deviatoric
part of the total deformation rate tensor. So using this approach, N̄f is
given by

N̄
f
=

dev∆H

‖dev∆H‖
. (3.61)

Hence, replacing N̄n+1 with N̄
f , the new normalized effective deviatoric

stress tensor N̄n+1 in Eq. (3.60) can be determined. Consequently, the
associated plastic strain increment (Eq. (3.56)) can be calculated. Fur-
thermore, with ∆H̄pl in hand, the elastic strain increment tensor is given
as

∆Hel = ∆H−∆H̄pl. (3.62)

The increment of the strain rate (Eq. (2.9)) is given as

∆H = =
1

2
Q̂

−1
(Q−Qn−1)

= (Q+Qn−1)
−1

(Q−Qn−1) .

(3.63)

Furthermore, the elastic part of the metric transformation tensor can be
calculated as

Qel = Qel
n−1

(
1−∆Hel

)−1 (
1+∆Hel

)
. (3.64)

The elastic part of the Hencky strain tensor (Eq. (2.18)) is determined
using the Padé approximation as done by Brünig [20, 21].

Damaged configurations

Analogous to the fictitious undamaged configurations, the tensorial quan-
tities in the current damaged configurations are determined using the in-
elastic strain increments ∆γ and ∆µ. The damage evolution (Eq. (2.62))
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law is given as

∆Hda = ∆µ

(
α̃√
3
1+ β̃Nm

)
(3.65)

with the normalized mean value

Nm =
1

2
(Nn +Nn+1) . (3.66)

Furthermore, as illustrated above, the change in the normalized devia-
toric stress tensor can be calculated as

‖DTn+1‖Nn+1 − ‖DTn‖Nn = D (Tn+1 − Tn)

= D
[
2G ˙̄H− 2G∆γN̄m

−2G∆µ

(
α̃√
3
1+ β̃Nm

)
+

(
K − 2

3
G

)
tr ˙̄H1

]
.

(3.67)

It is assumed that at the initiation of damage, significant amount of plas-
tic deformations are already present in the material. Thus, the change
in the effective normalized deviatoric stress is taken to be negligible,
i.e., N̄n+1 = N̄n = N̄m. In addition, with the assumption Nn+1 ≈ N̄

f ,
and with further manipulations, the new stress direction in the damaged
configurations is determined as

Nn+1 =
1

‖DTn+1‖

[
2GD

(
Ḣ−∆γN̄n

)
+

(
K − 2

3
G

)
tr ˙̄HD1

+‖DTn‖Nn −G∆µD

(
2α̃√
3
1+ β̃N̄

f
+ β̃Nn

)]
.

(3.68)

Moreover, using the new stress direction, the mean value of the deviatoric
stress direction is determined. Hence, the two inelastic strains increment
∆H̄pl (Eq. (3.56)) and ∆Hda (Eq. (3.65)) are calculated. The metric
transformation tensor

?

R is given by
?

R =
?

Rn−1

(
1−∆Hda

)−1 (
1 +∆Hda

)
. (3.69)
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The elastic Hencky strain increment is determined by the integrated rate
equation (2.24) as

∆Hel = ∆H− R−1∆H̄plR−Qel−1∆HdaQel. (3.70)

The current metric transformation tensors Q and R are still unknown.
The metric transformation tensor in the damaged configurations is given
as

R = Qel−1 ?

RQel. (3.71)

Numerical simulations have shown that the elastic metric transformation
tensor Qel is approximately equal to 1. Moreover, the calculation of the
elastic metric transformation tensor is analogous to Eq. (3.64) and the
total elastic Hencky strain Ael as well as the total Hencky damage strain
Ael are determined using with the Padé approximation.

3.2.4 Consistent tangent moduli

One of the essential steps in the numerical implementation is the de-
termination of the consistent tangent moduli. This ensures quadratic
convergence in the global finite element method where Newton-Raphson
scheme is implemented to obtain the solution of the incremental problem.
In the following section, two consistent tangent moduli are introduced.

Fictitious undamaged configurations

Making use of the plastic consistency condition Eq. (3.7) and the plastic
constitutive law

dc =
∂c

∂γ
dγ = G̃k

(
1

k
∆ε−∆γ

)
. (3.72)
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Furthermore, with Eq. (3.9) and Eq. (3.72)

dγ =

[
∂c

∂γ
+ G̃k

]−1

G̃

[(
2G

G̃
C+ N̄

)
· ˙̄H

+
1

G̃

(
K − 2

3
G

)
tr ˙̄H trC

]
.

(3.73)

The differential of the rate equation Eq. (2.19) can be written as

dH̄el = dH̄− N̄mdγ

=

[
1⊗ 1−

(
∂c

∂γ
+ G̃k

)−1 (
G̃N̄m ⊗ N̄+ 2GN̄m ⊗ C

)
−
(
∂c

∂γ
+ G̃k

)−1 (
K − 2

3
G

)
trC N̄m ⊗ 1

]
dH̄.

(3.74)

In addition, substituting Eq. (3.74) in Eq. (2.42), the elastic-plastic tan-
gent modulus without prior damage is given as

C̄ep = C̄el −
(
∂c

∂γ
+ G̃k

)−1 [
2G

(
G̃N̄m ⊗ N̄+ 2GN̄m ⊗ C

)
+

2G

(
K − 2

3
G

)
trC N̄m ⊗ 1

]
.

(3.75)

Damaged configurations

Making use of the equation Eq. (3.49)

dfer = a−1dcpr = a−1h dfpr with h =

[
∂c
∂γ 0

0 ∂σ
∂µ

]
. (3.76)

Substituting Eq. (3.76) into Eq. (3.53) and using Eq. (3.43)

df = dfpr − dfer =
(
k−1 − a−1 hk−1

)
de = bde (3.77)
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with

de =

[
dε1
dε2

]
, dε1 = C3 · Ḣ and dε2 = C1 · Ḣ. (3.78)

Furthermore, substituting the differential of the total strain rate tensor
(Eq. (2.24)), the plastic flow rule and the damage rule in the total dif-
ferential of the Kirchhoff stress tensor T (Eq. (2.55)), the elastic-plastic-
damage tangent modulus Cepd is given as

dT = CeldH−
[
Cel

(
R−1N̄mR

)
⊗ (b11C3 + b12C1)

]
dH

−
[
Cel

(
α̃√
3
1+ β̃Qel−1NmQ

el

)
⊗ (b21C3 + b22C1)

]
dH

+

[
Cda

(
α̃√
3
1+ β̃Nm

)
⊗ (b21C3 + b22C1)

]
dH

= CepddH.

(3.79)



4 Experimental aspects

Experimental data are necessary to identify material parameters and to
validate the proposed continuum damage model. In this Chapter, a brief
overview of the experimental setups used to conduct uniaxial and biaxial
tests is given. Furthermore, the detailed description of the digital image
correlation (DIC) functionality, employed for recording displacements
during the experiments, is provided. Following the experiments, the
fracture surfaces are examined using scanning electron microscope, the
operation of which is described in the final section.

4.1 1D test setup

Fig. 4.1 shows the experimental setup for uniaxial tests. The uniaxial
tests are carried out in a uniaxial test machine type inspekt table 501
(produced by Hegewald&Peschke, Nossen, Germany). The test machine
is designed for a maximum load of 50kN. The 1D specimens (tensile,
compression and shear specimens), which will be discussed in Chapter
5, are clamped in the both sides (top and bottom) using the clamping
jaws as shown in Fig. 4.1. The tests are displacement controlled with
the machine velocity of 0.04mm/min. During the experiments, a stereo
type setting using four cameras (two on the front and another two on the
back side of the specimen) is used to capture the images of the surface
of the specimen. Using this setting, the out-of-plane movements can be
measured along with the changes in the thickness of the specimen. The
captured images are then evaluated using the digital image correlation
(DIC) software and one can get a complete information about the three-
dimensional displacement fields. A detailed description of DIC system
can be found in a later section of this Chapter.

44
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Figure 4.1: Experimental setup for uniaxial tests.

4.2 Biaxial test setup

Shown in Fig. 4.3 is the test setup for the biaxial experiments. The
biaxial experiments were performed using the biaxial test machine LFM-
BIAX 20kN by Walter and Bai AG, Switzerland. It consists of four
electromechanical cylinders, which can be individually controlled. Each
cylinder is equipped with an integrated 1720 load cell allowing a load
maximum of ±20kN. During the experiments, the specimens are clamped
in the four heads of the cylinders and the applied forces Fi.j along with
the machine displacements uM

i.j are measured, as illustrated in Fig. 4.2.
Similar to the 1D tests, the images of the surfaces in the notched region
of the specimens are captured during the experiments. Using the DIC
software, the surface displacements ui.j in the central area on the sym-
metry axes of the specimen are evaluated as shown in Fig. 4.3. In the
experiments, the ratio between the forces ζ = F2/F1 is kept constant,
but due to the misalignment of the machine, tolerances in the manufac-
turing of the specimen and unequal specimen clamping, result in slight
deviation in the ratio ζ.
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Figure 4.2: Schematic figure of biaxial specimen.

(a) (b)

Figure 4.3: (a) Biaxial test machine (b) double sided DIC setup with 8
cameras and lighting system.

This unsymmetry can be avoided by displacement driven processes as
described by Gerke et al. [51], which is also used in this work and can be
summarized as

• A continuously increasing displacement uM
1.1 is applied in cylinder

1.1.
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• The same displacement uM
1.1 is copied by the cylinder 1.2.

• The resulted force F1.1 is multiplied by the load factor and applied
to cylinder 2.1 which results in machine displacement uM

2.1.
• The resulted machine displacement uM

2.1 is copied by the cylinder
2.2.

4.3 Digital image correlation

Digital image correlation is a non-contact optical measurement technique
used to measure the surface deformations of an object. The images of
an object are taken, stored in digital form and then images are analysed
to determine the full-field shape and deformations [105]. The typical
hardware required for DIC includes the digital cameras, lenses, proper
lighting system and a system with digital image acquisition components
to capture the images from the cameras simultaneously. In this work, for
the digital image acquisition, Q-400 system from LIMESS Messtechnik
und Software GmbH consisting of camera and lenses is used and the
captured images are evaluated using Istra4D software provided by Dantec
Dynamics GmbH. In the following few important points for DIC are
summarized.

Camera and lighting system setup

Six Typ Manta G-609B/C cameras, four above and two below the spec-
imen, each equipped with 75mm lenses are installed to realize stereo-
vision arrangement. Furthermore, the distance of the cameras from the
specimen should be maintained in such a way that during the experi-
ments, the area of interest of specimen always lies within the depth of
field (DOF) and the field of view of the cameras. The lighting system
consists of flexible LED lights type Fomex FL-B50 which provides bright-
ness up to 1600 or 800 Lux and are arranged optimally to avoid shadows
and reflections around the region of interest of the specimen (ROI).

Calibration

Calibration is a process to determine the imaging or projection parame-
ters required to evaluate the specimen geometry from the images taken
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from the cameras.

Camera 1 Camera 2

Camera 3 Camera 4

Target

(a) (b)

Figure 4.4: (a) Calibration target (b) positioning and coordinate sys-
tem of the target and the cameras [122].

For this purpose, special calibration target provided by Dantec Dynamics
is used, see Fig. 4.4. The calibration target has a checkerboard pattern
on the surface with precisely defined grid spacing. To perform calibra-
tion, the target should be in the field of view of cameras, has to be
within the depth of field and should be positioned at the same distance
as the specimen for measurement. It should be tilted in different orien-
tations and the corners of squared patterns are detected by the cameras.
Thus, the imaging parameters of each camera (intrinsic parameters) and
the relative position of one camera with respect to the other (extrinsic
parameters) are determined.

Preparation of test samples, test execution and evaluation

It must be ensured that the surface of the test sample to be examined
has different grayscale values as DIC calculates the deformation of the
surface by tracking and matching the grayscale values at different times.
To achieve this, the specimens are first sprayed with white acrylic lac-
quer and subsequently black graphite-based coating is sprayed to create
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a speckle pattern as shown in Fig. 4.5. This creates different grayscale
values, which can be detected and evaluated by the evaluation software.
The fineness of the speckle pattern depends on the camera system and
the size of region of interest, but the diameter of speckle should be ap-
proximately 3 to 5 pixels.
Preparation is completed once the speckle pattern and calibration pro-
cess are done. Then, the images of the ROI are captured by the cameras
at a specified time interval. During the test, the ROI must remain within
the DOF and changes in the DIC setup or lighting conditions should be
avoided. The images of the surfaces are then stored for image analy-
sis. The speckle pattern in ROI are divided into small subsets (facet)
and grid spacing is introduced, see for example Fig. 4.5. In this work,
the size of a facet is 33 pixels and grid spacing of 11 pixels is used.
Then, the software determines the 3D position and the tangential plane
of the surface of ROI for every grid points. Moreover, the facet size is
determined depending on the size and roughness of the speckle pattern
within ROI, but each facet should contain a part of speckle pattern with
good contrast features. After that, the grayscale values of each subset in
the reference image (undeformed image) are compared with the current
image (deformed image). Thus, the entire surface displacement is cal-
culated and can be visualized in the DIC software. Finally, the results
from the experiments and corresponding numerical simulations can be
compared.

grid point

facet

ROI(a) (b)

Figure 4.5: (a) Typical speckle pattern (b) example of ROI, facets and
grid points.
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4.4 Scanning electron microscopy

The scanning electron microscope (SEM) is an instrument which reveals
the microstructural information like shape, size, physical and chemical
properties of a specimen by creating magnified images [52]. To vali-
date the different damage mechanisms described by the proposed contin-
uum damage model, the images of the fractured surfaces of the specimen
are put in the SEM and analyzed in detail. EVO MA 15 model SEM
from Carl Zeiss microscopy GmbH is used in this work. Generally, in
a scanning electron microscope, beam of electrons are created by elec-
tron source and accelerated to high energy. Further, they are modified
by electromagnetic coils and lenses and a raster is created, which strike
the surface to be analyzed. From the surface of the specimen, secondary
electrons with low kinetic energy are ejected and they are spotted by the
detectors. The measured signals from the detectors are then processed
to a gray value of the pixel corresponding to the raster resulting into a
complete image of the analyzed surface. To prevent the electron beam
from being deflected by molecules and atoms from the atmospheric gases,
which would significantly degrade image quality, the entire process takes
place in a high vacuum.



5 Test specimens and identification of the
material parameters

Using the experimental techniques presented in Chapter 4, the required
material parameters are determined. The elastic and anisotropic plas-
tic parameters for the investigated aluminum alloy are calibrated using
uniaxially loaded specimens while the damage mode parameters are de-
termined using both uniaxially and biaxially loaded specimens. Short
overview of the material used and specimen is given. The process to
determine the material parameters is discussed in detail.

5.1 Aluminum alloy EN AW-2017A

The material under investigation is the aluminum alloy EN AW-2017A
(also known as EN AW-AlCu4MgSi), which is provided in the form of
4mm thick sheets. Mostly used in aerospace and automotive industries,
EN AW-2017A has high strength, ductility and formability. The chemical
composition of EN AW-2017A is shown in Table. 5.1. The microstruc-
tural examinations done by [81] revealed that due to the extrusion pro-
cess, the aluminum alloy is anisotropic in nature. Similarly, anisotropic
mechanical behavior of 2017 aluminum alloy was also reported in [62,
99]. Therefore, in this work, anisotropic behavior of EN AW-2017A is
studied in detail.

Table 5.1: Chemical composition of EN AW-2017A (% weight)

Material Cu Fe Mn Mg Si Zn Cr Others Al

EN AW-2017A 4.0 0.7 0.7 0.7 0.5 0.25 0.10 0.15 to balance

51
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5.2 Test specimens

5.2.1 Uniaxially loaded specimens

For the determination of elastic and plastic anisotropic parameters, three
types of test specimens are used. Fig. 5.1(a) shows an adapted flat
dog-bone-shaped tension-compression specimen (TC-specimen), which is
101.0mm long with a square cross sectional area of 16.0mm2. The central
part of the TC-specimen is shortened to prevent the early occurrence of
buckling during the compression tests. The TC-specimens are cut from
4mm thick aluminum sheets.

(a) (b)

RD(0◦)

TD(90◦)

DD(45◦)

40

10
1

18

R3

θ

4

4

(all units in mm)

Figure 5.1: (a) TC-specimen and (b) different directions with respect
to the rolling direction (RD).

Brünig et al. [32] performed tensile tests on specimens cut in various
directions: 0◦, 15◦, 30◦, 45◦, 65◦, 75◦ and 90◦ with respect to the rolling
direction (RD) and determined the yield stresses as well as the Lank-
ford coefficients. Furthermore, utilizing the results from the experiments
including 0◦, 45◦ and 90◦ and a anisotropic yield criterion [57], the ex-
perimental yield stresses and the Lankford coefficients were accurately
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predicted. Therefore, in this work, the TC-specimens cut in rolling direc-
tion (RD), diagonal direction (DD) and transverse direction (TD) with
respect to the rolling direction (Fig. 5.1 (b)) are used to examine the
anisotropy of the aluminum alloy. To determine Lankord coefficients,
which will be further elaborated upon in the following subsection, TC-
specimens are deemed unsuitable due to their non-compliance with es-
tablished standards [46]. Consequently, conventional tensile specimens in
the shape of a dog bone are used instead of TD-specimen (see Fig. (5.2)).
Additionally, tensile specimens are also cut in RD, DD and TD, similar
to TC-specimen to examine the plastic anisotropic behavior.

60

200

520

4

R12.5

(all units in mm)

Figure 5.2: Tensile specimen.

Similarly, shear tests are carried out using the newly developed shear
specimen, see Fig. 5.3(a). It is characterized by two parallel notches,
which are arranged in central region of the specimen. As depicted in
Fig. 5.3(b), each of the notches is 6.0mm long with cross section area of
12.0mm2. Strains are localized in the notches during plastic deformation
and nearly pure shear stress state is obtained in the cross section of the
notches. Furthermore, shear specimens are also prepared in three dis-
tinct rolling directions, similar to TC-specimens, to assess the material’s
plastic anisotropic behavior.
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66

79

200

(b)

(a)

6

6

R3 6

66

20

4 2 R2

(all units in mm)

Figure 5.3: (a) Shear specimen (b) Central part of the shear specimen.

5.2.2 Biaxially loaded specimens

Uniaxial tests are not sufficient to determine the damage parameters and
to study the damage behavior, which are strongly stress-state dependent.
Special kind of test specimens are required to study the damage and frac-
ture behavior under wide range of stress-states. In this context, Brünig
et al. [27, 28] developed a new biaxially loaded specimens and studied the
damage behavior of ductile metals in a broad range of stress triaxialites.
But, the rotation of the central part and the coupling of arms of specimen
resulting in transverse forces in the machine didn’t make the specimen of
first choice. Therefore, to solve this problem, Gerke et al. [51] developed
two new biaxially loaded specimens, namely, X0- and H-specimen.
The outer dimensions of the H-specimen geometry is shown in Fig. 5.4(a).
The H-specimen is triple symmetric and characterized by four notches
arranged parallely in the central region, see Fig. 5.4(b). The strains are
localized in these notches, where the final fracture also occurs, thus, mak-
ing it possible to study different stress-state dependent damage mecha-
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nisms leading to the final fracture. Loading only in vertical axis (axis 1)
results in shear stress- state in all four notches, while tensile or compres-
sive stress-state is obtained if the specimen is only loaded in horizontal
axis (axis 2). Apart from the shear, tensile and compressive stress-states,
it is possible to generate a wide range of stress-states in the notches by
applying different loading combinations in axis 1 and axis 2. Further-
more, to study the effect of loading direction on the onset and evolution
of damage in anisotropic ductile metals, the H-specimens are cut out from
4mm thick aluminum sheet in RD, DD and TD as shown in Fig. 5.4(a).
The X0-specimen is the second specimen for investigating biaxial load
cases, which also has four notched regions where local failure can occur.
The outer dimensions of X0-specimen geometry is shown in Fig. 5.5(a),
which is 240mm x 240mm. The notches are arranged at 45◦ angle to the
axes with each of the notches measuring 6.0mm long. The holes in the
center of the specimen, see Fig. 5.5(b), result in only two arms of the
specimen connected at a time by a small double-sided notched area. The
notches in the thickness direction, as shown in Fig. 5.5(c), have a ra-
dius of 2mm and reduce the central notched area to a thickness of 2mm.
The cross section area of each of the notches is 12.0mm2. If the same
tensile load is applied to the both axes at the same time, tension dom-
inated stress state with high hydrostatic stresses occurs in the notches.
Similarly, shear dominated stress-state occurs when at the same time,
tensile load is applied in one of the axes and a compressive load in ap-
plied on the other axes. Thus, by different loading combinations a broad
spectrum of stress-state can be generated in the notches. Similar to the
H-specimens, X0-specimens are also cut in RD, DD and TD to analyze
the effect of anisotropic material characteristics on the damage behavior
of the aluminum alloy sheets.
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Figure 5.4: H-specimen geometry.
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Figure 5.5: X0-specimen geometry.
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5.2.3 Notation and evaluation points

Fig. 5.6(a) and Fig. 5.6(b) illustrate the used notations and the evalu-
ation points for H-and X0-specimen, respectively. These are necessary
to analyze the force-displacement diagrams in different directions. The
first index indicates the axis and the second index indicates the direction
in which either the force or the displacement is acting, respectively. For
example, the force F1.2 is acting on the specimen parallel to the axis 1
but in opposite direction, whereas F1.1 is acting on the specimen in pos-
itive direction parallel to the axis 1. This notation also applies for the
machine displacements uM

i.j and for the surface displacements ui.j . The
surface displacements are evaluated with the help of ISTRA4D software
for the red points as depicted in Fig. 5.6. For each axes, the relative
displacement between the two points is given by ∆ui = ui.1 + ui.2. The
forces acting on the specimen Fi.j and the machine displacements uM

i.j

are passed to the DIC system from the biaxial testing machine.

(a) (b)
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Figure 5.6: Notation and evaluation points for (a) H-specimen and (b)
X0-specimen .
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5.3 Material parameters identification

In the first part of this section, identification of the elastic and anisotropic
plastic parameters is discussed. They are directly determined from the
experimental results obtained from the uniaxially loaded specimens. With
the elastic and anisotropic plastic material parameters in hand, numeri-
cal simulations using the Hoffman yield criterion (Eq. (2.43)) are carried
out and the corresponding load-displacement curves are compared with
the experimental results from the uni- and biaxially loaded specimens
to develop the damage mode parameters in Eq. (2.60). Additionally, the
approach to calibrate the stress-state dependent parameters in Eq. (2.62)
is also discussed in detail.

5.3.1 Elastic and plastic anisotropic parameters

Using the TC-specimens, uniaxial tensile tests are carried out three times
each for RD, DD and TD. The obtained load-displacement diagrams are
depicted in Fig. 5.7, which show that the experiments are quite repeat-
able only with marginal differences.

Exp
RD
DD
TD

∆uref [mm]

F [kN]

0.00

2.00

4.00

6.00

8.00

0.00  1.00  2.00 3.00  4.00

Figure 5.7: Load-displacement curves obtained from uniaxial tensile
tests.
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But, the curves between the rolling directions show obvious inconsistency.
The curve for the specimen loaded in RD with respect to rolling direc-
tion is higher than the specimen loaded in DD and TD and this trend is
maintained till the final fracture of the specimen. The displacement at
the final failure is largest for loading in DD and the smallest for loading
in TD.
The load-displacement diagram is converted to the equivalent stress-
strain curves for both tension and compression tests and are shown
in Fig. 5.8(a). Note that the tests are performed three times each for
three different directions and only the representative curves are plotted in
Fig. 5.8(a). In the elastic region, there are no differences in stress-strain
response between loading in RD, DD and TD. Therefore, the material
parameters for isotropic elastic behavior are determined where Young’s
modulus E = 74,000MPa and Poisson’s ratio ν = 0.3.
It is observed that the initial yield stresses under compression are smaller
than under tension which is the SD effect as discussed in Chapter 2. The
same kind of behavior was also reported in the recent experiments done
by Wei et al. [116] for the aluminum alloy. Furthermore, there are no
apparent differences in the initial yield stresses between RD, DD and TD
under compression. But, for the tension tests, the initial yield stresses
are different for RD, DD and TD as shown in Fig. 5.8(b). The plas-
tic strain hardening behavior is fitted using the Voce law [114] for the
respective current yield stresses

c = c0 +R0γ +R∞
(
1− e−b γ

)
(5.1)

where c0 is the initial yield stress, R0 and R∞ the hardening moduli, b is
the hardening exponent and the equivalent plastic strain γ. A good qual-
ity of fitting is achieved (see Fig. 5.8(b)) and the parameters for loading
in RD, DD and TD are given in Table. 5.2.
There are different methods for the determination of the anisotropic ma-
terial parameters in Eq. (2.43) as summarized in Aretz [6]. One of the
method is to use only the yield stresses from the uniaxial tensile and
shear tests in RD, DD and TD. Another possible method is to use only
the Lankford coefficients (r-value), which will be described in detail in
the following section. One can also use the combined method using both
the yield stresses and r-values to determine the anisotropic material pa-
rameters as shown recently by Brünig et al. [32].
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Figure 5.8: (a) Uniaxial equivalent stress-strain curve for tension and
compression tests and (b) fitting of the equivalent stress-
strain curve for tension tests after loading in RD, DD and
TD.

Table 5.2: Plastic material parameters

c0 [MPa] R0 [MPa] R∞ [MPa] b [-]

RD 313 464 147 20
DD 297 474 127 28
TD 308 445 128 25
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The Lankford coefficient [73], also known as r-value, is the ratio of plastic
strains in width direction to the thickness direction. Considering that the
plastic volume remains constant during the plastic deformation, r-value
is given as

rθ =
˙̄Hpl
θ+90◦

˙̄H
pl

z

=
− ˙̄Hpl

θ+90◦

˙̄H
pl

x + ˙̄H
pl

y

(5.2)

where ˙̄Hpl
x , ˙̄Hpl

y and ˙̄Hpl
z are the plastic strain rates in longitudinal, width

and thickness directions, respectively. The standardized approach for
calculating the r-value is found in [46]. Furthermore, following the es-
tablished norm [46], the TC-specimen is not suitable for the determi-
nation of r-value. Consequently, experiments are carried out using the
tensile specimens, illustrated in Fig. 5.2. The strains on the surface of
the specimen loaded uniaxially in RD, DD and TD are measured and
the evolution of r-values are plotted in Fig. 5.9. Then, they are fitted in
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Figure 5.9: Evolution of r-value.

the region between 5% to 20% of the equivalent plastic strain. Another
possible way of fitting r-value is by using the linear equation as in [79],
where r-values are continuously evolving during the loading process. As
can be seen in Fig. 5.9, the fitted r-values agree well with the experi-
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mental results within the specified range of the equivalent plastic strain.
Hence, a constant r-value is taken for each RD, DD and TD and the
identified values are given in Table. 5.3.

Table 5.3: Lankford coefficients

r0 [-] r45 [-] r90 [-]

0.597 0.783 0.695

Based on the yield stresses and the r-values obtained from the exper-
iments, the anisotropic material parameters are calibrated. Identifica-
tion of anisotropic material parameters for thin metal sheets is con-
strained to experiments involving flat specimens cut within the plane
of the sheets. In this context, plane stress conditions are considered, as-
suming that stresses in the z-direction are marginal. The plastic strain
rate (Eq. (2.51)) in x-direction can be expressed as

˙̄Hpl
x = ˙̄λ

[
(C4 + C5) T̄x − C4T̄y

]
(5.3)

where

˙̄λ = λ̇
1

2
√
J̄H
2

. (5.4)

Similarly, the plastic strain rates in other directions are

˙̄Hpl
y = ˙̄λ

[
(C4 + C6) T̄y − C4T̄x

]
, (5.5)

˙̄Hpl
xy = ˙̄λC7T̄xy, (5.6)

and

˙̄Hpl
z = −

(
˙̄H
pl

x + ˙̄H
pl

y

)
= − ˙̄λ

(
C5T̄x + C6T̄y

)
. (5.7)
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For uniaxial tension tests conducted with specimens cut at an angle θ
to the rolling direction of the thin sheet, the components of the stress
tensor can be determined as

T̄x = T̄θ cos2θ, T̄y = T̄θ sin2θ and T̄xy = T̄θ sinθcosθ. (5.8)

Furthermore, transforming the plastic strain rates to the orientation θ of
the specimen and its corresponding transverse direction (θ + 90◦) results
in the following

˙̄Hpl
θ = ˙̄Hpl

x cos2θ + ˙̄Hpl
y sin2θ + 2 ˙̄Hpl

xy sinθcosθ. (5.9)

˙̄Hpl
θ+90◦ = ˙̄Hpl

y cos2θ + ˙̄Hpl
x sin2θ − 2 ˙̄Hpl

xy sinθcosθ. (5.10)

Making use of the Eqs. (5.3), (5.5), (5.6), (5.10) and (5.2), the equation
to calculate the r-value can be further expressed as

rθ =
C4 +

(
2C7 − 4C4 − C5 − C6 cos2θsin2θ

)
C5cos2θ + C6sin2θ

(5.11)

which facilitates the calculation of the anisotropic material parameters
appearing in the Hoffman yield criterion (Eq. (2.43)). Moreover, r-value
for RD, DD and TD are determined as

r0◦ =
C4

C5
, r45◦ =

C7

C5 + C6
− 1

2
and r90◦ =

C4

C6
. (5.12)

Considering the Hoffman yield criterion (Eq. (2.43)) for the tensile test
in rolling direction (RD), the yield criterion can be written as

fpl
tx = C1T̄ tx +

√
1

2
(C4 + C5)T̄ tx − c0 = 0. (5.13)

Furthermore, T̄ tx = c0 is the initial yield stress determined from the
tensile test conducted in RD (x-direction), which is taken as a reference
experiment. Similarly, making use of the Eq. (2.43) for the compression
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test in the rolling direction

fpl
cx = −C1T̄ cx +

√
1

2
(C4 + C5)T̄ cx − c0 = 0 (5.14)

where T̄ cx is the initial yield stress in compression determined from the
compression test done in RD. Making use of Eq. (5.13) and Eq. (5.14),
the anisotropic material parameter C1 can be calculated as

C1 =
1

2

(
1− T̄ tx

T̄ cx

)
. (5.15)

In addition, utilizing the yield stresses from the tension and compres-
sion tests T̄ ty and T̄ cy, respectively, conducted in TD (y-direction), the
coefficient C2 can be determined as

C2 =
1

2
T̄ tx

(
1

T̄ ty
− 1

T̄ cy

)
. (5.16)

Moreover, using both the r-values (Eq. (5.12)) and the initial yield
stresses in tension and compression determined from the experiments,
from Eqs. (5.13) and (5.14) the remaining anisotropic material parame-
ters appearing in the Hoffman yield criterion can be calculated as follows

C5 =
1

2 (1 + r0)

(
1 +

T̄ tx

T̄ cx

)2

, (5.17)

C4 =
1

2

(
1 +

T̄ tx

T̄ cx

)2

− C5, (5.18)

C6 =
C4

r90
or C6 =

1

2
T̄ 2
tx

(
1

T̄ ty
+

1

T̄ cy

)2

− C4, (5.19)
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Table 5.4: Anisotropic material parameters

C1 C2 C3 C4 C5 C6 C7 C8 C9

-0.042 -0.010 0.0 0.812 1.360 1.310 3.758 3.0 3.0

and

C7 =

(
r45 +

1

2

)
(C5 + C6) . (5.20)

Alternatively, C7 can be identified by using the initial yield stress from
shear tests (Sxy) using the shear specimen shown in Fig. 5.3 as

C7 =

(
T̄ tx

S̄xy

)2

. (5.21)

Furthermore, in the presence of additional normal stresses T̄ tx in the
critical region of the specimen, C7 can be identified as

C7 =
1

S̄2
xy

[(
T̄ tx − C1T̄ tx

)2 − 1

2
(C4 + C5)T̄

2
tx

]
. (5.22)

In the present work, C6 is taken as mean value from Eq. (5.19) and also
C7 as the mean value from Eq. (5.20) and Eq. (5.22). The calibrated
plastic anisotropic material parameters are listed in Table. 5.4.
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After having all the required elastic and plastic anisotropic parameters,
numerical simulations using the elastic-plastic material model discussed
above are carried out to analyze the stress-states at the onset of dam-
age. The specimens given in Fig. 5.1, Fig. 5.3, Fig. 5.4 and Fig. 5.5 are
discretized to prepare a finite element model. Especially, taking the ad-
vantage of the symmetry, only a quarter of the sample is modeled and
symmetrical boundary conditions are used. Fig. 6.1 shows the finite ele-
ment meshes of X0- and H-specimen, where the X0- and H-specimen are
divided into 18,645 and 20,802 eight-noded elements, respectively. Ele-
ment type Solid185 defined by eight nodes and the orthotropic material
properties with B̄ [100, 121] method is used. Meshes in the notched ar-
eas, where the stresses and strains are expected to localize, are refined as
depicted in Fig. 6.1. The size of the mesh influences the computational
time and accuracy of the FE analysis, therefore, mesh convergence in-
vestigations were carried out to determine the optimum mesh density
in the notched areas. Comparing the global and local results from the
FE-simulation and DIC, the notch was discritized into 28/24/18 number
of elements in 1/2/3 direction (see the coordinate system in Fig. 5.6).
Thus, the length of a hexahedron element in the notched area is about
0.1mm. The sample is discritized with coarser meshes other than the
notched area, to reduce the computational effort as shown in Fig. 6.1.
In order to achieve the desired constant load ratio as in the experiments,
in the numerical simulations, multiframe restart is implemented. Mul-
tiframe restart [5] allows to preserve analysis data at multiple substeps
throughout a simulation run and subsequently resume the run from any
of those saved substeps. The applied displacement ratio at the specimen
arms along both axes results to the corresponding force ratio. The re-
sulted force ratio is then compared to the desired load ratio. In cases
where the deviation between the achieved force ratio and the desired
value exceeds the predefined limit, the ongoing load step is restarted.
The converged result from the previous iteration serves as the initial

66
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Figure 6.1: Finite element meshes of (a) the X0- and (b) the H-
specimen.

value for the current displacement ratio, minimizing the computational
cost. The convergence criteria for the global Newton-Raphson method
is set as default Ansys value of 0.5%.
Because the specimen features four notched regions, the numerical results
obtained from simulating an ideal quarter of the specimen inherently dif-
fer from the outcomes of real experiments and are not directly compara-
ble. In the experimental setting, we observe that notches with the most
significant material or geometric imperfections exhibit stronger and ear-
lier localization, while the remaining notches experience less pronounced
localization. The numerical simulation lacks the ability to reproduce this
asymmetric effect. To enable more meaningful comparisons between the
numerical simulations and experiments, an experimental mean value is
established as a reference. This involves averaging the maximum values
of the first principal strain obtained from DIC for all four notches within
a given experiment, and subsequently, averaging these values across all
experiments conducted with the same experimental procedure. As a
result, this mean value of localization represents a scenario where all
four notches simultaneously experience localization to the same extent.
Hence, this mean value is suitable for comparison with the numerical
results.



68 Numerical aspects

6.1 Identification of the damage mode parameters

The determination of stress-state dependent damage mode parameters
in Eq. (2.60) is based on the identification procedure proposed by Brünig
et al. [29], which is a hybrid experimental-numerical approach. The load-
displacement curves from the experiments and numerical simulations
based on elastic-plastic material model are compared and the damage
is assumed to begin when the numerically predicted curves start to devi-
ate from the experimental ones. Most probably, the onset of the damage
takes place at the critical location, the location where the elements have
the highest equivalent plastic strains. Various fracture models have also
been developed [10, 91, 107], where it is considered that the fracture
initiates at the critical element. Using the above mentioned approach,
the generalized Hoffman stress invariants ĪH1 , J̄H

2 and J̄H
3 , the generalized

stress triaxiality η̄H and the generalized Lode parameter L̄H are achieved
at the critical element.
The experimental load-displacement curves from the uniaxial tensile tests
for RD, DD and TD are compared with the numerical ones, see Fig. 6.2(a).
The RD loading exhibits the highest loads, while comparatively smaller
loads are evident for DD loading, with differences of approximately 7%.
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Figure 6.2: Experimental (Exp) and numerical simulations (Sim) force-
displacement curves for (a) uniaxial tensile tests and (b)
shear tests.
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The curves agree well up to the certain value of the displacement and
then start to deviate. The damage process is assumed to begin when the
numerical results start to deviate from the experimental ones, which is
characterized by the black colored points as shown in Fig. 6.2(a). Then,
at this point, the stress state at the critical location of the specimen
is analyzed in detail. The generalized Hoffman stress invariants ĪH1 , J̄H

2

and J̄H
3 , the generalized stress triaxiality η̄H and the generalized Lode

parameter L̄H are obtained and are listed in Tab. 6.1 for loading in RD,
in Tab. 6.2 for loading in DD and in Tab. 6.3 for loading in TD. Sim-
ilarly, the results from the shear tests are given in Fig. 6.2(b). The
load-displacement curves from numerical simulations and experiments
are similar till the specific value of load but tend to veer away after
further loading, which again indicate the initiation of the damage and
are marked by the black points in Fig. 6.2(b). The strains and stresses
localize in the notches and the stress-state is studied in detail as the
generalized stress parameters are given in Tabs. 6.1, 6.2 and 6.3.
Furthermore, Fig. 6.3 illustrates the load-displacement curves of the X0-
specimen subjected to biaxial loading, showcasing both experimental
and numerically predicted results. The experiments are carried out for
RD, DD and TD with different loading ratios (a) F1/F2 = 1/0, (b)
F1/F2 = 1/1 and (c) F1/F2 = 1/− 1 producing different stress-states in
critical regions. As can be noted in Fig. 6.3, the experimental and nu-
merical curves agree well and the discrepancies between them are marked
by black points where the stress-states are analyzed. The obtained stress
parameters in the critical region are listed in Tabs. 6.1, 6.2 and 6.3 for
RD, DD and TD, respectively.
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Figure 6.3: Experimental and numerical load-displacement curves us-
ing X0-specimen for the load ratio (a) F1/F2 = 1/0, (b)
F1/F2 = 1/1 and (c) F1/F2 = 1/− 1.

In addition, Fig. 6.4 presents both experimental and numerically pre-
dicted load-displacement curves for the biaxially loaded H-specimen in
different rolling directions. The curves depict various load ratios:(a)
F1/F2 = 0/1, (b) F1/F2 = 1/0, (c) F1/F2 = 1/0.5, (d) F1/F2 = 1/1
and (e) F1/F2 = 1/ − 2. Once again, the experimental and numerical
curves exhibit good agreement until the black points, beyond which they
begin to deviate from each other. Initiation of damage is assumed to
occur at the steps marked by the black points.
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Figure 6.4: Experimental and numerical load-displacement curves us-
ing H-specimen for the load ratio (a) F1/F2 = 0/1, (b)
F1/F2 = 1/0, (c) F1/F2 = 1/0.5, (d) F1/F2 = 1/1, (e)
F1/F2 = 1/− 1 and (f) F1/F2 = 1/− 2.
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Respective stress parameters are determined at these specific loading
stages in the critical regions of the H-specimens and are shown in Tabs. 6.1,
6.2 and 6.3 for RD, DD and TD, respectively.

Table 6.1: Generalized stress parameters for RD

Tests IH1 [MPa]
√
JH
2 [MPa] JH

3 [MPa3] ηH [-] LH [-]

Tensile 1100 557 4.82E+07 0.38 -0.72
Shear 260 528 1.05E+07 0.09 -0.18
H 0/1 1480 456 9.60E+06 0.62 -0.26
H 1/0 88 521 4.35E+06 0.03 -0.08

H 1/0.5 521 541 2.11E+07 0.18 -0.34
H 1/1 890 551 3.61E+07 0.311 -0.56
H 1/-1 -579 523 -2.16E+07 -0.21 0.39
H 1/-2 -1001 547 -3.73E+07 -0.35 -0.59
X0 1/0 725 481 2.65E+07 0.29 -0.61
X0 1/1 1132 514 6.40E+06 0.43 -0.12
X0 1/-1 332 493 5.77E+06 0.13 -0.13

The outcomes of numerical simulations from the experiments involving
uniaxially and biaxially loaded specimens provide ample data (refer to
Tabs. 6.1 - 6.3) to support the establishment of a quantitative framework
for the stress-state dependent damage mode parameters α and β featured
in the damage criterion Eq. (2.60). This criterion is articulated in the
context of stress and loading direction space. Specifically, within the
domain of negative or nearly zero stress triaxialities, damage primarily
emerges due to the formation and evolution of micro-shear cracks. These
cracks are evident as a consequence of shear stresses being dominant.
Therefore, the parameter α is assumed to be 0 and the parameter β is
equal to 1. Looking at the uniaxial tensile tests (Fig. 5.8), the damage is
assumed to initiate at σ = 480MPa. The parameter α is selected as the
value for isotropic plastic behavior determined through the micro-scale
numerical simulations [30], which is same and valid for all the loading
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Table 6.2: Generalized stress parameters for DD

Tests IH1 [MPa]
√

JH
2 [MPa] JH

3 [MPa3] ηH [-] LH [-]

Tensile 755 538 5.05E+07 0.27 -0.84
Shear 667 588 2.05E+07 0.21 -0.26
H 0/1 1322 466 8.60E+06 0.54 -0.21
H 1/0 376 523 6.34E+06 0.13 -0.11

H 1/0.5 698 561 2.70E+07 0.24 -0.39
H 1/1 956 575 4.33E+07 0.32 -0.59
H 1/-1 -143 531 -1.87E+07 -0.05 0.32
H 1/-2 -532 537 -3.31E+07 -0.19 0.55
X0 1/0 414 483 2.42E+07 0.16 -0.55
X0 1/1 1270 500 7.26E+06 0.48 -0.15
X0 1/-1 345 482 2.59E+06 0.13 -0.06

Table 6.3: Generalized stress parameters for TD

Tests IH1 [MPa]
√

JH
2 [MPa] JH

3 [MPa3] ηH [-] LH [-]

Tensile 458 500 3.14E+07 0.18 -0.65
Shear 138 518 8.80E+06 0.05 -0.16
H 0/1 1134 453 7.78E+06 0.48 -0.21
H 1/0 11 522 3.31E+06 0.04 -0.06

H 1/0.5 255 542 1.84E+07 0.09 -0.30
H 1/1 461 516 2.53E+07 0.17 -0.47
H 1/-1 -432 527 -2.03E+07 -0.15 0.36
H 1/-2 -753 547 -3.50E+07 -0.26 0.55
X0 1/0 224 474 2.22E+07 0.09 -0.54
X0 1/1 1106 501 6.35E+06 0.42 -0.12
X0 1/-1 270 468 1.04E+06 0.11 0.02
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directions.

α
(
ηH

)
=

{
0 for ηH ≤ 0

1
3 for ηH > 0

. (6.1)

Examining the stress parameters across all experiments involving speci-
mens loaded in the RD direction reveals

β
(
ηH

)
=

{
1 for ηH ≤ 0

1− 1.697 ηH for ηH > 0
(6.2)

demonstrating good agreement with the data points shown in Fig. 6.5(a).
Similarly, according to the experiments conducted on specimens loaded
in DD, the function

β
(
ηH

)
=

{
1 for ηH ≤ 0

1− 1.595 ηH for ηH > 0
(6.3)

has been formulated which is in good agreement with the data points
shown in Fig. 6.5(b). Likewise, the results obtained from the experiments
involving specimens subjected to loading in TD are utilized to propose
the function as

β
(
ηH

)
=

{
1 for ηH ≤ 0

1− 1.467 ηH for ηH > 0
(6.4)

also displaying good agreement with the data points as can be seen in
Fig. 6.5(c). It’s important to highlight that from the available data, a no-
ticeable correlation between the parameter β and the generalized stress
triaxiality ηH can be observed. Also, it is evident that the parameter
β depends on the angle of loading direction as different β has been for-
mulated for the loading of the specimens in RD, DD and TD. Analyzing
Eqs. (6.2), (6.3) and (6.4), a function dependent on the generalized stress
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triaxiality ηH and the angle of loading direction θ is formulated as

β
(
ηH, θ

)
=

{
1 for ηH ≤ 0

k(θ) ηH + 1 for ηH > 0
(6.5)

where the loading direction dependent factor is given as

k(θ) = −0.167 cos2θ − 0.062 cosθ − 1.467 . (6.6)

The relationship of the damage parameter β with both the generalized
stress triaxiality ηH and the angle of the loading direction θ is depicted
in Fig. 6.5(d), displaying a good alignment with the existing data points.
When, according to above equations, a negative value is obtained, the
parameter β is set to zero. This situation arises in conditions of high hy-
drostatic tensile stress (high IH1 ), where the damage mechanism is driven
by growth of voids and the impact of JH

2 is minimal.
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Figure 6.5: Dependence of parameter β on the generalized Hoffman
stress triaxiality ηH and the loading direction θ.

6.2 Identification of parameters in the damage evolution
equation

Due to the absence of experimental techniques at the micro-scale, iden-
tifying the micromechanically driven parameters α̃ and β̃ in the damage
rule (Eq. (2.62)) is particularly difficult. One potential approach to ad-
dress this limitation is to conduct finite element analyses of unit-cells
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containing initial void, subjected to different stress-states to study the
damage and fracture behavior. Three-dimensional finite element analy-
ses of microscopic cell models have been suggested as a means to gain
insight into damage and fracture processes in isotropic ductile materi-
als. These analyses are utilized to investigate the evolution, growth, and
deformation of micro-defects under various loading conditions, as docu-
mented in [13, 49, 70]. Their research demonstrated that void growth,
the macroscopic deformation response of unit-cells, and the failure strain
value were sensitive to the stress triaxiality. Research has also illustrated
that the current stress-state has a significant impact on damage mecha-
nisms at the microscale and, consequently, influences the corresponding
macroscopic failure behavior.
Recently, Bryhni Dæhli et al. [41] performed the unit-cell simulations
for plastically anisotropic materials using phenomenological anisotropic
yield criteria Yld2004-18p developed by Barlat et al. [12]. They showed
that the material anisotropy significantly influences the mechanical re-
sponse of the unit-cell and the shape of the void evolves in distinct ways
based on the orientation of the major principal stress relative to the ma-
terial axes. Their analyses were further extended by Hosseini et al. [61]
in which unit-cell simulations were performed where one of the loading
directions is parallel to one of the material’s symmetry axes and the
other two making certain angle with the second and third orthotropic
axes. It was found that the misalignment between loading and material
axes results in changes of void growth and shapes throughout the load-
ing process, and the material orientation affects the onset of localization
and fracture in anisotropic metal products. Furthermore, the outcomes
of the numerical simulations of isotopic ductile material on the unit-cell
[30, 31], were utilized to discuss different damage and failure mechanisms.
Phenomenological damage criteria and damage evolution equations were
proposed and also the results were used to identify stress-state dependent
parameters of the proposed continuum model.
In the following, similar approach of numerical studies on the unit-cell is
used. A representative volume element (RVE) containing initial void is
numerically simulated using the Hoffman yield criteria. The progression
of macroscopic damage strains is examined through the unit-cell cal-
culations conducted under various three-dimensional loading scenarios.
The numerical findings are then employed to introduce a damage rule
for anisotropic metals, while also identifying the corresponding material
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parameters.

6.2.1 Numerical analysis of the unit-cell

x

y

z

fixed in x-direction

fixed in y-direction

fixed in z-direction

(a) (b)

Figure 6.6: (a) Boundary conditions for the unit-cell and (b) cut view
of one eighth of the unit-cell.

The finite element mesh of one-eighth of a RVE containing a spheri-
cal void at the center is shown in Fig. 6.6(b). The numerical simula-
tions are performed using the commercial finite element software Ansys
(APDL) version 18.0, which has been enhanced by UMAT taking the pro-
posed phenomenological anisotropic material model into account. Eight
noded solid element type Solid185 with orthotropical material properties
is used. The origin of the coordinate system is at the origin of the pore,
see Fig. 6.6(a) and the initial dimensions of the unit-cell are lx = 1mm,
ly = 1mm and lz = 1mm. As was reported in [102], most of the pores
in a cast iron with initial porosities between 0.3% to 3.7% were nearly
spherical in shape. In the case of larger porosities, many of these pores
were not spherical in shape. Furthermore, in [31] and [30], numerical
simulations considering different shapes and sizes of pores with initial
porosity ranging from 1% to 10% were conducted and studied in detail.
It was shown that the results were not so different when compared to the
results considering spherical shaped void with 3% initial porosity and it
also lead to the good approximation for the determination of the state-
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state-dependent parameters. As a result, this current study focuses on
analyzing a spherical void with an initial void volume fraction of 3%.
The previous studies have already addressed the impact of various bound-
ary conditions on numerical calculation outcomes [112, 113]. So, numer-
ical simulations of the unit-cell with symmetrical and periodic boundary
conditions were carried out and analyzed in detail by Hagenbrock [56]. It
was concluded that the numerical investigation with periodic boundary
conditions leads to almost no change in the results of the damage pa-
rameters of the damage model, so that the selected symmetry boundary
conditions are sufficient for the analysis of the stress-states and identifi-
cation of damage parameters. Hence, in the context of this work symmet-
rical boundary conditions, assuming that the material displays a regular
porous microstructure, are used as shown in Fig. 6.6(a), where the yz-
surface, xz-surface, and xy-surface of the unit-cell containing an initial
void, as marked with different colors are fixed in x-, y-, and z-directions,
respectively. The loads are applied in the form of displacements ux, uy

and uz. The displacements of the nodes of the outer surfaces located at
the edges are coupled with the displacements of nodes located at the op-
posite edges, so that the displacements of the opposite pair of nodes are
identical and the plane surfaces remain plane at the end of the numerical
simulation. Depending upon the desired value of ηH and LH, as in [56],
the displacement u is scaled with the corresponding factors in the three
main directions as,

u1 = x1u, u2 = y2u, u3 = z3u, (6.7)

where x1, y2 and z3 are the scaling factors. For example, to achieve the
stress-state ηH = 3/4 and LH = 0.23, the value of the scaling factors
reads x1 = 1, y2 = 0.63 and z3 = 0.27. During the entire loading
process, ηH and LH are kept constant in order to study their influence
on the damage and failure behavior. Thus, it is possible to analyze the
damage and failure behavior of a unit-cell containing a void for wide
range of ηH and LH.
Based on the considered kinematics of the continuum damage model
described in Chapter 2, the total strain rate tensor of the unit-cell is
decomposed into elastic Ḣel, effective plastic ˙̄Hpl, and the damage part
Ḣda. This results in an additive decomposition of the macroscopic strain
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rate tensor components along the principal directions (i) as

ḢRVE
(i) = Ḣel

(i) +
˙̄Hpl
(i) + Ḣda

(i). (6.8)

While the unit-cell is under loading, the finite solid elements experience
only elastic and plastic strain rates at the micro-level, denoted as ḣel

and ḣpl, respectively. Consequently, this gives rise to the corresponding
elastic-plastic macroscopic strain rates

Ḣep = Ḣel + Ḣpl =
1

V

∫
Vmatrix

(ḣel + ḣpl) dv (6.9)

where V is the current volume of the unit-cell and Vmatrix represents
the current volume of the undamaged matrix material (solid elements).
With Eq. (6.8) and Eq. (6.9), the macroscopic damage strain rate tensor
is given by

Ḣda = ḢRVE − Ḣep. (6.10)

Using Eq. (2.21) and Eq. (2.22) leads to the calculation of damage strain
tensor as

Ada =

∫
Ḣda dt. (6.11)

In the numerical investigations, the magnitude of strains and strain rates
can be characterized using scalar-valued measures, such as the equivalent
strain rate

ε̇eq =

√
2

3
Ḣ · Ḣ (6.12)

which is then used to calculate the equivalent strain given by

εeq =

∫
ε̇eq dt. (6.13)

In addition the void volume fraction f is determined using

f =
V − Vmatrix

V
. (6.14)
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6.2.2 Results of the numerical analysis of the unit-cell

The numerical study investigates the impact of loading on representa-
tive volume elements (RVE) containing voids under various load ratios
Fx/Fy/Fz in different loading directions and examines their deformation
and damage behavior in depth. Different loading scenarios are analyzed
through numerical simulations using the elastic-plastic material model.
Furthermore, the obtained results from the numerical simulations are
compared with existing experimental observations derived from tests in-
volving specimens subjected to biaxial loading conditions.
Fig. 6.7(a) shows the evolution of the principal components of damage
strain tensor for the load ratio Fx/Fy/Fz in RD, DD and TD. As de-
formation increases, the damage strain Ada

x exhibits an upward trend,
reaching up to 0.032 under loading in RD and TD, with slightly smaller
values observed for loading in DD. The damage strain Ada

y attains −0.006

for loading in RD and TD whereas Ada
y for loading in DD is about 15%

higher than in RD and TD. Furthermore, the damage strain Ada
z reaches

upto −0.010 and is almost equal for all of the loading directions. The
load ratio Fx/Fy/Fz = 1/0/0 corresponds to the uniaxial loading, re-
sulting in stress triaxiality ηH = 0.44 and Lode parameter LH = −0.70
based on the Hoffman yield criterion.
The results for the load ratio Fx/Fy/Fz = 1/0/ − 1 corresponding to
shear loading conditions is presented in Fig. 6.7(b). The damage strain
Ada

x increases up to 0.017 as the deformation of the RVE increases, while
Ada

z decreases to -0.032, Ada
y remains nearly unchanged at 0.0. In this

case, the effect of the loading direction on the formation of the principal
damage strain is very small. The resulting Hoffman stress parameters
are ηH = 0.21 and LH = 0.00. Following the respective experiments in-
volving the X0- and H-specimen done in [32, 37] under shear loading
conditions, shear deformation at the micro-level, characterized by only
very few initial voids, has been observed through scanning electron mi-
croscopy (SEM). This observation aligns with the numerically predicted
components of the damage strain tensor, and notably, only a marginal
influence of the loading direction has been observed.
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Figure 6.7: Evolution of principal damage strain tensors for (a) ηH =
0.44 and LH = −0.70 (b) ηH = 0.21 and LH = 0.00 (c)
ηH = 0.66 and LH = 1.00 (d) ηH = 0.75 and LH = 0.23
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Similarly, the formation of principal damage strains under the load ratio
Fx/Fy/Fz = 1/1/0.25 leading to the Hoffman stress parameters ηH =
0.66 and LH = 1.00 is depicted in Fig. 6.7(c). The damage strain compo-
nents Ada

x and Ada
y , for loading in RD, DD and TD, are nearly equal and

attains a value of 0.057. The damage strain Ada
z is nearly 0.0 for all of the

loading directions. In the experiment involving the X0-specimen under
biaxial tension loading, a similar stress-state is attained [32]. Scanning
electron microscopy (SEM) images (Fig. 7.6(a)) reveal a notable growth
of voids for loading in all directions, while slightly smaller voids appear-
ing after loading in RD as compared to loading in DD and TD.
Furthermore, Fig. 6.7(d) illustrates the increase of the principal damage
strains with an increasing equivalent strain measure. In this case, the
load ratio Fx/Fy/Fz = 1/0.63/0.27 results in the stress triaxiality ηH =
0.75 and Lode parameter LH = 0.23 based on the Hoffman yield crite-
rion. The damage strain Ada

x increases up to 0.065 for the loading in TD
but for loading in DD and RD the damage strain Ada

x is slightly smaller.
Conversely, the damage strain components Ada

y and Ada
z show smaller

increases, up to 0.04 and 0.01, respectively, with a similar dependence
on the loading direction with respect to the rolling direction. Similar
stress-state is achieved in the experiment with H-specimen under tensile
loading condition [37], where SEM pictures (Fig. 7.13) reveal that the
remarkable growth of the voids leads to the fracture of the specimen but
the size of the voids are relatively smaller for loading in DD as compared
to loading in RD and TD.
In addition, the damage strains under the load ratio Fx/Fy/Fz = 1/1/−
0.5 are shown in Fig. 6.7(e). The evolution of Ada

x and Ada
y is almost

same for all loading directions and reaches a value of 0.014 while Ada
z

decreases up to −0.030. The Hoffman stress parameters are ηH = 0.33
and LH = 1.00, which are similar to the shear combined with tension
loading in H-specimen [37]. The SEM images (Fig. 7.14(a)) depict the
presence of small voids in combination with micro-shear-cracks leading
to the fracture of the specimen.
Moreover, for the load ratio Fx/Fy/Fz = −1/ − 1/0.5, the formation
of damage strain components are shown in Fig. 6.7(f). As the loading
increases, the damage strain components Ada

x and Ada
y decrease, reaching

up to −0.015, while Ada
z increases up to 0.017. Importantly, this defor-

mation behavior remains nearly unaffected by the loading direction. The
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Hoffman stress parameters read ηH = −0.34 and LH = −1.00.

Table 6.4: Generalized stress parameters for unit-cell

Load ratio (Fx/Fy/Fz) LH [-] ηH [-]

• −0.6/− 0.4/− 1

• −1/0.63/0.35

• −1/− 1/0.5

• 0.75

• 0

• −1

• −0.6

• −0.9

• −0.34

• 0.5/0.5/− 1

• −1/0/− 1

• 1/− 0.5/− 0.5

• 1

• 0

• −0.68

• 0.16

• 0.21

• 0.28

• 1/1/− 0.5

• 1/0.37/− 0.27

• 1/0/0

• 1

• 0.32

• −0.7

• 0.33

• 0.40

• 0.44

• 1/1/0.25

• 1/0.63/0.27

• 1/0.4/0.4

• 1

• 0.23

• −0.68

• 0.66

• 0.75

• 0.80

The Table 6.4 illustrates the total number of numerical simulations con-
ducted, encompassing various loading ratios and the corresponding stress
triaxialities and Lode parameters for loading in the RD. Based on the
numerical results of the unit-cell, the stress-state dependent damage pa-
rameters α̃ and β̃ in damage evolution equation Eq. (2.62) are identified.
As can be seen in Fig. 6.7, the impact of the loading direction on the
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formation of damage strain components appears to be minimal. There-
fore, this effect will be neglected while identifying α̃ and β̃. This yields
the function α̃ as

α̃
(
ηH

)
=


0.0672ηH − 0.2421 for ηH < 0.21

2.5161ηH − 0.7563 for 0.21 ≤ ηH ≤ 0.65

0.3067ηH + 0.6797 for ηH > 0.65 .

(6.15)

α̃[-]

LH[-]

ηH[-]

Figure 6.8: Dependence of the strain rate parameter α̃ on the general-
ized Hoffman stress triaxiality ηH and the Lode parameter
LH.

As illustrated in Fig. 6.8, the parameter α̃ is negative within the range
of negative triaxialities and increases with increasing triaxiality. α̃ is
related to the volumetric part of the damage strain tensor. With an
increase in triaxiality, the influence of the first invariants of the stress
tensor T increases. It follows that the damage mechanism is dominated



86 Numerical aspects

by isotropic growth of voids. The numerical simulations at the micro-
scale have not revealed any dependence of α̃ on the Lode parameter LH.

β̃[-]

LH[-]
ηH[-]

Figure 6.9: Dependence of the strain rate parameter β̃ on the general-
ized Hoffman stress triaxiality ηH and the Lode parameter
LH.

In addition, analyzing the numerical results, the parameter β̃ is deter-
mined as a function of stress triaxiality ηH and Lode parameter LH as

β̃
(
ηH, LH

)
=

 0.9821 for ηH < 0.45

1.2442 − 1.2735(ηH)
2
+ fβ̃(L

H) for ηH ≥ 0.45
(6.16)

with fβ̃(L
H) = 0.0447LH.

Examining the graphical representation (Fig. 6.9) of the function β̃ given
in Eq. (6.16) reveals the contrary behavior compared to the parameter
α̃. The influence of β̃ decreases as the stress triaxiality ηH increases.
For small triaxialities, β̃ is nearly equal to one, which indicates that
the damage mechanism is characterized by the evolution of micro-shear-
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cracks. Additionally, in the regime of higher positive stress triaxiali-
ties, the micro-mechanical numerical calculations have identified an ad-
ditional dependence on the Lode parameter, which is modeled by the
term fβ̃(L

H).
Numerical studies of the unit-cell containing an initial void have been car-
ried out for a wide range of stresses with stress triaxiality ηH and Lode
parameter LH based of the Hoffman yield criteria. The numerical results
have been utilized to discuss general mechanisms of damage and failure
in ductile materials. Furthermore, the RVE is loaded with different load
ratios in different directions, namely in RD, DD and TD, with respect
to the RD. Based on these studies, the evolution of components of the
damage strain tensors are analyzed in detail demonstrating the effect of
the stress state. In addition, the influence of the loading direction on the
formation of damage strain tensors is also shown, although the effect was
found to be minimal. Based on the numerical results, the functions for
the stress-state-dependent damage parameters α̃ and β̃ appearing in the
damage evolution equation (Eq. (2.62)) of macroscopic damage strains
associated with anisotropic evolution of micro-defects are identified.
With all of the stress-state-dependent parameters α, β, α̃ and β̃, the pro-
posed continuum damage model taking plastic anisotropy into account
must be validated. Thus, in the following Chapter the experimental
results from the biaxially loaded specimens are compared with the nu-
merical results.



7 Experimental and numerical results from
biaxially loaded specimens

In this Chapter the experimental and the corresponding numerical results
of the tests with the biaxial test specimens are presented. The numerical
simulations are carried out taking elastic-plastic-damage material model
into account. Through the comparison of global and local results, it can
be ensured that meaningful insights into the damage and failure behav-
ior are obtained. This allows for drawing the conclusions regarding the
modeling approach and the quality of the calibrated material parameters.

7.1 X0-specimens

7.1.1 Global force-displacement diagrams

Fig. 7.1 presents the load-displacement curves obtained from the exper-
iments with different load ratios for different loading directions, along
with corresponding numerical simulations. For the load case F1/F2 =
1/0 (Fig. 7.1(a)), the specimen fails after attaining the maximum load
of F1 = 9.26kN and the displacement ∆uref = 1.08mm after loading
the specimen in RD. Similarly, the maximum load for TD reaches up to
F1 = 9.12kN and failure occurs at the displacement of ∆uref = 1.21mm.
The lowest attained load is observed after loading in DD, which is ap-
proximately 4% less than that one for RD. However, the displacement at
fracture, ∆uref = 1.35mm, for DD is the highest among all three loading
directions. The disparity in the material’s mechanical response clearly
highlights the influence of the loading directions relative to the principal
directions of anisotropy. These experimental results suggest that loading
in RD results in a more brittle behavior, while loading in DD leads to a
more ductile behavior. The observed experimental behavior is success-
fully replicated by the numerical simulations, particularly for loading in
RD and TD. The load–displacement curves from both experimental and
numerical data closely align, with minor differences becoming apparent

88
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after loading in DD. Nonetheless, the primary trends are accurately cap-
tured in the simulations.

RD
DD
TD

Exp Sim

axis 1
axis 2
axis 1
axis 2
axis 1
axis 2

Exp Sim
RD

DD

TD

:

:

:

axis 1
axis 2
axis 1
axis 2
axis 1
axis 2

Exp Sim
RD

DD

TD

:

:

:

F [kN] F [kN]

(a)
10.0

8.00

6.00

4.00

2.00

0.00 0.00

2.00

4.00

6.00

8.00

10.0

0.00 0.40 0.80 1.20 1.60

(b)

0.00 0.10 0.20 0.30 0.40 0.50

(c)F [kN]6.00

4.00

2.00

0.00

-2.00

-4.00

-6.00
-2.00 -1.00-1.50 -0.50 0.00 0.50 1.00 1.50

∆uref [mm]∆uref [mm]

∆uref [mm]

Figure 7.1: Experimental and numerical load-displacement curves us-
ing X0-specimen for the load ratio (a) F1/F2 = 1/0, (b)
F1/F2 = 1/1 and (c) F1/F2 = 1/− 1.

For the load ratio F1/F2 = 1/1 (Fig. 7.1(b)), in case of RD, the maximum
attained loads in both axes are F1 = F2 = 9.24kN and the failure occurs
at the displacement of ∆uref.1 = 0.42mm and ∆uref.2 = 0.45mm in axis
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1 and axis 2, respectively. Again, for TD, the fracture occurred at the
displacements of ∆uref.1 = 0.40mm and ∆uref.2 = 0.41mm and the cor-
responding maximum loads are F1 = F2 = 9.01kN, respectively. In each
case, slight non-symmetric behavior is observed in the values of displace-
ments at the specimen’s failure. This could be attributed to minimal
inaccuracies during the experiments or the inhomogeneities in the ge-
ometry of the specimen arising from the manufacturing processes. After
loading in DD, the load reaches up to F1 = F2 = 8.92kN and the speci-
men fails after reaching the displacements of ∆uref.1 = ∆uref.2 = 0.38mm
for both axes. Compared to the load ratio F1/F2 = 1/0, for F1/F2 = 1/1,
all of the specimens failed earlier after loading in RD, DD and TD. Once
again, the loading direction with respect to the principal directions of
anisotropy influences the maximum loads and displacements at the onset
of fracture. The observed experimental behavior is effectively reproduced
by the numerical simulations, particularly for loading in RD, the experi-
mental and numerical load–displacement curves closely match. However,
for loading in DD and TD, the maximum loads are slightly overpredicted
with the difference around 5%.
The load–displacement curves, in case of loading in RD, obtained from
experiments with the load ratio F1/F2 = 1/ − 1 (Fig. 7.1(c)) show
nearly identical load maxima for both axes at failure, with F1 = 5.27kN
and F2 = −5.14kN. However, minor differences in the final value of
the displacements are observed among the loading directions. For in-
stance, after loading in DD, the maximum displacements at fracture are
∆uref.1 = 1.25mm and ∆uref.2 = −1.5mm. For loading in TD, these
displacements are approximately 17% and 14% less than those observed
in DD. Similarly, the final values of the displacements for RD lie be-
tween those of DD and TD. Again, noticeable differences are observed
in the values of the displacements reached at the onset of fracture, indi-
cating the influence of the loading direction with respect to the principal
directions of anisotropy. They once again demonstrate that the behav-
ior for loading in DD is more ductile compared to the other loading
directions. Additionally, the numerical simulations agree well with the
experimental results. Specifically, for loading in DD and TD, the numer-
ically predicted curves closely match the experimental ones. Although
the maximum load for loading in RD is slightly overpredicted, the overall
trends are well captured by the numerical simulations.
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7.1.2 First principal strain fields

RD DD TD(a)

(b)

(c)

0.00

0.34

0.00

0.19

0.00

0.35

Figure 7.2: First principal strains from the DIC (right) and the numer-
ical simulations (left) for the load ratios (a) F1/F2 = 1/0,
(b) F1/F2 = 1/1 and (c) F1/F2 = 1/− 1.

Fig. 7.2 displays the distribution of the first principal strains (A1) ob-
tained from the DIC and the respective numerical simulations. The local
first principal strains are captured shortly before the final failure of the
specimen, considering different load ratios and orientations with respect
to the principal directions of anisotropy. On each of the results obtained
from the experiments, the black lines in a rectangular box show the
rolling direction.
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For the loading ratio F1/F2 = 1/0 (Fig. 7.2(a)), small strain bands are
formed and they are diagonally oriented from top right to the bottom
left making an angle of about 4◦ with respect to the vertical axis.
A1 is distributed more uniformly along the shear band for DD than those
in RD and TD and its maximum value A1 = 0.34 is also significantly
greater than for the loading in RD and DD. The principal strains are
numerically well predicted if compared to the experimental ones, for all
loading directions. Moreover, in the loading case of F1/F2 = 1/1 which
is depicted in Fig. 7.2(b), the principal strains are vertically widespread
forming an elliptical-shaped vertical band. The maximum value of A1 is
observed for RD and TD, reaching up to 0.19, while the principal strain
for DD is relatively lower which is about 0.15. Both the values and the
form of the principal strain bands are numerically well captured for the
respective experiments.
In addition, the strain bands are localized diagonally from top left to the
bottom right forming a band with width about 3mm for the load ratio
F1/F2 = 1/− 1, which is shown in Fig. 7.2(c). In this case the maxima
are A1 = 0.30 and A1 = 0.28, for loading in RD and TD, respectively,
whereas A1 for DD is maximum among all and reaches up to 0.35. The
numerical results for RD and TD match well with the experiment but
the value of A1 for DD is numerically underpredicted compared to the
corresponding experimental value.

7.1.3 Stress-state

From the numerical simulations of the respective experiments, it is pos-
sible to analyze the stress-state, both the attained magnitudes and the
distribution, using the stress triaxiality ηH based on the Hoffman yield
condition. For this purpose, Fig. 7.3 shows the stress triaxiality on the
surface (S) and in the cross section (C) of the notches of the X0-specimen,
which are evaluated at the last load step of the numerical simulations.
For the load ratio F1/F2 = 1/0 (Fig. 7.3(a)), the stress triaxiality for
RD in the cross-section (C) is nearly homogeneously distributed with
ηH = 0.62.
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Figure 7.3: Stress triaxialities for the load ratios (a) F1/F2 = 1/0, (b)
F1/F2 = 1/1 and (c) F1/F2 = 1/− 1.

In the case of loading in DD, ηH = 0.62 at the center, but small gradi-
ents can be observed on the bottom, top, as well as on the right and left
sides from the center. But for TD, ηH = 0.30 and evenly distributed over
the cross-section. A clear influence of the loading direction on the stress
triaxialities is observed for this loading.
In case of F1/F2 = 1/1, higher gradients of the stress triaxiality can be
seen in the cross-section (C) with ηH reaching up to 1.1 for loading in
DD. Similarly, for RD and TD, ηH = 0.94 in the center with higher gra-
dients across the cross-section, whereas ηH = 0.62 and the distribution is
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quite homogeneous for the larger part on the surface (S). The influence
of the loading direction on the stress triaxialities for this loading case is
marginal.
Furthermore, the stress triaxialites for the load ratio F1/F2 = 1/− 1 are
shown in Fig. 7.3(c). Again, ηH is nearly uniformly distributed in the
cross-section (C), with small gradients on the top and bottom. For load-
ing in TD, ηH = −0.33 is numerically predicted both in the cross-section
and on the surface. Contrarily, for loading in DD, both in the cross-
section and on the surface, the numerically predicted stress triaxiality
ηH is nearly equal to 0, whereas the value of ηH = 0.20 for RD is slightly
higher than that of DD and TD. The influence of the loading direction
on the prediction of stress triaxialities is clearly evident.

7.1.4 Inelastic strains

The distributions and magnitudes of the numerically predicted equivalent
plastic strains γ on the surface (S) of the notched region and in the cross-
section (C) are shown in Fig. 7.4, which are taken at the final load steps.
In particular, for the load ratio F1/F2 = 1/0 (Fig. 7.4(a)), the maximum
γ = 0.41 occurs for loading in DD on the surface (S) of the notch in
a localized band with a slightly diagonal orientation from top right to
bottom left. Similarly, for TD, γ is nearly equal to that one in DD,
but for loading in RD, γ is about 7% lower than that of other loading
directions. The distribution of the equivalent plastic strains in the cross-
section for RD and TD is almost similar, whereas γ = 0.41 has a higher
value for DD along the right and left edges of the cross-section than those
in RD and TD.
Furthermore, in the case of F1/F2 = 1/1 (Fig. 7.4(b)), the equivalent
plastic strains on the surface (S) are widespread, forming a vertical band
for all the loading directions. In the cross-section, the distribution of γ
is nearly homogeneous, with γ reaching up to 0.27 at the center for RD
and TD, whereas γ is only 0.22 for loading in DD.
In addition, as shown in Fig. 7.4(c), for the loading ratio F1/F2 = 1/−1,
the equivalent plastic strains form a band from top left to the bottom
right on the surface of the notch. The equivalent plastic strain band
for DD is more wider than those for RD and TD, with a maximum
γ = 0.41. For RD and TD, γ = 0.34 is reached in the cross-section
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Figure 7.4: Numerically predicted equivalent plastic strains γ for the
load ratios (a) F1/F2 = 1/0, (b) F1/F2 = 1/1 and (c)
F1/F2 = 1/− 1.

with small gradients at the top and the bottom. Similar behavior can
be observed for DD, with its maximum γ = 0.35 across the center with
slight gradients at the top and bottom part of the cross-section (C) of
the notch.
Similarly, the equivalent damage strains µ from the numerical simulations
are illustrated in Fig. 7.5. The equivalent damage strains on the surface
(S) also form a localized shear band inclined from top right to the bottom
left for the load ratio F1/F2 = 1/0 (Fig. 7.5(a)). The shear bands for RD
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and DD are more narrower, with their maximum in two points reaching
µ = 0.25% and µ = 0.31%, respectively, compared to those for TD.
Moreover, µ is distributed nearly uniformly across the cross-section for
all loading directions and its maximum µ = 0.31% is predicted for TD
at the central area in the cross-section.

RD DD TD

(a)
S C S C S C

(b)

(c)

> 0.00 0.31 x 10−2

> 0.00 0.20 x 10−2

> 0.00 0.70 x 10−2

Figure 7.5: Numerically predicted equivalent damage strains µ for the
load ratios (a) F1/F2 = 1/0, (b) F1/F2 = 1/1 and (c)
F1/F2 = 1/− 1.
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For the load ratio F1/F2 = 1/1 (Fig. 7.5(b)), the equivalent damage
strains in the cross-section are distributed in the ellipsoidal form showing
a maximum value of µ = 0.20% in the center for RD and TD, whereas
µ reaches only up to 0.13% for loading in DD. On the surface, µ is
numerically predicted, but the magnitude is far less compared to that in
the cross-section for all loading directions.
Moreover, for the load ratio F1/F2 = 1/−1 (Fig. 7.5(c)), only in the case
of RD, a localized uniform band of µ oriented diagonally is formed. But
for DD, the equivalent damage strains are not uniform and are strongly
localized on the top and bottom part of the surface with the maximum
µ = 0.70% among all of the loading directions, as can be observed in
Fig. 7.4(c). On the other hand, µ is predicted only on the top and
bottom edges of the surface for TD. The equivalent damage strains for
RD in the cross-section are almost homogeneously distributed, while the
distribution for DD is uneven, with µ = 0.70% at the lower area of the
cross-section.

7.1.5 SEM images and fracture behavior

The images in Fig. 7.6 and Fig. 7.7 display the fractured X0-specimens
from all load cases, along with the results of the examinations of the
fracture surfaces using the scanning electron microscope. The specimens
failed abruptly in all experiments, and no development of a fracture pro-
cess over time could be observed with the DIC system. In the majority
of cases, the specimens fractured in two opposing notches as shown. For
almost all the load ratios and loading directions, the localized bands of
the first principal strain (Fig. 7.2) correspond to the fracture lines. In
particular, for the load ratio F1/F2 = 1/0 (Fig. 7.6(a)), the fracture lines
are slightly inclined from top-left to bottom-right making about 5◦ with
the horizontal axis. This type of fracture mode is typical for low positive
stress triaxialites (Fig. 7.3(a)) where the failure of the specimens result
due the combination of the growth of micro-shear cracks and micro-
voids. The fracture lines are nearly parallel to the horizontal axis in the
case of F1/F2 = 1/1 (Fig. 7.6(b)) for all loading directions. Moreover,
the fracture modes resemble to the cup-cone ductile fracture caused by
tensile-dominated loading. Similarly, for the load ratio F1/F2 = 1/ − 1
(Fig. 7.7), the fracture lines are slightly diagonally oriented from bottom-
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left to top-right forming nearly 7◦ with the horizontal axis, indicating
typical shear-dominated fracture modes with smooth fracture surfaces.
These experimental findings demonstrate that fracture patterns at the
macroscopic level are influenced by the load ratios, while the impact of
the loading direction (RD, DD, or TD) is marginal.
The pictures of the fracture surfaces taken from the SEM for the load
ratio F1/F2 = 1/0 (Fig. 7.6(a)) after loading in RD reveal numerous
sheared micro-voids, resulting in sheared dimples. But for loading in
DD, fewer small micro-voids are present, and they appear to be more
sheared, leading to the formation of micro-shear cracks. However, for
loading in TD, there is a notable presence of both micro-voids and micro-
shear mechanisms in comparison to RD and DD. This observation for TD
could explain the numerical results (Fig. 7.5(a)), in which the maximum
equivalent damage strain in the cross-section is predicted for loading in
TD.
On the contrary, in the case of the load ratio F1/F2 = 1/1 (Fig. 7.6(b)),
loading in RD results in significant void growth, characterized by large
pores and distinct dimples. Again, large pores and coarse dimples simi-
lar to those observed for RD can be seen after loading in TD. However,
smaller voids resulting in dimples, of a reduced scale than those in RD
and TD, are observed for loading in DD. These observed differences in
SEM images seem to be consistent with the numerically predicted equiv-
alent damage strains (Fig. 7.5(b)), where the maximum value of µ in the
cross-section of the notch is higher for RD and TD than for DD.
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Figure 7.6: Fractured X0-specimens and the corresponding SEM pic-
tures of the fracture surfaces for the load ratios (a) F1/F2 =
1/0 and (b) F1/F2 = 1/1.
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Figure 7.7: Fractured X0-specimens and the corresponding SEM pic-
tures of the fracture surfaces for the load ratio F1/F2 =
1/− 1.

For the load ratio F1/F2 = 1/ − 1, as depicted in Fig. 7.7, after load-
ing in RD, a relatively small number of micro-voids, which are distinctly
sheared and overlaid with micro-shear cracks, are observed. For load-
ing in TD, similar to RD, only a few sheared micro-voids, superimposed
with micro-shear cracks, are present. But in case of DD, almost no voids
are observed, and the failure is attributed to the accumulation of micro-
shear cracks, resulting in a notably smooth and flat failure surface. This
fracture mode is characteristic for stress triaxialities with nearly zero or
negative values (Fig. 7.3(b)). The equivalent damage strains from the nu-
merical analysis is maximum for loading in DD both in the cross-section
and in the surface as compared to RD and TD (Fig. 7.5(c)). These
numerical results once again correspond to the fracture images, as the
presence of micro-shear cracks for DD exceeds those of RD and TD.
In summary, while the dependence of macroscopic fracture lines on the
loading direction is not evident in the experimental analysis, minor dif-
ferences are clearly observable in the influence of the loading direction
on the images captured by SEM. Moreover, slight variations can be ob-
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served in the load-displacement diagrams. For example, for loading ra-
tios F1/F2 = 1/0 and F1/F2 = 1/ − 1 resulting in moderate, low pos-
itive, zero or negative stress triaxialities, loading in DD leads to larger
displacements, indicating more ductile behavior corresponding to shear-
dominated behavior at the micro-level. Similarly, the experimental and
numerical observations of the first principal strains in Fig.7.2 clearly illus-
trate the influence of both loading direction and load ratio. For instance,
just before the final failure of the specimen, the distribution and values
of the accumulated first principal strains after loading in RD differ from
those after loading in DD and TD (Fig. 7.2(b)). The numerically pre-
dicted values and distribution of the equivalent plastic strains (Fig. 7.4)
and the equivalent damage strains (Fig. 7.5) also predict the effect of
loading directions in the specimen, which tends to align with the exper-
imental results.

7.2 H-specimens

7.2.1 Global force-displacement diagrams

The experimentally obtained load-displacement diagrams involving H-
specimen under various load ratios and loading directions are compared
in Fig. 7.8. For the load ratio F1/F2 = 0/1 depicted in Fig. 7.8(a), the
H-specimen undergoes failure upon reaching a maximum load of F2 =
12.89kN and a displacement of ∆uref = 0.50mm after loading in RD.
Likewise, for TD, the maximum load is nearly equal to that of RD,
but the specimen failed at the displacement ∆uref = 0.57mm. For the
specimen loaded in DD, F2 reaches up to 12.48kN and the displacement
at fracture is ∆uref = 0.56mm. The difference in the maximum attained
load between the highest (in RD) and the lowest (in DD) orientations
is about 3%, whereas a difference of approximately 12% in the value
of displacements at failure is observed between loading in TD and RD.
These differences indicate that the specimens loaded in TD and DD, with
respect to the rolling direction, exhibit more ductile behavior compared
to the specimen loaded in RD. The corresponding numerical simulations
were conducted, demonstrating good agreement with the experimental
load–displacement curves. Although a slight over-prediction in loads is
evident for this load ratio, the primary trends are well captured.
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Figure 7.8: Experimental and numerical load-displacement curves us-
ing H-specimen for the load ratios (a) F1/F2 = 0/1, (b)
F1/F2 = 1/0, (c) F1/F2 = 1/0.5, (d) F1/F2 = 1/1 and (e)
F1/F2 = 1/− 1.
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Furthermore, in case of F1/F2 = 1/0 (Fig. 7.8(b)), the maximum load at
specimen’s failure after loading in RD and TD are almost the same, mea-
suring F1 = 7.57kN, whereas the measured displacements are ∆uref =
1.81mm and ∆uref = 1.78mm, respectively. However, the maximum load
for DD is around 3% less than those of RD and TD. Conversely, the
highest value of displacement, ∆uref = 1.90mm at failure, is reached af-
ter loading in DD compared to the other loadings. Once again, these
observations indicate that the specimens show slightly brittle behavior
after loading in TD and RD, while loading in DD shows more ductile
behavior. The numerical simulations agree well with the corresponding
experimental results, with slight differences observed in the load max-
ima.
For the load ratio F1/F2 = 1/0.5 (Fig. 7.8(c)), after loading in RD and
TD in axis 1, the maximum attained loads F1 = 7.18kN and the dis-
placements ∆uref = 1.77mm at specimen’s failure are equal for both.
Similarly, in the case of RD and TD, the maximum loads and the dis-
placements at the onset of fracture in axis 2 are identical, with values of
F1 = 3.60kN and ∆uref = 0.14mm, respectively. Loading in DD in axis 1
yields the lowest, measuring F1 = 6.97kN, while achieving the maximum
displacement of ∆uref = 1.97mm at the onset of failure of the specimen.
The behavior after loading in DD is again slightly more ductile com-
pared to loading in RD and TD. In addition, the numerically predicted
load-displacement curves align well with the corresponding experimental
curves.
The load maxima in the case of F1/F2 = 1/1, for all loading directions,
are nearly similar with F1 = F2 = 6.35kN. Nevertheless, there are differ-
ences in the displacements at the onset of failure. In RD the specimen
failed at ∆uref.1 = 1.40mm and ∆uref.2 = 0.34mm, while loading in TD
resulted in displacements of ∆uref.1 = 1.54mm and ∆uref.2 = 0.34mm.
Moreover, in DD , the maximum displacement of ∆uref.1 = 1.61mm is
reached, once again marking the highest value among all loading direc-
tions. Therefore, loading the H-specimen in DD exhibits more ductile be-
havior compared to loading in RD and TD. The load-displacement curves
are in good agreement with the experimental ones as seen in Fig. 7.8(d)).
Moreover, for the load ratio F1/F2 = 1/−1, the maximum attained load
after loading in RD and TD are nearly equal, measuring F1 = F2 =
7.15kN and F1 = F2 = −7.01kN. However, the displacements at the
onset of failure vary with ∆uref.1 = 1.67mm and ∆uref.1 = 1.80mm, re-
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spectively. In addition, loading in DD yields in a load of F1 = 6.75kN
along with a displacement of ∆uref.1 = 1.70mm at the onset of speci-
men’s fracture. In this loading case, the specimens loaded in TD show
more ductile behavior, whereas those loaded in RD exhibit brittle be-
havior compared to other (DD and TD). For all loading directions, the
numerical simulations slightly underpredict the load-displacement curves
compared to the experiments, but the overall trend is well captured.

7.2.2 First principal strain fields

The first principal strain (A1) fields from the DIC and the corresponding
numerical simulations are shown in Fig. 7.9. The local first principal
strains are taken shortly before the final fracture of the specimen for
different load ratios and for different orientations with respect to the
principal directions of anisotropy. As already mentioned, the experimen-
tal values are the mean values of the four notches of all experiments
corresponding to the specific load case and the rolling direction.
For the load case F1/F2 = 0/1 (Fig. 7.9(a)), broad vertical bands of
principal strains are formed for all directions and the vertical bands ap-
pear elliptical in shape for loading in RD and DD. A1 is maximum for
DD, reaching up to 0.18, but the principal strains for RD and DD are
approximately 22% and 11% lower than DD, respectively. The corre-
sponding numerical results are in good agreement with the experimental
ones. As depicted in Fig. 7.9(b), for all the loading directions, the prin-
cipal strain bands for F1/F2 = 1/0 are diagonally orientated from top
right to bottom left and the bands are not broadly spread like in load
case F1/F2 = 0/1. Among the three loading directions, A1 reaches its
maximum value of 0.35 for DD, while the bands are narrower compared
to loading in RD and TD. The principal strains for RD and TD are
nearly equal, measuring 0.33. The orientation of principal strain bands
from the numerical simulations agree well with the experimental results,
but there is approximately a 10% difference in the maximum attained
value of principal strains between the experimental and numerical ones
for all loading directions.
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Figure 7.9: First principal strain fields from the DIC (right) and the
numerical simulations (left), just before the final fracture
for the load ratio (a) F1/F2 = 0/1, (b) F1/F2 = 1/0, (c)
F1/F2 = 1/0.5, (d) F1/F2 = 1/1 and (e) F1/F2 = 1/− 1.
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Furthermore, the principal strains are almost vertically aligned for all
the loading directions in case of load ratio F1/F2 = 1/0.5, which can be
seen in Fig. 7.9(c). The principal strain bands are narrower for loading
in DD and TD compared to those in RD. A1 is nearly equal for DD and
TD, reading 0.38, but is around 14% less for loading in RD. Again, the
principal strain bands are numerically well reproduced and agree well to
the principal strains obtained from DIC for all loading directions.
Moreover, for the load ratio F1/F2 = 1/1 (Fig. 7.9(d)), the principal
strains are localized in small bands arranged diagonally from bottom
right to top left with a width of about 2mm. In the case of loading in
axis 1 in DD, the maxima are A1 = 0.36, whereas A1 reaches up to 0.35
and 0.32 for TD and RD, respectively. The values and the orientation of
the principal strain bands are numerically well predicted for loading in
DD and TD, while for RD, the numerical simulation overestimates the
localized principal strain.
Similarly, Fig. 7.9(e) illustrates the principal strains for the load ra-
tio F1/F2 = 1/ − 1. These strains are concentrated within very nar-
row bands, approximately 2mm in width, with a diagonal orientation of
around 14◦ from the top left to the bottom right. For loading in TD, the
maxima are A1 = 0.38, while A1 = 0.35 is reached for diagonal direc-
tion (DD). In the case of loading in RD, A1 = 0.32 is measured shortly
before the final failure of the specimen. Once again, the numerical simu-
lation effectively replicates the principal strain bands, showcasing a close
agreement with the principal strains acquired from DIC for all loading
directions.

7.2.3 Stress-state

For the load ratio F1/F2 = 0/1 (Fig. 7.10(a)), higher gradients of the
stress triaxiality can be seen in the cross section (C) of the notched part
of the H-specimen, whereas ηH is relatively homogeneously distributed
across the surface (S). The highest stress-state is obtained for loading
in TD, where ηH reaches up to 1.1 at the center of the cross section.
Conversely, on the boundaries of the cross section and on the surface, it
is only 0.78. The stress triaxialities for RD and DD, in the cross section
go up to 0.78 and 0.94, respectively. On the surface, ηH for loading in
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Figure 7.10: Stress triaxialities ηH for the load ratio (a) F1/F2 = 0/1,
(b) F1/F2 = 1/0, (c) F1/F2 = 1/0.5, (d) F1/F2 = 1/1
and (e) F1/F2 = 1/− 1.
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RD and DD is 0.46 and 0.62, respectively.
Furthermore, the stress triaxiality for the load case F1/F2 = 1/0 is de-
picted in Fig. 7.10(b). ηH is nearly homogeneously distributed over the
cross section, with small gradients on the bottom and the top. For load-
ing in RD, ηH is nearly 0.00, signifying nearly a pure shear stress-state.
In contrast, for loading in DD and TD, ηH is 0.14 and 0.30, respectively,
indicating a small presence of hydrostatic stress. On the surface, for all
the loading directions, the distribution and the values of stress triaxiality
are nearly similar to that observed in the cross section. The effect of the
specimen’s orientation (RD, DD, or TD) on the stress triaxialities for this
loading case is marginal when compared to the load case F1/F2 = 0/1.
Similarly, Fig. 7.10(c) illustrates the stress triaxiality for the load ratio
F1/F2 = 1/0.5. Similar to the load case F1/F2 = 1/0, the distribution of
the stress triaxiality is almost homogeneous over the cross section with
slight gradients on the bottom and the top. For loading in RD and DD,
ηH measures 0.46 in the cross-section. However, the numerical prediction
yields a slightly lower value of ηH = 0.14 in both the cross-section and
on the surface after loading in TD. Influence of the loading direction is
evident in this particular loading case, with notable variations between
the loading directions (RD, DD, and TD).
For the load ratio F1/F2 = 1/1, the numerically predicted stress triax-
iality is shown in Fig. 7.10(d). The distribution of the stress triaxiality
in cross-section after loading in DD and TD is nearly identical with ηH

measuring 0.62, which is typical value for the mixed loading (tension com-
bined with shear loading). However, slightly lesser value of ηH = 0.46 is
numerically predicted at the center of the cross-section in RD.
In addition, in the case of F1/F2 = 1/ − 1 (Fig. 7.10(e)), the stress
triaxialites in the cross-section for RD and TD are negative, reaching
up to −0.33. Likewise, for both the loading directions (RD and TD),
ηH = −0.33 covers a significant portion of the surface. However, in
DD, the value of stress triaxiality ηH at the center of the cross-section
is −0.17 with slight gradients on the top and bottom. On the central
part of the surface, the numerically predicted ηH is nearly 0.00. The
observed values of stress triaxiality are typical for this kind of loading
ratio (shear loading combined with compression), where the damage is
caused by micro-shear cracks. The impact of the specimen’s orientation
with respect to the principal axes of anisotropy is evident.
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7.2.4 Inelastic strains

Fig. 7.11(a) illustrates the equivalent plastic strains γ for the load ratio
F1/F2 = 0/1 in the cross-section (C) and on the surface (s) of the notch
of the H-specimen. The magnitude and distribution of γ are nearly sim-
ilar in both the cross-section and on the surface is nearly similar after
loading in DD and TD, reaching a maximum value of γ = 0.22. But,
slightly lower value of γ = 0.18 is numerically predicted for loading in
RD.
For the load ratio F1/F2 = 1/0 (Fig. 7.11(b)), very minimal differences
are observed in γ between RD, DD and TD. In all cases, γ is more con-
centrated on the left and right edges of the cross-section with a maximum
value of γ = 0.40. On the surface, it is localized forming a diagonal band
from the top right to the bottom left.
Again, for the load ratio F1/F2 = 1/0.5 (Fig. 7.11(c)) the distribution of
γ is almost the same for all loading cases, reaching γ = 0.44 and localized
more at the either side of the edges of the cross-section. Similarly, on
the surface, nearly vertical shear bands are formed after loading in RD,
DD and TD. Furthermore, for the load ratio F1/F2 = 1/1 (Fig. 7.11(d)),
the equivalent plastic strains in the corss-section for RD and TD are
nearly homogeneously distributed with small gradients on the top and
the bottom with γ reaching up to 0.35. But for DD, the numerical pre-
diction shows the maximum value of γ = 0.43 among all the loading
directions and is concentrated more towards the left and right edges of
the cross-section. On the surface, for DD, localized shear bands with a
width of about 4mm are formed, inclined from top left to the bottom
right, whereas the shear bands are relatively narrower for RD and TD
with the same inclination.
In addition, Fig. 7.11(e) displays the equivalent plastic strains for the
load ratio F1/F2 = 1/−1. Across the cross-section, the distribution of γ
for RD and TD is the same with its maximum value of 0.47 concentrated
on both the left and the right edges. But for DD, γ measures less than
that of RD and TD, with a value of 0.39 in the cross-section. Moreover,
they form a localized shear bands diagonally orientated form top right
to the bottom left making about 12◦ with the vertical axis. For TD, the
shear bands are approximately 3mm wide, while but for RD and DD,
they are slightly narrower.
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Figure 7.11: Equivalent plastic strains γ for the load raitos (a) F1/F2 =
0/1, (b) F1/F2 = 1/0, (c) F1/F2 = 1/0.5, (d) F1/F2 = 1/1
and (e) F1/F2 = 1/− 1.
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Figure 7.12: Equivalent damage strains µ for the load raitos (a)
F1/F2 = 0/1, (b) F1/F2 = 1/0, (c) F1/F2 = 1/0.5, (d)
F1/F2 = 1/1 and (e) F1/F2 = 1/− 1.
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The equivalent damage strains (µ) in the cross-section and on the surface
of the notch of the H-specimen are depicted in Fig. 7.12. Particularly, for
the load case F1/F2 = 0/1 (Fig. 7.12(a)), the equivalent damage strains
appear to be initially concentrated at the center of the cross-section (C)
and then gradually propagate across the cross-section, which is typical
for tension-dominated loading. In the cross-section, the numerical pre-
dictions show a maximum µ = 0.17% for DD, strongly localized at the
center. In contrast, for RD and TD, although the maximum µ = 0.15%
is slightly lower than DD, it is more widespread across the center. On
the surface, the distribution of µ is similar for RD and TD, forming a
broad vertical band. However, for DD, µ is more concentrated on the
top and bottom edges of the surface (S) of the notch.
For the load ratio F1/F2 = 1/0 (Fig. 7.12(b)), in all loading directions,
the distribution of equivalent damage strains in the cross-section is not
homogeneous, with strain gradients across the surface. The maximum
µ = 0.70% is observed for TD compared to others. Similarly, on the
surface, a localized diagonally orientated shear band is formed, where
the band for DD appears to be narrower than RD and TD.
For DD, the maximum value of µ is strongly concentrated towards the top
edge of the surface, whereas for TD, the maximum µ is almost uniformly
concentrated over the shear band. It is worth mentioning that, for this
type of shear-dominated loading, the maximum equivalent damage strain
always appears on the surface of the notch, unlike tension-dominated
loading (F1/F2 = 0/1), where the maximum equivalent damage strain
always develops at the center of the cross-section.
Furthermore, in the case of F1/F2 = 1/0.5, visible in Fig. 7.12(c), the
equivalent damage strains on the surface form nearly a vertical narrow
zone of shear band, with maximum µ = 0.46% predicted after loading in
TD. However, µ = 0.92% is the maximum in the cross-section for loading
in RD, while for DD, the numerically analyzed µ is around 0.60% lower
than that of RD.
Again, similar to the previous loading case, for F1/F2 = 1/1 (Fig. 7.12(d)),
the distribution of the equivalent damage strains in the cross-section is
predicted to be maximum for loading in RD. For RD, µ reaches up to
0.90% and is more localized on the left and right side of the edges of the
cross-section. A similar trend is observed for DD and TD, with the value
of µ being around half of that for RD. On the surface, an inclined band
of equivalent damage strain is formed for all the loading cases, running
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from the top left to the bottom right. The maximum µ = 0.90%, local-
ized on top and bottom part of the surface, is observed for loading in
RD.
In addition, for the load ratio F1/F2 = 1/−1 (Fig. 7.12(e)), the equivalent
damage strains are distributed throughout the surface of the cross-section
for DD, with a maximum µ = 0.60% among all others. For TD, damage
is not predicted in the cross-section, whereas damage is predicted at both
the edges of the surface of the notch where strong localized deformation
is seen during the experiments. Similar predictions of the equivalent
damage strains are observed after loading in RD, with µ reaching up to
around 0.15%. However, for DD, a localized narrow shear band, which
is diagonally oriented from top right to the bottom left, is formed with
µ = 0.60% on the surface of the notch.

7.2.5 SEM images and fracture behavior

The pictures of the fracture lines on the surface of the notch of the
H-specimen are presented in Fig. 7.13 and Fig. 7.14. It is noteworthy
that the black lines within a small box denote the rolling directions.
Once again, the fracture lines correspond to the localized bands of the
first principal strain (Fig. 7.9) evaluated at the end of the respective
experiments and the numerical simulations. For the load ratio F1/F2 =
0/1 (Fig. 7.13(a)), vertical fracture lines with a cup-cone fracture mode
are visible. This type of fracture mode occurs due to the excessive tensile-
dominated loading. In the case of F1/F2 = 1/0 shown in Fig. 7.13(b), for
all the loading directions, the fracture lines are inclined from top right
to the bottom left, indicating a typical shear-dominated fracture mode.
Furthermore, the fracture lines are slightly diagonally oriented from top
left to the bottom right after loading in RD, DD and TD for the load
ratio F1/F2 = 1/0.5 (Fig. 7.13(c)). In this case, the fracture lines are
somewhat wider than the previous loading case and are clearly visible.
In addition, for combined loading case (tension and shear) F1/F2 = 1/1
(Fig. 7.14(a)), the orientation of the fracture lines resembles the load
ratio F1/F2 = 1/0.5, but they make a greater angle with the vertical
axis and are more wider.
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Figure 7.13: Fracture lines and the corresponding SEM images of the
fracture surfaces for the load raitos (a) F1/F2 = 0/1, (b)
F1/F2 = 1/0 and (c) F1/F2 = 1/0.5.
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For the load ratio F1/F2 = 1/ − 1 (Fig. 7.14(b)), the fracture lines are
diagonally oriented from bottom left to top right, which again is the
indication of shear-dominated fracture mode. The experimental results
clearly indicate that the fracture lines at the macroscopic level are influ-
enced by the load ratios, while the impact of the loading direction (RD,
DD, or TD) is marginal.
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Figure 7.14: Fracture lines and the corresponding SEM images of the
fracture surfaces for the load raitos (a) F1/F2 = 1/1 and
(b) F1/F2 = 1/0 and (c) F1/F2 = 1/− 1.

The micro-level analysis of the fracture surfaces using scanning electron
microscopy (SEM) reveals distinct damage mechanisms, as illustrated in
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Fig. 7.13 and Fig. 7.14. For example, for the load ratio F1/F2 = 0/1
(Fig. 7.13(a)) remarkable growth of the voids leading to larger pores and
dimples are clearly visible after loading in RD, DD and TD. The fracture
surfaces for RD and TD exhibit considerable similarity. However, for DD,
while the voids and pores are smaller, there are some spots where the
depth of the dimples appears to be shallower than that observed for RD
and DD. This observation could provide an explanation for the distri-
bution of the equivalent damage strain (µ) in the cross-section as shown
in (Fig. 7.12(a)). In this case µ is maximum for DD and is strongly lo-
calized at the center, which might be due to the presence of the shallow
dimples. Even though µ is slightly lower for RD and TD compared to
DD, the equivalent damage strains exhibit greater dispersion around the
center and across the cross-section, which is not observed in the case of
DD.
For the load ratio F1/F2 = 1/0 (Fig. 7.13(b)), the SEM analysis reveals
shear mechanisms with a few small voids leading to micro-shear cracks af-
ter loading in RD. Conversely, loading in DD and TD results in a reduced
number of small sheared voids, accompanied by prominent shear mech-
anisms compared to RD, ultimately causing the failure of the specimen.
The numerically predicted equivalent damage strains (Fig. 7.12(b)), both
on the surface and in the cross-section, have higher values for DD and
TD compared to RD. These numerical results are consistent with the
SEM images, where micro-shear cracks are more dominant after loading
in DD and TD than in RD.
In the case of the load ratio F1/F2 = 1/0.5, depicted in Fig. 7.13(c),
numerous small voids are superimposed with shear mechanisms, leading
to a higher number of sheared dimples. Compared to RD, the number of
small voids combined with shear mechanisms resulting in sheared dim-
ples is less after loading in DD and TD. Furthermore, the distribution of
equivalent damage strains (Fig. 7.12(c)) aligns with these images of the
fracture surface, as the equivalent damage strain for loading in RD has
higher values across the cross-section than the other loading directions.
Moreover, for the load ratio F1/F2 = 1/1 (Fig. 7.14(a)), plenty of micro-
voids are sheared resulting in shallow sheared dimples after loading in
RD. For loading in DD, the size and number of micro-voids, combined
with shear mechanisms leading to shallow sheared dimples, are less. Sim-
ilarly, for loading in TD, only a few number of micro-voids, but remark-
able micro-shear cracks develop with sheared dimples. The combination
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of micro-voids and shear mechanisms leading to the failure is typical for
this type of loading. Once again, higher values of the equivalent damage
strains (Fig. 7.12(d)), both in the cross-section and on the surface, are
predicted for RD, which again align with the observation that a promi-
nent combination of micro-voids and shear mechanisms is visible for RD
compared to TD and DD.
In addition, in the case of F1/F2 = 1/ − 1 (Fig. 7.14(b)), for example,
loading in RD shows some small voids that are sheared and superim-
posed by micro-shear-cracks. However, for DD, almost no presence of
voids is observed and the failure is caused by the accumulation of micro-
shear-cracks, leading to a very smooth and flat failure surface. Similarly,
after loading in TD, only very few voids can be seen, which are sheared
and superimposed by micro-shear-cracks. In the case of DD, pronounced
shear mechanisms with fewer voids than in the case of RD and TD can
be observed in the SEM pictures.
In summary, distribution, localization, and orientation of the principal
strain bands are primarily influenced by the load ratio, whereas the ori-
entation of the H-specimen during loading (RD, DD, or TD) affects the
maximum values of the first principal strains. For nearly every load case,
the value of the first principal strain is higher for loading in DD compared
to those in RD and TD, suggesting that the specimens cut in DD exhibit
a more ductile behavior than those in RD and TD. This is also visible
in the load-displacement diagrams for most of the load ratios, as the dis-
placement to the failure is more for the specimens loaded in DD compared
to RD and TD. Additionally, the differences in the initial yield stress be-
tween the loading directions are also evident in the load-displacement
diagram. The influence of loading directions on the fracture lines is not
clearly evident, but the analysis of the fracture surface reveals a signif-
icant impact of the specimen’s orientation on the damage and fracture
mechanisms at the micro-scale. For instance, in all the examined load
ratios, the presence and growth of voids are more pronounced after load-
ing in the RD direction compared to other loading directions. Similarly,
for the negative or nearly zero stress triaxialites, micro-shear cracks are
more predominant after loading in DD than RD and TD. Furthermore,
for nearly every examined load cases and specimens orientation, the dis-
tribution and magnitude of the equivalent plastic strains and equivalent
damage strains from the numerical simulations align with the experimen-
tal results.
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8.1 Concluding remarks

The primary objective of this doctoral thesis is to explore the impact of
plastic anisotropy on the damage and failure behavior of ductile metals
through a combination of experimental investigations and corresponding
numerical simulations. The study focuses on elucidating various damage
mechanisms under diverse stress-states and loading directions, particu-
larly concerning their orientation relative to the rolling direction. The
analysis of experimental and numerical data highlights the intricate in-
terplay of factors influencing the material’s response. Additionally, three-
dimensional micro-mechanical numerical analyses are conducted on unit-
cells containing a micro-void to gain deeper insights into the complex
stress-state and loading-direction-dependent damage behavior. The de-
velopment of a novel experimental methodology is a significant contribu-
tion, providing a robust foundation for validating modeling approaches.
Furthermore, the continuum damage model is adapted to incorporate
the influence of plastic anisotropy on the damage behavior of aluminum
alloy EN AW-2017A. This modified damage model serves as an efficient
framework for numerically simulating the anisotropic behavior of mate-
rials, offering valuable insights for various engineering applications.
The anisotropic plastic behavior of the investigated material is modeled
using the Hoffman yield criterion taking the strength-differential (SD)
effect into account as has been observed in uniaxial tension and com-
pression tests. The evolution of isochoric plastic strains is determined
by Hill’s plastic potential function, resulting in a non-associated flow
rule. Generalized anisotropic stress invariants along with the generalized
stress triaxiality and the generalized Lode parameter have been intro-
duced based on the Hoffman yield criterion. Moreover, the Hoffman yield
criterion is incorporated into the continuum damage model developed by
Brünig [22, 24, 25], where the kinematic description of the damage is
considered introducing the damage tensors. The damage condition for
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anisotropic ductile metals has been formulated in terms of the generalized
stress invariants, where the weighting parameters are both stress-state
and loading-direction dependent. Similarly, numerical simulations of the
unit-cell containing a micro-void under different load ratios in different
directions with respect to the rolling direction have been performed. This
helps to understand the different damage and failure mechanisms acting
on the micro-scale. The quasi-experimental results provide clear evidence
of the impact of stress-state and loading-direction on damage evolution.
Based on these findings, stress-state-dependent functions for the dam-
age rule, which describe the development of macroscopic damage strains,
have been proposed and parameters in the damage law are identified.

The constitutive equations of the continuum model are numerically in-
tegrated by an inelastic predictor-elastic corrector method and imple-
mented in the FE program Ansys via user material subroutine (UMAT).
To enhance the numerical accuracy of this explicit method, adjustments
have been made in the estimation of the normalized deviator directions.
Furthermore, distinct consistent tangent moduli corresponding to the
numerical integration approach are explicitly provided to fulfill the de-
mands of the global Newton-Raphson scheme.

From the experimental point of view, a series of experiments with uni-
axially loaded tension/compression and shear specimens as well as with
the biaxially loaded X0- and H-specimens are conducted. The experi-
ments focus on different load ratios and loading directions with respect
to the principal axes of anisotropy. The experimental results are then
evaluated using the digital image correlation (DIC) and the global force-
displacement diagrams as well as the local strain fields are determined.
The biaxial loading experiments with X0- and H-specimens have shown
that both the load ratios and the loading directions with respect to the
rolling direction, have an impact on the magnitude of strains, the lo-
calization behavior, and the orientation of principal strain bands. Ad-
ditionally, the fractured surfaces are analyzed with scanning electron
microscopy (SEM). The pictures from SEM reveal that the damage and
fracture processes at the micro-level are influenced by the load ratio and
loading direction. Loading in DD results in more pronounced micro-
shear-crack mechanisms, while loading in the RD exhibits more sheared
voids. Similarly, the specimens in DD are more ductile in behavior than
those in RD and TD.
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Moreover, by utilizing the results obtained from uniaxially loaded ten-
sion/compression and shear tests, the Lankford coefficients (or r-values)
and the yield stresses for specimens cut in the rolling direction (RD),
transverse direction (TD), and diagonal direction (DD) are determined.
A combined method is proposed, incorporating both the r-values and the
yield stresses to identify anisotropic material parameters. This method
demonstrates improved accuracy in the numerical prediction of both yield
stresses and r-values for specimens with different loading directions com-
pared to using only yield stresses or Lankford coefficients.

8.2 Future works

The results of this work demonstrate that the proposed modified con-
tinuum damage model is capable of capturing the damage and failure
behavior of anisotropic ductile metals. However, there are opportunities
for further enhancement of the damage model in the future and some of
them are listed below:

• For instance, in addition to plastic anisotropy, the dependence of
damage and failure behavior on the loading path or loading his-
tory can be further explored. Experiments on the investigated
aluminum alloy, specifically focusing on non-proportional loading,
such as shear to tension or tension to shear, should be conducted.
Subsequently, the damage model can be refined to incorporate the
damage behavior of anisotropic material under different loading
paths, providing a valuable foundation for industrial applications.

• The effectiveness of the enhanced continuum model to characterize
the damage behavior for other ductile metals like steel or titanium
can be further investigated.

• Additionally, integrating other advanced yield criteria to account
for plastic anisotropic behavior into the damage model and compar-
ing their performance with the current numerical simulation results
can provide additional validation and strengthen the findings of this
study. Moreover, there are opportunities for enhancing numerical
integration methods, making implementation more user-friendly for
better understanding by different users. Furthermore, considering
a non-local material formulation could be contemplated.
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