
AutoKnigge—Modeling, Evaluation
and Verification of Cooperative
Interacting Automobiles

Christian Kehl, Maximilian Kloock, Evgeny Kusmenko, Lutz Eckstein,
Bassam Alrifaee, Stefan Kowalewski, and Bernhard Rumpe

Abstract The development of cooperative driving functions to optimize traffic
systems shows high potential to improve individual autonomous driving systems
with respect to topics like traffic flow, vehicle safety and user comfort. The core
concept of the presented solutions is the Local Traffic System (LTS). Following the
messages defined in European Telecommunications Standards Institute (ETSI) Intel-
ligent Transport Systems (ITS) G5 for Vehicle-to-everything (V2X) cooperation we
introduce concepts and implementations to intelligently group vehicles based on the
exchangedV2Xdatawith respect to the individual vehicle capability for cooperation.
Based on the determined grouping, we present algorithms for cooperative trajectory
planning.We develop a verificationmethod for the cooperatively planned trajectories

C. Kehl, M. Kloock, E. Kusmenko—These authors contributed equally.

C. Kehl (B) · L. Eckstein
Institute for Automotive Engineering (ika), RWTH Aachen University, Aachen, Germany
e-mail: christian.kehl@ika.rwth-aachen.de

L. Eckstein
e-mail: lutz.eckstein@ika.rwth-aachen.de

M. Kloock · S. Kowalewski
Chair of Embedded Software, RWTH Aachen University, Aachen, Germany
e-mail: kloock@embedded.rwth-aachen.de

S. Kowalewski
e-mail: kowalewski@embedded.rwth-aachen.de

E. Kusmenko · B. Rumpe
Chair of Software Engineering, RWTH Aachen University, Aachen, Germany
e-mail: kusmenko@se-rwth.de

B. Rumpe
e-mail: rumpe@se-rwth.de

B. Alrifaee
Department of Aerospace Engineering, University of the Bundeswehr Munich, Neubiberg,
Germany
e-mail: bassam.alrifaee@unibw.de

© The Author(s) 2024
C. Stiller et al. (eds.), Cooperatively Interacting Vehicles,
https://doi.org/10.1007/978-3-031-60494-2_13

347

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60494-2_13&domain=pdf
christian.kehl@ika.rwth-aachen.de
 854 33299 a 854 33299 a

mailto:christian.kehl@ika.rwth-aachen.de
lutz.eckstein@ika.rwth-aachen.de
 854 36177 a 854 36177
a

mailto:lutz.eckstein@ika.rwth-aachen.de
kloock@embedded.rwth-aachen.de
 854 40162 a 854 40162
a

mailto:kloock@embedded.rwth-aachen.de
kowalewski@embedded.rwth-aachen.de
 854 43040 a 854 43040
a

mailto:kowalewski@embedded.rwth-aachen.de
kusmenko@se-rwth.de
 854 47025
a 854 47025 a

mailto:kusmenko@se-rwth.de
rumpe@se-rwth.de
 854 49903 a 854 49903
a

mailto:rumpe@se-rwth.de
bassam.alrifaee@unibw.de
 854 54995 a 854 54995 a

mailto:bassam.alrifaee@unibw.de
https://doi.org/10.1007/978-3-031-60494-2_13
https://doi.org/10.1007/978-3-031-60494-2_13
https://doi.org/10.1007/978-3-031-60494-2_13
https://doi.org/10.1007/978-3-031-60494-2_13
https://doi.org/10.1007/978-3-031-60494-2_13
https://doi.org/10.1007/978-3-031-60494-2_13
https://doi.org/10.1007/978-3-031-60494-2_13
https://doi.org/10.1007/978-3-031-60494-2_13
https://doi.org/10.1007/978-3-031-60494-2_13
https://doi.org/10.1007/978-3-031-60494-2_13
https://doi.org/10.1007/978-3-031-60494-2_13

348 C. Kehl et al.

within a LTS. The verification guarantees collision avoidance and deadlock-freeness
in real-time. Finally we introduce a model language based on MontiArc to enable
a systematic representation and description of the presented concepts for grouping,
cooperation and interaction.

1 Introduction

Rapid technological advancements in the area of automated driving functions in
recent years make large-scale deployment of SAE Level 4 and 5 [45] automated
vehicles likely in the next few years. While technological progress is mainly limited
to the development of vehicle-specific automation functions, the development of
cooperative automation functions for the optimization of traffic systems already
shows high potential to significantly improve current topics of concern such as traffic
flow, vehicle safety and user comfort.

Current Vehicle-to-everything (V2X) systems show a beacon-like behavior with-
out a direct sender or receiver and are rather designed to transmit one-time events to
alert other traffic participants. The next logical step towards the development of coop-
eratively interacting vehicles requires a significant extension of existingV2X systems
at all levels. The extension of these systems from a one-time event-based communi-
cation to a continuous data exchange for the execution of cooperatively interacting
algorithms [4, 28, 39], raises questions regarding the grouping of the involved road
users [29], reliability vehicle communication [32], the typeof information exchanged,
the underlying algorithms as well as the basic model description of these systems.
Methods that present cooperative trajectory planning of vehicles in different scenar-
ios are, e.g., the works in [31, 33, 34]. These works focus on the applicability of
cooperative trajectory planning in intersections, pose control, and vehicle racing.

The core concept of the solutions presented in the following is the Local Traffic
System [7]. Local Traffic Systems can be understood as cooperating C-ITS subsys-
tems as defined in European Telecommunications Standards Institute (ETSI) Intelli-
gent Transport Systems (ITS) G5. Based on this concept, different approaches for the
detection of the corresponding traffic scenarios, the formation of Local Traffic Sys-
tems as well as their evaluation are presented. Within these systems the cooperation
takes place. In the context of this work, the cooperative trajectory planning, as well as
a real-time verification of the cooperatively planned trajectories are presented. The
verification guarantees the absence of collisions and deadlocks for the trajectories of
all vehicles in one or multiple LTS. Finally, a model language based on MontiArc is
presented for the systematic representation and description of the presented concepts
for grouping, cooperation and interaction.

AutoKnigge—Modeling, Evaluation and Verification … 349

2 Learning-Based and Vehicle Capability-Aware
Architecture for Clustering of Cooperative Interacting
Automobiles

One of the central aspects within the overall process for cooperation and interaction
of vehicles is the clustering of traffic participants relevant for cooperation. The forma-
tion of these clusters for the purpose of cooperation inevitably leads to the following
questions: When is cooperation and interaction between traffic participants useful?
What kind of vehicle data must be exchanged before and during cooperation? How
can relevant traffic participants be identified?

In order to group the corresponding traffic participants, this work takes up the con-
cept of Local Traffic Systems (LTS) [7] and develops it further. Local Traffic Systems
are defined as a grouping of road users for the purpose of information exchange as
well as cooperation. The cooperation take place exclusively within the LTS.

Previous work [8] in the area of Local Traffic Systems has been based on a single
evaluation function. This evaluation function consists of various normalized distance
metrics such as the distance between individual vehicles, the derivative of the distance
function, the direction of travel, etc. The position information is based on a predefined
road graph thatmust be known to all road users. The nodes of the road graph represent
different points within the traffic network and have a distance of a few meters. The
edges of the road graph represent the roads themselves. Road properties such as the
maximum permitted speed are assigned to the edges. The individual distance metrics
are then normalized andmultiplied by a developer defined weighting factor. The now
normalized and weighted metrics are finally added to an overall evaluation function.
The objective is to minimize the evaluation function. The LTS configuration with
the most minimized evaluation function is considered as an optimal solution. The
information exchanged here to determine the individual metrics is already based on
current standardizations such as the Cooperative Awareness Message (CAM) [13]
and are extended when necessary. The vehicle data is exchanged cyclically. After the
LTS formation, the cooperation takes place through data exchange within the system.

However, this approach has several disadvantages. The recurring calculation of the
entire LTS configuration leads to an enormously high computing load, which makes
a calculation in real time almost impossible. In [8] therefore a greedy algorithm is
recommended, which makes only small changes at the past configuration in each
time step without recalculating the total configuration. Additionally, the number of
permitted LTS participants is limited to a maximum of 5-10 participants. This serves
on the one hand to reduce the total computation time, and on the other hand to reduce
the amount of information exchanged within the LTS in order to prevent an overload
of the available bandwidth.

The necessity for a common road graph model shared by all vehicles represents
a considerable limitation. The formation based on a road graph is here not limited
by the mere necessity of the graph itself, but by the required correspondence of
the graph between all road users. It is already apparent today that predefined map
data will play a decisive role in the implementation of autonomous driving functions

350 C. Kehl et al.

[47]. However, they often take on a supporting role for localization [41]. Due to
the frequent changes in the road network and the resulting inaccurate data, possible
cooperation approaches should be map-independent. Furthermore, planning based
on the road graph limits the accuracy of LTS formation to the accuracy of the existing
map material because all positions are defined relative to the underlying graph. This
poses a problem especially for cooperative maneuvers when the required vehicle
distance is below the minimal accuracy level defined by the road graph.

Another disadvantage is the decoupling of exchanged vehicle data, LTS genera-
tion, the underlying cooperation algorithms, and the current driving situation. The
permanently high amount of exchanged vehicle data leads to an unnecessarily high
utilization of the available V2X data rate in the vehicle. IEEE 802.11p and LTE V2X
can support data rate of up to 27 Mbit .s−1 and 28.8 Mbit .s−1 [44]. The lack of a
link to the current vehicle situation and the underlying algorithms not only makes
it difficult to prioritize individual LTS systems, but also ignores the influence of the
current driving situation on LTS generation. The following section is intended to give
a better impression of the resulting problems and derive additional requirements for
improvements.

2.1 Requirements for an Extended LTS Architecture

Using selected examples, this section attempts to provide insight into the motiva-
tion for extending the previous approach and to derive possible requirements for an
extended architecture. The goal is to preserve the general concept while identify-
ing concept limitations and avoiding the disadvantages identified in the course of
previous work.

The question of when a Local Traffic System should be formed at all and which
road users should participate in it is closely linked to the respective traffic scenario.
Possible traffic scenarios are shown in Fig. 4. In the following an exemplary traffic
scenario of a roundabout with five vehicles is displayed in Fig. 1. The planned
routes of the vehicles are marked in color along the center of the lane. The drawn
rectangles indicate the possible LTS groupings for the scenario at hand. Vehicles can
be grouped based on their respective vehicle state relative to other road users as well
as relative to their surroundings. This can be based on various vehicle data such as
the spatial proximity to the next vehicle, the overlap of the planned trajectories, the
general overlap of the planned routes, or the spatial proximity of the vehicle under
consideration relative to a relevant traffic node such as an intersection or roundabout.

One of the central problems here is the influence of cooperation, or cooperation
capability, as well as the driving situation on LTS generation itself. The scenario
shown in Fig. 2 illustrates the problem. A fast moving vehicle is approaching a slow
moving vehicle on the right lane. In order to avoid heavy braking of the right vehicle
behind, a lane change to the left lane is attempted. In general, two possible LTS are
conceivable in this situation.OneLTSconsisting of the rear twovehicles to coordinate
the lane change and one overall LTS consisting of all vehicles. However, if the rear

AutoKnigge—Modeling, Evaluation and Verification … 351

Fig. 1 Possible local traffic systems—roundabout scenario

Fig. 2 Motion planning LTS layers

vehicle does not have the ability to change lanes cooperatively, the formation of a
third LTS from the two right vehicles for the purpose of speed adaptation is necessary.
A downstream cooperation without consideration of the vehicle capabilities leads to
an incorrect LTS formation.

If we now extend the given scenario as shown in Fig. 3, assuming the ability to
change lanes, another problem becomes apparent. In order to enable a lane change
of the right vehicle, in principle three vehicles would have to slow down their speed,
which is unfavorable from the point of view of a global optimization. However, a

352 C. Kehl et al.

Fig. 3 Motion planning LTS layers conflict

Directional/Spatial
Proximity

Roundabout Highway Access/Exit

Intersections Parking

Vehicle Accidents Road Condition Blocked Vision

Fig. 4 Possible LTS scenarios

AutoKnigge—Modeling, Evaluation and Verification … 353

human actor would possibly prefer the light braking of several vehicles to the strong
braking maneuver of a single vehicle. The respective driving situation therefore also
has a decisive influence on the vehicle grouping here. The simple static weighting
of different distance metrics is highly unlikely to meet this requirement.

The examples described above show that the selection of LTS participants is
complex and a wide variety of conflict situations can occur within a single scenario.
These are strongly dependent on the direct driver environment and require a high
level of algorithmic understanding of the driving situation which, as shown in Fig. 3,
cannot be solved solely within the cooperation algorithm but has direct repercussions
on theLTS formation. The incorrect too narrow selection of theLTSmakes an optimal
solution impossible.

In addition to thewrong selection of the LTS participants, there is also the possibil-
ity of potential target conflicts between different LTSs. If a vehicle is simultaneously
a member of several competing LTSs, it is necessary to establish a prioritization
between the individual systems.

2.2 Extended LTS Architecture

The disadvantages and problems of the previous concept described in the previous
sections are to be solved by an extension of the architecture. The basic principles
and advantages of the previous approach are to be preserved.

Figure 5 describes the novel approach to the clustering of vehicles. The most
obvious difference is the division into different LTS levels between level 0 and level
4. The individual levels represent an increasing urgency in the need for cooperation
between the road users and allowprioritization between individual LTS. Systemswith
a higher level are always given priority. In case of identical levels, no cooperation
is performed. The system waits for escalation to higher levels. If several systems
reach the highest level at the same time, cooperation between all traffic participants
is required. The traffic systems are merged into a larger system. Each LTS level is
associated with a specific set of exchanged vehicle data, boundary conditions, and
available cooperation algorithms.At the beginning, every vehicle that has not yet been
assigned to a specific group is at level 0. No active cooperation takes place here. Only
simple awareness based information, like the current vehicle position or additional
road information, like emergency warnings, are exchanged. This also provides a
way to integrate passive road users unable to participate in a cooperative effort such
as pedestrians, cyclists or infrastructure components like traffic lights. Each level
is assigned a cooperation algorithm in addition to the vehicle data and associated
boundary conditions. TheLTS level is increased if the exchangedvehicle data exceeds
the level specific boundary conditions. The type of cooperation algorithm increases
according to the intensity of the intervention in the longitudinal and lateral control of
the vehicle. The vehicle data required for the cooperation must not exceed the scope
of the data exchange planned for the level. The amount of data exchanged increases
here because more complex cooperation maneuvers usually require a larger pool of

354 C. Kehl et al.

C
oo

p
er

at
io
n

an
d

In
te

ra
ct
io
n

LT
S

B
ou

nd
ar

y
C
on

di
ti
on

E
xc

ha
ng

ed
V
eh

ic
le

D
at

a

LT
S

L
ev

el

--

Po
si
tio

n
A
dd

iti
on

al
R
oa

d
In
fo
rm

at
io
n

LT
S

0

Ve
lo
ci
ty

A
da

pt
io
n

D
is
ta
nc

e

Po
si
tio

n
Ve

lo
ci
ty

R
ou

te

LT
S

1

Ve
lo
ci
ty

A
da

pt
io
n

La
ne

C
ha

ng
e

R
ou

te
In
te
rs
ec
tio

n

Po
si
tio

n
Ve

lo
ci
ty

R
ou

te
A
cc
el
er
at
io
n

P
la
nn

ed
Tr

aj
ec
to
ry

LT
S

2

Ve
lo
ci
ty

A
da

pt
io
n

La
ne

C
ha

ng
e

C
oo

pe
ra
tiv

e
Tr

aj
ec
to
ry

P
la
nn

in
g

R
ou

te
In
te
rs
ec
tio

n
T
im

e
T
hr
es
ho

ld
Tr

aj
ec
to
ry

In
te
rs
ec
tio

n

Po
si
tio

n
Ve

lo
ci
ty

R
ou

te
A
cc
el
er
at
io
n

P
la
nn

ed
Tr

aj
ec
to
ry

LT
S

3

Ve
lo
ci
ty

A
da

pt
io
n

La
ng

e
C
ha

ng
e

C
oo

pe
ra
tiv

e
Tr

aj
ec
to
ry

P
la
nn

in
g

H
az
ar
d
B
ra
ki
ng

R
ou

te
In
te
rs
ec
tio

n
T
im

e
T
hr
es
ho

ld
Tr

aj
ec
to
ry

In
te
rs
ec
tio

n
T
T
C

Po
si
tio

n
Ve

lo
ci
ty

R
ou

te
A
cc
el
er
at
io
n

P
la
nn

ed
Tr

aj
ec
to
ry

LT
S

4

N
ee
d
fo
r
co
op

er
at
io
n
an

d
in
te
ra
ct
io
n

D
at
a
Vo

lu
m
e
an

d
re
qu

ir
ed

V
2X

B
an

dw
id
th

Se
ve
ri
ty

of
th
e
in
te
rf
er
en

ce
w
ith

th
e
in
di
vi
du

al
pl
an

ni
ng

be
ha

vi
or

F
ig

.5
LT

S
st
ru
ct
ur
e

AutoKnigge—Modeling, Evaluation and Verification … 355

data. The data exchanged is roughly based on the data specified by the ETSI ITS
G5 standard. Large parts of the described ETSI ITS G5 functionalities are still in an
early stage of development at the time of this work and are therefore susceptible to
possible changes. ETSI ITS G5 defines Cooperative Intelligent Transport Systems
(C-ITS) as ITS subsystems such as people, vehicles, roadside units that exchange
information or cooperate with each other to improve driving safety, traffic guidance
or driving experience. The cooperation capabilities to be realized are referred to as
services.

A general distinction is made between three categories of services. Cooperative
Awareness Services [12–14] define the lowest level and describe the exchange of sim-
ple status information such as position and speed for the purpose of simple warnings.
Cooperative Perception Services [17, 18] describe the second type of information
exchange on top of status data. Within this service, other traffic participants are not
only warned but also enabled to perform more complex functions such as Coopera-
tive Adaptive Cruise Control. CooperativeManeuver Coordination Services [15, 16]
describe the highest level of cooperation. In addition to status and observation data
road users can share their intention in order to allow cooperation in complex driving
situations. These include scenarios like platooning or cooperative lane changes. The
approach to LTS education presented here is oriented along the escalating nature of
these services in terms of user interaction and user collaboration. In addition to min-
imizing intervention in the longitudinal and lateral control of the vehicle to increase
user comfort, this also reduces the required bandwidth. Instead of exchanging all
driving information periodically, only the information required for cooperation at
the current level is exchanged. Further development and replacement of individual
cooperation algorithms is possible without adaptation to the overall system.

For further development of the described architecture, a stimulative implemen-
tation approach is used. The developed framework is structured according to the
diagram in Fig. 6. The CARLA simulator [10] serves as the basic foundation. The
CARLA simulator is an open source driving simulator providing a virtual environ-
ment to simulate different driving scenarios and test autonomous driving functions in
a virtual environment. The simulator is using a server/client concept.While the server
is responsible for the simulation itself, the client controls the simulator by reading
and writing data from and to the simulation using a TCP/IP. The client exposes the
provided functions using an API to control traffic generation, pedestrian behavior,
weather, sensors, maps and much more. During this project the provided Python
API is used by the simulator interface to expose relevant functionality to the other
components of the Autoknigge Framework. All components are connected using
a ROS2 Communication Layer. This applies to messages controlling the simulator
itself as well as messages exchanged between simulated vehicles. ROS2 uses the
Data Distribution Service (DDS) which is also part of the Automotive Open System
Architecture (AUTOSAR) Adaptive Platform. DDS is a middleware specified by the
Object Management Group for data-centric communication in distributed systems.
Based on the ROS Communication Layer there are higher level components like the
World component. The World acts as a central repository for all data relevant to the
simulation, such as vehicle positions, velocities, planned routes and trajectories, LTS

356 C. Kehl et al.

CARLA Simulator

CARLA Python API

Simulator Interface

ROS2 Communication Layer

Controller

World
Scenario Loader

Veh.
1

Veh.
2

... Veh.
n

Coo.
1

Coo.
2

... Coo.
n

LTS Manager

Cooperation Manager

Fig. 6 Autoknigge architecture (Cooperation (Coo.), Vehicle (Veh.))

allocations, etc. The World component is also the central repository for all data rele-
vant to the simulation. Unlike the data stored in the individual vehicle components,
all data is available here. The controller is responsible for controlling the simulation
itself and provides functions for selecting the map, adding vehicles and people. The
controller is in turn used by the Scenario Loader to load various traffic scenarios.
The TrafficManager is used to abstract the management and communication of indi-
vidual vehicles in the simulation. Here, for example, a distance-based forwarding
of V2X messages takes place in order to simulate a range limitation of the vehicle
messages. The number of managed vehicles is determined by the vehicles currently
present in the simulation. Each vehicle component can theoretically contain its own
Cooperation Manager to start and stop cooperation maneuvers. For simplicity in the
context of the simulation, all vehicles currently share a Cooperation Manager. This
also applies to the LTS Manager which assigns vehicles to the individual LTS.

The architecture described so far still lacks a concrete cooperation algorithm.
Therefore Sect. 2.3 presents the implementation of a method for cooperative velocity
adaptation for LTS level 1 systems.

AutoKnigge—Modeling, Evaluation and Verification … 357

2.3 Cooperative Velocity Adaption Algorithm

Cooperative adjustment of vehicle velocity represents one of the most minimally
invasive forms of active cooperation, as it only interferes with the longitudinal con-
trol of the vehicle. By intervening in the vehicle’s longitudinal control at an early
stage, it is often possible to resolve conflict situations without impairing the vehicle
occupants’ sense of comfort due to strong longitudinal or lateral acceleration. The
cooperative speed adaptation algorithm presented in the following is designed as a
constraint optimization problem. The relevant boundary conditions are formulated
as hard constraints and soft constraints. Hard constraints are unbreakable rules that
must be fulfilled in any case, otherwise the result is not considered as a valid solution
of the problem. Soft constraints represent less strict constraints and are understood as
a kind of optimization parameter to distinguish several valid solutions in their qual-
ity. The problem is formulated in the form of a model and then passed to a solver.
The concrete algorithm uses the Google OrTools CP-Sat Solver [42]. Due to the
limitations of the solver, all variables and parameters of the model are formulated as
integer values. Input and output values that are represented as floating point numbers
are appropriately scaled by the algorithm beforehand.

The algorithm expects for each vehicle . j two position arrays specifying the
planned x,y-trajectories for each timestep .i as well as additional parameters like
the allowed minimum speed .v j,min , the maximum speed .v j,max . In addition, lim-
its for the permitted longitudinal acceleration .amax as well as a minimum time gap
.tgap,min to ensure collision avoidance need to be defined. The variables are defined
for each vehicle . j involved.

The algorithm defines a vehicle velocity variable.v j,i as well as a resulting times-
tamp .t j,i for each vehicle position .p j,i = (x j,i , y j,i). The maximum acceleration is
used to determine the permitted velocity change.v j,�,max,i for each distance step.d j,i .
The timestamp.t j,i+1 is automatically calculated in the solvermodel using the distance
.d j,i between the position.p j,i and.p j,i+1 as well as the velocity.v j,i determined by the
solver. To avoid a collision the model requires the time gap between two timestamps
of two vehicles to be greater than the predefined time gap .tgap,min threshold if the
positions are closer than.dthres . The algorithm currently does not take into account the
actual vehicle geometry. Therefore, the position distance value .dthres must be cho-
sen sufficiently large. At every position the calculated velocity.v j,i must be between
.v j,min and .v j,max to be considered as valid result. As an optimizable soft constraint,
the algorithm determines the maximum total duration of the maneuver as the time at
which the last vehicle reaches the last target position in the planned trajectory.

The goal of the optimization is to minimize the total maneuvering time while
taking into account the constraints described above.

As an example the algorithm is applied to the intersection scenario presented in
Fig. 7. The vehicles are each positioned 10m from the center of the intersection. The
given speed is chosen for both vehicles so that the trajectories intersect at the same
time and place. The usage of the presented algorithm with a spatial resolution of 1m
results in an optimal solution shown in Fig. 8. Compared to the individual use of the

358 C. Kehl et al.

0
5

10
15 0

10
0

500

1,000

Position X
Position Y

T
im

e

Fig. 7 Intersection scenario—conflict

0
5

10
15 0

10
0

500

1,000

Position X
Position Y

T
im

e

Fig. 8 Intersection scenario—conflict resolution by velocity adaption

intersection by each vehicle, the travel time for the braking vehicle is increased by
approximately 13.5%. The specified time gap is marked in green. The labeling of the
displayed time axis does not correspond to the actual time in seconds but represents
the direct integer solution value of the solver.

The formulation as a constraint optimization problem offers several advantages.
On the one hand, the solver is able to capture the problem completely and detect
conflicting constraints or prove the unsolvability of the problem at an early stage.
The LTS system can thus detect the unsolvability of the cooperation task at an early

AutoKnigge—Modeling, Evaluation and Verification … 359

0 200 400 600 800 1,000 1,200 1,400 1,600

0.1

0.25

0.5

1.0

1.5

Solver Processing Time [ms]

Fig. 9 Intersection scenario—solver time

stage with the algorithms available at this LTS level and increase the level. On
the other hand, the solver is able to recognize optimal solutions as such and abort
further optimization at an early stage. The term optimal here refers only to the given
solution space based on the discretization used. For example, a finer discretization
of the vehicle position would lead to an improved optimal solution.

A disadvantage of the used approach is the generally slower solution of complex
constraint optimization problems with many variables. If in the given example the
accuracy of the trajectory is increased from 1m to 10cm, the calculation time of the
solution increases by a factor of 10-12 to around 1.2 s. The solver allows to set a wall
time to reduce the calculation time. This represents the allowed calculation time. The
best available solution at this time is used. Figure 9 shows the computation time of
the algorithm for different given maximum computation times. For each calculation
time, 10 runs were performed. It can be seen that the algorithm respects the specified
maximal calculation time with a deviation of a few milliseconds. The lower value at
a maximal calculation time of 1.5s shows the automatic termination process, since
on average an optimal solution is already found at 1.2 s.

The limitation of the calculation time has a significant influence on the reduction
of the solution quality. Figure 10 shows that below 1.0 s in most cases no optimal
solution can be found. Between 0.1s and 1.0 s the algorithm finds sufficient solutions
with constantly decreasing quality. The percentage increase in the duration of the
cooperation maneuver relative to an optimal solution is shown in Fig. 11. With a
limited calculation time of 0.1s, the algorithm only finds a valid solution in 50%
of the cases. The measurements also show that the initial abandonment of an opti-

360 C. Kehl et al.

0 10 20 30 40 50 60 70 80 90 100

0.1

0.25

0.5

1.0

1.5

10

100

50

100

100

90

50

Solution Categories [%]

No Solution
Feasible Solution
Optimal Solution

Fig. 10 Intersection scenario—solution categories

100 102 104 106 108 110 112 114 116 118 120

0.1

0.25

0.5

1.0

1.5

Cooperation Time/Optimal Cooperation Time [%]

Fig. 11 Intersection scenario—cooperation time increase relative to optimal solution

mal solution brings significant speed advantages without a dramatic loss in solution
quality and increase in maneuver duration.

AutoKnigge—Modeling, Evaluation and Verification … 361

2.4 Learning-Based Clustering

The architecture described in Fig. 6 successfully decouples the formation of Local
Traffic Systems from the actual cooperation between the participating vehicles and
the associated algorithm.

However, the limits for determining the LTS level are still statically defined by
the developer. This static specification of the LTS parameters has several disadvan-
tages. On the one hand, static optimization of the corresponding parameters is often
suboptimal. The system is only adapted to a small set of possible conflict situations
and traffic scenarios and is likely biased towards these scenarios used as test cases
during the development. The administration and maintenance of a corresponding
traffic scenario collection is time-consuming and often does not meet the require-
ment of completeness. On the other hand, there is no direct connection between
the exchanged vehicle information shown in Fig. 5, the respective LTS Boundary
Conditions and the capabilities of the underlying cooperation algorithm. However,
changes to the underlying algorithms should logically also have an impact on the
transmitted data as well as the LTS formation. Due to the disadvantages presented,
a static parameter definition should be considered unsuitable for fully meeting the
requirements of an LTS generation architecture described before.

A deep learning based approach offers a possible solution to the aforementioned
problems. Here, the formation algorithm based on static parameters is replaced by a
deep learning model. The model decides whether the LTS level should be increased
or decreased, based on the exchanged vehicle data. The internal decision process is
learned by the model during the training process based on a stimulative approach.
The system can be trained in a simulation environment without managing a complex
data set of conflict scenarios.

In this way, the model learns the link between the exchanged vehicle data and the
underlying algorithms. The system learns not only the influence of a single parameter
on the formation of the respective LTS level, but also the implicit relationships
and similarities of individual traffic scenarios represented by the exchanged vehicle
data. The detection of the traffic scenario takes place implicitly. If the underlying
cooperation algorithmsor the training scenarios are changed, themodel can be trained
again without additional changes.

However, a training process as described in Fig. 12 is unfortunately not applicable
to the current problem. On the one hand, it is not possible to provide a static data set
for training the deep learning model, since already after the first time step the LTS
formationhas an impact on the training environment surrounding thevehicle.Another
central problem is caused by the time-delayed verifiability of the LTS formation for
correctness. Common supervised/unsupervised deep learning approaches are based
on presenting the model with input data based on a training data set. From this input
data, the model generates the output data, which is then compared with a label.
Labels are part of the training data set in the case of supervised learning and are
generated from it in the case of unsupervised learning. The label is considered as
the correct output of the model on the existing input data. The deviation from the

362 C. Kehl et al.

Training Data Validation Data Testing Data

Dataset

Data Preprocessing

Conversion Augmentation Normalization

Preprocessed Data

Deep Learning Model

Activation Func. Normalization Weights + Biases

Model Output

Label Model Output

Loss Function

Data Loader

A
ut
o-
ge
ne

ra
te
d
La

be
l(

U
ns
up

er
vi
se
d
Le

ar
ni
ng

)

U
pd

at
es

of
w
ei
gh

ts
an

d
bi
as
es

us
in
g

gr
ad

ie
nt

de
ce
nt

to
m
in
im

is
e
lo
ss

fu
nc

tio
n

Batch of
preprocessed data

Fig. 12 Basic training architecture of supervised/unsupervised deep learning models

output of the model is represented by a loss function. The underlying parameters of
the model are adjusted with the goal of minimizing the loss function. However, in the
present case, such a label does not exist for a given set of input data. Whether an LTS
formation was goal-directed becomes apparent only in the course of the executed
cooperation maneuver several time steps after the actual LTS formation. Therefore,
a reinforcement-based approach is used in the following.

AutoKnigge—Modeling, Evaluation and Verification … 363

Reinforcement Learning Agent
Deep Learning Model

Activation Func. Normalization Weights + Biases

Model Output

Action

Environment

State

State
Reward Function

Reward

Action A based on model output

World State S caused by action A R
ew

ar
d
R

bs
ae
d
on

cu
rr
en

t
w
or
ld

st
at
e

C
ur
re
nt

W
or
ld

St
at
e
S

Fig. 13 Basic training architecture of reinforcement learning models

The diagram in Fig. 13 shows the general structure of a reinforcement learning
algorithm. The algorithm consists of three main components. The reinforcement
learning agent, the surrounding environment and a reward function. The reinforce-
ment learning agent has the task to make optimal decisions based on the surrounding
environment. The decision made by the agent at a time .t is called action .At . The
action.At is determined on the basis of the current environment. This is represented by
the current state.St . To evaluate the quality of a decision, the reward.Rt is calculated
by a reward function. Thus, the agent’s goal is to maximize the total reward.

To transform the previous concept into a reinforcement-based approach, modifi-
cations to the architecture described in Fig. 6 are necessary. The changes are shown
in Fig. 14.

A higher-level component RL-Agent is introduced. The previous algorithm based
on static thresholds for determining whether a local traffic system is formed is
removed from the LTS Manager. The LTS formation is made in the LTS Manager

364 C. Kehl et al.

CARLA Simulator

CARLA Python API

Simulator Interface

ROS2 Communication Layer

Controller

World
St

Reward
Rt

Scenario Loader

Veh.
1

Veh.
2

... Veh.
n

Coo.
1

Coo.
2

... Coo.
n

LTS Manager At

Cooperation Manager

RL Interface

RL Agent

Fig. 14 Learning enabled Autoknigge architecture

on the basis of the action.At by the RL agent. These actions are based on the current
state.St which is determined by the already existingWorld component. Furthermore,
the previous pure data collection of the World component has been extended by a
reward component to determine .Rt . The required data .St , .Rt for the computation
of .At are provided by a reinforcement learning interface to the agent during train-
ing. The access to the Scenario Loader allows switching between different conflict
scenarios during the training process.

2.5 Example Cooperation Intersection and Highway Access

The following section shows two example applications of the described concepts
described and gives a visual impression about the cooperation result. The first sce-
nario describes the conflict situation between two vehicles crossing an intersection.
The second scenario describes the conflict situation at a highway access. The envi-
ronment perception of the vehicles involved was completely deactivated. The only
information exchanged is the data specified for LTS formation. Cooperative driving
maneuvers are visualized within the simulator by a green line between the involved
participants.

AutoKnigge—Modeling, Evaluation and Verification … 365

T
im

e
Cooperative Velocity Adaption

Fig. 15 Example cooperation intersection

366 C. Kehl et al.

T
im

e
Cooperative Velocity Adaption

Fig. 16 Example cooperation highway access

AutoKnigge—Modeling, Evaluation and Verification … 367

As visible in Figs. 15 and 16, a short time gap was deliberately chosen in order
to test the system at its limits. Both conflict situations are solved successfully on
the LTS Level 1 by early cooperative adjustment of the vehicle speed. The fact that
the present different conflict scenarios can be successfully solved with the same
cooperation maneuver supports the chosen approach of using simple cooperation
maneuvers, similar to human behavior, to solve different conflict situations.

2.6 Conclusion and Outlook

The presented architecture fulfills the requirements placed on the system. The trans-
mitted vehicle data, the LTS formation as well as the underlying cooperation algo-
rithms are successfully separated without neglecting the retroactive influences of
the driving situation and cooperation algorithm on the LTS formation. Successful
separation avoids the black box behavior of an end-to-end trained machine learn-
ing architecture. The cooperation algorithms are exchangeable. The introduction of
LTS levels allows for easy prioritization in case of conflicting goals. The vehicle data
assigned to the individual levels and the quantity of transmitted data, which increases
proportionally to the urgency, as well as the constantly increasing interference in the
longitudinal and lateral guidance of the vehicle, both reduce the necessary quantity
of data for simple cooperation maneuvers and increase driving comfort.

Although the current approach is promising, there is still a need for research in
the field of LTS education. This can be found in three main areas. First—The cost
function. In addition to simplified basics such as a traffic flow optimization function,
this should take into account other factors such as the CO2 emissions of vehicles.
Second—The underlying cooperation algorithms and the exchanged data. Since the
focus of this work is on the optimization of approaches to LTS formation, there is
still a high need for research in this area. In particular, as standardization contin-
ues, changes in V2X message definitions are to be expected. In the long run, V2X
communication should be realized by frameworks like Veins, Artery [20] instead
of ROS2 messages. Third—Further consideration of single-agent and multi-agent
concepts of the reinforcement learning approach. The current system uses a single
agent that learns the LTS formation. Amulti-agent systemwhere each vehicle uses an
individual agent could offer significant advantages as there is no need to ensure that
all vehicles have the same agent. This offers advantages in simplifying the learning
process or realizing vehicle individual optimizations relevant to specific user prefer-
ences. Whether such a system contributes at all to the minimization of a global cost
function if each agent follows an individual optimization remains to be researched.

368 C. Kehl et al.

3 Verification of Cooperative Interacting Automobiles

3.1 Introduction

This section proposes an approach to use formal methods for verifying trajectories
in our LTS framework. Our algorithm generates behavior patterns that guarantee
collision-free and deadlock-free trajectories. In order to generate the behavior pat-
terns, we use the model checker nuXmv [6], which is specialised in synchronous
finite-state systems.

This section is structured as follows. We introduce our verification architecture in
Sect. 3.2. Section 3.3 presents the offline part of our approach, i.e., our modeling and
verification of traffic scenarios and the generation of rule sets. Section 3.4 introduces
the implementation of our rule checker and Sect. 3.5 evaluates the verification and
rule checker. Finally, Sect. 3.6 concludes this section.

3.2 Verification Architecture

Figure 17 shows our verification architecture from [30]. The verification works in
an offline and an online part. The offline part consists of modeling and verification
of traffic scenarios. The verification classifies the traffic scenarios as collision-free
and deadlock-free or provides a counter example in case of possible collisions or
deadlocks. We generalize the counter examples to traffic rules for networked and
autonomous vehicles. The traffic rules are stored in a rule set. The online part is
a rule checker, which uses the map and planned trajectories of the current driving
situation and the rule set generated by the offline part as input. The rule checker
checks if the trajectories comply with the traffic rules of the rule set. If no rule is
violated, the trajectories are considered safe.

AutoKnigge—Modeling, Evaluation and Verification … 369

Counter Examples

Rule Set

Map Trajectories

Rule Checker

Result

Online

Fig. 17 Verification architecture of [30], consisting of an offline and an online part. Before deploy-
ment, counter examples of safety verification are generalized into rules that guarantee the absence
of collisions and deadlocks. At run-time, a rule checker classifies trajectories of vehicles into safe
and unsafe trajectories, depending if they follow the rules for the scenario

3.3 Rule Set Generation

Wedecompose the traffic scenariomodel into two parts: themap and vehicles’ trajec-
tories. Through this modular approach, it becomes easier to develop general purpose
encodings for vehicles and maps independently of each other. We call the map the
static model and we call the trajectory model dynamic model. We model both com-
ponents time and spatial discrete. Section 3.3.1 and 3.3.2 summarize our modeling
of [30, 46]. Section 3.3.3 introduces our extension to combined models of connected
LTS. Section 3.3.4 presents our NuXmv encoding and Sect. 3.3.5 introduces the rule
generation.

3.3.1 Roadway Model

The map consists of blocks and transitions. Each block represents a part of the
physical road. Blocks are non-overlapping and identified by unique Identities (IDs).
A discretization takes care of the vehicles’ dynamics and safety distances. Each
vehicle can occupy only one block at each time step. If a vehicle holds a block, the
block is occupied, otherwise the block is free. To model valid transitions between
blocks, each block has a list of successor-tuples.

Definition 1 (Successor-Tuple [30]) Successor-tuples are defined as

.tsuc = (I Dsuc,Cost,Watchlist, I), (1)

370 C. Kehl et al.

l1

l2

l3

l4

l5

c1

c2

c3

Watchlist:
[c3]
Instructions:
(f, 1)

Watchlist:
[l4]
Instructions:
(l, 1)

Fig. 18 Example model of a narrowing road, adapted from [30]

where:

• .I Dsuc denotes the ID of the successor block,
• .Cost stores the costs for the transition,
• .Watchlist is a list of block IDs. A vehicle can only use the transition if all blocks
in its watchlist are free, and

• .I = (T ype, Veloci ty) ∈ (String × Z) is a scenario-dependent instruction..T ype
describes which behavior is expected by the vehicle, e.g., “move forward”, “turn
right”, and “switch to left lane”.

Figure 18 shows an example model of a narrowing scenario. Only physically
possible transitions respective to road boundaries and vehicle dynamics are included.

3.3.2 Trajectory Model

Trajectories consist of a sequence of adjacent blocks. The first block of a trajectory
is the vehicle’s current position. The last block represents the vehicle’s destination.

AutoKnigge—Modeling, Evaluation and Verification … 371

Each time step, the vehicles transit to the next block in their trajectories. The same
block may be used multiple times in a trajectory. Trajectories can have different
lengths. After leaving the LTS, the vehicle moves into a final block with the ID .n
with no further process. One of the following two statements hold for any consecutive
blocks in each trajectory:

1. The blocks have the same ID, i.e., the vehicle does not move.
2. There is a valid transition between the blocks in the direction of movement.

In traffic scenarios, some vehicles may be important for more than one LTS. We pro-
pose amethod to create connected traffic scenarios. A connected traffic scenario com-
bines two traffic scenarioswith transitions from one traffic scenario to the other traffic
scenario. Using these transitions, vehicles can travel between both traffic scenarios.
In connected traffic scenarios, different rules may apply in comparison to separate
traffic scenarios. Our approach extends the methods from our previous works done
in [30, 46] by connecting traffic scenarios and generating rules for connected traffic
scenarios. We classify pairs of traffic scenarios into overlapping traffic scenarios and
non-overlapping traffic scenarios. Overlapping Traffic scenarios are scenarios where
both single scenarios have entrance blocks, which have the same ID. In Fig. 19 two
single traffic scenarios are sketched. Both have blocks with the same IDs.

3.3.3 Connected LTS

In order to verify connected LTS, this subsection extends themodeling of Sects. 3.3.1
and 3.3.2. We start with an example of collision-free and deadlock-free single LTS,
while the combination of both LTS is collision-free but not deadlock-free.

Motivating Example

In the following, we give an example of rule sets generated for single traffic scenarios
that do not provide deadlock-freeness in overlapping LTS. The rules were generated
by our method in [30]. In this example, we use two overlapping intersections, both
with 4 entrances. Each single intersection has only one rule. This rule does not allow
vehicles in the center to drive in 4 different directions. In Fig. 20 we can see an
initial configuration. Each center of the model is filled with vehicles and all cars
try to reach the end of the opposite center. Using this configuration, we were able
to show that this rule is not sufficient to avoid deadlocks. As seen in Fig. 21, this
configuration leads to a deadlock in both centers of the intersections. In the upper
part, both vehicles on position c0 and d3 try to move to c1. Since only one vehicle
may occupy block c1, a deadlock is caused. The same holds for position c2 in the
bottom part, which is blocked by vehicles at position c3 and u0. These two situations
cause a deadlock, since every vehicle tries to take the entrance to get to the opposite
center and block one another. The entrances are blocked by the vehicles on block
d2 in the upper part and u1 in the bottom intersection. Both vehicles cannot make
any progress. This example shows that rules that apply for a single scenario must

372 C. Kehl et al.

c0 c1

c2 c3

l1

d2

r0

d3

r2

u1

l3

u0

l0

l2

r1

r4

u2 u3

d0 d1

(a) Model 1, where the bottom entrance is overlapping with
model 2

c0 c1

c2 c3

l1

d2

r0

d3

r2

u1

l3

u0

l0

l2

r1

r4

u2 u3

d0 d1

(b) Model 2, where the upper entrance is overlapping with
model 1

Fig. 19 Two single traffic scenarios, here crossroads, with overlapping borders in blue

AutoKnigge—Modeling, Evaluation and Verification … 373

c0 c1

c2 c3

l1

d2

r0

d3

r2

u1

l3

u0

l0

l2

r1

r4

u2 u3

d0/u2 d1/u3

c0 c1

c2 c3

l1

d2

r0

d3

r2

u1

l3

u0

l0

l2

r1

r4

d0 d1

Fig. 20 Starting positions of vehicles for deadlock scenario in nuXmv

374 C. Kehl et al.

c0 c1

c2 c3

l1

d2

r0

d3

r2

u1

l3

u0

l0

l2

r1

r4

u2 u3

d0/u2 d1/u3

c0 c1

c2 c3

l1

d2

r0

d3

r2

u1

l3

u0

l0

l2

r1

r4

d0 d1

Fig. 21 Deadlock situation for a connected traffic scenario

AutoKnigge—Modeling, Evaluation and Verification … 375

not be enough to guarantee safety properties also in the connected traffic scenario.
Therefore we generated rule sets for overlapping LTS.

The rest of this subsection introduces our model of connected LTS in order to
guarantee collision-freeness and deadlock-freeness in connected LTS.

Border Blocks

Each entrance consists of multiple blocks.We divide these blocks in three categories:

1. blocks which border to a center block c1, c2, c3 or c4, e.g., the blocks l1 and l3
in Fig. 19a,

2. blocks which leave or enter the traffic scenarios, e.g., l2 and in Fig. 19a, and
3. all other blocks that are forming the middle of each lane.

In the following, we will call blocks of category 2 border blocks. Border blocks are
critical states, because taking only single traffic scenarios into consideration when
verifying for safety properties, e.g. collisions, everything that happens outside the
current traffic scenario is not considered. For example, it could be that a vehicle’s
position is currently a border block which is the exit of the traffic scenario. Not
considering the next traffic scenario after the border block could lead to deadlocks
or collisions. Verifying only separate traffic scenarios could lead to false negative
classification.

Transition States

There may be traffic scenarios that are not overlapping. In this case, no border blocks
lead from one traffic scenario into another traffic scenario. We model connection
points between traffic scenarios. Possible connection points are two border blocks,
each belonging to the other traffic scenario. These two border blocks form a connec-
tion pair.

We use lane information to identify connection pairs of multiple traffic scenarios.
In order to be connectable, the traffic scenarios require the same number of lanes.
If two traffic scenarios have the same number of lanes, we use the lane positions to
identify the border blocks of both traffic scenarios that form a connection pair. We
introduce an argument TransitionStates to model connection pairs in nuXmv. The
argument TransitionStates contains the following information:

• the number of border blocks contained in the input traffic scenario,
• the successor blocks of each border block,
• the corresponding lane to which a block belongs,
• the number of lanes existing in the input traffic scenario, and
• each lane’s position compared to the other ones in the same entrance.

The argument TransitionStates is a list that contains all possible blocks for a con-
nection pair. Each element of the list represents an entrance or exit of the traffic
system.

376 C. Kehl et al.

Definition 2 (Entrance) An entrance consists of multiple blocks that form a group
of pairing border blocks. In Fig. 19a, the pairs (l0, l2), (d0, d1), (r1, r4), (u2, u3)
form four entrances.

Our method checks for opposing border blocks and create connection pairs. Then,
a transition is created between the corresponding border blocks. The transition starts
at the border block which is an exit block of its traffic scenario and is connected to
the corresponding input block from the connection pair.

An example combined model is the model in Fig. 20. The combination of multi-
ple LTS increases the size of the scenarios to be verified. Since large models cause
performance issues during verification, we reduce the combined model, while main-
taining the correctness of verification.

Model Reduction

We reduce themodels of combinedLTS tokeep computational efficiencyof theoffline
verification. To this end, we reduce the number of blocks in the resulting model. We
include the center blocks of both single LTS models and all blocks connecting the
center blocks. Each center block that lead to an exit state becomes an exit state, while
each center block connected to an entrance becomes an entry block. The gray states
in Fig. 20 are the states included in the reduced model of connected LTS.

3.3.4 NuXmv Encoding

Based on our work in [46], we translate our models into the nuXmv input language.
NuXmv distinguishes four input types: variables, transitions, dictionaries, and spec-
ifications.

Variables

We model vehicles as variables in nuXmv. The possible states of each variable are
the blocks the corresponding vehicle will occupy in the scenario. In the example
shown in Fig. 18, Vehicle .v0 has the following path: c0 - c1 - c2 - c3 - l4 - l5.

In nuXmv, the path is represented as follows:

VAR
v0 : {c0, c1, c2, c3, l4 , l5 , n};

The initial state of each vehicle is the first block of its trajectory, e.g., vehicle .v0
in Fig. 18 starts at block c0. The corresponding nuXmv code is

INIT
v0 = c0.

Transitions To encode transitions, we use the case statement for every pair of consec-
utive blocks in a vehicle’s trajectory.(Bi , Bi+1).We use the following two statements:

AutoKnigge—Modeling, Evaluation and Verification … 377

.(Pos = Bi)&(φ) : Bi+1 (2)

.(Pos = Bi)&(¬φ) : Bi , (3)

where .Pos denotes the current block and .φ is a Boolean expression. .φ evaluates to
true, if the transition is safe to use, i.e., if all blocks in the watchlist of this transition
are free. Equation (2) allows the vehicle tomove to its next block.Bi+1, if the transition
is safe. Equation (3) forces the vehicle to remain in its current block, if the transition
is not safe. The block c0 in Fig. 18 is given as

c0: [(c1, 1, [c1] , (f ,1))] ,

where .I Dsuc = c1, .cost = 1, .Watchlist = [c1], and .I = (f, 1). The instruction .I
states that the vehicle moves forward one block.

Suppose an example vehicle.v1 that moves from c0 to c1 in the scenario in Fig. 18.
If there is another vehicle in the LTS with ID .v0, the nuXmv statements for this
transition are as follows:

((v1) = (c0)) & ((v0) != (c1))
: c1;

((v1) = (c0)) & (!((v0) != (c1)))
: c0;

The first statement states that if vehicle .v1 is on block c0 and vehicle .v0 is not on
block c1, .v1 moves to c1. The second statement states that if vehicle .v0 is on block
c1, vehicle .v1 remains on block c0.

This is done for every pair of consecutive blocks in the vehicle’s trajectory. Once
a vehicle reaches the last block of its trajectory, it moves to block .n and stays there
through the following equations:

.Pos = Bend : n (4)

.Pos = n : n (5)

Equation 4 causes all vehicles to move to block .n after their trajectory ended.
Equation 5 states that vehicles that reached block .n will remain there.

Dictionaries

We use dictionaries to represent LTS entrances. Each entrance is represented by
two dictionaries, because there are always at least two lanes per entrance, one exit
and one entrance into the traffic scenario. Each dictionary can have multiple border
blocks. The number of elements in this dictionary represents the number of lanes
of the corresponding entrance’s exit or entry and the position of a block in this
dictionary represents its corresponding lane, to which the block belongs. An example
TransitionStates argument for the intersection of Fig. 19a looks like the following:

378 C. Kehl et al.

[
border blocks of upper entrance
{’u2’ : [(’u0’ , 1, [’u0’] , (’ f ’ , 1))]}

, {’u3’ : [(’u3’ , 1, [’u3’] , (’s ’ , 0))]}
border blocks of right entrance
, {’r4 ’ : [(’ r2 ’ , 1, [’r2 ’] , (’ f ’ , 1))]}
, {’r1 ’ : [(’ r1 ’ , 1, [’r1 ’] , (’s ’ , 0))]}
border blocks of bottom entrace
, {’d1’ : [(’d3’ , 1, [’d3’] , (’ f ’ , 1))]}
, {’d0’ : [(’d0’ , 1, [’d0’] , (’s ’ , 0))]}
border blocks of lef t entrance
, {’l0 ’ : [(’ l1 ’ , 1, [’ l1 ’] , (’ f ’ , 1))]}
, {’l2 ’ : [(’ l2 ’ , 1, [’ l2 ’] , (’s ’ , 0))]}
] .

The first two elements represent the border blocks of the upper entrance, the next
two the border blocks of the right entrance, the next two the border blocks of the bot-
tom entrance, and the last two for the border blocks of the left entrance. Each block
that is an element of an entrance lane stores the information about its successor block.

Specifications

We verify the safety of our traffic system. To this end, we formulate specifications
by invariants and temporal logic. We give more details on the specifications in [30].

We use invariants to check for collision-freeness. A collision occurs, if multiple
vehicles occupy the same block at the same time. The invariants to check collision-
avoidance are

.(pos1 �= n) ⇒ (pos1 �= pos2), (6)

where .posi is the position of vehicle .i . Equation (6) models that two vehicles 1 and
2 do not occupy the same block, unless vehicle 1 finished its trajectory and moved to
the end block .n. We check this invariant for each pair of vehicles at each time step.

We use temporal logic to check deadlock-freeness.We use Linear Temporal Logic
(LTL) [43]. In LTL, we model deadlock-freeness as

.F(pos1 = n ∧ pos2 = n ∧ . . .), (7)

where .F(·) denotes the eventually operator of LTL. Equation (7) models that each
vehicle eventually reaches block .n, i.e., finished its trajectory.

3.3.5 Summarize Rules

We alter the static and dynamic models to create different verification scenarios.
NuXmv provides counter examples if a verification scenario is not collision-free and

AutoKnigge—Modeling, Evaluation and Verification … 379

Topology

Rule set 1 Rule set 2

Safe Unsafe

minimal T-intersection
otherwise

intersect priority

otherwise

directions

otherwise

Fig. 22 Evaluations of rule sets in an intersection scenario. Different rule sets apply, depending on
the intersection topology

deadlock-free.We generalize counter examples derived from the same group of static
models to generate rules for this group. The rule sets formulated for each scenario
group prevent any collisions or deadlocks found during verification. Depending on
the static and dynamic model, different rule sets have to be applied.

We demonstrate the generalized rule sets for intersectionmodels. In the following,
“inner lanes” refer to the leftmost lane of each direction and “center” refers to the
area of the intersection, where the lanes intersect. In the intersection model, the
rule set depends on the intersection topology and the priority rule, i.e., the right of
way, applied in the trajectories. Figure 22 gives an overview of the rule set selection
process. If the map represents a T-intersection with only one lane in each direction,
it is called a minimal T-intersection. For minimal T-intersections, we need to check
the priority rule for vehicles, denoted as Rule set 1. If the vehicles in the intersection
consistently have priority over vehicles outside, the rules of Rule set 1 are met and
the trajectories are always safe to execute. In all other cases, Rule set 2 is applied. In
Rule set 2, trajectories are considered safe if the center never has vehicles traveling
in four different directions, denoted by the red arrows in Fig. 23.

3.4 Rule Checker

The rule checker takes the static and dynamic model, i.e., the map and trajectory
data, as input. The output of the rule checker is the classification of the trajectories
according to the rule sets generated in Sect. 3.3. The rule checker classifies the
trajectories into safe and unsafe trajectories. The rule checker detects the vehicle’s

380 C. Kehl et al.

c0 c1

c2 c3

l0

u0

r1

u1

r0l1

Fig. 23 Minimal T-intersection deadlock example

behavior, e.g., the applied priority rules. Different scenarios have different rule sets.
We form groups of scenarios with similar rule sets. We demonstrate the idea using
the intersection example in Fig. 19a.

One behavior that need to be identified is if the vehicles inside or outside the
intersection have priority at the entrances. In the intersectionmodel shown inFig. 19a,
the blocks c1 and r2 are a pair of interest, since vehicles on both blocks are able to
move into c3. The rule checker checks for all pairs of interest if the following two
conditions are satisfied at each time-step:

• both blocks in the pair of interest are occupied, and
• the vehicle in the intersection does not leave the intersection.

If both conditions are satisfied, the rule checker checks the next instructions of the
vehicles. If the vehicle in the intersection is the only one instructed to move forward,
then we have a case where vehicles in the intersection have priority. If the vehicle that
tries to enter the intersection is the only one instructed to move forward, then we have
a case where vehicles entering the intersection have priority. If none of thementioned
possibilities happened, then we cannot decide what has happened and conclude that
there is no consistent priority rule between them. There are three possible cases after
the rule checker iterated over each pair of interest:

• vehicles in the intersection consistently have priority over vehicles outside of the
intersection,

• vehicles that enter the intersection consistently have priority over vehicles in the
intersection, and

• there are no consistent priority rules.

We formulate rules for all three cases.

AutoKnigge—Modeling, Evaluation and Verification … 381

3.5 Evaluation

We evaluate the feasibility of our verification process for single LTS in Sect. 3.5.1
and for connected LTS in Sect. 3.5.2. Moreover, we evaluate the computation time
of the offline verification and online rule checker in Sect. 3.5.3.

3.5.1 Feasibility in Single LTS

This section presents evaluation results of the verification process for single LTS.
We evaluate the generation of rule sets and the performance of the rule checker. We
divide combinations of roadways and trajectories into different classes. We evaluate
scenarios of multiple classes.

We define classes of roadways according to their generated rule sets. Within the
same model class, different rules need to be applied depending on the road topology
and vehicles’ trajectories. For example of an intersection model, the rules to apply
depend on the number of entries of the intersection and the trajectories’ priority rules.
As such, a T-intersection has 3 potential classes:

1. The model is a T-intersection with one lane in each direction, vehicles in the inter-
section area always have priority over vehicles that are outside of the intersection.

2. The model is a T-intersection with one lane in each direction, all vehicles give
priority to vehicles on the right.

3. The model is not a T-intersection with one lane in each direction.

We evaluate our rule checker on a four-way intersection. Table 1 presents the
input trajectories for vehicles.v1,.v2,.v3, and.v4 and compares the expected and actual
rule checker results. Figure 24 visualizes the first example of Table 1. The roadway
is a minimal T-intersection and the vehicles’ trajectories give priority to vehicles in
the intersection. Please note that the lower entrance (the blocks d0 and d1) are not
included in the T-intersectionmodel. The rule checker gives the expected results in all
cases. It classifies collision-free and deadlock-free scenarios as safe and unsafe oth-
erwise. Nevertheless, the rule checker may classify collision-free and deadlock-free
scenarios as unsafe. Figure 25 shows such a false positive result. The rule checker
rejects these trajectories since vehicles in the center are traveling in all four directions
on a non-minimal T-intersection. However, the rule checker will not classify unsafe
scenarios as safe.

3.5.2 Feasibility in Overlapping LTS

We extend the rule sets for single LTS to guarantee collision-free and deadlock-free
trajectories also in connected LTS. As an example we present two new rules for the
intersection scenario:

382 C. Kehl et al.

Table 1 Evaluation scenarios for the intersection model. We show the trajectories of four vehicles
in each scenario, the expected result and the actual result of the rule checker. The trajectories of the
first evaluation are visualized in Fig. 24, represented by the corresponding color

Minimal T-intersection with priority of vehicles in the intersection

Input trajectory Expected Result

.v1: c2 - c0 - d1 Safe Safe

.v2: l0 - l0 - c0 - c1 - r1

.v3: d0 - c1 - c3 - c2

.v4: r0 - c3 - c2 - l1

.v1: c2 - c0 - d1 Safe Safe

.v2: c0 - c1 - r1

.v3: c1 - c3 - c2 - l1

.v4: c3 - c2 - l2

Any other intersection model

Input trajectory Expected Result

.v1: c2 - c2 - c0 - d1 Unsafe Unsafe

.v2: l0 - c0 - c1 - r1

.v3: d0 - c1 - c3 - c2

.v4: r0 - c3 - c2 - l1

.v1: c2 - c2 - c0 - d1 Safe Safe

.v2: l0 - c0 - d1l

.v3: d0 - c1 - c3 - c2

.v4: r0 - c3 - c2 - l1

.v1: r0 - c3 - u1 Safe Safe

.v2: u0 - c2 - c0 - d1

.v3: l0 - c0 - c1 - r1

.v4: d0 - c1 - c3 - u1

.v1: r0 - c3 - c2 - l1 Unsafe Unsafe

.v2: u0 - c2 - c0 - d1

.v3: l0 - c0 - c1 - r1

.v4: d0 - c1 - c3 - u1

• Vehicles entering the center must be able to exit the center. We refer to this rule as
exit free.

• Vehicles may not leave the center in the same entrance, which was used to enter
the center. We will call this rule entry and exit differ.

All developed models have been checked for correctness. To verify the correct-
ness of the scenario 2-intersection, we generate trajectories. Since the 2-intersection
model is a connection of two single crossroad scenarios, we only generated trajecto-
ries that are valid for single intersectionmodels. Tables 2 and 3 show the test cases for
the newly generated rules exit free and entry and exit differ. For each rule, we show an
expected positive classification and an expected negative classification. The results

AutoKnigge—Modeling, Evaluation and Verification … 383

c0 c1

c2 c3

l0

d1

r1

d0

r0

u1

l1

u0

Fig. 24 Visualization of Table 1

c0 c1

c2 c3

l0

d1

r1

d0

r0

u1

l1

u0

Fig. 25 False-positive result

384 C. Kehl et al.

Table 2 Rule entry and exit differ test cases for traffic scenario 2-intersection

Input trajectories Expected Results

u2 u0 c2 c0 d2 d0 Safe Safe

l1 c0 c1 c3 u1 u3

d3 c1 c3 c2 l3 l2

r4 r4 r3 c3 u1 u3

u0 c2 c0 c1 c3 u1 Unsafe Unsafe

l1 c0 c1 c3 u1 u3

d3 c1 c3 c2 l3 l2

r4 r4 r3 c3 u1 u3

Table 3 Rule exit free test cases for connected traffic scenario 2-intersection

Input trajectories Expected Results

l0 l1 c0 c1 c3 u1 u3 .n Safe Safe

d1 d3 c1 c3 c2 l2 .l4 .n

r4 r2 c3 u1 u3 .n .n .n

l0 l1 l1 c0 c1 c3 u1 u3 Unsafe Unsafe

d1 d3 c1 c3 c2 l2 .l4 .n

r2 c3 u1 u3 .n .n .n .n

of the rule checker were as expected. Both rules are also valid in single intersection
scenarios.

3.5.3 Computation Time

As extension to our evaluation in [30], we evaluate the computation time of the
rule generation for connected LTS. We measured the computation times on a laptop
running nuXmv 2.0.0 on Windows 10 using a processor with 2x 3.20GHz and 8 GB
RAM.

Offline Computations

We present the results for the 2-intersection scenario. Each intersection model con-
sists of 4 entries, each consisting of one lane. We execute 100 runs per measure-
ment. Figure 26 shows the results. The execution time increases exponentially for an
increasing number of vehicles. For 6 vehicles, the execution time is less than 15 s.
For more vehicles, the execution time increases to around 1.7 min for 12 vehicles.

Online Performance

Figure 27 shows the execution time of one run of the rule checker. The execution
times are average values of 100 runs to reduce measurement inaccuracies. For up to

AutoKnigge—Modeling, Evaluation and Verification … 385

0 2 4 6 8 10 12
0
10

50

100

Number of Vehicles

Ex
ec
ut
io
n
T
im

e
10

0
R
an

do
m

Te
st
s
[s]

Fig. 26 Execution time of counter example generator for model of length 1

0 4 8 12 16 20 24 28
1

1.5

2

2.5

3

Number of Vehicles

T
im

e
[m

s]

Fig. 27 Execution time of rule checker

16 vehicles, the execution time is almost constant and below 1.5 ms. For more than
17 vehicles, the execution time increases to around 2.8 ms for 28 vehicles.

386 C. Kehl et al.

3.6 Conclusion

This verification method is able to verify collision-freeness and deadlock-freeness
of trajectories in one or more LTS. We summarized the space and time discrete
model of [46] and the verification architecture of [30]. Our verification architecture
generalizes counterexamples of the offline verification to generate rule sets. The rule
sets restrict the solution space of valid trajectories so that all trajectories that fulfill
the corresponding rule set are collision-free and deadlock-free. This work considered
the verification of connected LTS. Evaluation results show that this method is real-
time capable even for scenarios with a high number of vehicles. Further research
may include evaluations on more complex LTS with more than one overlap.

4 Modeling Dynamic Systems

4.1 Why Modeling?

Vehicles of all SAE levels are safety critical systems and hence, their development
needs to comply with legal regulations and safety standards. For instance, the func-
tional safety standard ISO26262 highly recommends the usage of formal and semi-
formal notations, hierarchical components of restricted size, the usage of strong type
systems, range and plausibility checks, as well as the avoidance of hidden data-flows.
In this section we are going to discuss the EmbeddedMontiArc (EMA) language
family, a model-driven design approach for dynamic cyber-physical systems such as
cooperative vehicles based on the component-and-connector (C&C) principle [37,
38]. The C&C paradigm views a software system as a composition of hierarchi-
cally organized components communicating with each other over connectors. The
approach can help the development team to enforce the design principles required by
ISO26262 by providing a domain-oriented syntax, a strong type system, verification
mechanisms and a code generation toolchain.

4.2 The EMA Data Type System

Type systems are an important error avoidance mechanism of many programming
languages. Strong typing is highly recommended by the ISO26262 for the develop-
ment of automotive software. While most type systems are based on technical types
such as integers, floats, and doubles, we are going to show how more abstract type
systems can support modeling of cyber-physical systems on a more domain-oriented
level. The type system of EMA is based on primitive types, which can be refined or
grouped together, enabling the developer to create new types tailored to the appli-
cation. The primitive types are abstract in the sense that they are not bound to a

AutoKnigge—Modeling, Evaluation and Verification … 387

specific realization or standard such as IEEE754 [25]. Instead, EMA types resemble
mathematical sets they aim to represent. EMA supports the following basic types:
N represents the set of positive integers including 0, i.e. .N, N1 represents the set of
positive integers not including 0, i.e. .N \ {0}, Z represents the set of signed integers
.Z, Q represents the set of signed rational numbers .Q, C represents the set of Gaus-
sian rationals .Q[j] = {z ∈ C : z = a + jb : a, b ∈ Q} ⊂ C, B represents the set of
Booleans (true and false). For the sake of convenience the alias Boolean can
be used interchangeably.

The types N1, N, Z, Q, and C form a directed compatibility relation, where a type
is compatible with another type if the latter can represent all the elements of the
former. For instance, N is compatible with Z, Q, and C, but not with N1, since the
latter does not include zero. A variable of type N can hence be assigned to variables
of types Z, Q, and C, but not to variables of type N1. Note that these types represent
infinite sets of numbers. Since no technical system can represent arbitrarily large
numbers, using primitive EMA types leads to a model that can only be implemented
partially by definition. Obviously, this does not hold for Booleans (B). The decision
how to implement such types is delegated to the compiler and can depend on the
application.

Technical systems are generally bounded, e.g. a vehicle has a maximum velocity,
a minimum turning radius, etc. To model such bounds explicitly, EMA types can be
refined by ranges consisting of a lower and an upper bound.A bounded type is defined
asT(minValue : maxValue), whereT can be any primitive type except B. The
bounded type covers a subset of the primitive type T bounded by minValue and
maxValue. minValue and maxValue must be of type T themselves and their
values are included in the bounded type. For instance, the bounded type N(5:7)
represents the set .{5, 6, 7}. A type can be defined as half-open using the infinity
operator oo as one of the bounds. For instance, N(5:oo) is a type covering all
integers in .{n ∈ N|n ≥ 5}.

Bounded types are not completely implementable if the base type is Q or C, as a
technical system cannot handle arbitrarily high resolutions. To obtain a completely
realizable type, a bounded type needs to be refined by a resolution or step size.
This parameter is written between the minimum and maximum value of a bounded
type, i.e.T(minValue : resolution : maxValue). The refined type only
contains values of the form minValue+.k×resolution satisfying minValue
.≤ minValue+.k×resolution .≤ maxValue, where .k ∈ N. For instance, the
type Q(5:0.5:6.5) represents the set .{5.0, 5.5, 6.0, 6.5} Similarly to the lower
and the upper bounds, the step size needs to be of the basic type it is restricting.

Different levels of type refinements can be employed in different phases of a sys-
tems engineering process such as the specification method for requirements, design,
and test (SMArDT) [11, 22] during the development of a cyber-physical system
(CPS).

In complex technical systems, data is often multidimensional. For this reason,
primitive types of EMA can be organized as one-, two- or multidimensional arrays.
The syntax to do so is based on the LATEX syntax for raising a base to a power. To
specify the dimensionality of an array type, we need to append a circumflex fol-

388 C. Kehl et al.

lowed by a list of comma-separated integer-valued dimension sizes in curly brackets
to the primitive type’s name: T.ˆ{a,b,...}. Each argument initializes the size
of the respective array dimension. For instance, Q.ˆ{5} represents the set of all
five-dimensional rational vectors .Q

5, Z.ˆ{2,3} represents the set of all integer-
valued .2 × 3 matrices, and so on. We refer to one-dimensional arrays as vectors,
to two-dimensional arrays as matrices, to three-dimensional arrays as cubes, and to
multidimensional arrays as (.n-dimensional) hypercubes. The base type of an array
can also be a bounded type. For instance, the type N(0:255).ˆ{3,w,h}, is often
used to represent images with three channels, a size of w.×h, and a color depth of
8 bit. In contrast to dynamic types systems as used by MATLAB or Python, dimen-
sions are set at compile-time and cannot be changed at runtime. Variables of the
aforementioned matrix type Z.ˆ{2,3} can only be assigned .2 × 3 matrices.

In EMA, a data type can be refined by the SI unit of the physical quantity it
represents. For instance, Q(0m:1dm:1km) is a rational variable representing a
length between 0 m and 1 km with a resolution of 1 dm. If the type has no range,
only the unit is given in brackets. For instance, Q(m) denotes the rangeless rational
number type to be interpreted as meters. Two EMA variables are only compatible if
they represent the same physical quantity. Conversions are carried out automatically
in assignments featuring compatible but different units. This way, the developer does
not need to keep track of the physical quantities of the variables used in a program,
nor does she have to carry out the conversions of units manually. EMA supports all
SI units as well as common prefixes.

4.3 Components, Ports, and Connectors

In EMA components are first-level citizens. A component type is defined using
the keyword component followed by a name which can later be used to create
instances of this component type.1 For instance, we declare the component type
Main in L.1 of Fig. 28. Optionally, a component type declaration can include a list
of generic parameters in angle brackets and another list of component parameters
in round brackets. While generic parameters are allowed to change a component’s
interface, component parameters can only be used to parameterize a component’s
implementation. Depending on the use case, a generic parameter can be set to a
component type, a data type, or a concrete value.

The syntax for declaring a generic component or data type in a component header
definition is just the parameter name, cf. parameter T inL.1. If the generic parameter is
a concrete value, its name needs to be preceded by its data type, cf. generic parameter
n, which is of type N(2:10) in this example. Component parameters, in contrast to
generic parameters, can only be of a data type. The syntax resembles the definition of

1 The component type system is not to be confused with the data type system introduced in Sect.
4.2.

AutoKnigge—Modeling, Evaluation and Verification … 389

Fig. 28 A basic example of an EMA architecture. The component Main contains two subcompo-
nents Add adder and Mult multiplier

function parameters in many languages, where a type is followed by a unique name,
cf. parameters Q param1 and N param2 in L.1.

The body of a component definition is enclosed in curly brackets and contains
an interface and a structure definition. The interface definition is initiated with the
keyword ports and is followed by a port list. A port definition consists of the port
kind, which can be either in or out (EMA ports are strictly unidirectional), a data
type, and a unique port name, cf. L.2-4 in Fig. 28. A componentmust have at least one
input and one output port, since amajor assumption ofEMA is the absolute absence of
side effects. Clean side effect-free models are crucial for testability, maintainability,
and extensibility. An exception are components outputting a constant or a (possibly
parameterizable) constant sequence. Such components obviously do not need an
input port, but can require a component parameter, which alone defines the output
behavior in every execution step.

Subcomponents are created using the keyword instance followed by the com-
ponent type to instantiate and a component instance name, which is unique in the
scope. If the component type to be instantiated has generic and/or component param-
eters, these have to be set by providing appropriate arguments in angle and/or round
brackets, respectively. In L.6-7 of Fig. 28 two components are instantiated with their
generic parameters being set to the type T and the value n. Furthermore, both sub-
components receive a component parameter in round brackets, which is 0 in L.6 and
1 in L.7.

To interconnect the subcomponents and to connect them to the parent component
in the first place, we need to create connectors. The source of a connector must be
either an output port of a sibling or subcomponent or an input port of the enclosing
component. Similarly, the target of a connector must be either an input port of a
sibling or subcomponent or an output port of the enclosing component. A connector
is created using the connect keyword followed by the source port, the arrow
operator ->, and a target port. Ports of subcomponents can be referenced by using
the subcomponent’s name and the dot access operator. Connector examples are given

390 C. Kehl et al.

Fig. 29 AnEMAarchitecture example featuring port and component arrays. The component Main
containsnAdd2 components, each operating on one of n operand pairs coming from the port arrays
A and B. The Mult2n component computes the product of 2n operands passed through the port
arrays A and B of the Main component to the port array factors of Mult2n

in L.9-13. Connectors define explicit dataflows. At execution time, data is exchanged
only between ports connected by connectors.

Once a component cannot be subdivided into smaller subcomponents, it can be
linked to a concrete behavior as will be discussed later. In standard EMA, the struc-
ture, i.e. the subcomponents as well as the connectors between them, is fixed at
design-time.

Modeling cooperative systems and agent networks often requires the replication of
large numbers of similar components and the interconnection thereof. EMA enables
the designer to create multiple similar components and/or ports by means of arrays.
Based on the array syntax of many languages, an array is created by appending the
array size to the port or component name in brackets. For instance, in Fig. 29 we
define the input ports A and B as well as the output port C as port arrays of length
n. Since parameter n affects the interface of Main by changing the length of the
port arrays A, B, and C, it cannot be defined as a component parameter, but must be
a generic parameter instead.

In this examplewe demonstrate two interconnection patternswhich are commonly
used when dealing with port and component arrays. In the first one, we instantiate
an array of components to deal with an array of incoming streams. Therefore, we
create n adders of the component type Add2 in L.7, each instance to operate on two
scalar inputs. Now, we need to connect the ports of the two arrays A and B of the
parent component to the respective subcomponents, i.e. A[1] and B[1] should be
connected to adder[1] and so on. This can be done in just one line, cf. L.10, by
selecting the elements 1 to n from the port array A and, similarly, the components 1
to n from the adder component array. The connect operator connects each source
element to the respective target element based on the index. Since this connection

AutoKnigge—Modeling, Evaluation and Verification … 391

Fig. 30 Graphical views of the component defined in Fig. 29. On the lhs, the elements of two port
arrays are connected to target ports of a component array. On the rhs, a port array is connected to
another port array

pattern is often applied to all elements of an array, EMA offers syntactic sugar
allowing the developer to leave out the indices of the first and last elements as is
done in L.11. Similarly, in L.12 the output of each component in the adder array is
connected to a corresponding port in the target port array C. This structural pattern
is depicted graphically in the view on the left side of Fig. 30.

Furthermore, we can connect a port array to the port array of a target compo-
nent, let this component aggregate the data and output a single result or a constant
number of values. In our example, the port array A is connected element-wise to
the first n elements of the input port array of the multiplier component of type
Mult2n in L.14, while the port array B is connected to the remaining n input ports
of multiplier in L.15. The output of the multiplier component is forwarded
to the output port D of the enclosing component in L.16. This connection pattern is
depicted graphically in the view on the rhs of Fig. 30.

4.4 Execution Semantics

Standard EMA has a synchronous and weakly causal execution semantics, which is
based on the FOCUS theory [3] and inspired by Simulink [40]. In each cycle, every
component is executed exactly once. Once a component has finished its execution,
the computation results are immediately available at its output ports. We assume that
data transmission over connectors is lossless and has no delay. Connectors transmit
data instantly, i.e. when a source port of a connector is updated, the data is replicated
immediately to the target port. A component is only allowed to be executed, once

392 C. Kehl et al.

Fig. 31 This example shows two C&C architectures Main1 and Main2, which are semantically
equivalent in EMA due to its synchronized and weakly causal execution model, but which might
have different interpretations in a language with strongly causal semantics

all of its predecessors, i.e. components connected to its input ports via a connector,
have finished execution. Therefore, the identification of a dataflow-based execution
order is crucial for a correct realization of the model semantics. A fixed execution
order is established at compile-time and no re-scheduling needs to be performed
at runtime. This is similar to Simulink’s sorted execution order list.2 In EMA, the
C&C model is flattened at compile-time before the execution order is computed.
Hence, only atomic components receive an execution order id. In EMA, multiple
component instances can share a single execution order id if the execution order
of these respective component instances can be exchanged without affecting the
computation results. For instance, the adders of the adder component array of Fig.
28 can be executed independently.

At runtime all the components are executed sequentially based on the execu-
tion order list in each cycle. A cycle is finished when all components have been
executed. The next cycle can be started, once the preceding cycle is finished. In
EMA the input until time .t completely determines the output until time .t rendering
the semantics weakly causal [3], which is convenient for modeling algorithms and
physical processes. As an example consider the two architectures in Fig. 31. Both
systems have the same semantics in EMA and can be described mathematically
using the equation .Ck = (Ak + Bk) Bk, where .k is a sequential index. In contrast,
if the system were strongly causal under the assumption that each subcomponent
required.n timesteps to compute and communicate the output, the equations describ-
ing Main1 and Main2 would become .Ck = (Ak−n + Bk−n) Bk−n for the left and
.Ck = (Ak−2n + Bk−2n) Bk−n for the right model, respectively.

Finding an execution order for linear models, i.e. models without cyclic port
dependencies, is straightforward: each component instance is put on the execution
list after all component instances its input ports depend on. When structural loops
are present in the model, i.e. when there is a path from a subcomponent’s output to
its own input without a delay, the compiler checks if the loop is algebraic. If yes, the
compiler tries to transform the algebraic loop to a loop-free equivalent model.

2 https://de.mathworks.com/help/simulink/ug/controlling-and-displaying-the-sorted-order.html,
accessed November 25, 2022.

https://de.mathworks.com/help/simulink/ug/controlling-and-displaying-the-sorted-order.html
https://de.mathworks.com/help/simulink/ug/controlling-and-displaying-the-sorted-order.html
https://de.mathworks.com/help/simulink/ug/controlling-and-displaying-the-sorted-order.html
https://de.mathworks.com/help/simulink/ug/controlling-and-displaying-the-sorted-order.html
https://de.mathworks.com/help/simulink/ug/controlling-and-displaying-the-sorted-order.html
https://de.mathworks.com/help/simulink/ug/controlling-and-displaying-the-sorted-order.html
https://de.mathworks.com/help/simulink/ug/controlling-and-displaying-the-sorted-order.html
https://de.mathworks.com/help/simulink/ug/controlling-and-displaying-the-sorted-order.html
https://de.mathworks.com/help/simulink/ug/controlling-and-displaying-the-sorted-order.html
https://de.mathworks.com/help/simulink/ug/controlling-and-displaying-the-sorted-order.html
https://de.mathworks.com/help/simulink/ug/controlling-and-displaying-the-sorted-order.html
https://de.mathworks.com/help/simulink/ug/controlling-and-displaying-the-sorted-order.html
https://de.mathworks.com/help/simulink/ug/controlling-and-displaying-the-sorted-order.html
https://de.mathworks.com/help/simulink/ug/controlling-and-displaying-the-sorted-order.html

AutoKnigge—Modeling, Evaluation and Verification … 393

If an explicit solution cannot be found, i.e. if the loop does not correspond to
a known (solvable) pattern, it can be solved at runtime using an algebraic solver.
Since this must be done in each timestep and there is no guarantee that a solution
exists, a runtime solver would not only affect the runtime performance heavily, but
might also lead to unpredictable behavior, which must be avoided in safety-critical
systems. For this reason we only allow loops, which can be transformed into loop-
free architectures at compile-time. If no such transformation can be found, the model
is considered invalid.

To resolve algebraic loops, knowledge of the component behavior is required.
A means to integrate behavior models into EMA components will be discussed in
Sect. 4.5.

4.5 MontiMath

MontiMath is an imperative language developed for the design and implementation
of math-heavy algorithms and to describe physical processes. It has been inspired
by MATLAB’s matrix-oriented paradigm. However, in contrast to MATLAB, Mon-
tiMath uses the EMA type system, which makes it a statically and strictly typed
language similar to EMA itself. An example showing the basic language constructs
is given in Fig. 32. The declaration of a MontiMath variable requires a type def-
inition, which is expressed by preceding the newly declared variable by an EMA
type, e.g. Q(0 Ohm : 1 nOhm : 1 MOhm).ˆ{2,2} impedance. The syn-
tax to define a matrix constant is the same as in MATLAB, but the literals inside the

Fig. 32 This listing shows a simple MontiMath example exhibiting the main language constructs
including variable declarations, matrix literal definitions, loops and conditions

394 C. Kehl et al.

matrix can be enriched by système international d’unités (SI) units if needed. As in
MATLAB, a matrix constant is defined in square brackets. Thereby, columns and
rows are separated by commas and semicolons, respectively. The initialization of the
impedance matrix impedance modeling a two-port network can hence be written
as impedance = [10 Ohm, 5 Ohm; 6 Ohm, 8 Ohm];.

To maintain compatibility to MATLAB, MontiMath indices start with 1 as
opposed to most general purpose programming languages (GPLs), where arrays
are zero-based. Scalars are treated as .1 × 1 matrices, but the square brackets can be
dropped when defining a scalar literal. Other than in MATLAB, statements, except
conditional statements and loops, need to be terminated with a semicolon.

MontiMath supports the typical operators needed inmany computations including
addition (+), subtraction (-), multiplication (*), division (-), and power (.ˆ). If applied
to matrices, these operators perform the corresponding algebraic matrix operation,
e.g. amatrixmultiplication.Division by amatrix, e.g.A/X, is semantically equivalent
to multiplying the dividend with the inverse of X, i.e. A/X is equivalent to A*X.ˆ-1
or A*inv(X).

Furthermore, MontiMath supports the Hadamard product or element-wise multi-
plication (.*), inverseHadamard product (./), and element-wise power (..ˆ). The trans-
pose operation for real and the Hermitian transpose operation for complex-valued
matrices can be expressed by appending the apostrophe operator (’) to amatrix name,
e.g. A’. Furthermore, the entries are conjugated in the complex case. Since matrix
dimensions are statically typed, incompatibilities are detected at compile-time.

MontiMath supports the standard control flow constructs including for loops
and if clauses, enabling us to write arbitrarily complex algorithms. Many tasks in
CPS engineering can be expressed as optimization problems, e.g. model-predictive
controllers. For this reason, we introduce optimization statements in MontiMath.
The syntax provides dedicated keywords for optimization problems to come as close
as possible to the original mathematical formulation enabling the developer to write
down the objective function, to define the optimization variable, as well as a set of
constraints.

A MontiMath program can be embedded into an EMA component by means of
an implementation block as is shown in Fig. 33. This way the MontiMath script is
executed in every execution cycle of the EMA component. It can read the input ports

Fig. 33 An EMAM model embeds a MontiMath script into an EMA component

AutoKnigge—Modeling, Evaluation and Verification … 395

of the EMA component and write the computation results to the output ports. To
let a MontiMath script pass variable values from one execution cycle to another, we
introduce thestatic keyword. A variable declaredwith thismodifier, e.g.static
Q cumulativeError, is saved in a cycle-independent scope. Its value does not
get lost when an execution cycle is finished and can be reused in the next cycle.
Alternatively, variables can be passed between cycles by feeding the output of a
component back to one of its input ports and putting a delay block in between.

The modular structure of the EMA language family enables an easy composition
with other modeling languages to be used in the implementation block of an EMA
component for the definition of the component behavior. The language used can be
another domain-specific language (DSL) or a GPL such as C++ or Java. For the com-
position to work, the embedded language must have a MontiCore implementation
[23]. A particularly important DSL for component behavior definition is the deep
learningmodeling languageMontiAnna [27, 35, 36]. It enables a concisemodeling of
deep neural networks as directed acyclic graphs (DAGs) of neuron layers. The Mon-
tiAnna generator produces code for data loading, training, and execution of the neural
network. Furthermore, it controls the machine learning lifecycle of the deep learning
component, e.g. supporting data management [2] and deciding whether a training
phase is needed or can be skipped if a trained model is already available, based on a
machine learning artifact model [1].MontiAnna has been applied tomodel deep neu-
ral networks for various domains, including image processing convolutional neural
networks (CNNs) [35], language processing networks [35], reinforcement learning
applications [19], generative adversarial networks (GANs), variational autoencoders
(VAEs), etc. ACNN for the recognition of handwritten digits embedded into an EMA
component is depicted in Fig. 34. The neural network is assembled from predefined
layers and the custom layer conv in L.13-21. While the example is a linear graph
of layers, arbitrary DAGs can be constructed using MontiAnna.

4.6 Cooperative Agents and EmbeddedMontiArc Dynamics

Until now the focus was on static architecture modeling of closed, isolated systems
such as autonomous vehicles using EMA. The elements of a static architecture are
fixed at design time and cannot be altered, removed, or added at runtime. With this
approach we can cover the majority of closed systems such as embedded devices and
control software. However, cooperative driving systems which are highly dynamic
by nature require the ability to restructure or reconfigure parts of their architecture
according to changing circumstances and requirements at runtime. For this reason,
we are going to discuss an extension for EMA introducing dynamics to architectural
elements such as ports, connectors, and components based on [26].

Different forms of dynamic architecture description languages (ADLs) are known
in the literature tackling different concerns of architectural dynamics [5]. In particu-
lar, the choice of appropriate means of architectural runtime reconfiguration depends
on the kind of system under development and the application domain. The concepts

396 C. Kehl et al.

Fig. 34 ACNN for handwritten digit recognition embedded into an EMA component, also referred
to as an EMADL component

discussed in this chapter are intended for the Local Traffic System (LTS) domain
discussed in the previous sections. Our design decisions will hence be based on the
following list of assumptions:

• The agents are instances of compatible types or share a common interface. In the
automotive domain, for instance, agents are equal or similar vehicles or roadside
units (RSUs). The agents are independent processes with proprietary goals. They
are not part of and do not contribute to the functioning of a bigger system (in
contrast to an aircraft architecture designed using a language like Architecture
Analysis & Design Language (AADL), where architectural dynamics is used to
model functional variations of a single but complex system).

• The agents do not know each other by default and there is no communication
between them at the beginning. Furthermore, the total number of agents living in
the system is not known to an agent. Each agent’s knowledge about its peers is
limited to what it perceives through its sensors and communication.

• The number of agents in the system can vary throughout time. Agents can be
spawned without existing agents to be notified explicitly. In the cooperative vehi-
cles domain, new vehicle instances can come into existence by beingmanufactured
or by entering the area of interest from outside.

• There is a communication channel which can be used by the agents to send and
receive messages to and from other agents, respectively. This channel can be used
for both directed and broadcast communication. However, since we are dealing
with the application layer, we will not care about lower network protocols in this

AutoKnigge—Modeling, Evaluation and Verification … 397

work, assuming an end-to-end channel connecting the logical interfaces, e.g. EMA
ports, of two different agents directly.

To be able to model interactions between participants of a dynamically changing
traffic system, the C&C language used needs to support changes in the component
structure and variations of the dataflows at runtime. Such changes can be induced
by specific events, such as the occurrence of a new traffic participant, which the
developer should be able to model with the same language, as well.

The aim of this section is to introduce the main concepts of an EMA language
extension for dynamic reconfiguration, which we are going to refer to as Embedded-
MontiArcDynamics (EMAD). The extension is conservative [24],meaning that stan-
dard, non-dynamic models can be parsed and generated by EMADwithout changes.

4.7 EMAD Execution Semantics

In Sect. 4.4 we have discussed the synchronous execution semantics of EMA. The
system is executed stepwise. In each step all the subcomponents are executed accord-
ing to an execution order determined at compile-time. To enable reconfiguration and
to support dynamically evolving architectures, we extend the execution semantics of
EMA by a reconfiguration phase which takes place in each execution cycle.

In the reconfiguration phase, reconfiguration triggers are checked and, if present,
the corresponding reconfigurations are performed. This possibly activates further
reconfiguration triggers which are then handled as well, until the reconfiguration
queue is empty. We introduce two main concepts for runtime reconfiguration in
EMAD: 1. Data-triggered and 2. Service-based reconfiguration.

4.7.1 Data-Triggered Internal Reconfiguration

The simplest way to trigger andmodel reconfiguration is the data-triggered approach.
Thereby, a reconfiguration is initiated when a signal fulfills a given condition, e.g.
a port value exceeds a predefined threshold. The reconfiguration is executed and
maintained as long as the condition is satisfied. The approach can be easily motivated
and illustrated by non-linear components used in electronics. For instance, a diode
is conductive only if the applied voltage is higher than the threshold voltage; a
multiplexer passes the data signal chosen by a control signal; when a battery electric
vehicle (BEV) is connected to a charging station, the connection is signaled to the
charging electronics which reacts by enabling the charging process as long as the
connection signal is active.

To enable modeling data-triggered reconfiguration, we extend the body of an
EMA component definition by a list of reconfiguration blocks. The header of such a
reconfiguration block contains a condition formulated as a Boolean expression over
port values and architectural properties, which needs to be fulfilled in order to trigger

398 C. Kehl et al.

Fig. 35 A multiplexer component choosing two of its inputs to be passed to the inner multiplexer
dependent on a control signal

the reconfiguration. The body of the reconfiguration block follows for the most part
the same syntax as the body of a standard non-dynamic component and contains a
declarative definition of the architectural changes to be performed as a response to
the triggering event. These changes are rolled back as soon as the reconfiguration
condition in the reconfiguration block header ceases to hold.

To illustrate the syntax and the mechanics behind data-triggered reconfiguration,
we introduce a simple multiplexer example in Fig. 35. The BMux4 component has
four data inputs of a generic type T and two Boolean control inputs. The purpose of
the component is to choose one of the four input signals of the inSig port array
based on the values of the control signals (ctrSig port array) and to forward it
to the output port. The idea is to realize this behavior by altering the connectors
corresponding to the control signal. Therefore, we first choose two of the four data
signals (the first two or the second two ports of the inSig array) based on the value
of inSig[1] and then forward them as well as a further control signal inSig[2]
to a subcomponent of type BMux2, which in turn uses the received control signal
inSig[2] to choose one of the remaining two data signals. Its choice is then output
through the parent component’s output port.

The static connectors of the component are defined in L.8-9 to connect the first
control signal with the inner multiplexer and its output to the output of the parent
BMux4. There are two reconfiguration definitions given in L.11-14 and L.16-19. In
L.11 and L.16 the .@ symbol denotes the beginning of a reconfiguration condition.
The actual reconfiguration code is a block enclosed in curly brackets following the
condition. As can be seen in L.12-13 and in L.17-18, the configuration code is
composed of ordinary connect statements as we know them from the static EMA

AutoKnigge—Modeling, Evaluation and Verification … 399

syntax. The connections defined in these two blocks are established and released in
the reconfiguration phase at the beginning of an execution cycle as discussed earlier.
In this example, this is used to choose two of the four incoming inputs to be forwarded
to the child component mux2.

A reconfiguration is executed once the condition becomes true and remains active
as long as the condition remains true, i.e. as long as the value at the port ctrSig[1]
is true in L.11 and as long as it is false for L.16. When the condition of an active
reconfiguration goes back to false, the reconfiguration is rolled back, i.e. all the
architectural elements defined in the reconfiguration block are removed (irrespective
ofwhether or not another reconfiguration becomes active instead). In our example, the
two reconfiguration conditions are mutually exclusive, but their disjunction is always
true. Consequently, exactly one of the two reconfigurations is active at any given point
in time. In general, arbitrarily many reconfigurations (including zero) can be active
in parallel. However, each combination must result in a valid architecture. That is, an
input port must not be the target of more than one connector. Furthermore, under no
circumstances an input port may be floating. This is verified by context conditions
at compile-time. Consequently, none of the two reconfigurations can be removed
from the component in the multiplexer example: when no dynamic reconfiguration
is active, only the static part of the architecture is present. In this case, the inSig
ports of mux2 would be floating.

Note that in order to access the value of a port in an EMAD reconfiguration, we
use the port function value() accessible for each port of the component using the
:: operator. The syntax highlights that we are not trying to use a model element in
a conventional manner (which would require a dot), but want to perform a runtime
query related to a model element instead. The function is available in reconfiguration
conditions and bodies only. If the port we are referring to belongs to a subcomponent,
we can access it by specifying the port’s name preceded by the (subcomponents’)
instance name, e.g. mux2.outSig::value(). Note that a component can only
query the values visible in its scope, i.e. values of its own or of its immediate sub-
components’, but not of its subsubcomponents’ or the parent component’s ports.

A reconfiguration condition can be an arbitrary Boolean expression. Similarly to
other languages the Boolean OR and the Boolean AND operators are denoted by ||
and &&, respectively. For equalities and inequalities we use the following operators:
.==, .<=, .>=, .<, .>.

Reconfiguration conditions can be formulated in terms of an expression sequence
in order to identify sequence patterns. A value sequence can be notated similarly
to an EMA row vector with the oldest value coming leftmost. To avoid confusions
with vector-valued variables, the tick keyword is used as a separator instead of a
comma. For instance, the condition ctrSig[1]::value() == [true tick
false tick false] is evaluated to true at execution cycle .n if the following
sequence of values was observed: true at.n − 2, false at.n − 1, false at.n. The
type of each expression in the sequence must be compatible with the corresponding
port type. The sequence notation implies that past values of the underlying port need
to be stored at runtime. In this particular example, in addition to the current value at

400 C. Kehl et al.

Fig. 36 The two architectural states of the BMux4 component

the ctrSig[1] port, the component needs to store two of this port’s past values in
order to be able to evaluate the reconfiguration condition in each execution step.

Until now, we have been using a graphical representation of EMA models to
facilitate the understanding of the architecture. Given the fact that there is no single
representation of an EMAD model, we need an appropriate extension of the graph-
ical syntax. Diagrams representing the two reconfigurations of the BMux4 model
are depicted in Fig. 36. Thereby, we introduce two syntactic elements: first, the
reconfiguration condition triggering the reconfiguration is specified in a box under
the component’s name. Second, model elements, which are added in this recon-
figuration, are denoted by dashed figures instead of solid ones. In this example,
only connectors are created dynamically at runtime. Components and ports can be
added in a similar way by the means of dynamic arrays, which will be discussed in
Sect. 4.7.2.

The aim of the example in Figs. 35 and 36 was to introduce the main ideas behind
data-triggered reconfiguration. The exactly same behavior can be achieved with a
mode model with two states [21]. Using a mode finite state machine (FSM) for
a system with a small number of states and state transitions can be favorable as
it facilitates a state-centric model analysis. In cases with many, possibly partially
overlapping reconfiguration conditions and state transitions between all possible
states, however, the data-triggered reconfiguration concept presented in this chapter
can lead tomuchmore concisemodels, sincewedon’t need todefine all possible states
explicitly and no transitions need to be modeled at all. On the other hand, modes
are more powerful since reconfigurations can depend on the current architectural
state, which is not possible with our concept. We recommend using modes and data-
triggered reconfiguration interchangeably depending on the requirements and the
nature of the modeled system.

AutoKnigge—Modeling, Evaluation and Verification … 401

4.7.2 Service-Based External Reconfiguration

To enable the creation of more complex, propagating reconfigurations, we introduce
a second way of triggering architectural changes at runtime, the service-based recon-
figuration. The idea behind it is to trigger reconfigurations by external architectural
change requests and to propagate such requests from component to component.

We are going to present the concepts of service-based reconfiguration by the
example of a cooperative collision prediction component given in Fig. 37. The
CollisionSystem component receives the planned trajectories from other vehi-
cles of an LTS and checks each of these trajectories for a collision with its own
one. Each trajectory is input into the component through a dedicated port. Further-
more, each pairwise collision check is executed by a dedicated subcomponent of
type CollisionCalculator.

Before we proceed with the discussion of the service-based trigger mechanism,
we need to introduce the concept of dynamic component and port arrays. In Sect. 4.3,
static component and port arrays were introduced, allowing us to model an arbitrary
but fixed number of similar components and ports in a single line of code. In the
collision detection example described here we don’t know at design time, how many
traffic participants will be present in the LTS. Furthermore, the number of peers
can change over time. The concept of dynamic arrays enables us to cope with this
modeling challenge by allowing us to specify a range instead of a fixed number of
elements in the array. At runtime the concrete number of elements in the array can
change.

Fig. 37 Collision system of an autopilot calculating potential collisions with up to 32 other vehicles

402 C. Kehl et al.

The syntax is based on the range syntax of EMA types: the modeler needs to spec-
ify the minimum and the maximum number of elements inside the square brackets
of an array declaration separated by a colon instead of a single length value. This is
done in L.4 and L.5 of Fig. 37 to define a dynamic port array and in L.8 to define
a dynamic component array. In the case of port arrays it is obligatory to use the
dynamic keyword. If the component interface contains dynamic port arrays, it is
also necessary to mark the component with the dynamic keyword in the header, cf.
L.1 of Fig. 37.

In case the lower bound of the element count is greater than zero, the minimum
number of elements will be created at instantiation of the component. Once the upper
bound of the elements in an array has been reached, events leading to an instantiation
of further elements cannot be handled. The availability of free port and/or component
slots in an array can hence be regarded as a further implicit condition of a reconfigu-
ration. Upper bounds on elements in an array have been introduced with embedded
systems in mind often having very limited resources and strict performance require-
ments. The upper bound can be set to infinity by putting oo, similarly to EMA type
bounds. However, since this can have a negative impact on the performance of an
overloaded system, this is not an advisable modeling pattern and results in a warn-
ing. A system knowing its limits can react to an overly high demand in a controlled
manner.

In our collision system example, the port arrays otherStatus and
otherTrajectory are supposed to receive status and trajectory messages from
other cooperative vehicles in the LTS. The maximum number of connections is lim-
ited to 32. On the other hand, if there are no other vehicles in the network, the port
arrays can be empty.

For each connected vehicle, the CollisionSystem component provides an
individual CollisionCalculator component instance. Accordingly, the num-
ber of these instances varies between 0 and 32, as well. At system start up, the
minimum number of components and ports is instantiated, i.e. zero.

The question arises how the free slots in the component and port arrays can be
used and released at runtime.We realize this by introducing a reconfiguration service
interface. This interface allows external components or even external software to
request reconfigurations. More precisely, it allows external clients to request a port
from a dynamic array.

The reconfiguration interface is defined not just by declaring a dynamic port
array, but by the reconfiguration conditions using it, cf. L.13 in Fig. 37. To
query reconfiguration requests in a reconfiguration condition, we introduce the
new port property connect, which is basically a Boolean flag indicating whether
a connect request for this port has been issued, bundled with an id to avoid
confusions with other requests sent to the same port. Similarly to the value at
a port, the connect property can be queried using the :: operator, i.e. as
portName::connect(). A reconfiguration condition can be composed as a
conjunction of arbitrarily many connect atoms, i.e. portName1::connect()
&&,...,&& portNameN::connect(), where the port names used must be
dynamic port arrays declared in the component’s interface. Disjunctions and nega-

AutoKnigge—Modeling, Evaluation and Verification … 403

tions of connect atoms are forbidden by a context condition to prevent inconsisten-
cies (in a disjunction we do not know at design-time which port(s) will be actually
requested and hence, cannot define meaningful reconfigurations using these ports).

The resulting reconfiguration interface can be used by issuing connect request for
all the ports required by the reconfiguration condition simultaneously. In our example
this means that, due to the reconfiguration condition in L.13 of Fig. 37, connections
to the otherStatus and the otherTrajectory port must be requested at
once. Such a request is created in an EMAD model in the reconfiguration body
of a parent component as connect statements targeting the corresponding dynamic
port arrays. This is shown in Fig. 38, where a component holding an instance of
CollisionSystem connects to the aforementioned port arrays otherStatus
and otherTrajectory of the latter in L.4-5 of its own reconfiguration body.

Note that the reconfiguration bodies of Figs. 37 and 38 are chained:
the reconfiguration of the latter triggers the one of the former. If
ReconfigurationCondition in L.3 of Fig. 38 is a data-driven
reconfiguration as discussed in Sect. 4.7.1, the chain starts in Fig. 38. If
ReconfigurationCondition defines a reconfiguration interface similar
to L.13 in Fig. 37, it must be triggered from another reconfiguration body itself.
Hence, arbitrarily long service-based reconfiguration chains can be initiated by a
data-driven reconfiguration.

Note that the reconfiguration request issued by the parent component of the
CollisionSystem component in L.4-5 of Fig. 38 matches the reconfigura-
tion interface defined in L.13 of Fig. 37 exactly. This is verified at compile-
time by a context condition. An invalid usage of the reconfiguration interface of
the CollisionService component is shown in Fig. 39. Here we are trying
to connect to the otherStatus port only. However, this is not supported and
results in a compile-time error as there is no such reconfiguration condition in the
CollisionSystem component.

To be able to deal with dynamic port and component arrays in reconfiguration
descriptions, we need a syntax allowing us to access the newly created elements. To
do so, we introduce the ?-operator. It is used instead of the element number in square
brackets to request and access new elements in a dynamic port or component array,
e.g. myArray[?]. Usage of the operator is restricted to reconfiguration bodies.

Fig. 38 The listing shows a valid usage of the reconfiguration service interface of the Collision
System component of Fig. 37 by a parent component

404 C. Kehl et al.

Fig. 39 The listing leads to a compile-time error since CollisionSystem does not have a reconfig-
uration triggered by requesting only the otherStatus port

An example is given in L.14-17 of the CollisionSystem model in Fig. 37.
In L.14 the ?-operator is used to connect the ownTrajectory port to a new com-
ponent cc[?]. Since this is the first access to cc[?] in this reconfiguration body,
it implicitly triggers the creation of a new component instance. In contrast, further
accesses to cc[?] in L.15-17 are pure access operations, no implicit instantiation is
involved. If the component type of the component array requires component param-
eters, the parameter list can be passed in parenthesis right after the array brackets
and before the dot operator, e.g. cc[?](param1, param2,...).ownTraj.

Since the cc array has a maximum capacity which cannot be exceeded, a further
implicit reconfiguration condition is that the maximum capacity of this array has not
yet been reached. If, however, the array is maxed out, the reconfiguration condition
will evaluate to false and the reconfiguration will thus not be activated.

The reconfiguration service interface is available not only at modeling level
allowing other components to use it, but also in the generated code. The lat-
ter can be used by any client. For instance, C++ code can be generated for the
CollisionSystem component. Then it can be compiled to a library to be
deployed as a building block of the vehicle run-time environment (RTE). The RTE
receives a stream of vehicle to vehicle (V2V) messages and redirects them to the
right ports of the CollisionSystem library (each sender is assigned to one port).
If a new LTS participant starts sending, the RTE can request a new port from the
CollisionSystem library by calling a generated request function. The library in
turn checks whether the request is satisfiable. If yes, it provides a new port instance
the RTE can forward messages of the new vehicle to. Otherwise no reconfiguration
is carried out and the library call returns with an error. The client can then withdraw
the request or wait until the dynamic component satisfies the request in a future
reconfiguration cycle.

To facilitate the usage of the generated reconfiguration interface, we gen-
erate request methods allowing the client to require all necessary ports to
activate a reconfiguration with a single function call, e.g. ..requestOther
.StatusAndOtherTrajectory(Port<T1> *otherStatus, Port<T2>
.*otherTrajectory), where .Port <T> is a generic class representing an
EMA port of type T at C++ level. This way, it is not possible to create invalid
request, e.g. requiring only an otherStatus, but no otherTrajectory port,
when using the generated code as a library.

AutoKnigge—Modeling, Evaluation and Verification … 405

Fig. 40 Adder with 0 to 32 inputs

Figure 40 shows an example combining a dynamic interface with a MontiMath
implementation. The purpose of the component is to compute a sum of all inputs
and to output the result. This is a typical data aggregation example working on a
varying number of inputs. The dynamic input port array summands can contain 0
to 32 elements, i.e. at instantiation the component has no inputs and outputs zero
due to the initial assignment .tmp = 0 in L.6. The loop in L.7-9 iterates over all
ports in the summands array and adds each port’s value to the overall sum, which
is accumulated in the tmp variable. In this example, we treat the dynamic port array
in a stateless anonymous way. We iterate over the port array and are only interested
in the value present at each available port without caring about its history. This is the
natural way to deal with dynamic port arrays inMontiMath. Tracking states related to
dynamic ports using MontiMath is possible but should be avoided. Instead, to track
a concrete dynamic port’s history, we need to replicate a dynamic subcomponent for
each dynamic port instance, as was done in Fig. 37. This way, each communication
partner requiring a port in a dynamic port array is assigned a dedicated processing
subcomponent maintaining the corresponding state. Each of these dedicated pro-
cessing subcomponents only sees a single input port of the dynamic port array it
is assigned to instead of the whole port array. This pattern enforces the separation
of concerns and high cohesion principle as the processing related to each commu-
nication partner is clearly encapsulated and limited to the actual logic (no explicit
iterating over the port array is needed in the behavior implementation).

Based on the reconfiguration mechanism described in this section, we can model
whole reconfiguration chains to realize deep or flat reconfigurations. A deep recon-
figurationmeans that reconfiguration of a parent component triggers reconfigurations
in child components. A connect to a subcomponent’s port activates this port’s con-
nect flag which can in turn be used to trigger a reconfiguration in the subcomponent.
In the same way, the subcomponent can trigger reconfigurations in its subcompo-
nents and so on. When a parent component instantiates a static subcomponent in an
EMAD model, it can connect its output ports immediately, e.g. as is done in L.11
of Fig. 37. However, the subcomponent might be dynamic and new output ports
might be added throughout the subcomponent’s reconfiguration procedures. In this
case, the parent component can react to newly created ports of the subcomponent by

406 C. Kehl et al.

observing the dynamic ports’ connect flags in the same way as it would observe
connect request to its own input ports. This enables us to create reconfiguration chains
propagating downwards into the hierarchy as well as those coming from the bottom
and propagating upwards.

A reconfiguration chain is always performed in one single reconfiguration phase as
an atomic transaction, i.e. if the chain breaks at some point, the whole reconfiguration
is considered infeasible. If a failure occurs after some reconfiguration steps of the
chain have already been carried out, these steps will be rolled back.

As in data-triggered reconfiguration, a reconfiguration remains active as long as
the respective condition is fulfilled. Whenever a new port request is issued, the port
is created and a connector connected to it, the port::connect() property is
activated for this port. This flag and hence, the configuration remain active until the
requesting client removes its connector to the dynamic port. If the client created the
connector as part of anEMADreconfiguration, itwould remove it,when the condition
of this original reconfiguration ceased to hold. If the client is an external software, it
can use the reconfiguration service interface to roll back a reconfiguration available in
the generated code. Such a rollback would remove all architectural elements created
in the reconfiguration and trigger the rollback of reconfigurations of subcomponents.
This way, a reconfiguration chain is rolled back completely. The rollback interface
is not usable explicitly in an EMAD model to prevent arbitrary removals of ports
leading to inconsistencies in an architecture.

The service-based reconfiguration procedure of EMADmodels boils down to the
following steps:

1. Request: an external component sends a set of connect requests.
2. Reservation: the receiving component checks if the requested ports are available,

i.e. if the corresponding dynamic port arrays do not violate their respective upper
limit constraint. If yes, the component returns references for the new ports, i.e. the
newly allocated array indices, to the requester so that explicit access is possible in
the future. Otherwise, the requester is informed that its request has been rejected.

3. Reconfiguration: in the reconfiguration phase of the component, the reconfigu-
ration bodies of all valid reconfiguration requests, i.e. those fulfilling a reconfig-
uration condition, are realized (L.14-17 in the CollisionSystem example).
Consequently, the component reacts to the external reconfiguration request by
internal self-modifications.

4. Follow-up requests: possibly, the reconfiguration instructions of the previous step
contain the creation of new ports and/or subcomponents, as well. In this case, the
component becomes a requester itself initiating a follow-up reconfiguration in its
subcomponents or external components.

In our target domain of interconnected vehicles we mostly need the combination
of both data-driven and service-based reconfiguration, which, when used together,
can result in a powerful symbiosis. Reconfigurations which emerge as reactions to
environmental changes measured by sensors or to incoming messages can be mod-
eled using the following pattern: a data-driven event stands at the beginning of an

AutoKnigge—Modeling, Evaluation and Verification … 407

Fig. 41 A reconfiguration chain involving input and output ports of the PlatoonManager com-
ponent. An arriving platoon message causes the creation of new input ports in the diagram on the
left. Follow-up reconfigurations inside the PlatoonManager result in a new output port and a
new outgoing connector as depicted in the diagram on the right

event chain. The reconfiguration caused by this event requests new components and
ports triggering service-based reconfigurations, which in turn trigger further service-
based reconfigurations. As soon as the original trigger vanishes, the reconfiguration
chain is rolled back completely and the architecture returns to its initial state. A data-
driven source event can be based on a sensor measurement (including the vehicle’s
antenna receiving messages from other cooperating traffic participants). A particular
measurement value or the reception of a specific message would trigger a reconfigu-
ration of the controller architecture, the internal reconfigurations of which are mostly
service-based.

An important aspect of EMAD is that there is no explicit way to remove archi-
tectural elements. Instead, elements are removed implicitly, whenever the triggering
reconfiguration condition switches back to false. This guarantees that an architecture
can always be put back into its original state.

A further important property is that all possible reconfigurations are fixed by the
design time model. Component and port replication is limited by an upper dynamic
array size. Consequently, there is only a finite number of possible architectural states
at runtime. This is an important design decision preventing a system to reach unex-
pected states and behaviors and facilitating verification.

Often reconfigurations trigger each other resulting in reconfiguration chains. We
can visualize such chains using reconfiguration views, each view only showing the
part of the model which is being changed in the current reconfiguration step. One
such reconfiguration chain is depicted using views in Fig. 41. In the first reconfigura-
tion view, depicted on the left, the CoOpAutopilot component, a controller of a
cooperative vehicle, instantiates a platoon manager when a platoon port is requested
and the velocity is greater than 0. In a second reconfiguration step, an inner compo-
nent of the platoon manager requests a new output port and the CoOpAutopilot
component reacts by creating a new connector. The ports triggering the reconfigu-
rations are emphasized with an exclamation mark. Additionally, the data condition
(v>0) is set next to the corresponding v port. Note that the PlatoonManager

408 C. Kehl et al.

component is depicted using a dashed line in the left view, while it is solid in the
view on the rhs. This is because the component is already there, when the second
reconfiguration event is triggered. A big arrow between the two views stresses the
order of the reconfigurations. Obviously, a reconfiguration must have taken place
inside the PlatoonManager component to request the creation of its new output
port PlatoonManager.platoonMsg. This reconfiguration (chain) is not part of
the depicted sequence as it is not in the scope of the CoOpAutopilot component
and should be visualized in a separate view chain.

4.8 Conclusion

In this chapter we discussed EMA, an architecture description language based on the
component-and-connector paradigm. The language facilitates the component-based
design of technical systems such as cooperative vehicles thereby enforcing a compli-
ancewith functional safety standards.While core EMAonly allows the description of
static architectures, its conservative extension EMADenables the developer tomodel
architectural changes such as the creation, removal, and (re)connection of compo-
nents which are performed at runtime. Due to the conservative extension property,
each valid EMA model is also a valid EMAD model [24].

EMAD introduces an event-based reconfiguration systemwhich can react to data-
driven as well as architectural events. An EMAD component can instantiate ports,
subcomponents, and connectors at runtime as a reaction to a trigger event. Thereby,
it can trigger further events of its subcomponents, enabling the modeler to define
complex reconfiguration chains.

In EMAD, all possible configuration states are implicitly defined at design time,
maintaining the possibility to analyze, predict, and verify the behavior of dynamic
components at design and compile-time. A set of context conditions ensures that
reconfigurations never clash, making the language applicable to safety-critical sys-
tems.

In particular, EMAD can be used to model cooperative systems and their dynam-
ically changing communication channels and processing chains, e.g. in the context
of local traffic systems.

To embed behavior into EMA and EMAD components, two behavior description
languages are presented: first, MontiMath is a strongly typed matrix-based scripting
language offering common constructs such as loops and conditions; second, the
MontiAnna language canbeused todescribe deepneural networks asDAGsof neuron
layers, enabling the integration of AI components into larger software architectures.

AutoKnigge—Modeling, Evaluation and Verification … 409

5 Conclusion

This work demonstrates basic concepts for cooperation and interaction of
autonomous vehicles. Basic approaches to the architecture and formation of local
traffic systems are shown which are subsequently verified in a real-time verification
method for cooperative vehicles. The verified trajectories are collision free and dead-
lock free. The presented modeling language allows a formal description of vehicle
software architectures as well as cooperation and interaction of distributed systems.

Although the presented concepts represent and implement the feasibility and basic
approaches, there is a need for further research. The focus of futurework should be on
further investigation of the reciprocal influence of local traffic systems as well as the
cooperation algorithms used and the resulting requirements for necessary modeling
languages for distributed systems. Further research is needed in the standardization of
necessaryV2Xmessages aswell as algorithmsused. In the area ofV2Xmessages, it is
still not clear whether WLAN-based standards such as ITS-G5 or cellular network-
based standards such as C-V2X will prevail. While WLAN-based standards are
already used by some manufacturers, C-V2X offers significantly greater potential.
With regard to the algorithms used for grouping and actual cooperation, there is a
need formore researchwhen considering possible failure cases such as a spontaneous
communication interruption with regard to functional safety and achieving required
safety standards like ISO 26262 ASIL D [9].

Acknowledgements This research is supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) within the Priority Program SPP 1835 “Cooperative Interacting
Automobiles”.

References

1. Atouani, A., Kirchhof, J.C., Kusmenko, E., Rumpe, B.: Artifact and reference models for
generative machine learning frameworks and build systems. In: Tilevich, E., De Roover,
C., (eds.) Proceedings of the 20th ACM SIGPLAN International Conference on Gener-
ative Programming: Concepts and Experiences (GPCE 21), pp. 55–68. ACM SIGPLAN
(2021). http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-
Machine-Learning-Frameworks-and-Build-Systems.pdf

2. Baumann, N., Kusmenko, E., Ritz, J., Rumpe, B., Weber, M.B.: Dynamic data management for
continuous retraining. In: Burgueño, L., Bork, D., Nguyen, P., Zschaler, S. (eds.) Proceedings
of MODELS 2022. Workshop MDE Intelligence (2022)

3. Broy,M., Stølen, K.: Specification andDevelopment of Interactive Systems: FocusOnStreams,
Interfaces, and Refinement. Springer Science & Business Media (2012)

4. Burger, C., Lauer, M.: Cooperative multiple vehicle trajectory planning using miqp. In: 2018
21st International Conference on Intelligent Transportation Systems (ITSC), pp. 602–607.
IEEE (2018)

5. Butting, A., Heim, R., Kautz, O., Ringert, J.O., Rumpe, B., Wortmann, A.: A clas-
sification of dynamic reconfiguration in component and connector architecture descrip-
tion languages. In: Proceedings of MODELS 2017. Workshop ModComp, CEUR 2019

http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf
http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf
http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf
http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf
http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf
http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf
http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf
http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf
http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf
http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf
http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf
http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf
http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf
http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf
http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf
http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf
http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf
http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf
http://www.se-rwth.de/publications/Artifact-and-Reference-Models-for-Generative-Machine-Learning-Frameworks-and-Build-Systems.pdf

410 C. Kehl et al.

(2017). http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-
in-Component-and-Connector-Architecture-Description-Languages.pdf

6. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A.,Mariotti, A.,Micheli, A.,Mover, S., Roveri,
M., Tonetta, S.: The nuXmv symbolicmodel checker. In: InternationalConference onComputer
Aided Verification, pp. 334–342. Springer (2014)

7. Dankert, J., Dernehl, C., Eckstein, L., Kowalewski, S., Kusmenko, E., Rumpe, B.: Rapidcoop-
robuste architektur durch geeignete paradigmen für kooperativ interagierende automobile.
Automatisiertes und Vernetztes Fahren (AAET’17) 7, 1–6 (2017)

8. Dankert, J., Kowalewski, S., Eckstein, L.: Architekturen und algorithmen für kooperative auto-
mobile. Technical report, Lehrstuhl und Institut für Kraftfahrzeuge (ika) (2021)

9. Debouk, R., et al.: Overview of the 2nd Edition of iso 26262: Functional Safety-Road Vehicles.
General Motors Company, Warren, MI, USA (2018)

10. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: An open urban driving
simulator. In: Conference on Robot Learning, pp. 1–16. PMLR (2017)

11. Drave, I., Greifenberg, T., Hillemacher, S., Kriebel, S., Kusmenko, E., Markthaler, M., Orth,
P., Salman, K.S., Richenhagen, J., Rumpe, B., Schulze, C., Wenckstern, M., Wortmann, A.:
SMArDT modeling for automotive software testing. Softw.: Pract. Exper. 49(2), 301–328
(2019)

12. ETSI, T.: 102 637-1 v1.1.1 intelligent transport systems (its) vehicle communications basic set
of applications part 1: Functional requirements. Intelligent transport systems (ITS) (2010)

13. ETSI, T.: 102 637-2 v1.3.1 intelligent transport systems (its) vehicle communications basic set
of applications part 2: Awareness basic service. Intelligent transport systems (ITS) (2014)

14. ETSI, T.: 102 637-3 v1.2.1 intelligent transport systems (its) vehicle communications basic set
of applications part 3: Specifications of decentralized environmental notification basic service.
Intelligent transport systems (ITS) (2014)

15. ETSI, T.: Etsi tr 103 578 “intelligent transport systems (its); vehicular communication; infor-
mative report for the maneuver coordination service. Intelligent transport systems (ITS) (2018)

16. ETSI, T.: Etsi ts 103 561 vehicular communications basic set of applications maneuver coor-
dination service (2018). Draft

17. ETSI, T.: 103 562 v2.1.1 intelligent transport systems (its) vehicle communications basic set
of applications analysis of the collective perception service (cps). Intelligent transport systems
(ITS) (2019)

18. ETSI, T.: Etsi tr 103 324 intelligent transport systems (its) cooperative perception services
(2022). Draft

19. Gatto,N.,Kusmenko,E.,Rumpe,B.:Modelingdeep reinforcement learningbased architectures
for cyber-physical systems. In: Proceedings of MODELS 2019. Workshop MDE Intelligence,
pp. 196–202 (2019). http://www.se-rwth.de/publications/Modeling-Deep-Reinforcement-
Learning-based-Architectures-for-Cyber-Physical-Systems.pdf

20. Hegde, A., Festag, A.: Artery-c: An omnet++ based discrete event simulation framework for
cellular v2x. In: Proceedings of the 23rd International ACMConference onModeling, Analysis
and Simulation of Wireless and Mobile Systems, pp. 47–51 (2020)

21. Heim, R., Kautz, O., Ringert, J.O., Rumpe, B., Wortmann, A.: Retrofitting controlled dynamic
reconfiguration into the architecture description language MontiArcAutomaton. In: Soft-
ware Architecture - 10th European Conference (ECSA’16). LNCS, vol. 9839, pp. 175–
182. Springer (2016). http://www.se-rwth.de/publications/Retrofitting-Controlled-Dynamic-
Reconfiguration-into-the-Architecture-Description-Language-MontiArcAutomaton.pdf

22. Hillemacher, S., Kriebel, S., Kusmenko, E., Lorang, M., Rumpe, B., Sema, A., Strobl, G., von
Wenckstern, M.: Model-based development of self-adaptive autonomous vehicles using the
SMARDTmethodology. In: Proceedings of the 6th International Conference onModel-Driven
Engineering and Software Development (MODELSWARD’18), pp. 163 – 178. SciTePress
(2018)

23. Hölldobler,K.,Kautz,O.,Rumpe,B.:MontiCoreLanguageWorkbench andLibraryHandbook:
Edition 2021. Aachener Informatik-Berichte, Software Engineering, Band 48. Shaker Verlag
(2021). http://www.monticore.de/handbook.pdf

http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/A-Classification-of-Dynamic-Reconfiguration-in-Component-and-Connector-Architecture-Description-Languages.pdf
http://www.se-rwth.de/publications/Modeling-Deep-Reinforcement-Learning-based-Architectures-for-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Deep-Reinforcement-Learning-based-Architectures-for-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Deep-Reinforcement-Learning-based-Architectures-for-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Deep-Reinforcement-Learning-based-Architectures-for-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Deep-Reinforcement-Learning-based-Architectures-for-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Deep-Reinforcement-Learning-based-Architectures-for-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Deep-Reinforcement-Learning-based-Architectures-for-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Deep-Reinforcement-Learning-based-Architectures-for-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Deep-Reinforcement-Learning-based-Architectures-for-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Deep-Reinforcement-Learning-based-Architectures-for-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Deep-Reinforcement-Learning-based-Architectures-for-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Deep-Reinforcement-Learning-based-Architectures-for-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Deep-Reinforcement-Learning-based-Architectures-for-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Deep-Reinforcement-Learning-based-Architectures-for-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Deep-Reinforcement-Learning-based-Architectures-for-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Deep-Reinforcement-Learning-based-Architectures-for-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Deep-Reinforcement-Learning-based-Architectures-for-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Retrofitting-Controlled-Dynamic-Reconfiguration-into-the-Architecture-Description-Language-MontiArcAutomaton.pdf
http://www.se-rwth.de/publications/Retrofitting-Controlled-Dynamic-Reconfiguration-into-the-Architecture-Description-Language-MontiArcAutomaton.pdf
http://www.se-rwth.de/publications/Retrofitting-Controlled-Dynamic-Reconfiguration-into-the-Architecture-Description-Language-MontiArcAutomaton.pdf
http://www.se-rwth.de/publications/Retrofitting-Controlled-Dynamic-Reconfiguration-into-the-Architecture-Description-Language-MontiArcAutomaton.pdf
http://www.se-rwth.de/publications/Retrofitting-Controlled-Dynamic-Reconfiguration-into-the-Architecture-Description-Language-MontiArcAutomaton.pdf
http://www.se-rwth.de/publications/Retrofitting-Controlled-Dynamic-Reconfiguration-into-the-Architecture-Description-Language-MontiArcAutomaton.pdf
http://www.se-rwth.de/publications/Retrofitting-Controlled-Dynamic-Reconfiguration-into-the-Architecture-Description-Language-MontiArcAutomaton.pdf
http://www.se-rwth.de/publications/Retrofitting-Controlled-Dynamic-Reconfiguration-into-the-Architecture-Description-Language-MontiArcAutomaton.pdf
http://www.se-rwth.de/publications/Retrofitting-Controlled-Dynamic-Reconfiguration-into-the-Architecture-Description-Language-MontiArcAutomaton.pdf
http://www.se-rwth.de/publications/Retrofitting-Controlled-Dynamic-Reconfiguration-into-the-Architecture-Description-Language-MontiArcAutomaton.pdf
http://www.se-rwth.de/publications/Retrofitting-Controlled-Dynamic-Reconfiguration-into-the-Architecture-Description-Language-MontiArcAutomaton.pdf
http://www.se-rwth.de/publications/Retrofitting-Controlled-Dynamic-Reconfiguration-into-the-Architecture-Description-Language-MontiArcAutomaton.pdf
http://www.se-rwth.de/publications/Retrofitting-Controlled-Dynamic-Reconfiguration-into-the-Architecture-Description-Language-MontiArcAutomaton.pdf
http://www.se-rwth.de/publications/Retrofitting-Controlled-Dynamic-Reconfiguration-into-the-Architecture-Description-Language-MontiArcAutomaton.pdf
http://www.se-rwth.de/publications/Retrofitting-Controlled-Dynamic-Reconfiguration-into-the-Architecture-Description-Language-MontiArcAutomaton.pdf
http://www.se-rwth.de/publications/Retrofitting-Controlled-Dynamic-Reconfiguration-into-the-Architecture-Description-Language-MontiArcAutomaton.pdf
http://www.se-rwth.de/publications/Retrofitting-Controlled-Dynamic-Reconfiguration-into-the-Architecture-Description-Language-MontiArcAutomaton.pdf
http://www.monticore.de/handbook.pdf
http://www.monticore.de/handbook.pdf
http://www.monticore.de/handbook.pdf
http://www.monticore.de/handbook.pdf
http://www.monticore.de/handbook.pdf
http://www.monticore.de/handbook.pdf

AutoKnigge—Modeling, Evaluation and Verification … 411

24. Hölldobler, K., Rumpe, B.: MontiCore 5 Language Workbench Edition 2017. Aachener
Informatik-Berichte, Software Engineering, Band 32. Shaker Verlag (2017). http://www.se-
rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf

25. IEEE: IEEE-754, Standard for Floating-Point Arithmetic. IEEE Std 754-2008 pp. 1–58 (2008)
26. Kaminski, N., Kusmenko, E., Rumpe, B.: Modeling dynamic architectures of self-

adaptive cooperative systems. J. Object Technol. 18(2), 1–20 (2019). https://doi.org/10.5381/
jot.2019.18.2.a2. http://www.se-rwth.de/publications/Modeling-Dynamic-Architectures-of-
Self-Adaptive-Cooperative-Systems.pdf. The 15th European Conference on Modelling Foun-
dations and Applications

27. Kirchhof, J.C., Kusmenko, E., Ritz, J., Rumpe, B., Moin, A., Badii, A., Günnemann, S., Chal-
lenger, M.: MDE for machine learning-enabled software systems: a case study and comparison
of MontiAnna & ML-Quadrat. In: Burgueño, L., Bork, D., Nguyen, P., Zschaler, S. (eds.)
Proceedings of MODELS 2022. Workshop MDE Intelligence (2022)

28. Kloock, M., Alrifaee, B.: Coordinated cooperative distributed decision-making using synchro-
nization of local plans (2021). https://doi.org/10.36227/techrxiv.16622017.v2. Submitted to
IEEE Transactions on Intelligent Vehicles (T-IV)

29. Kloock, M., Dirksen, M., Kowalewski, S., Alrifaee, B.: Generation of coupling topologies for
multi-agent systems using non-cooperative games. In: 2022 IEEE Intelligent Vehicles Sympo-
sium (IV). IEEE (2022)

30. Kloock, M., He, Q., Kowalewski, S., Alrifaee, B.: Trajectory verification for networked and
autonomous vehicles using temporal logic and model checking. In: 2021 IEEE International
Intelligent Transportation Systems Conference (ITSC), pp. 244–250. IEEE (2021)

31. Kloock, M., Kragl, L., Maczijewski, J., Alrifaee, B., Kowalewski, S.: Distributed model pre-
dictive pose control of multiple nonholonomic vehicles. In: 2019 IEEE Intelligent Vehicles
Symposium (IV), pp. 1620–1625. IEEE (2019)

32. Kloock, M., Muehleisen, M., Calvo, J.A.L., Mathar, R.: Adaptive modulation and coding
for reliable vehicular real-time communication. In: Mobile Communication-Technologies and
Applications; 25th ITG-Symposium, pp. 1–9. VDE (2021)

33. Kloock, M., Scheffe, P., Botz, L., Maczijewski, J., Alrifaee, B., Kowalewski, S.: Networked
model predictive vehicle race control. In: 2019 IEEE Intelligent Transportation Systems Con-
ference (ITSC), pp. 1552–1557. IEEE (2019)

34. Kloock, M., Scheffe, P., Marquardt, S., Maczijewski, J., Alrifaee, B., Kowalewski, S.: Dis-
tributed model predictive intersection control of multiple vehicles. In: 2019 IEEE Intelligent
Transportation Systems Conference (ITSC), pp. 1735–1740. IEEE (2019)

35. Kusmenko, E., Nickels, S., Pavlitskaya, S., Rumpe, B., Timmermanns, T.: Modeling and train-
ing of neural processing systems. In: Conference on Model Driven Engineering Languages
and Systems (MODELS’19), pp. 283–293. IEEE (2019). http://www.se-rwth.de/publications/
Modeling-and-Training-of-Neural-Processing-Systems.pdf

36. Kusmenko, E., Pavlitskaya, S., Rumpe, B., Stüber, S.: On the engineering of AI-driven systems.
In: ASE’19. Software Engineering IntelligenceWorkshop (SEI’19), pp. 126–133. IEEE (2019).
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf

37. Kusmenko, E., Roth, A., Rumpe, B., von Wenckstern, M.: Modeling architectures of cyber-
physical systems. In: European Conference on Modelling Foundations and Applications
(ECMFA’17), LNCS 10376, pp. 34–50. Springer (2017). http://www.se-rwth.de/publications/
Modeling-Architectures-of-Cyber-Physical-Systems.pdf

38. Kusmenko, E., Rumpe, B., Schneiders, S., von Wenckstern, M.: Highly-optimizing
and multi-target compiler for embedded system models: C++ compiler toolchain for
the component and connector language EmbeddedMontiArc. In: Conference on Model
Driven Engineering Languages and Systems (MODELS’18), pp. 447 – 457. ACM
(2018). http://www.se-rwth.de/publications/Highly-Optimizing-and-Multi-Target-Compiler-
for-Embedded-System-Models.pdf

39. Malikopoulos, A.A., Beaver, L., Chremos, I.V.: Optimal time trajectory and coordination for
connected and automated vehicles. Automatica 125, 109469 (2021)

http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
https://doi.org/10.5381/jot.2019.18.2.a2
https://doi.org/10.5381/jot.2019.18.2.a2
https://doi.org/10.5381/jot.2019.18.2.a2
https://doi.org/10.5381/jot.2019.18.2.a2
https://doi.org/10.5381/jot.2019.18.2.a2
https://doi.org/10.5381/jot.2019.18.2.a2
https://doi.org/10.5381/jot.2019.18.2.a2
https://doi.org/10.5381/jot.2019.18.2.a2
https://doi.org/10.5381/jot.2019.18.2.a2
https://doi.org/10.5381/jot.2019.18.2.a2
http://www.se-rwth.de/publications/Modeling-Dynamic-Architectures-of-Self-Adaptive-Cooperative-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Dynamic-Architectures-of-Self-Adaptive-Cooperative-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Dynamic-Architectures-of-Self-Adaptive-Cooperative-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Dynamic-Architectures-of-Self-Adaptive-Cooperative-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Dynamic-Architectures-of-Self-Adaptive-Cooperative-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Dynamic-Architectures-of-Self-Adaptive-Cooperative-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Dynamic-Architectures-of-Self-Adaptive-Cooperative-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Dynamic-Architectures-of-Self-Adaptive-Cooperative-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Dynamic-Architectures-of-Self-Adaptive-Cooperative-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Dynamic-Architectures-of-Self-Adaptive-Cooperative-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Dynamic-Architectures-of-Self-Adaptive-Cooperative-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Dynamic-Architectures-of-Self-Adaptive-Cooperative-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Dynamic-Architectures-of-Self-Adaptive-Cooperative-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Dynamic-Architectures-of-Self-Adaptive-Cooperative-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Dynamic-Architectures-of-Self-Adaptive-Cooperative-Systems.pdf
https://doi.org/10.36227/techrxiv.16622017.v2
https://doi.org/10.36227/techrxiv.16622017.v2
https://doi.org/10.36227/techrxiv.16622017.v2
https://doi.org/10.36227/techrxiv.16622017.v2
https://doi.org/10.36227/techrxiv.16622017.v2
https://doi.org/10.36227/techrxiv.16622017.v2
https://doi.org/10.36227/techrxiv.16622017.v2
https://doi.org/10.36227/techrxiv.16622017.v2
http://www.se-rwth.de/publications/Modeling-and-Training-of-Neural-Processing-Systems.pdf
http://www.se-rwth.de/publications/Modeling-and-Training-of-Neural-Processing-Systems.pdf
http://www.se-rwth.de/publications/Modeling-and-Training-of-Neural-Processing-Systems.pdf
http://www.se-rwth.de/publications/Modeling-and-Training-of-Neural-Processing-Systems.pdf
http://www.se-rwth.de/publications/Modeling-and-Training-of-Neural-Processing-Systems.pdf
http://www.se-rwth.de/publications/Modeling-and-Training-of-Neural-Processing-Systems.pdf
http://www.se-rwth.de/publications/Modeling-and-Training-of-Neural-Processing-Systems.pdf
http://www.se-rwth.de/publications/Modeling-and-Training-of-Neural-Processing-Systems.pdf
http://www.se-rwth.de/publications/Modeling-and-Training-of-Neural-Processing-Systems.pdf
http://www.se-rwth.de/publications/Modeling-and-Training-of-Neural-Processing-Systems.pdf
http://www.se-rwth.de/publications/Modeling-and-Training-of-Neural-Processing-Systems.pdf
http://www.se-rwth.de/publications/Modeling-and-Training-of-Neural-Processing-Systems.pdf
http://www.se-rwth.de/publications/Modeling-and-Training-of-Neural-Processing-Systems.pdf
http://www.se-rwth.de/publications/Modeling-and-Training-of-Neural-Processing-Systems.pdf
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Modeling-Architectures-of-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/Highly-Optimizing-and-Multi-Target-Compiler-for-Embedded-System-Models.pdf
http://www.se-rwth.de/publications/Highly-Optimizing-and-Multi-Target-Compiler-for-Embedded-System-Models.pdf
http://www.se-rwth.de/publications/Highly-Optimizing-and-Multi-Target-Compiler-for-Embedded-System-Models.pdf
http://www.se-rwth.de/publications/Highly-Optimizing-and-Multi-Target-Compiler-for-Embedded-System-Models.pdf
http://www.se-rwth.de/publications/Highly-Optimizing-and-Multi-Target-Compiler-for-Embedded-System-Models.pdf
http://www.se-rwth.de/publications/Highly-Optimizing-and-Multi-Target-Compiler-for-Embedded-System-Models.pdf
http://www.se-rwth.de/publications/Highly-Optimizing-and-Multi-Target-Compiler-for-Embedded-System-Models.pdf
http://www.se-rwth.de/publications/Highly-Optimizing-and-Multi-Target-Compiler-for-Embedded-System-Models.pdf
http://www.se-rwth.de/publications/Highly-Optimizing-and-Multi-Target-Compiler-for-Embedded-System-Models.pdf
http://www.se-rwth.de/publications/Highly-Optimizing-and-Multi-Target-Compiler-for-Embedded-System-Models.pdf
http://www.se-rwth.de/publications/Highly-Optimizing-and-Multi-Target-Compiler-for-Embedded-System-Models.pdf
http://www.se-rwth.de/publications/Highly-Optimizing-and-Multi-Target-Compiler-for-Embedded-System-Models.pdf
http://www.se-rwth.de/publications/Highly-Optimizing-and-Multi-Target-Compiler-for-Embedded-System-Models.pdf
http://www.se-rwth.de/publications/Highly-Optimizing-and-Multi-Target-Compiler-for-Embedded-System-Models.pdf
http://www.se-rwth.de/publications/Highly-Optimizing-and-Multi-Target-Compiler-for-Embedded-System-Models.pdf
http://www.se-rwth.de/publications/Highly-Optimizing-and-Multi-Target-Compiler-for-Embedded-System-Models.pdf
http://www.se-rwth.de/publications/Highly-Optimizing-and-Multi-Target-Compiler-for-Embedded-System-Models.pdf

412 C. Kehl et al.

40. Mathworks Inc.: Simulink User’s Guide. Technical Report. R2016b, MATLAB& SIMULINK
(2016)

41. de Paula Veronese, L., Auat-Cheein, F., Mutz, F., Oliveira-Santos, T., Guivant, J.E., de Aguiar,
E., Badue, C., De Souza, A.F.: Evaluating the limits of a lidar for an autonomous driving
localization. IEEE Trans. Intell. Transp. Syst. 22(3), 1449–1458 (2020)

42. Perron, L., Furnon, V.: Or-tools. https://developers.google.com/optimization/
43. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of

Computer Science (sfcs 1977), pp. 46–57. IEEE (1977)
44. Sakaguchi, K., Fukatsu, R., Yu, T., Fukuda, E., Mahler, K., Heath, R., Fujii, T., Takahashi, K.,

Khoryaev, A., Nagata, S., et al.: Towards mmwave v2x in 5g and beyond to support automated
driving. IEICE Trans. Commun. 104(6), 587–603 (2021)

45. Shuttleworth, J.: Levels of Driving Automation are Defined in New Sae International Standard
j3016. SAE International, Warrendale, PA, USA (2014)

46. Völker, M., Kloock, M., Rabanus, L., Alrifaee, B., Kowalewski, S.: Verification of cooperative
vehicle behavior using temporal logic. IFAC-PapersOnLine 52(8), 99–104 (2019)

47. Wong, K., Gu, Y., Kamijo, S.: Mapping for autonomous driving: opportunities and challenges.
IEEE Intell. Transp. Syst. Mag. 13(1), 91–106 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://developers.google.com/optimization/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	 AutoKnigge—Modeling, Evaluation and Verification of Cooperative Interacting Automobiles
	1 Introduction
	2 Learning-Based and Vehicle Capability-Aware Architecture for Clustering of Cooperative Interacting Automobiles
	2.1 Requirements for an Extended LTS Architecture
	2.2 Extended LTS Architecture
	2.3 Cooperative Velocity Adaption Algorithm
	2.4 Learning-Based Clustering
	2.5 Example Cooperation Intersection and Highway Access
	2.6 Conclusion and Outlook

	3 Verification of Cooperative Interacting Automobiles
	3.1 Introduction
	3.2 Verification Architecture
	3.3 Rule Set Generation
	3.4 Rule Checker
	3.5 Evaluation
	3.6 Conclusion

	4 Modeling Dynamic Systems
	4.1 Why Modeling?
	4.2 The EMA Data Type System
	4.3 Components, Ports, and Connectors
	4.4 Execution Semantics
	4.5 MontiMath
	4.6 Cooperative Agents and EmbeddedMontiArc Dynamics
	4.7 EMAD Execution Semantics
	4.8 Conclusion

	5 Conclusion
	References

