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A B S T R A C T

3D lattice structures comprise a connected network of segments that allow positioning of the base material where 
needed while maintaining an open-cell characteristic. These structures represent an ideal lightweight core ma-
terial for high-performance sandwich panels. This work presents, for the first time, the performance of lattice- 
based cores fabricated via indirect additive manufacturing using pultruded Carbon Fiber Reinforced Polymer 
(CFRP) rods. The CFRP sandwich panels were tested under out-of-plane compression, and their compressive 
properties and failure modes were predicted via analytical and FE analyses, later contrasted with mechanical 
testing. Finally, the study compares favorably with similar core materials found in the literature.

1. Introduction

For several years now, lattice-like structures have been developed as 
an alternative to different cellular topologies, such as honeycomb cores 
[14] for producing lighter and stronger open-structured materials. Lat-
tice materials were originally based on metals such as aluminum or ti-
tanium alloys [14,19], but they are also found based on ceramics [38] or 
polymers [15]. Lately, lattice materials are gradually becoming 
CFRP-based materials [9,32], taking advantage of their high 
strength-to-weight and high stiffness-to-weight ratios. A commonly used 
unit cell for lattice structures is the Body-Centered Cubic (BCC) due to its 
simplicity and similar or better mechanical properties compared to 
conventional honeycomb cores [16]. Smith et al. [25,26] studied the 
compressive behavior of BCC and BCC-Z. In their study, employing 
metallic laser-based Powder Bed Fusion (PBF-LB/M) of 316L 
stainless-steel, different 3D cores were obtained with relative densities ρ 
ranging from 3.5 % to 13.9 % (i.e., 280 kgm− 3 to 1112 kgm− 3, in ab-
solute values) for the BCC presenting elastic moduli ranging from 10.6 
MPa to 207.5 MPa. Zhang et al. [37,38] studied Cellular Ceramic 
Structures (CCSs) based on several structural configurations such as BCC 
and modified BCC (MBCC. The CCSs were fabricated from an Al2O3 
photosensitive slurry by a Digital Light Processing (DLP) system. The 

authors reported that CCSs materials performed properly showing good 
load-bearing capacity, and good energy absorption ability compared to 
similar bulk materials.

High-performance applications require the use of high-performance 
materials, such as CFRP. These materials have been recently used for 
manufacturing pyramidal lattice structures (i.e., considering only half of 
a BCC unit cell) from machined laminates [9]. Lattice cores based on 
pyramidal truss structures made from unidirectional carbon/epoxy 
pre-pregs oriented at [0/90] ◦ and processed by hot-press compression 
molding were studied by Xiong et al. [34,35]. They reported relative 
core densities ranging from 1.2 % to 4.7 % (i.e., 19.37 kgm− 3 to 72.85 
kgm− 3) for different numbers of prepreg plies used and evaluated in 
out-of-plane compressive tests. They found that the core moduli fell in 
the range of 45.8 MPa to 241 MPa, depending on the core density. 
Moreover, CFRP octet-truss structures (i.e., the unit cell presents two 
opposite pyramidal lattices connected by its bases and not by its tops like 
in BCC-based) were obtained by Dong and Wadley [8] by using snap-fit 
nodes. They achieved relative core densities of 1.7 % to 16 % (i.e., 
24.48kgm− 3 to 230.4 kgm− 3), reaching peak out-of-plane elastic 
modulus in the range of 75 MPa to 983 MPa and compressive strengths 
of 0.6 MPa to 9.89 MPa.

Pyramidal truss [10] and octet truss structures [4] using 
resin-impregnated carbon fiber stitched yarns as base materials are 
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almost comparable in compression performance to other similar com-
mercial cores, although their expected maximum mechanical potential 
is not reached, since the trusses present geometrical in-homogeneity 
along their profile. Therefore, curvatures close to the nodes negatively 
affect the load transmission, causing additional bending moments at the 
nodes instead of transmitting the load axially through the trusses from 
the upper to the lower skin. These disadvantages can be overcome by 
using new manufacturing methods employing alternative base materials 
to generate similar but higher-performance structures like those pre-
sented in this paper.

2. Materials and design

2.1. Materials

A design comprising BCC-like lattice structures was used for the core, 
giving an array of pultruded CFRP rods [28] (T300 CF/epoxy) of density 
1.55 gcm− 3 and fiber volume content of 65 %. Three different design 
variants were considered with different rod diameters: 0.5 mm, 1 mm, 
and 1.5 mm. The sandwich skins consisted of four layers of woven 
Torayca® T300-3k [30] carbon fiber 2/2 twill fabrics, combined with 
epoxy resin and hardener type L [21]. The resulting CFRP skins have a 
thickness of t = 0.80 ± 5 mm, an average fiber volume content of 55 %, 
and a density of 1.422 gcm− 3. The physical properties were determined 
experimentally. Table 1 shows the CFRP rods data employed for calcu-
lations [28], and the skins’ mechanical properties pre-estimated ac-
cording to the Classical Laminate Theory.

2.2. Manufacturing process

The method for obtaining sandwich panels combines different 
known techniques, mainly fused filament fabrication (FFF) and vacuum 
infusion (VI). The manufacturing of lattice cores is satisfied while 
correctly maintaining the desired shape, positioning, and angles 
involved, with good finishing quality and repeatability. A complete 

Nomenclature

α horizontal director angle
ρc core relative density
δ displacement
εc unit cell strain
ω vertical director angle
ρc core absolute density
ρs absolute density
σcB core compressive buckling strength
σcR core compressive fracture strength
σcpk core peak compressive strength
Ø or d rod diameter
φf fiber volume content
Acell cross-sectional area of a unit cell
E1s elastic modulus
Erod1s rod elastic modulus

Ix′ second moment of inertia
Ec core out-of-plane compressive modulus
F applied force
G12s shear elastic modulus
H unit cell height
k Euler buckling coefficient
L unit cell length
l rod length
P applied total force
R−

1s compressive strength
R12s shear strength
s slope
s suffix for base material
ν12s Poisson’s modulus
Vcell volume of a unit cell
W unit cell width

Table 1 
Mechanical properties of the CFRP rods employed for calculations. (*) Values 
from data sheet.

Component φf E1s G12s ν12s ν12s R−
1s R12s

[%] [GPa] [GPa] [–] [–] [MPa] [MPa]

Rods 65* 115* 5.8 0.016 0.25 450* 90*
Skins 55 67.78 4.06 0.028 0.028 527.44 110

Fig. 1. Manufacturing process schematic.
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monolithic sandwich panel is obtained. Further details are given in the 
author’s previous work [17].

A schematic chart of the method is summarized in Fig. 1. Soluble 
support structures were 3D printed via FFF that served as a fixation for 
the rods that form the sandwich core’s lattice structure. Filaments of 
Polyvinyl alcohol (PVA) were employed, which dissolved completely in 
water leaving no trace in the CFRP matrix [18]. The dry preform was 
assembled using the above-mentioned base materials. After, the sand-
wich panel (comprising the support structure, the rods, and the sand-
wich skins) was manufactured by the traditional vacuum infusion 
technique. Finally, the support structure was dissolved in water with 
little finishing (e.g., removing the resin channels). If applicable, more CF 
layers can be attached to the outer skins to avoid rod pull-out, giving 
place to the final sandwich part.

2.3. Lattice core design

Lattices depend upon three main factors: the raw materials, the grade 

of connectivity, and the shape of the elongated profile (e.g., rods, bars, 
beams, or sheets). They define the core’s mechanical and physical 
properties. In BCC lattice structures, the rods have a connection node at 
the middle of the unit cell similar to a 3D-Kagomé structure [32] but with 
four rods (Fig. 2). The connection mid-node is designed in a way that all 
the trusses meet each other at the mid-plane of the unit cell but avoid the 
common point while displacing the rods from the geometrical center. 
The connection points grant the proper support since the 3D printed 
mold provides in its conception, resin cavities like spheres that act as 
connecting nodes encompassing and holding the rods. The BCC-like 
design allows higher densification of the unit cell for smaller cell sizes 
and 45◦ orientation angles, a clear difference when compared to 
pyramid-like cells which present bigger unit cells for the same angles 
[9].

The parameterized unit cell design for the positioning of the rods is 
defined by variables such as Ø, ω, and H (Fig. 2). Three different rod 
diameters 0.5 mm, 1 mm, and 1.5 mm are used for studying the behavior 
of different core densities, and the unit cell size is maintained constant. 
Table 2 summarizes the unit cell’s main dimensions and core densities 
attained. The predicted core density ρc is calculated within the next 
section. The measured core density presents few discrepancies from the 
prediction, attributed to the added weight incorporated by the resin- 
glued connections among the rods, and to the skins. The angles α and 
ω are 45◦, H is fixed to 25.4 mm, while W and L are proposed to be equal 
and dependent on the core height H as L = W =

̅̅
2

√

2 H, resulting in a unit 
cell size of 17.96 mm. The samples obtained are shown in Fig. 3. The 
nominal dimensions are 65 mm by 65mm by 27mm, consisting of arrays 
of 3×3 cells.

2.4. Core relative density

The geometrical dimensions involved in the design are required to 
first predict ρc and ρc, and then to obtain the mechanical properties of 
cores. The geometry of the unit cell is influenced by angles α and ω, and 
the length l. The latter could be also indirectly obtained by the cell 
height (i.e., core thickness). The expression for the cross-sectional area is 
given in Eq. (1). The height is defined in Eq. (2) while the cell volume is 
obtained in Eq.(3). 

Acell = LW = (2lcosω)
2cosαsinα (1) 

H = 2lsinω (2) 

Vcell = 4l3cos2ω sinωsin2α (3) 

Furthermore, considering that the CFRP rods have a circular cross- 
section of diameter d, it is possible to obtain the average volume of 
the rods Vrod while multiplying its cross-area and the length 2l within a 
cell. Then, the relative density of the cell ρc and thus, the core, is ob-
tained as Eq. (4). 

Fig. 2. Parameters of the BCC-like unit cell.

Table 2 
Dimensions of unit cells and core densities. (*) Predicted. (**) Own 
measurement.

Ø L W H α ω ρ∗
c ρ∗∗

c
[mm] [mm] [mm] [mm] [◦] [◦] [kgm− 3] [kgm− 3]

0.50 17.96 17.96 25.40 45 45 5.34 8.66
1 17.96 17.96 25.40 45 45 21.34 22.92
1.50 17.96 17.96 25.40 45 45 48.03 49.76

Fig. 3. Indirect additively manufactured compressive test samples.
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ρc =
4Vrod

Vcell
=

πd2

2l2cos2ωsinωsin2α =
2πd2sinω

H2cos2ωsin2α (4) 

The variation of the relative density (Eq. 4) as a function of the 
diameter of the rods is shown graphically in Fig. 4, in which a quadratic 
polynomial curve is represented. By multiplying the relative density of 
the core ρc by the density of the rods ρs = 1550 kgm− 3 (i.e., the base 

material from which they are made), the core density is attained as ρc =

ρc⋅ρs (absolute values shown in the grey boxes). A targeted density below 
48 kgm− 3 is intended (i.e., the cores may be categorized as ultra- 
lightweight materials [20]).

3. Analytical and numerical models

Analytical and FE models were developed to predict the core me-
chanical response to out-of-plane compressive loading. The work is 
limited to simple and conventional FE methods targeting a complement 
for the first analytical insights about the features of the cores proposed. 
The single unit-cell model from Fig. 5a was taken as a base for the study. 
A generic compressive load was applied according to the z-direction to 
study the displacements experienced by the rods, modeled as built-in 
trusses at both ends. Analytical models were based on the load’s 
decomposition into its perpendicular components upon a single rod, 
following a local coordinate system (Fig. 5b). The displacements were 
evaluated at the middle of the unit cell, taking advantage of its sym-
metry. The energy method applied for analyses is familiar to references 
[4,10,32], although with dissimilar parameters, assumptions, and 
specified backgrounds. Two main failure modes are identified as 
strength failure and stabilization failure. The commercial code FEMAP™ 
11.3 with NX™ Nastran® [23] was used to carry out simulations to test 
separately the above-mentioned failure cases. The materials were 
modeled using the properties listed in Table 1. The CFRP rods were 
simulated by discretization of 48 elements per rod, using CBAR 
elements.

Fig. 4. Core relative density variation as a function of the rod’s diameter.

Fig. 5. Different sketches of the loading case analysed. (a) A schematic BCC-like unit cell under compressive loads. (b) Load case in the xz-plane. (c) Free body 
diagram of a half rod.
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3.1. Compressive stiffness

The elastic straining of a single truss within half of a unit cell (Fig. 5c) 
is used for calculating the core compressive elastic modulus Ec. Such 
deformations are obtained by simple beam theory while considering the 
displacement δ experimented by a rod due to ¼ of the total load P.

3.1.1. Analytical approach
The total compressive stress over a unit cell is given as Eq. (5), 

specifying the force P by its components according to z-direction 
(Fig. 5). The out-of-plane compressive modulus of the core Ec can be 
calculated from the unit cell modulus as Eq. (6). 

σc =
P

Acell
≡

2(|F‖|sinω + |F⊥|cosω)
(lcosω)2sin2α

= Erod1s
πd2δ

2l3cos2ωsin2α

[

sin2ω+
3
4

(
d
l

)2

cos2ω
]

(5) 

Ec ≈ Erod1s
πd2sin3ω

2l2cos2ωsin2α (6) 

The variation of the compressive modulus with the rod diameter is 
shown in Fig. 6. The elastic modulus of the core depends directly on the 
rod diameter, following a parabolic function. A detailed mathematical 
analysis deriving the above-mentioned equations is provided in the 
Appendix.

3.1.2. Numerical approach
Simulations were carried out to have better insights into the unit cell 

lattice structure behavior:

1. Simulating a BCC-like structure representing the effect of mid-plane 
connecting points as an array of bars (see Fig. 7).

2. Simulating an equivalent traditional BCC structure via two different 
boundary conditions set at the mid-plane as a pinned node or as a 
node with rotational constraints.

The first case emulates the glue contact among the rods. The end 
nodes of the array of bars on the mid-plane (i.e., the magenta-colored 
bars in Fig. 7c) are merged with the corresponding nodes of the main 
support rods. In addition, this simulation model aimed to evaluate the 
resultant forces over the mid-plane node by complementary studies (not 
shown in this work). In these complementary studies, a possible rupture 
of the middle connection of the rods was also considered, calculating the 
resultant forces/stresses over the mid-plane array of bars, distinguishing 
the compression loads and the shear loads, and comparing them to the 
maximum admissible load/stress of the glue. Different bar rigidities on 
the mid-plane array were employed to evaluate their effect on the mid- 
plane node behavior. Two further load cases were simulated as 1 kN and 
10 kN forces applied on the top of the unit cell (refer to Fig. 5), 
employing both linear and non-linear FE simulations. As a partial 
conclusion, it was found that the unit cell members shall fail before the 
mid-plane node bar array fails, in which the stresses were seen to be 
smaller than the admissible stress of the glue.

In cases 1. and 2., each end of the rods is fully constrained, and the 
mid-plane connecting point is free to displace over z-direction. Here, 
only the lattice with rod diameter d = 0.5 mm is shown as an example for 
analysis. The results of the linear static simulated strains obtained for a 
total generic load of 1 kN over the z-axis at the top-end nodes were 
3.1306 % for the BCC-like case, and 3.1312 % for the BCC case. This 
represents a difference of 0.02 %, meaning that there are no substantial 
differences in terms of displacements if the simulations are carried out 

Fig. 6. Core compressive modulus predicted by the analytical model.

Fig. 7. Bar-array FE renders of the unit cell employed for the simulation comparison. (a) BCC-like unit cell (isometric). (b) BCC-like unit cell (top). (c) Detail of 
central node as an array of bars.
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either as BCC or BCC-like unit cell models and the corresponding cell 
mechanical properties are assumed as equivalent. The rotational con-
straints at the central node presented no remarkable effects in terms of 
total displacements.

To further complement the analytical compressive modeling, linear 
static finite element simulations were implemented for predicting the 
elastic modulus Ec, considering the three different rod diameters pro-
posed. Thus, the Ec of BCC-like cores are based on the slope s= P

δ and 
calculated by Eq. (7), regarding H and δ at the top nodes. 

Ec =
H
δ

σc =
H
δ

P
Acell

=
sH
Acell

(7) 

Table 3 shows a summary of the linear static results with a brief 
comparison with the theoretical results. The predicted strain was larger 
for the smaller diameters and thus, the core moduli vary directly pro-
portional to the rod size. Then, the core compressive moduli were pre-
dicted as 100.65 MPa, 403.95 MPa, and 909.2 MPa, for the 0.5 mm, 1 
mm, and 1.5 mm rod diameters, respectively. Good correspondence is 
found in the theory.

3.2. Compressive strength

The analytical and FE studies of BCC-like cover the main core failure 
loads and mechanisms as well. Thus, failure modes were considered 
when a unit cell member collapses, such as:

1. Elastic buckling of a truss, σcB
2. Compressive fracture of a truss, σcR. 

σcpk = min(σcB, σcR) (8) 

The governing failure mode is associated with the one that shows the 
lowest core peak compressive strength (Eq. (8)).

3.2.1. Analytical approach
To ease the analyses, the transversal load was neglected in the 

analytical calculations, as its contribution is almost negligible as 
detailed in the Appendix. The different failure mechanisms are 
described as follows.

3.2.1.1. Elastic buckling of a truss. Slender CFRP rods under compres-
sive loads might undergo Euler buckling. Assuming that the rods are 
thought of as beams with two ends built in between the core and face 
sheets. Only half of the unit cell is employed for analyses. 

FrodEu =
π2Erod1sIxʹ

(kl)2 ≥ F‖ (9) 

Euler’s critical load is given as Eq. (9) [11]. Factor k presents 
different values according to the established boundary conditions. It 
shall be noted that k = 1, represents a truss with one end clamped and 
the other free, while k = 0.5. Then, the k values can be found between 
these two values (0.5 ≤ k ≤ 1) since the connections in the real case 
between rods and rod-skins are elastic links. In this work, as a starting 
point for studies is assumed that the trusses are pinned but guided at the 
mid-plane considering the connecting node effect. This leads to a k value 

of 0.699 ≈ 0.7. This value will be later confirmed by simulations. The 
compressive load applied to the unit cell is decomposed to its rod 
members using ω and α. When the critical buckling load is attained, the 
parallel load F‖ is equal in modulus to FrodEu. Thus, by replacing Eq. (9)
with Eq. (5) and considering the four trusses of a unit cell, the nominal 
compressive buckling strength of the core is given by Eq. (10). 

σcB ≈
Erod1sπ3d4

32k2l4cos2ωsin2α sinω (10) 

3.2.1.2. Compressive fracture of a truss. The nominal out-of-plane 
compressive strength of the BCC-like CFRP core (σcR) depends upon 
the failure compressive strength value of the employed rod members 
(R−

1s). The load is decomposed to the rods as a local axial stress to rods 
as σ−

1s. Then, the fracture of the rod is attained when σ−
1s ≥ R−

1s, and as a 
result, the collapse of the core. The failure load of the CFRP rods is set by 
Eq. (11). 

FrodR = R−
1sArod ≥ F‖ (11) 

Recalling the previous outcome and considering also co-linear 
compressive loads to the trusses according to director angles, the par-
allel load F‖ is equal in modulus to FrodR when the collapse strength of the 
base material is reached. Consequently, combining Eq. (11) and Eq. (5), 
the core compressive strength considering unit cell member fracture, is 
obtained by Eq. (12). 

σcR ≈
R−

1sπd2

2l2cos2ωsin2α sinω (12) 

3.2.1.3. Analytical results. The analytical predictions of the failure 
modes are plotted in Fig. 8, identifying Euler buckling failure mode (σcB) 
as the blue-dashed curve (calculated using Eq. 10); and rod fracture (σcR) 
as the green-dotted-dashed curve (Eq. 12). The dominant modes are 
plotted as the dark-green region, or the area below the curves for the 
minimum compressive stresses.

The strengths predictions for the analyzed cases are exhibited in 
Table 4. Therefore, the predicted modes are buckling failure for the 0.5 

Table 3 
Core compressive elastic moduli predicted by FE. (*) Theoretical value for comparison.

Ø L H δ s εc Ec E∗
c

[mm] [mm] [mm] [mm] [N mm− 1] [μm m− 1] [MPa] [MPa]

0.50 17.96 25.40 0.782 1274.06 3079.82 100.65 99.05
1 17.96 25.40 0.195 5123.58 767.38 403.95 396.89
1.50 17.96 25.40 0.087 11,547.37 340.94 909.19 895.59

Fig. 8. Failure maps according to analytical predictions for compressive loads.
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mm and 1 mm rod cores, even though the latter are also found closer to 
the fracture region, and fracture regarding the 1.5 mm rod cores.

A seed value k = 0.7 is employed for the buckling calculations (Eq. 
(9)). Nevertheless, different attainable strengths while varying k co-
efficients are presented in Table 5 as an example of the attainable 
strength values for the core cases analyzed. The k coefficients may be 
calculated indirectly via numerical and experimental data.

3.2.2. Numerical approach
The FE simulations give support to the analytical models by evalu-

ating the failure independently via two different approaches: Linear 
static simulations for the strength case (where rod buckling is not 
allowed), and non-linear simulations for the stability case (where rod 
buckling is allowed).

3.2.2.1. Linear static simulations. The core elastic modulus and the local 
stresses of the rods are predicted within this section. The case of 0.5 mm 
is presented as a study example for the procedure, although the results 
are then given for each rod case. The model is referred to Fig. 5 case. It 
shall be mentioned that the simulated stress shown is only hypothetical, 
noting that the maximum strength without buckling of the bars is 450 
MPa (Table 1).

Fig. 9 presents renderings of the bending moments and combined 
stress distribution. The force is then mostly transferred as axial 
compressive loads to the rods, throughout the director angles ω and α. 
The axial load has a value of 353.35N per rod and represents more than 
99 % of the stress components. Contrasted with theory, the peak value is 
on average σs =

1
4

1000
sin45/π0.5

4
2 
= 1800.63 MPa, having good correspon-

dence with the simulations. The bending moment, although almost 
negligible, results in a linear distribution with a maximum at both the 
rod’s ends and at the mid-plane due to the applied constraints. The fact 
of neglecting the transverse term in the calculations (see Appendix) is 
supported as well due to the predominance of the axial load calculated. 
The core cases for 1 mm and 1.5 mm rods presented similar results, with 
the same axial loads along the rods, although attaining an average of 
axial simulated stresses of 449.89 MPa and 199.95 MPa, respectively.

3.2.2.2. Non-linear simulations. The non-linear simulations show the 
critical instability load attainable for each core case. The simulation is 
carried out by applying vertical loads over the top nodes, at the same 
time acquiring the displacements performed by the rest of the nodes, 
until the model becomes unstable, and the simulation stops. Thus, 
tracking points on selected representative nodes are extracted and their 
trajectory curves are given in Fig. 10, starting from zero displacement up 
to instability, while reaching the critical load. The displacement of the 
nodes denotes an asymptotic distribution to which is possible to identify 
the critical applied load and indirectly obtain the approximated critical 
factor k given by Eq.(8). The critical loads P∗

crit are found at 60.6 N, 862.5 
N and 3865.6 N for diameters 0.5 mm, 1 mm, and 1.5 mm, respectively.

Furthermore, the material distortion due to the applied load in the 
instability step is provided in Fig. 11. Remarkably, the sketches present a 
change in the orientation at the mid-section, denoting a rotation at the 
inflection point as the effect of the simultaneous buckling of the rods 
(here, the node is freed to rotate). It could be inferred that the constraint 
of the rotating mid-node does not have any influence on the vertical 
displacements according to the linear simulations, but it can play a 
fundamental role when evaluating the buckling of bars. In practical 
terms, as an example, if Euler’s critical factor k might vary from ≈ 0.7 to 
0.5, the critical load of the proposed real cases would be underestimated. 
This study is out of the scope of this work.

3.2.2.3. Simulations results. Table 6 shows a summary of the predicted 
strength results. The core strength predictions exhibit a direct 

Table 4 
Core compressive strengths by analytical approaches. (*) Calculated using k =
0.7.

Ø L H α ω R−
1s Erod1s σcB* σcR

[mm] [mm] [mm] [◦] [◦] [MPa] [MPa] [MPa] [MPa]

0.50 17.96 25.40 45 45 450 115 0.193 0.775
1 17.96 25.40 45 45 450 115 3.098 3.106
1.50 17.96 25.40 45 45 450 115 15.72 7.009

Table 5 
Core compressive strength due to Euler buckling for different k coefficients.

k = 0.5 k = 0.6 k = 0.7 k = 0.8 k = 0.9 k = 1
Ø σcB σcB σcB σcB σcB σcB

[mm] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

0.5 0.379 0.263 0.193 0.148 0.117 0.095
1 6.072 4.216 3.098 2.372 1.874 1.518
1.5 30.827 21.407 15.728 12.042 9.514 7.707

Fig. 9. FE-results due to compressive loads for the 0.5 mm rod diameter lattice unit cell. (a) Bending moments in [Nm]. (b) Combined stress distribution in [MPa].
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Fig. 10. Load vs. node displacement curves obtained from the non-linear simulations. (a) Ø = 0.5 mm. (b) Ø = 1 mm. (c) Ø = 1.5 mm. (d) Reference on 
node tracking.

Fig. 11. Renders obtained from FE buckling simulations at the failure step for different rod diameters, while compression loading. (a) Ø = 0.5 mm (front). (b) Ø = 1 
mm (front). (c) Ø = 1.5 mm (front).

P. Vitale et al.                                                                                                                                                                                                                                   Composites Part C: Open Access 15 (2024) 100507 

8 



dependence upon the rod’s diameter size, i.e., the larger the rod diam-
eter size, the higher the core strength. Thus, the expected core strengths 
are of 0.187MPa, 2.67MPa, and 6.981MPa (i.e., the minimum strength 
value for each case). The numerical results are in good correspondence 
with the theoretical values. The minimum strength is attributed to 
buckling failure for the slender rods (0.5mm and 1mm). In contrast, the 
rod diameter of 1.5mm may fail by fracture because of its larger rigidity 
as E1s.Ix′

4. Experimental results

4.1. Compressive test procedure

Mechanical properties of the proposed lattice-based cores were 
evaluated following the ASTM C365 standard [2]. A Zwick / Roell Z150 
screw-driven universal testing machine was employed for testing at 
controlled room temperature. Two displacement transducers type HBM 
W5TK were used for compensating potential misalignment of the sam-
ples to the compression plates. The cross-head speed was set to 0.5 
mm/min. Three specimens of each core type were tested.

4.2. Compressive test results

The first case analyzed comprises the 0.5 mm rod cores (Fig. 12a). At 
the beginning of the test, the core shows a linear response followed by 
small changes in the slope, denoting a non-uniform load distribution. 
Little defects on the sample are visible, for example, as misalignment 
(Fig. 12b) which may cause small drops in the elastic modulus (point II), 

Table 6 
Core compressive strengths from numerical and analytical approaches. (*) Non- 
linear static simulation. (**) Linear static simulation. (***) Analytical value. (‡) 
Calculated using k = 0.7.

Ø L Pcrit* σc* σc** σc*** Expected failure
[mm] [mm] [kN] [MPa] [MPa] [MPa] mode

0.50 17.96 60.6 0.187 0.775 0.193‡ Euler buckling
1 17.96 862.5 2.67 3.101 3.098‡ Euler buckling
1.50 17.96 3865.6 11.98 6.981 7.009 Fracture

Fig. 12. Compressive stress-strain response of lattice-based core with Ø = 0.5 mm rods. (a) Compressive stress-strain curve. (b) Photographs associated to 
selected points.

Fig. 13. Compressive stress-strain response of lattice-based core with Ø = 1 mm rods. (a) Compressive stress-strain curve. (b) Photographs associated to 
selected points.
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negatively affecting the overall performance of the core, due to over-
loading of the remaining rods and possibly subjecting them to local 
buckling. The failure step is reached at point III, where elastic buckling is 
the dominant mode. This observation is also supported by the fact that 
the load does not drop suddenly, but gradually with a sustained negative 
slope and a large straining until reaching the ultimate strain and failing 
afterwards.

The case 1 mm rod case is shown in Fig. 13. A linear region is seen as 
the load reaches point II. Local failure in the form of Euler buckling is 
observed upon this point (Fig. 13a), also detected as the evident local 

drop in the elastic modulus. After point II, the load continues to increase 
at a smaller rate until it tops out at point III, where photographs give 
evidence of the rod́s buckling (Fig. 13b). The collapse of the structure 
develops subsequently going over to a negative stress slope which 
maintains upon the straining until reaching its maximum deformation.

The last case for 1.5 mm rod cores (Fig. 14a) presents an evident 
Hookean region at the beginning of loading, until point II. At this point, 
the sudden drop in the elastic modulus and the local variation of the load 
curve indicates local failures, and in this case, in the form of a rod’s 
fracture (Fig. 14b). After point II, the increase of the stress carries over to 
its maximum at point III, after which the structure collapses due to the 
rod’s crushing. After failure, the stress curve steps down continuously 
over the strain until the end of the test.

The compressive stress vs. strain charts for the best-performed cores 
are presented in Fig. 15. The difference among the curves is evident 
regarding the strength values and shape as a result of a larger rod́s cross- 
sectional area and the rod’s rigidity. The maximum strengths obtained 
are 0.24 MPa, 2.88 MPa, and 6.23 MPa for rodś diameters varying 0.5 
mm, 1 mm, and 1.5 mm, respectively. The smaller diameters exhibited a 
similar response after topping out the maximum value, both showing a 
sustained straining although with a negative slope, until the collapse of 
the structure. In contrast, the 1.5 mm case showed a sudden drop in 
stress after its maximum, and a continuous failure of the material as it 
was compressed until the end of the test.

5. Discussion

The analytical and FE models presented a successful correlation with 
the experimental tests as foreseen (Table 6). The failure is then attained 
by the mechanism that demands the lowest load to appear. A compari-
son of the predicted values and those obtained from the compressive 
tests is presented in Table 7. The analytical models for the buckling 
study took a seed value k = 0.7 so that very small discrepancies from the 

Fig. 14. Compressive stress-strain response of lattice-based core with Ø = 1.5 mm rods. (a) Compressive stress-strain curve. (b) Photographs associated to 
selected points.

Fig. 15. Compressive stress-strain response of lattice-based cores.

Table 7 
Analytical, FE, and experimental results from compressive tests.

Ø Analytical Numerical Experimental

σcpk Ec σcpk Ec σcpk Ec Observed failure
[mm] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] mode

0.5 0.193 99.05 0.187 100.65 0.22 ± 0.006 33.91 ± 3.96 Euler buckling
1 3.098 396.89 2.67 403.95 2.87 ± 0.011 267.8 ± 17.83 Euler buckling
1.5 7.009 895.59 6.981 909.19 5.87 ± 0.314 472.55 ± 119.04 Fracture
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numerical value occur. By adjusting the k-values gained from the sim-
ulations, the analytical models could be further accurate to the experi-
mental results. For example, employing k = 0.753 (Fig. 10b) in Eq. 9 for 
a 1 mm rod size, the analytical strength σcpk turns 2.68 MPa closer to the 
numerical result seen in Table 7. Additionally, the rod deformation seen 
in the FE (Fig. 11) showed a rotation of the mid-plane connecting node, 
as a consequence of the rod deformation and the free rotational border 
condition assigned. Seeing that the rods failed at the same time, the 
authors disregard a connection between a premature failure of one rod 
that may trigger the bucking of the rest cell members. Nevertheless, the 
experiments have shown that at the beginning of buckling (point II in 
Fig. 14b) some rods buckle just an instant before the others. Hence, 
further buckling studies with induced failure in FE are recommended to 
be carried out.

Additionally, the models correctly predicted the failure modes and 
peak strength. The predicted failure modes, such as Euler buckling and 
Fracture, can be further observed in Figs. 12a–14a at an instant before 
failure. In addition to the photographs, the type of failure mode can be 
inferred from the curves. In the case of the 0.5 mm and 1 mm rods, a 
typical buckling behavior is observed, where the load-displacement 
relationship is almost linear until a critical load is reached. Then 
continuing with a stable non-linear behavior until reaching a maximum 
deformation and instability, where the sample fails catastrophically. 
Given the slenderness of the 0.5 mm rods, after the critical buckling 
stress (approx. 0.2 MPa) the deformation relative to the applied load is 
much higher than in the 1 mm case since the latter has a higher stiffness 
due to the increased diameter. On the contrary, the failure of the 1.5 mm 
rods is evidenced as a fracture. The theoretical buckling load is almost 
twice as high as the fracture load (Table 4) due to the higher stiffness 
provided by the larger diameter. Fig. 14a shows that once a maximum 
stress is reached, the load-displacement relationship is not stable but the 
material fails and the stress drops, albeit gradually.

Seeing the elastic moduli, the standard deviations are relatively high. 
This suggests defects (manufacturing induced, test setup, etc.) causing a 
misdistribution of the loads in which some of the cells were overloaded 
than others (i.e., non-equally supported load), presumably by the 
misalignment of the skins concerning the compression plates 
(Figs. 12b–14b). These misalignments mean that the rods are not ideally 
at 45◦ at the beginning of the test, as ideally thought in the models, thus, 
the experimentally attained modulus (measured at the beginning of the 
test [2]) is lower than the predicted. However, the predicted compres-
sive strength has a smaller discrepancy about the experiments suggest-
ing that the load is better distributed over the specimen near the end of 
the test. This could be confirmed by tracking the angle of the rods at each 
time step while performing image analysis over new experiments.

Table 7 is complemented by Fig. 16. The experimentally attained 
strengths are expressed as the x-dots upon each rod case. The 0.5 mm rod 
case lay directly over the buckling predicted region with excellent cor-
respondence. In particular, according to the theoretical model repre-
sentation, the case for 1 mm rods set down a point over a frontier 
between failure zones, and thus, it could present either failure due to 
buckling, fracture, or mixed. Further, referring to its experimental and 
numerical data, the acting failure mode is attributed to Euler buckling. 
Last, the 1.5 mm rods are set in the fracture area of the maps, with a very 
good correlation (near 10 % deviation).

6. Comparison with similar materials

The experimental results (mean values) obtained in this work are 
compared with those reported in the literature in Fig. 17 and com-
plemented by Table 8. The compressive properties of different cores or 
geometries commonly used in sandwich structures such as lattices, 
honeycombs, and foams, are shown. The comparison with other bulk 
materials is made in a specific way, that is, regardless of their density. 
This compares the efficiency of a selected material for a lightweight 
application. The indexes of performance as E3c/ρc and σ3c/ρc are taken as 
comparison factors. Emphasis is put on ultra-lightweight cores.

In this work, the BCC-like lattice cores have compression ratios 
ranging from 3.91 × 103m2s− 2 to 11.68 × 103m2s− 2 and from 25.4 ×
106m2s− 2 to 125.2 × 106m2s− 2, in terms of specific modulus and specific 
strength, respectively. In Fig. 17, the specific modulus of the rod 
diameter d = 1mm (Nr. 16.2) outperforms all the cores assessed, except 
for the Nr. 3.2 and Nr. 15 CFRP square honeycomb types, showing dif-
ferences of about 0.75 × 103m2s− 2 and 3.43 × 103m2s− 2 respectively. In 
general, plate-based cores present a higher modulus than rod-based or 
foam-based materials of the same density [29]. Nevertheless, the spe-
cific strength of the lattice with d = 1 mm (Nr. 16.2) and d = 1.5mm (Nr. 
16.3) reach higher strength indexes than all similar cores found in the 
literature known to the authors. For instance, the rod diameter d = 1mm 
(Nr. 16.2) exceeds the best-found cores as lattice-type Nr. 2.1 by ≈ 21 %, 
and honeycomb type Nr. 3.2 by ≈ 39 %. Additionally, observing Table 8
and comparing the performances of very similar cores such as the 
octahedral stitched cores (Nr. 14.2) of almost the same densities (ca. 22 
kgm− 3), it is noticed that the proposed lattice cores Nr. 16.2 shows better 
compression stiffness (≈ 74 %) and strength (≈ 60 %), reflecting the 
importance of manufacturing CFRP-based lattices with straight and not 
curved elongated members [4]. Furthermore, regarding design engi-
neering, it is useful to compare the core performance directly with 
standard commercial materials such as aluminum-based honeycomb 

Fig. 16. Resulting failure maps: theoretical, numerical, and experimental data. Fig. 17. Comparison of different performance indexes in compression of 
similar cores.
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cores (Table 8). Aluminum honeycombs have been established for many 
years as extensively used sandwich cores for aircraft and automotive 
industries [33]. Then, considering the commercial core of density 25 
kgm− 3 Nr. 12 and comparing them with the proposed lattice counterpart 
Nr. 16.2, the latter nearly double their compressive elastic modulus and 
quadruplicate their compressive strength. For core densities near 48 
kgm− 3, Nr. 13 the elastic moduli are almost of the same order as the 
proposed lattices Nr. 16.3 exhibiting an 8.6 % difference. In terms of 
strength, the proposed lattices Nr. 16.3 shows 2.5 times more 
compression strength than their aluminum equivalent Nr. 13.

7. Conclusions

The design of three different novel ultra-lightweight cores based on 
lattices was presented and their compressive behavior was studied via 
micro-mechanical models, numerical models, and tests. The study is 
limited to simple and conventional predicting models targeting first 
insights on the competitiveness of the core proposals and not a detailed 
failure evaluation, and at the same time giving feasibility to the 
manufacturing method. The peak compressive strength was predicted 
satisfactorily with a very good correlation between the proposed models 
and experimental results. The discrepancy detected is attributed to im-
perfections incorporated during the manufacturing or the test setup. 
Further analyses are suggested for evaluating the entire failure map 
regions, validating more accurate models and comprehensive failure 
behavior.

The observed failure modes are attributed to Euler buckling for the 
smaller diameters and fracture of the rods for the largest. As seen in the 
numerical models, little difference is in the displacement analysis either 
as a BCC or BCC-like structure. The members in a BCC-like structure do 
not have a common coincident point, which may affect the final stiffness 
of the rod’s mid-plane in vertical and horizontal directions, and differ 
slightly for each rod’s diameter case, as seen in the FE models (different 
k-values varying with the rod diameters). The rods with larger stiffnesses 
present a higher k-value. Hence, the elastic link in the mid-plane 
(connection point) would exert less influence on the rods on the verti-
cal displacement. A way to accurate the simulations to evaluate the 

stiffness effect of the linking is, for example, to provide torsion springs in 
the mid-plane node, which elastic spring constant could be obtained 
indirectly from the experiments. However, a good starting point was to 
assume an Euler factor k of ≈ 0.7 as seed value for the theoretical 
analysis of buckling failure.

This work further validates the competitiveness of BCC-like struc-
tures made from pultruded rods contrasted to other bulk materials 
intended for lightweight applications. The properties of composite ma-
terials are mainly defined by the amount of fiber volume content 
available: the more fiber content the better the mechanical properties, 
although up to a limit. During the fabrication, using prefabricated pul-
truded rods with 65 % fiber content allows working with almost the 
maximum volume content that could be advantageously employed [24]. 
Conventional VI-based manufacturing methods for impregnating fibers 
or dry preforms can achieve fiber content values from 34 % up to 52 % or 
55 % [10,27].

Employing prefabricated pultruded rods is advantageous, since the 
rod́s cross-section is almost a homogeneous circumference along the 
length of the member, avoiding non-uniform profiles as observed in 
braided or stitched ones [4]. A more circular cross-section CFRP truss is 
less susceptible to elastic buckling [10]. Although plate-based cores 
have a higher specific stiffness than rod-based, plate-based cores present 
a much lower specific maximum strength (Fig. 17). The lattices based on 
rods have a good combination of stiffness and compressive strength.

Another advantage of the fabrication method lies in the vacuum- 
assisted resin infusion process used to interconnect the rod members 
in the sacrificial support structure. The resin is infused into the mold, not 
to impregnate the rods, since they are already resin-impregnated and 
cured, but allowing the resin to solidify, while keeping the rods at a 
specific orientation angle. Thus, controlling the right rod position is 
crucial to transfer the loads axially with the least flexural moment as 
possible (see Fig. 9), which may lead to premature stabilization failure 
or unexpected additional flexural stresses.

Another aspect worth mentioning is that the diameter of the rods 
does not directly influence the compressive performance of the cores. 
Absolute properties improve while increasing the rod diameter, for 
example by changing the failure mode from buckling to fracture. 

Table 8 
Comparison of similar core materials in compression loading.

Nr. Type of cores Base material ρc ρ∗ Ec σc Reference
[–] [–] [–] [kgm− 3] [%] [MPa] [MPa] [–]

1 Alporas® foam Aluminium closed cell 200 8.0 400 1.3 Ashby et al. [1]
2.1 

2.2
Pyramidal truss lattice Laminate [0/90]◦CFRP 43.2 

50.4
3.0 
3.5

214.27 
262.58

4.28 
4.65

Finnegan et al. [9]

3.1 
3.2

Square-honeycomb Woven [0/90]◦CFRP 34.25 
68.5

2.5 
5.0

339.76 
851.45

0.79 
5.24

Rusell et al. [22]

4 Hybrid pyramidal lattice Braided CFRP 43.5 3.0 50.7 1.00 George et al. [10]
5 Square-honeycomb AISI 304 239.4 3.0 2449.06 4.33 Coté et al. [6]
6 Square collinear truss lattice Ti–6Al–4V-coated SiC 377.28 9.6 3659.62 30.6 Moongkhamklang et al. [19]
7.1 

7.2
Tetrahedral truss lattice Age-hardened AA 6061 81 

99.9
3.0 
3.7

161.19 
276.72

4.06 
6.12

Kooistra et al. [14]

8 Prismatic diamond AISI 304 287.28 3.6 870.46 2.46 Coté et al. [7]
9 BCC micro lattice block EOS Ti6Al4V 246.96 5.6 76.56 4.14 Crupi et al. [5]
10 Egg honeycomb grid panel Laminate [0/90]◦CFRP 46.5 3.0 485 2.92 Xiong et al. [36]
11 Hexagonal honeycombs Woven Kevlar/914 57.96 4.2 10.43 0.55 Hou et al. [13]
12 Hexagonal HexWeb® (3/8”,.001 unit-cell) Aluminium 5052 25.6 1.02 137.89 0.65 Hexcel 

corp. [12]
13 Hexagonal HexWeb® (3/16”,.001 unit-cell) Aluminium 5052 49.65 1.99 517 2.31 Hexcel 

corp. [12]
14.1 

14.2 
14.3

Octahedral stitched core Stitched 
tow-preg CFRP

7.17 
22.27 
35.71

0.75 
1.41 
2.26

45.8 
69.46 
129.85

0.33 
1.14 
2.57

Che et al. [4]

15 3D Square- honeycomb 
(design 1)

Woven [0/90]◦CFRP (plates) 47.64 3.52 720 2.25 Vitale et al. [31]

16.1 
16.2 
16.3

BCC-like lattice cores 
(D 0.5, D 1, D 1.5)

Uni-directional CFRP (pultruded rods) 8.66 
22.92 
49.76

0.58 
1.53 
3.32

33.91 
267.8 
472.55

0.22 
2.87 
5.87

Present work

Note: (*) Approximated values.
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However, specific properties show that, for instance, 1 mm rods are 
more efficient than 1.5 mm rods in resisting the compressive load 
intended for a very low weight application (Fig. 17). Therefore, 
increasing the rod diameter also increases the core density, negatively 
affecting the performance index.

Hence, the manufacturing method and the base material selection 
overcome the disadvantages involved in other similar bulk structures as 
mentioned above. The proposed cores showed an enhanced mechanical 
performance, exceeding the specific compressive properties of most 
materials known in the literature.
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A. Appendix

Considering small displacements, when a beam is loaded by a concentrated load, the deflection δj at the loading point can be determined by 
calculating the partial derivative of the strain energy of the beam U concerning the acting forces Fj as Castigliano’s second theorem as Eq. (A.1) [3,11]. 

δj =
∂U
∂Fj

(A.1) 

In this way, based on the symmetry of the cell the model is sketched as a cantilever beam with a punctual load F at the core mid-plane (Fig. 18a). 
The displacementδ due to the load F is then defined by its perpendicular displacement components in parallel (δ‖) and perpendicular (δ⊥) directions 
according to the rod orientation as Eq. (A.2) and Eq. (A.3). 

δ‖ = δsinω (A.2) 

δ⊥ = δcosω (A.3) 

Considering the displacement on each perpendicular direction, the internal strain energy of the beam in parallel direction U‖ is caused by the 
parallel component of the force F, equal in modulus to the reaction F‖, and depends on the cross-sectional area of the rod as Arod = πd2

4 

U‖ =

∫l

0

N2dxʹ

2Erod1sArod
(A.4) 

Eq. (A.4) shows the internal strain energy over the parallel load component. Factor N represents the general expression of the applied axial forces 
while Erod1s is the Young’s modulus of the base material of the rod in the parallel direction. 

δ‖ =
∂U‖

∂Fj
=

∑m

j=1

⎛

⎝
∫l

0

Nj

Erod1sArod

∂Nj

∂Fi
dxʹ

⎞

⎠ =
F‖l

Erod1sArod
(A.5) 

Then solving Eq. (A.4) deriving with respect to F, the displacement in parallel direction is shown as Eq. (A.5). In this case, N is equal to F‖. The 
perpendicular case is schematically represented in Fig. 18b as a cantilever beam with a guided end, at which the angle of the cross-section does not 

Fig. 18. Schemes of a cantilever beam. (a) With an axial load. (b) With a guided end.

P. Vitale et al.                                                                                                                                                                                                                                   Composites Part C: Open Access 15 (2024) 100507 

13 



change (rotation restricted). This effect is represented by a concentrated moment at the end of the beam M acting in an opposite way to the 
displacement due to F⊥. The internal strain energy of the rod in perpendicular direction U⊥ is dependent on the perpendicular component of the force F 
as F⊥, and the flexural rigidity Erod1sIx′ of the truss (Eq. A.6). Factor M represents the general expression of the acting bending moment. The transverse 
shear effect upon the shear strain energy is neglected in this formulation due to the slenderness of the truss (L >> d) and the truss is assumed as a Euler- 
Bernoulli beam. 

U⊥ =

∫l

0

M2dxʹ

2Erod1sIxʹ
(A.6) 

Deriving Eq. (A.6) with respect to F the component of the displacement in the perpendicular direction is presented as Eq. (A.7). Component Ix′ 
represents the cross-sectional second moment of area, where Ixʹ = πd4

64 . 

δ⊥ =
∂U⊥

∂Fj
=

∑m

j=1

⎛

⎝
∫l

0

Mj

Erod1sIxʹ

∂Mj

∂Fi
dxʹ

⎞

⎠ =
F⊥l3

3Erod1sIxʹ
−

M(x́ )l2

2Erod1sIxʹ
(A.7) 

Since the angle at point B does not change at the end of the beam where M(x′) and F⊥ act, the sum of the rotations must be zero. Therefore, the angles 
at point B are calculated via Eq. (A.8) applying Castigliano’s second theorem for rotations at the location of the concentrated force and moment. 

θ =
∂U⊥

∂Mj
=

∑m

j=1

⎛

⎝
∫l

0

Mj

Erod1sIxʹ

∂Mj

∂Mi
dxʹ

⎞

⎠ =
F⊥l2

2Erod1sIxʹ
−

M(x́ )l
Erod1sIxʹ

= 0 (A.8) 

From Eq. (A.8) and solving for the moment M(x′), then Eq. (A.9) defines the relations between the force and the opposite moment. 

M(x́ ) =
F⊥l
2

(A.9) 

Replacing Eq. (A.8) in Eq. (A.7), the total displacement at point B is then defined by Eq. (A.10). 

δ⊥ =
F⊥l3

3Erod1sIxʹ
−

F⊥l3

4Erod1sIxʹ
=

F⊥l3

12Erod1sIxʹ
(A.10) 

The core effective modulus Ec is defined by the unit cell modulus as Eq. (A.11), as the ratio of the compressive stress σc to the compressive strain εc 
of the unit cell. 

Ec =
σc

εc
(A.11) 

According to Fig. 5 (main text) coordinate system, εc is then defined by Eq. (A.12)

εc =
(δ‖2 + δ⊥2)

1
2

lsinω =
δ

lsinω (A.12) 

Moreover, since each unit cell has four trusses, the total compressive stress over a unit cell is given as Eq. (A.13), (corresponding Eq. (5) in the main 
text) specifying force P by its components according to z-direction. 

σc =
P

Acell
≡

2(|F‖|sinω + |F⊥|cosω)
(lcosω)

2sin2α
= Erod1s

πd2δ
2l3cos2ωsin2α

[

sin2ω +
3
4

(
d
l

)2

cos2ω
]

(A.13) 

Substituting Eq. (A.13) and Eq. (A.12) into Eq. (A.11) and solving for Ec, the core modulus is given by Eq. (A.14). 

Ec = Erod1s
πd2sinω

2l2cos2ωsin2α

⎡

⎢
⎢
⎢
⎣

sin2ω+
3
4

(
d
l

)2

cos2ω
⏟̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅⏟

transversal term

⎤

⎥
⎥
⎥
⎦

(A.14) 

The component called as “transversal term” in Eq. (A.14), only contributes from 0.02906 % to 0.26 % to the expression in brackets for the cases 
analyzed in this work, so it will be neglected to ease calculations, and thus, Eq. (A.15) (corresponding Eq. (6) in the main text) is assumed to hold. 

Ec ≈ Erod1s
πd2sin3ω

2l2cos2ωsin2α (A.15) 
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