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Abstract

Precise georeferencing of remote sensing data is usually implemented in a post-processing fashion and is a crucial step for Earth ob-
servation applications such as change detection, natural hazard management, and ground target tracking. It is particularly important
for small satellites intending to perform temperature monitoring and wildfire detection on a global scale wherein the precise loca-
tion of fire is to be communicated. The cost-efficient navigating systems on board such satellites are often not capable of providing
accurate geolocation information directly due to space and power limitations. Therefore, it is very important to have a globally ap-
plicable georeferencing refinement framework that is robust against illuminational and time-relevant scene changes. In this paper,
we propose a georeferencing framework for thermal infrared images that consists of ensemble matching of deep learning-based
land cover predictions to archival, well-georeferenced land cover maps. We verify the proposed framework on the georeferencing
of single-band Landsat thermal imagery. Experimental results show the efficiency and practicality of the method with 72% of the

test images geolocated within 1-pixel accuracy with no trajectory information available.

1. Introduction

Spaceborne remote sensing (RS) images often show an initial
geo-positional misalignment ranging from meters (for Sentinel-
2) to kilometers (for modern Cubesats). Different phenomena
such as collision avoidance maneuvers, the inefficiency of low-
cost navigating systems on board, or the misfunctioning of nav-
igating systems due to temperature changes can lead to this de-
gradation of the positional accuracy of the acquired images.
The geo-positional misalignment is more detrimental for ap-
plications such as wildfire detection wherein information about
the precise location of the fire is crucial for prompt action. There-
fore, many research studies focus on improving the georefer-
encing of acquired RS images either by improving navigation
systems or post-processing refinements (Mostafa and Schwarz,
2001; Aguilar et al., 2017; Leprince et al., 2007; Chen et al.,
2022).

Since the improvement of onboard navigating systems of small
satellites faces limitations due to space and power constraints, a
vast majority of geopositioning refinement methods are realized
by image-to-image matching strategies. These strategies intend
to match the mislocated image - target image - to precisely geor-
eferenced data - reference data - by either area-based, feature-
based, or learning-based matching methods. By defining and
comparing a similarity measure in the image (Li et al., 2015)
or frequency domain (Reddy and Chatterji, 1996), area-based
matching methods aim to find the most similar window in the
reference image to the target image (Ma et al., 2021). The sim-
ilarity measures differ from correlation-based approaches (Li et
al., 2015) to domain transformation (Reddy and Chatterji, 1996)
and mutual information (MI) based (Cao et al., 2020) methods.
In feature-based methods, both reference and target images are
searched for mutual feature points and feature descriptors that
are used to find the transformation. To register multimodal RS
data Ye et al. (2017) present a novel feature descriptor named
the histogram of orientated phase congruency (HOPC), which
is based on the structural properties of images. To tackle the
problem of significant nonlinear intensity differences between

multimodal RS data, Ye et al. (2019) suggest pixel-wise extrac-
tion of the histogram of oriented gradient (HOG) as descriptors.
They define a fast similarity measure using the fast Fourier
transform (FFT) and then apply a template-matching strategy to
detect correspondences between images. Learning-based meth-
ods use deep learning to generate features, feature descriptors,
or similarity metrics. Hughes et al. (2020) present a three-step
DL-based framework for sparse image matching of SAR and
optical imagery. They first predict matching-appropriate re-
gions in each image and next, generate a correspondence heat-
map, and then remove the outliers by classifying the corres-
pondence surface as a positive or negative match. Aiming for
low-cost RS image registration, Ye et al. (2022) propose a multi-
scale framework with unsupervised learning, called MU-Net
that directly learns the transformation parameters of image pairs.
The stacks of several deep neural network (DNN) models on
multiple scales in the MU-Net prevent the backpropagation trap-
ping into a local extremum and resist significant image distor-
tions.

Despite the aforementioned approaches to georeference RS data
by image matching, the challenge persists for small satellites
with TIR imaging cameras and a significant range of geopos-
itioning error magnitudes. Area-based matching methods are
sensitive to the similarity measure definition and the level of
texture in the target image. The images acquired from Cube-
Sats with large geopositioning errors require large search areas
which intricates the definition of a robust similarity measure. In
particular, when considering TIR images with very low textural
details and daily illumination differences, the solely area-based
methods fail to correctly match the target image. The feature-
based matching methods on the other hand are highly dependent
on appropriate search for feature points and definition of fea-
ture descriptors. In addition to being computationally expens-
ive, feature-based methods are centered around low-level image
features which are majorly disadvantageous in the TIR domain
lacking sharp textural details such as salient points, lines, and
regions. Daily thermal emission changes add to the complica-
tion of the feature extraction task. As fully data-driven methods,

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-3-2024-223-2024 | © Author(s) 2024. CC BY 4.0 License. 223



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3-2024
ISPRS TC Ill Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4—8 November 2024, Belém, Brazil

o

ﬁ
Target image

>

Predict land

bands

| e _-
1 land cover

classiffiers

! A7

Selection of land cover s

cover class 1

Predict land
cover class 2

v Predict land

classes of interest

Land cover n
classifier /

cover class n

x1,y1)

Locate predicted land
cover class predictions on
their corresponding
reference maps by
template matching

(x2,y2)

Compute the mode value of coordinates,
average over coordinates with less than t
distance to the mode values.

(t = threshold)

/

Figure 1. Overview of the 3 steps of the framework.

the learning-based approaches lack representative training data
which covers the complexity and characteristics of multi-modal
especially TIR RS data (Zhu et al., 2023). Additionally, many
of the georeferencing techniques only focus on improving the
geopositioning of a specific region (Van Ha et al., 2018; Khlo-
penkov et al., 2009; Aguilar et al., 2017; Hakim et al., 2018).

Building on top of our previous work (Madadikhaljan and Schmitt,

2023), with this paper, we propose a globally applicable geor-
eferencing refinement framework (see Fig. 1) that focuses on
high-level image features and is a composite of the three match-
ing strategies reviewed above:

e Our method is feature-based since the target high-level
features used for matching are land cover (LC) classes

e Our method is learning-based since we train multiple deep
neural networks to predict LC maps from the target images

e Our method is area-based since the LC predictions are
matched to an archival, well-georeferenced land cover map
using a cross-correlation-based template matching strategy.

2. Proposed Georeferencing Framework

As shown in Fig. 1, the proposed framework consists of three
main steps. The initial step includes training several LC classi-
fiers. Next, the target image is put into the models, and corres-
ponding LC maps are predicted. The predicted LC maps then

are template-matched to their corresponding reference LC map
and located based on the highest correlation. Finally, outlier-
exclusive averaging is conducted to conclude the final geoloca-
tion of the image.

2.1 DL-based Land Cover Prediction

The first step (see Fig. 1, Part 1) of the framework consists of
training different single-class LC classifiers. TIR images meas-
ure the thermal emission of the objects in the scene and are
therefore highly correlated to the temperature and consequently
the type of LC classes present in the scene. Compared to other
feature-based methods, high-level features of LC class bound-
aries are independent of daily temperature changes and provide
robust image textures. Also, with the availability of global
world cover maps such as ESA world cover or dynamic world

data (Brown et al., 2022), the presence of up-to-date high-resolution

reference LC maps is guaranteed. A deep learning model of
choice such as UNet or ResNet is trained to perform the pixel-
wise binary segmentation of the input satellite image. The tar-
get classes are selected based on the geographical coverage of
the images, the available data, the time of interest, and the in-
formation content of the input channel and their correlation to
LC classes. The robustness of the proposed method concern-
ing seasonal LC changes is obtained through careful choice of
season-independent LC classes as features of interest. In the
case of using ESA world cover, where a single LC label is as-
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signed to each pixel for a period of the whole year, season-
dependent LC classes such as seasonal rivers are to be avoided.
While single-class LC predictions are used in the scope of this
paper, Multiclass segmentation can be considered to be included
in the decision fusion phase. To encourage true positives in the
predictions, highly present and well-distributed LC classes are
selected for training. (Schmitt and Zhu, 2016)

2.2 Template Matching

The target images are then inserted into the trained models from
Step 1 and corresponding LC predictions are generated (see Fig.
1, Part 2). The predicted LC classes are then searched for in
the corresponding reference LC maps. In contrast to traditional
area-based methods that rely on image intensities, our approach
utilizes LC predictions ensuring an enhanced and illumination-
independent similarity comparison. The search area is often not
the whole globe but a location defined by coarse direct geore-
ferencing, considering a buffer of the expected georeferencing
error of the devices. For instance, if the products of a satellite
can have offsets up to 100 km, the reference map will have a
buffer of around 100 km around the coordinates of direct geor-
eferencing. The process of template matching is a simple com-
putation of the two-dimensional correlation coefficient, which
is very fast considering the reduced search area and binary-to-
binary image comparison.

2.3 Decision Fusion of Matching Results

Each LC class will produce a location vote for the target image.
The probability of mislocalization of the target image caused by
imperfect LC predictions is reduced by averaging non-outlier
geolocation votes. That means, within all the location votes
location votes = {(x1,y1), (x2,Y2), ..., (Tn, yn)} the mode
values Zmode and Ymode is computed. All location votes are
compared to the mode value z,,04e and Ymode With a threshold
of t. If a location vote is larger than ¢, they are considered
outliers and are excluded from the final averaging. The defin-
ition and exclusion of outliers can be with one-pixel accuracy
in case of high precision requirements. If no mode value ex-
ists (i.e., there is no repeating location vote), the mean will be
the representative mode value and the estimated location vote is
compared to the mean with a threshold ¢. The final geolocation
of the image is derived from averaging over non-outlier location
votes (see Fig. 1 part 3). The fusion of location votes robustifies
the final positioning results.

3. Experiment and Results

We show the validity of the proposed framework in a complex
case where the geolocation information of the onboard geopos-
itioning systems error is relatively high and can be up to 500
pixels off and therefore, the image is to be geolocated in a large
search area. In addition to significant geolocation error, we
consider the images to be single-band thermal images to care
for night-time imaging where RGB cameras do not provide any
content for geolocation improvement.

The experiment consists of creating a global dataset with train
and test images, training several classifiers, and geolocating the
test data using correlation-based template matching methods.

3.1 Dataset

The dataset for training is created using globally distributed
points for which Landsat band 10 (10.6 - 11.19 pm) together

with the corresponding ESA World cover maps (Zanaga et al.,
2022) are selected with a size of 512 x 512 pixels from 2021.
ESA World Cover data are downsampling to the pixel spacing
of 100 meters. The classes of interest are chosen as described
below:

e Water bodies. water bodies including rivers, seas, and
coastlines are highly visible and detectable in thermal im-
ages and are often located close to wildfire-prone areas
such as forests.

o Tree covers including forests. This class is well-presented
in the whole dataset and particularly plays an important
role in wildfire-prone areas. Forests typically exhibit tem-
perature differences with respect to their surroundings and
therefore are also an interesting class for this experiment.

e Croplands. Another well-presented class that can be inter-
esting in case of farmland fires.

o Grasslands. Also, a well-distributed and highly present
class that is closely correlated to cropland and can be used
for georeferencing

The classes such as shrublands, moss, and lichen, etc. are ex-
cluded in this experiment due to the very low amount of data
available. Additionally, due to the fact that their typical areas
are quite small, they don’t provide good matching features. The
train set contains a varying number of images for each class
(4720 for tree cover, 4231 for grassland, 2364 for cropland,
and 1137 for water bodies) the test set consists of 30 carefully
selected and globally distributed images (see Fig. 2). The im-
ages in the test set are selected in a way to includes all classes
for a comprehensive evaluation.

Train
Test

Figure 2. The global distribution of train and test data.

3.2 Training the classifier

To train a classifier, we choose the well-known U-Net (Ron-
neberger et al., 2015) due to its high performance in segmenta-
tion tasks. The Batch size of training is chosen as 64, with each
image randomly cropped to 256 x 256 patches to prevent over-
fitting. The learning rate is 0.001, with 10% of validation data
to tune the hyperparameters, trained for 500 epochs for each
binary segmentation scenario. Table 1 shows the performance
of the trained models on the validation set by the end of the
training. The F1 score and Intersection over Union metrics are
used as established measures for binary segmentation tasks to
evaluate the performance of the models.

Figure 4 shows the output of the trained models for 4 sample
test thermal images. The first row, from left to right illustrates
the input image, and the ground truth LC maps, the tree cover,
water bodies, croplands, and grassland predictions, respect-
ively.
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Figure 3. The performance evaluation charts. The left bar chart illustrates the percentage of test images with respect to their number of
correct location votes from land cover predictions. The pie chart on the right shows how much each of the LC classes contributed to
finding the correct geolocation.

Classes | Water | Forest | Crop | Grass
10U 0.76 066 | 052 | 044
FI score | 0.86 0.79 0.67 | 0.61

Table 1. The classification performance of each land cover class
on the validation set.

3.3 Template Matching of Land Cover Maps

The predicted LC maps are then searched for in a reference LC
map. The search area is not the whole globe, but a buffered area
of 200 x 200 km around the correct location of the image.

The search of predictions in the reference binary LC maps is
conducted through a fast normalized cross correlation (Lewis,
1995). The window with the maximum correlation is considered
as the geolocation outcome of the corresponding LC map. In
Fig. 4 the geolocated predictions can be seen inside the corres-
ponding reference maps for all samples and all LCs of interest.

3.4 Fusion for Final Geolocation Estimation

The average of non-outlier geolocation predictions is calculated
to obtain the final geolocation of input thermal images. To ex-
clude the outlier predictions, all  and y coordinate votes are
compared to the mode value (or mean if no mode value is avail-
able) by a threshold of ¢. In our experiment, the threshold is set
to one pixel. As depicted in Fig. 4, the final geolocation vote
from all samples uses the votes from all class predictions except
the last sample wherein the geolocation outcome from grass-
land is considered as an outlier and therefore excluded from the
final vote. It means that a test image has to have at least 2 cor-
rect geolocation predictions from its LC template matches to
be geo-locatable by the proposed framework. At the end of the
experiments, we are able to geolocate 72% of the test images
within a search area of 200 x 200 km to an accuracy of 1 pixel
without trajectory information.

4. Discussion

From the results in the previous section, some key insights re-
garding the efficiency and applicability of the framework can
be drawn:

Without With
trajectory trajectory
Georeferencable | information | information | Not
Nr. of
test images 23/32 29/32 3/32

Table 2. The georeferencing results on test images with and

without trajectory information.

e The bar plot in Fig. 3 shows the percentage of data with 0

to 4 correct location votes with an accuracy of one pixel.
It can be seen that a high percentage of data receives at
least 2 correct location votes while for 3% of test data, no
correct location votes are found. For 20% of test images
with only 1 correct location vote, the inaccurate votes can
be excluded in the presence of trajectory information.

The pie chart in Fig. 3 shows the contribution of each LC
class to derive the accurate geolocation. It is to be seen that
water bodies and tree cover or forest predictions have su-
perior prediction performances with a single-band thermal
image and are therefore more beneficial in locating the im-
age. It is, therefore, crucial to select target LC class fea-
tures that are well-presented and accurately detectable in
the data. Rare LC classes are hard to train, difficult to
find in the reference map - due to the large empty areas-
and therefore less beneficial in the whole framework. The
evaluation of the performance of each LC prediction can
also be utilized to weight the LC classes with higher per-
formances.

According to Table 1, the highest IOU value and F1 Score
belongs to the water classifier. It means, that predicting
water classes from the thermal data is the most trivial task
with respect to the other land cover classes of interest.
Next, forest pixels can be detected with a relatively high
performance. Grass pixels are however the most difficult
ones to be detected from a single thermal band by this
training setup, yet achieving rather satisfactory results. The
overview of the model’s performances highly correlates to
the pie chart in Figure 3. It means that the land cover
classes with high-performance classifiers contribute more
to finding the right geolocation.
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Figure 4. Illustration of geolocation results of 4 sample test images using the proposed framework. From left to right for each sample,
the input thermal image, the ground truth land cover map, and the forest, water, cropland, and grassland predictions are shown in the
first row. The second row includes the geolocated land cover predictions in the search area for each class (columns 2-5) and the visual
comparison of the predicted final geolocation prediction and the ground truth geolocation in the first column.
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e From Table 2, it can be seen that 23 out of 32 test im-
ages (72%) can be georeferenced solely based on their LC
predictions without any trajectory information considered.
The availability of satellite trajectory information enables
the geolocating of images with at least one correct Lc pre-
diction i.e., 23/32 = 90%.

e In Fig. 5 more challenging scenarios are demonstrated.
The first sample from the top has low-performance pre-
dictions for tree cover and cropland classes and therefore
receives its final geolocation results only from water and
grassland classes. The second example test image in the
middle, however, can only be correctly geolocated based
on water class if the trajectory is available. Low cover-
age by the target land cover class leads to inaccurate loc-
ation votes from tree cover, cropland, and grassland pre-
dictions. The last sample at the bottom of Fig. 5 can not
be georeferenced due to the erroneous predictions from all
LC classes. Low coverage of water class, together with
low inaccurate LC predictions for other classes lead to
failed georeferencing results.

e The focus of this study is on extracting robust patterns and
the capability of the framework to perform the template
match in large search areas. Within the experiments of
this paper, no rotation, shearing, or scaling is involved. In
case of drastic geometrical image distortions, the proposed
framework will be insufficient in finding the pattern of the
predicted LC class. However, in the case of rotation and
scale changes, more complex template-matching methods
can be utilized where the predicted land cover map will
then be searched in the reference map at different scales
and varying directions using the image pyramid technique
(Chen et al., 2016). The main limitation of the proposed
method is its sensitivity to high levels of shearing and im-
age deformations.

e While the attention of this work centers around the thermal
imagery domain, the proposed framework can also be well
extended to the imagery from other modalities. The other
superior modalities of RS (i.e., optical, SAR) are also phys-
ical measurements of the Earth’s surface and hence, correl-
ated to LC types present in the scene (Brown et al., 2022;
Balzter et al., 2015; Eisavi et al., 2015).

e In case this methodology is used for novel Cubesat mis-
sions for which no data is available yet, the classifiers can
be trained on existing data from established satellite mis-
sions and a domain adaptation approach will then adapt
the performance of LC classifiers to the images acquired
from the target CubeSat.

5. Summary & Conclusion

In this paper, we proposed a globally applicable framework to
refine the georeferencing of thermal satellite images particu-
larly suitable for CubeSat data with relatively large geoposition-
ing errors. We examined the practicality of the framework on
the created dataset and discussed the corresponding strengths
and shortages. Due to the focus on high-level land cover fea-
tures, the proposed method is robust against changes in season,
daytime, illumination, and emission. By predicting multiple
LC types, the proposed framework reduces the probability of
erroneous geolocation results even in large search areas. The

outlier-exclusive averaging allows compensation for the mislo-
cation of images caused by imperfect predictions. The method
is globally applicable and can further be employed in optical
and SAR imagery domains.
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Figure 5. Ilustration of geolocation results of 3 challenging test images using the proposed framework. From left to right for each
sample, the input thermal image, the ground truth land cover map, and the forest, water, cropland, and grassland predictions are shown
in the first row. The second row includes the geolocated land cover predictions in the search area for each class (columns 2-5) and the

visual comparison of the predicted final geolocation prediction and the ground truth geolocation in the first column.
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