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Abstract
In passenger aviation and many other areas of transportation, it is common practice 
to offer customers who have booked a ticket for a lower compartment free seats in 
higher compartments at a discount before departure, a practice known as upselling. 
For example, economy class customers are offered a seat in business class for a 
small surcharge a few days before take-off. Obviously, it matters to whom to offer 
an upsell and at what price. In this paper, we address this decision problem in a 
generic fashion for revenue management settings. We assume that the company has 
disaggregated booking data about the customer’s initial choice of a product from a 
provided offer set. This data contains information about individual customers’ pref-
erences and may be leveraged to decide on upsell prices. To this end, we propose an 
optimization approach based on an expectation model, in which customers’ response 
probability is represented as a conditional probability formally consistent with their 
initial buying decision in a multinomial logit model. We present variants of the 
approach based on different levels of exploitable customer-specific booking data. 
In a numerical study, we investigate the value of this data usage and upselling in 
general to the company. Upselling in conjunction with knowledge of the customers’ 
original offer sets and customer segments, substantially increases revenues. Further-
more, the study demonstrates that the proposed approach can lead to larger revenue 
benefits than a naive benchmark approach which statistically decouples the custom-
ers’ upgrade acceptance decision from their original choice during the purchasing 
process.
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1 Introduction

Many service companies like airlines, hotels, and railways dispose of vertically dif-
ferentiated resources with a fixed capacity (e.g., seats in economy, business, and 
first-class compartments for airlines). If mismatches between supply and demand 
occur, capacity in a higher-valued compartment may be used to substitute missing 
capacity in a lower-valued one (e.g., a passenger with an economy ticket obtains a 
seat in business class).

An easy way to provide this substitution is using upgrades, where the customer 
(she/they) receives the better product at no extra charge and, thus, is assumed to 
always be happy to accept it. Obviously, this additional flexibility can be best lever-
aged if it is adequately modeled in the revenue management systems that dynami-
cally decide on the offer set—i.e., the assortment and pricing of products—pre-
sented to incoming customer requests during the booking horizon. The integration 
of upgrades into revenue management’s capacity control has been intensively 
researched (see Gönsch and Steinhardt 2015 for a review).

About a decade ago, companies started to monetize on upgrades. They discovered 
that customers who initially bought a lower-valued product may be willing to pay 
for the better one. Thus, companies may offer them an upsell at a later point in time, 
enabling the customer to switch to the higher-valued product for a small surcharge 
(see Fig. 1 for an example). Basically, an upsell means that a customer is offered an 
upgrade at a certain fee. So, the question arises to whom and at what price an upsell 
should be offered. Although upsells are widely used today, this decision is made 

Fig. 1  Exemplarily e-mail with upsell offer from IBERIA
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rather hands-on in practice and has—to the best of our knowledge—received very 
little attention in the scientific literature yet. One neglected aspect in the literature 
is the detailed consideration of customer-specific sales data. However, there is sub-
stantial potential in using such data, as the company knows more about the customer 
at this later stage, e.g., can derive some of their preferences from their choice from 
the original offer set. For this purpose, nowadays, due to the low prices of storage 
capacities, companies usually even have all the raw sales data available.

With this paper, we address this gap by investigating how companies can leverage 
booking data to improve upsell pricing decisions. Particularly, our contributions are 
as follows:

• First, we derive a closed-form representation of the customers’ response prob-
ability to upsell offers consistent with their original buying decision from a mul-
tinomial logit model (MNL).

• Based upon this, we then propose an optimization model, more precisely, an 
expectation model to derive optimal upsell pricing decisions. The model is able 
to consider different levels of detail of original booking data.

• We also develop a benchmark approach that does not learn from the booking 
horizon at all, i.e., it treats the upsell response as statistically decoupled from the 
original purchasing choice. We prove that the resulting upsell probabilities sys-
tematically overestimate the actual ones.

• Finally, in a comprehensive numerical study, we are able to show that using 
more detailed, customer-specific booking data in the upsell optimization problem 
can increase revenues significantly, and that the benchmark approach performs 
always worse than using detailed data.

The remaining paper is structured as follows. Section 2 presents the relevant liter-
ature. In Sect.  3, the mathematical upsell model is developed, including the deri-
vation of the upsell response probability. Further, for benchmarking purposes, we 
present a naïve approach that neglects any customer data from the original book-
ing. Finally, we discuss the different levels of detail in the booking data that can be 
fed into the model, which we refer to as different states of information (SOI). Sec-
tion 4 is dedicated to the numerical study. The paper closes with managerial insights 
and a conclusion as well as an outlook for further research in Sect. 5. Note that the 
research presented is directly applicable to many service industries where revenue 
management is applicable and upsells can be offered.

2  Literature overview

In the following, we first present survey papers and books on the related fundamen-
tal topics, more precisely, on revenue management, the MNL model and upgrades 
(Sect. 2.1). Next, we consider papers that treat upsells from a perspective other than 
that of revenue management (2.2), before we delineate upselling papers in revenue 



 D. Rauhaus et al.

1 3

management from our paper (2.3). Finally, we refer to revenue management papers 
that use the term “upsell” differently (Sect. 2.4) to clarify the terminology.

2.1  Fundamental topics

Extensive literature exists on revenue management in general. For broad reviews 
of the field, see for example Belobaba (1987), Weatherford and Bodily (1992), 
and Chiang et al. (2007). In addition, some reviews concentrate on specific top-
ics, e.g., generalizations and industry applications (Klein et al. 2020), price mod-
els (Bitran and Caldentey 2003), demand dependency (Weatherford and Ratliff 
2010), and choice-based revenue management (Strauss et  al. 2018). This paper 
concentrates on upsells and customer choice behavior based on a latent class 
model. Therefore, we limit the following literature review to these two topics.

Talluri and Van Ryzin (2004a) were the first to apply the multinomial logit 
model (MNL) to revenue management. In the econometric literature, the MNL 
model had been analyzed extensively by McFadden (1987). Using more than one 
customer segment leads to a so-called latent class model, like Bront et al. (2009) 
use in their approach for choice-based network revenue management. We refer to 
Strauss et al. (2018) for an overview of papers that deploy these discrete customer 
choice methods in revenue management.

Our topic is strongly related to upgrades. At this point, we omit a literature 
survey on (free) upgrades and refer to Gönsch and Steinhardt (2015) who review 
the literature regarding upgrades extensively. Some papers also discuss pricing 
with considering upgrades in the pricing process, e.g., Li et  al. (2016, 2022). 
Upsells, in contrast to upgrades, are a relatively unexamined topic in revenue 
management.

2.2  Upsells in different disciplines

The following streams of literature add to the understanding of customer behav-
ior concerning upsells, but do not provide companies with pricing strategies for 
upselling.

Ahn et  al. (2022) consider upsells from a mainly econometric perspective. 
The authors compare emotional to rational buying decisions in online and offline 
upselling processes. Similarly, Denizci Guillet et  al. (2022) investigate whether 
firms should use so-called online or offline upselling or even both strategies at the 
same time. Norvell et  al. (2018) study the short-term and long-term impacts of 
upselling and down-selling from a field study. They find that, in retail, down-sell-
ing leads to customer loyalty and, on the other hand, upselling increases short-
term revenues, but does not increase customer loyalty. Park and Yoon (2022) add 
to this literature by considering multi-brand retailers and examining the effects 
of promotions for high-end and lower-end brands. The last two mentioned papers 
include selling goods instead of services and investigate the effects of promotion.
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Another perspective is given by Mayer et al. (2022): their paper examines the 
effect of option framing and cognitive load on customer choices in the tourism 
industry. Hence, their research can be classified as psychological and economic 
aspects of upselling.

2.3  Upsells in revenue management

Gallego and Stefanescu (2009) present a dynamic programming formulation for 
capacity control with planned upgrades. They focus on static deterministic lin-
ear programming (DLP) approximations to solve the model; one for a primary 
capacity provider and another one for a reseller. Moreover, they include customer 
choice models by defining corresponding upsell response probabilities and show 
that it is then no longer beneficial to offer upsells when capacity mismatches are 
known from the beginning of the booking horizon, when reseller margins are 
homogeneous, or when companies have full flexibility in pricing.

Çakanyıldırım et al. (2020) implement upsells into a dynamic program. They 
consider dynamic upsell offers from a regular to a premium product between the 
booking time and the check-in time. Their model contains decisions on price, 
time, and number of upsell offers. In addition, they model the firm’s revenue 
maximization problem as a dynamic program and show that the optimal upgrade 
policy is of a pulsing type. They adhere to the independent demand assump-
tion and use a first-come first-served policy during the booking horizon, i.e., no 
capacity control. This corresponds to an offer set always containing all available 
products and no upselling possibilities when the premium product is not offered 
anymore. In this case, it is not possible to exploit information from the booking 
horizon. Thus, they do not include this possibility in the optimization model.

Cui et  al. (2019) examine the price dispersion when upsells are introduced 
at a price lower than the original price. The authors take an economic rather 
than a revenue management perspective. Besides, they only consider upgrades 
within the economy compartment (e.g., ancillary services). This differs from our 
approach in the way that we include capacity shifts between different compart-
ments. Their main finding is that introducing upgrades supports price discrimina-
tion and results in a higher revenue for the company as well as in a higher con-
sumer surplus.

Thirumuruganathan et al. (2023) focus on forecasting the upsell response prob-
ability using a machine learning algorithm based on real airline booking data. 
They provide insights into how customers can be segmented for upselling: those 
who never accept an upsell, those who always accept when offered, and those 
who consider taking the offer, but may not accept it because the price is too high. 
Although the authors use an integer linear program to assign upsells to custom-
ers, the model’s results are price ranges with a certain likelihood that a customer 
accepts an upsell offer. Thus, they do not provide a specific price for offering an 
upsell. Additionally, compared to our approach, the authors do not consider the 
offer set for predicting the upsell response probability.
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A related topic to upsells is conditional upgrades or standby upgrades. 
Although the customer pays for a conditional upgrade as for an upsell, she does 
not necessarily obtain the better product. These upgrades are sold in advance, 
but will be fulfilled if and only if capacity in higher compartments is not fully 
utilized at the end of the booking horizon. Exemplary papers considering condi-
tional upgrades are Yilmaz et al. (2017, 2022), Cui et al. (2018) and Biyalogorsky 
et al. (2005).

2.4  Papers using the term upsells with a different meaning

The term upsell is not consistently used in literature. We define upsells as upgrades 
for which customers pay an extra fee. Nevertheless, we next discuss some papers 
that use the term differently.

Denizci Guillet (2020) investigates upsell auctions. Although this is related to our 
research, one major difference can be identified in the pricing mechanism: Instead of 
posted prices, the author prices the upsells by auctions, which leads to research to a 
game-theoretical problem.

Aydin and Ziya (2008), Shao (2021) as well as Bergemann et  al. (2022) and 
Schaefers et  al. (2022) use the term upselling as a kind of cross-selling. In their 
terminology, upselling takes place immediately after the purchase, and the term 
describes selling additional products instead of convincing the customer to switch to 
a better product.

Yet another definition is used by Gallego et al. (2009) and Seng Pun et al. (2016) 
who use the terms upsell and sell-up, respectively, to describe buy-ups, the opposite 
of a buy-down. A buy-up occurs if a customer who wants to buy a cheaper product 
buys a more expensive one because the cheaper one is unavailable.

3  Upsell price optimization

In the setting we consider, that the time horizon is partitioned into the selling period, 
the upsell horizon, and the service period (see Fig. 2), which do not overlap.

The sequence of events is as follows: The company first performs classical 
choice-based revenue management during the selling period. That is, customers 
sequentially arrive and may buy a product from the offer set presented to them. At 
the end of this period, the company often faces a capacity mismatch (e.g., free busi-
ness class seats) that is unforeseen in the sense that revenue management could not 
anticipate or avoid it. Furthermore, for each customer who bought a product, the 
company now has precise information on bought products and maybe other informa-
tion on the customers from the purchasing process, e.g., the customer segment and/
or the seen offer set.

Then, the upsell horizon follows. This horizon is limited in time and short com-
pared to the length of the selling period, e.g., to the last hours before the service 
is carried out. Here, the customer information can be used to efficiently sell the 



1 3

On the value of booking data for upsell decision‑making in revenue…

remaining capacity to the existing customers via upsells. To do so, at the beginning 
of the upsell horizon, an upsell optimization problem is solved using all available 
information to determine whom and at what price to offer upsells. Then, the com-
pany batch-wise offers upsells to the customers who individually decide whether to 
accept the upsell or not.

Finally, the service period begins, and the service is provided.
In this paper, we focus on the upsell horizon, in particular, on the upsell optimiza-

tion model and on different possibilities to incorporate information on the customers 
obtained in the selling period.

In the following subsections, we first describe the problem formally and intro-
duce the notation (Sect. 3.1). Section 3.2 presents the formal derivation of the upsell 
response probability. The expectation model for the upsell horizon is developed in 
Sect. 3.3. Subsequently, for benchmarking purposes, an alternative, naive approach 
is presented that does not learn from the booking horizon, but considers the cus-
tomer’s new choice situation as statistically decoupled from the original choice 
(Sect. 3.4). In Sect. 3.5, we describe the so-called states of information (SOI), that 
is, the level of detail used to record booking data. The section concludes with an 
extension of the upsell response probability to consider group bookings (Sect. 3.6).

3.1  Setting and notation

We build on a classical choice-based single-leg setting, distinguishing between 
multiple compartments. More precisely, the selling period is discretized into T 
micro periods, during which the company sells products from the set J  . To sim-
plify notation, this set J  includes the no-purchase alternative (indexed 0). Each 
product j ∈ J  requires ajh ∈ {0, 1} units of capacity from resource (compartment) 
h ∈ H = {1, 2,… , |H|} . Lower (resp. higher) numbers refer to lower-valued (resp. 
higher-valued) resources. The (remaining) capacity of resource h is denoted by ch . 
The price of product j is rj . The no-purchase alternative does not lead to sales and, 
thus, has a price of r0 = 0.

Fig. 2  Model timeline



 D. Rauhaus et al.

1 3

In each micro period t, at most one customer arrives. In more detail, with 
probability �m , a customer belonging to customer segment m ∈ M arrives 
(w.l.o.g., we assume a time-homogeneous arrival process to improve readabil-
ity). Without knowing the segment, the company offers her an offer set O ⊆ J  
that takes into account the remaining capacity ch at that time. The offer set 
always includes the no-purchase alternative j = 0 , as the customer may decide 
not to buy. The customer chooses according to a random utility model, more 
precisely, according to the MNL model (see, e.g., McFadden 1987), which is 
based on random utility theory and has widely been used in revenue manage-
ment (see, e.g., Talluri and Van Ryzin 2004a, b; Zhang and Adelman 2009; Rus-
mevichientong and Topaloglu 2012). This modeling framework requires the 
specification of utility functions. We choose a generic specification where a cus-
tomer from segment m assigns a deterministic utility of Vjm =

1

�m
⋅ (qjm − rj) to 

product j. Here, qjm is a segment-specific quality index that describes the prefer-
ence of customer segment m for product j and �m is a scale parameter determin-
ing the strength of the stochastic influence described below.

The econometric foundations of random utility theory imply that custom-
ers within one segment may differ according to individual tastes that are not 
observable. More precisely, a customer n from segment m chooses according 
to her stochastic (or total) utility Vjm + �jn , with �jn being the realization of an 
i.i.d. Gumbel-distributed random variable in the MNL. If the customer decides 
against buying anything, she obtains the stochastic utility �0n of the no-purchase 
alternative which is always available. Now, if the company offers a customer 
n from segment m offer set O ⊆ J  , she chooses a product j’ with the highest 
stochastic utility. That is, a product j’ with Vj�m + �j�n ≥ Vjm + �jn∀j ∈ O is cho-
sen. If V0m + �0n is the highest utility, no product is bought. For the MNL, it is 
well-known that the resulting probability pj(O) that she chooses product j ∈ O 
is given in closed form by the equation

The quality indices qjm as well as the scale parameter �m are shared knowledge of 
customers and company, whereas her realizations of the � are private knowledge of 
each customer.

In the subsequent upsell horizon, as usual in practice, the company offers at 
most one upsell to each customer. For that purpose, the customers n ∈ N  who 
have bought a product are subclassified into classes l ∈ L such that all yl custom-
ers in class l are homogeneous to the company, given the customer’s data the 
company plans to use when making upsell pricing decisions. Since the company 
knows in each case which product the customers have bought, the classes are 
formed in such a way that all members of a class l have bought the same product 
jl . The company may also know and exploit which segment customers belong to 
or which offer set they have seen, which means that in this case, classes would 

(1)pj(O) =
e

1

�m
(qjm−rj)

∑
i∈O e

1

�m
(qim−ri)

∀j ∈ O
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be formed with unique class-specific segments ml or offer sets Ol , respectively 
(see Sect. 3.5 for details).

As they are homogeneous to the company, we assume that all customers in a 
class either receive no upsell offer or the same. In the latter case, each customer 
in class l belonging to customer segment ml receives exactly one upsell offer 
from product jl to product kl at price rl . The conditional upsell response prob-
ability pl is the probability that a customer from class l accepts the upsell offer. 
The upsell price is required not to exceed the difference between the two prod-
ucts‘ original prices, i.e., 0 ≤ rl < rkl − rjl . If capacity is exceeded in the upsell 
horizon, the company can reject upsell requests.

3.2  Upsell response probability

Regarding the formulation of the upsell optimization problem, the probability 
that a customer buys an upsell is crucial. The following proposition provides this 
upsell response probability in closed form, conditional on the customer’s behav-
ior in the selling period. It is based on the assumption that the customer’s unob-
servable preferences—represented by the realizations �—do not change over time. 
Examples of non-observable, but constant preferences include, e.g., the height of 
the passengers or the weight of their luggage. Note that this is a generalization of 
the upsell response probability from Gallego and Stefanescu (2009). Moreover, 
we provide an explicit derivation.

Proposition 1 The probability that a customer n from class l who initially bought 
product jl out of offer set Ol accepts an upsell to kl at price rl is given by

Proof As a customer class’s probability is independent of all other classes l ∈ L , 
we ease notation in the proof by leaving out the index l. That is, we write �,O, qi, j , 
and k instead of �ml

,Ol, qiml
, jl , and kl . Furthermore, we introduce the abbreviation 

win = qi + � ⋅ �in∀i ∈ J, n ∈ N .
The starting point is rewriting the upsell response probability pl as the comple-

mentary probability given in (3). Here, the second term is the conditional probabil-
ity that a customer who bought product j out of offer set O now does not buy the 
upsell at price rl.

The denominator is the probability that product j was bought by a customer from 
class l during the booking horizon given by (1).

(2)pl = 1 −

∑
i∈Ol

e
1

𝛽ml

(qiml
−ri)

∑
i∈Ol⧵{kl}

e
1

𝛽ml

(qiml
−ri)

+ e
1

𝛽ml

(qklml
−(rjl

+rl))
∀Ol ⊆ J, l ∈ L

(3)pl = 1 −
P(no upsell to k at price rl ∩ buying j while seeing O)

P(buying j while seeing O)
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In the numerator, we distinguish two cases: first, the upsell product k was part of 
the offer set ( k ∈ O ), and second, it was not ( k ∉ O ). For k ∈ O the following holds:

Combining the first two inequalities yields:

The last equality in (4) results from the fact that the consideration of the comple-
mentary probability allows us to apply the standard MNL closed-form transforma-
tion that can, e.g., be found in Ben-Akiva and Lerman (1985).

Finally, we substitute (1) and (4) in (3) and derive (5) for the first case ( k ∈ O):

The second case covers k ∉ O . Now, the numerator does not include the minimum, 
because during the booking horizon, the customer did not compare products j and k. 
Thus, the event does not encompass wjn − rj > wkn − rk . Again, see Ben-Akiva and 
Lerman (1985) for the last step’s transformation.

Substituting (1) and (6), formula (3) turns into (7):

P(no upsell to k at price rl ∩ buying j while seeing O)

= P
(
wjn − rj > wkn − (rj + rl) ∧ wjn − rj > win − ri ∀i ∈ O⧵{j}

)

= P
(
wjn − rj > wkn − (rj + rl) ∧ wjn − rj > wkn − rk ∧ wjn − rj > win − ri ∀i ∈ O⧵{j, k}

)

(4)

P(no upsell to k at price rl ∩ buying j while seeing O)

= P
�
wjn − rj > wkn −min{rj + rl, rk} ∧ wjn − rj > win − ri ∀i ∈ O⧵{j, k}

�

=
e

1

𝛽
(qj−rj)

e
1

𝛽
(qk−min{rj+rl,rk}) +

∑
i∈O⧵{k} e

1

𝛽
(qi−ri)

(5)

pl = 1 −
P(no upsell to k at price rl ∩ buying j while seeing O)

P(buying j while seeing O)

= 1 −
e

1

�
(qj−rj)

e
1

�
(qk−min{rj+rl,rk}) +

∑
i∈O⧵{k} e

1

�
(qi−ri)

⋅

∑
i∈O e

1

�
(qi−ri)

e
1

�
(qj−rj)

= 1 −

∑
i∈O e

1

�
(qi−ri)

e
1

�
(qk−min{rj+rl,rk}) +

∑
i∈O⧵{k} e

1

�
(qi−ri)

(6)

P(no upsell to k at price rl ∩ buying j while seeing O)

= P
�
wjn − rj > wkn − (rj + rl) ∧ wjn − rj > win − ri ∀i ∈ O⧵{j}

�

=
e

1

𝛽
(qj−rj)

e
1

𝛽
(qk−(rj+rl)) +

∑
i∈O e

1

𝛽
(qi−ri)



1 3

On the value of booking data for upsell decision‑making in revenue…

The last equality in (7) holds because O⧵{k} = O if k ∉ O . Note that, given our 
assumption that rl < rk − rj , we can neglect the minimum operator in equation (5) 
and thus, it is equal to the last line of (7). Reinserting the parameters �ml

 for � , jl 
for j, kl for k, Ol for O (all four ∀l ∈ L ), and qiml

 for qi∀i ∈ J ,l ∈ L into (7) yields 
Eq. (2).    ◻

3.3  Upsell optimization problem

In this section, we formulate the upsell optimization problem as a non-linear 
expectation model. A first intuitive version is given by (8)–(11). The objective 
function (8) maximizes the additional expected revenue from upsells by optimiz-
ing prices rl . It is subject to several constraints. In detail, constraints (9) relate 
to each resource h’s capacity and ensure that upsells will not lead to the capac-
ity being exceeded. The first summand of (9) counts the occupied capacity on 
resource h. The second summand represents the number of customers who move 
to resource h via an upsell from a lower resource g < h . The third summand 
represents customers leaving resource h because they buy an upsell to a higher 
resource f > h . Obviously, the second (third) summand is zero if h is the lowest 
(highest) resource. As no new customers are arriving during the upsell horizon, 
we can neglect h = 1 , as customers only leave the lowest-valued resource. Fur-
thermore, the prices’ domain is restricted by (10). Constraints (11) simply define 
the upsell response probabilities pl according to equation (2) to ease notation in 
(8) and (9). Note that pl depends on rl and, thus, the objective function (8) is 
non-linear.

subject to

(7)

pl = 1 −
P(no upsell to k at price rl ∩ buying j while seeing O)

P(buying j while seeing O)

= 1 −
e

1

�
(qj−rj)

e
1

�
(qk−(rj+rl)) +

∑
i∈O e

1

�
(qi−ri)

⋅

∑
i∈O e

1

�
(qi−ri)

e
1

�
(qj−rj)

= 1 −

∑
i∈O e

1

�
(qi−ri)

e
1

�
(qk−(rj+rl)) +

∑
i∈O e

1

�
(qi−ri)

= 1 −

∑
i∈O e

1

�
(qi−ri)

e
1

�
(qk−(rj+rl)) +

∑
i∈O⧵{k} e

1

�
(qi−ri)

(8)max
rl

∑

l∈L

rl ⋅ yl ⋅ pl
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This formulation effectively treats demand as if it was deterministic and equal to its 
expected value. Although intuitive at first glance, there is an important issue with 
the above model. Constraints (11) restrict upsell prices to an intuitive range. How-
ever, the upper bound on upsell prices implies a lower bound on the upsell response 
probability. This lower bound exceeds 0, which, in turn, may render constraint (9) 
infeasible, i.e., the sum of customers willing to accept an upsell exceeds the remain-
ing capacity.

To overcome this issue, we introduce an additional decision variable ul , which 
enables the company to decide directly on the number of upsells that are sold to 
class l, analogous to the partitioned allocation used in the standard DLP model for 
capacity control (see, e.g., Talluri and Van Ryzin 2004b, Chapter 3.3.1). Obviously, 
ul is nonnegative and cannot exceed the expected demand for upsells. Rewriting the 
mathematical model including ul results in the model (12)–(16).

subject to

This model is still non-linear in its objective function and some constraints. To solve 
it, we linearize the constraints by optimizing the probabilities instead of the upsell 
prices. This change of bijective variables is a standard trick in dynamic pricing and 

(9)
∑

l∈
yl ⋅ ajlh +

∑

g<h

∑

l∈
yl ⋅ pl ⋅ ajlg ⋅ aklh −

∑

f>h

∑

l∈
yl ⋅ pl ⋅ ajlh ⋅ aklf ≤ ch ∀h ∈ ⧵{1}

(10)0 ≤ rl < rkl − rjl ∀l ∈ L

(11)pl = 1 −

∑
i∈Ol

e
1

�ml

(qiml
−ri)

∑
i∈Ol⧵{kl}

e
1

�ml

(qiml
−ri)

+ e
1

�ml

(qklml
−(rjl

+rl))
∀l ∈ L

(12)max
(rl,ul)

∑

l∈L

rl ⋅ ul

(13)

∑

l∈L

yl ⋅ ajlh +
∑

g<h

∑

l∈L

ul ⋅ ajlg ⋅ aklh −
∑

f>h

∑

l∈L

ul ⋅ ajlh ⋅ aklf ≤ ch ∀h ∈ H⧵{1}

(14)0 ≤ rl < rkl − rjl ∀l ∈ L

(15)0 ≤ ul ≤ yl ⋅ pl ∀l ∈ L

(16)pl = 1 −

∑
i∈Ol

e
1

�ml

(qiml
−ri)

∑
i∈Ol⧵{kl}

e
1

�ml

(qiml
−ri)

+ e
1

�ml

(qklml
−(rjl

+rl))
∀l ∈ L
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has been used, for example, by Dong et al. (2009). The NLP model reformulation 
with linearized constraints can be found in “Appendix 1”.

3.4  Benchmark approach with decoupled choice situation

While Proposition 1 states that the upsell response probability is conditional on the cus-
tomers’ behavior in the booking horizon, a naive approach—which we will use as a 
benchmark in our numerical study—may neglect this information and instead assume 
that the upsell acceptance decision is an entirely new choice situation, statistically 
decoupled from the original choice. Technically, this means that the company assumes 
i.i.d. Gumbel-distributed random variables �nj and �nk for staying with the originally 
bought product j and the upsell to k, respectively. The resulting binary logit model 
yields the unconditional upsell response probability pu

l
 given by (17). It can be used in 

the upsell optimization model instead of (2).

The following proposition clarifies the relation of pu
l
 and pl.

Proposition 2 The naive approach overestimates the upsell response probability, 
i.e., pl ≤ pu

l
 for kl ∈ Ol as well as for kl ∉ Ol.

Proof First, we show that pl ≤ pu
l
 when the company has only two possible prod-

ucts (i.e., |J| = 2 ): the bought product jl and the product to which an upsell will 
be offered kl . If kl ∉ Ol , then obviously pl = pu

l
 . In this case, the company cannot 

learn anything regarding the customer’s preferences for product kl from the booking 
horizon.

If kl ∈ Ol in the two-product case, then (2) and (17) turn into

We compare these two probabilities as follows:

(17)pu
l
=

e
1

�ml

(qklml
−(rjl

+rl))

e
1

�ml

(qjlml
−rjl

)
+ e

1

�ml

(qklml
−(rjl

+rl))

pl = 1 −
e

1

�ml

(qjlml
−rjl

)
+ e

1

�ml

(qklml
−rkl

)

e
1

�ml

(qjlml
−rjl

)
+ e

1

�ml

(qklml
−(rjl

+rl))
and pu

l
=

e
1

�ml

(qklml
−(rjl

+rl))

e
1

�ml

(qjlml
−rjl

)
+ e

1

�ml

(qklml
−(rjl

+rl))
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The last inequality holds because the numerators as well as the denominators are 
always positive ( ex > 0 ∀ x ∈ ℝ ). Up to this point, we showed pl ≤ pu

l
 for the two-

product case.
To generalize this statement, it is sufficient to show that by adding more prod-

ucts, pl cannot increase—and thus, to show that the fraction in formula (1) cannot 
decrease. Adding other products than jl and kl to the offer set corresponds to adding 

a positive constant � =
∑

i∈Ol�{jl,kl}
e

1

�ml

(qiml
−ri) to both the numerator and the denomi-

nator. This is always bigger than the original term:

Consequently, pl decreases with any increasing � . As pu
l
 does not depend on the 

availability of other products in the offer set, and thus, remains constant, pl ≤ pu
l
 

is still valid for kl ∈ Ol and kl ∉ Ol . Thus, overall, pu
l
 overestimates the true upsell 

response probability pl .   ◻

As a consequence of Proposition 2, for the optimization model (12)–(16), using the 
overestimating probability pu

l
 instead of pl implies higher prices to comply with the 

constraints. As upsell prices are optimal with pl , the expected revenues by upsells are 
likely to decrease with pu

l
.

3.5  States of information

When presenting the optimization model above, we assumed that the company 
recorded all the necessary data during the selling period, i.e., the company knows 
for each customer

pl = 1 −
e

1
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• the bought product,
• the offer set from which the customer chose, and
• her segment m, i.e., the deterministic part of her utility defined by the quality 

indices qjm and the scale parameter �m.

According to our experience from practice, this assumption is not always ful-
filled. While knowing the bought product is a prerequisite for making meaningful 
targeted upsell offers—and is natural to record—the two other pieces of informa-
tion may be missing. Thus, we consider the following three alternative states of 
information that can occur (see also Fig. 3):

• SOI 1: Full information on bought product, offer set, and customer segment,
• SOI 2: Only bought product and customer segment are known,
• SOI 3: Only the bought product is known.

In the case of SOI 2 and SOI 3, the missing information needs to be imputed. 
Here, instance-specific approaches seem natural, and we will investigate a 
straightforward one in our numerical experiments (see Sect. 4).

3.6  Group bookings

In the case of group bookings, i.e., customers traveling together also buy their 
tickets together, it is very likely that they want to sit together in one compartment. 
Thus, these customers accept the upselling offer if and only if all group members 
are willing to accept it. Let �� be the fraction of customers belonging to a group 
of � persons and 𝜃1 = 1 −

∑
𝜈>1 𝜃𝜈 , then the upsell response probability for a cus-

tomer class l is

with pl being calculated by formula (2) for each group member. Formula (18) can 
then be used in the upsell optimization model instead of (2).

(18)p
gr

l
=
∑

�

�� ⋅ p
�

l
∀l ∈ L

Fig. 3  States of information: Level of detail in the recorded booking data
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4  Numerical study

In this section, we numerically analyze the benefit of upsell price optimization and 
using data from the booking horizon (selling period) with an example from the air-
line industry. First, we introduce the test instances (Sect. 4.1). In Sect. 4.2, we pre-
sent the imputation procedure if information from the booking horizon is missing 
(SOI 2 and SOI 3). Then, we describe the upsell price optimization approaches and 
benchmarks investigated (Sect. 4.3). Section 4.4 details the evaluation procedure. In 
Sect. 4.5, we present the numerical results.

4.1  Test instances

We consider a single flight with three compartments (resources) 
( H = {1 = economy, 2 = business, 3 = first} ) and capacities of c = (60, 30, 10) 
seats. In each compartment, two fares are defined (see Fig. 4) that may differ in the 
associated restrictions so that it makes sense to simultaneously offer them. For illus-
tration purposes, think of a cheap saver fare (e.g., without rebooking and cancella-
tion) and a more expensive full fare that offers flexibility. The saver fare products 1, 
3, and 5 are priced at €50, €230, and €450, respectively. The full-fare products 2, 4, 
and 6 are priced at €110, €285, and €560, respectively.

Two customer segments are considered. Leisure customers (segment m = 1 ) do 
not need the full fare products’ additional flexibility and, thus, have the same qual-
ity indices for both fares in a compartment. In detail, we have q11 = q21 = 75 for 
economy class, q31 = q41 = 225 for business class, and q51 = q61 = 430 for first 
class. Business customers (segment m = 2 ) require the flexibility and, thus, have 
quality indices of −70 , 120, 0, 300, 0, and 555. The logit model’s scale parame-
ters are �1 = 20 and �2 = 15 . The no purchase utilities q0m reflect overall demand 
intensity and differ across four instances that we are going to consider: Instance I1 
models high demand with q0 = (−25,−15) , instance I2 intermediate demand with 
q0 = (0, 0) , instance I3 low demand with q0 = (12.5, 7.5) , and instance I4 very low 
demand with q0 = (25, 15) . The rationale for the choice of parameters is given in 
“Appendix 2”.

Fig. 4  Products and possible upsells
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The products are sold during a booking horizon of T = 150 time periods. In each 
time period, with probability �1 = 0.5 ( �2 = 0.3 ), a leisure (business) customer 
arrives. During the booking horizon, the airline (company) uses a basic capacity 
control approach. In detail, at the beginning of the booking horizon, a choice-based 
linear program (CDLP, see Gallego et  al. 2004) is solved. Whenever a customer 
arrives, the offer set is randomly selected according to the CDLP’s primal solution. 
To emulate unforeseen demand/capacity mismatches, the booking process abruptly 
ends after 80% of the horizon in period t = 120 . After the booking horizon, the 
upsell horizon begins.

As common in practice, we only offer upsells to the next higher compartment—
analogous to limited cascading upgrading (see Steinhardt and Gönsch 2012). Air-
lines often rather leave first-class seats empty than upgrade an economy passenger 
to it. Additionally, customers stay with the same fare type (saver or full fare). Thus, 
for economy and business class products, exactly one upsell possibility exists. The 
resulting upsell hierarchy is illustrated in Fig. 4. The parameters are summarized in 
Table 5 in the “Appendix 3”.

4.2  Imputation procedure

In SOI 1, the airline knows for every customer the product she bought, her segment, 
and her offer set (see also Sect. 3.5 for a detailed description of the three SOI). Thus, 
no imputation is necessary. In SOI 2, the airline only knows the bought product and 
the customer segment, but missed recording the offer set, which often happens in 
practice. We handle this deficit as follows in our approaches: if the customer bought 
a saver fare product, we assume that the offer set consisted of the three saver prod-
ucts. Analogously, if a full-fare ticket was bought, we assume all three full-fare 
products were offered. In SOI 3, only the bought product is known. To handle this 
deficit, analogously to SOI 2 above, we deduce the offer set from the bought prod-
uct. Likewise, we assume that a customer who bought a full (saver) fare product 
belongs to the business (leisure) segment.

4.3  Upsell price optimization approaches

The following upsell price optimization approaches and benchmarks are 
investigated:

• C-CP is the Customer class-specific price setting with Conditional Probabilities. 
This is the new approach using the optimization model (12)–(16) to determine 
prices tailored to each customer class. It exploits the fact that, from customers’ 
choices during the booking process, we obtain information and now have a con-
ditional distribution regarding their stochastic utility.

• S-CP is an intuitive benchmark that sets prices according to a single static Share 
with Conditional Probabilities. Instead of optimizing one upsell price for each 
customer class, we restrict the optimization to one single decision variable: the 
discount of an upsell compared to the difference of the associated products’ 
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prices. More precisely, the airline decides on a global share s of the difference 
between the price of the bought product jl and the upsell product kl . Mathemati-
cally, this is rl = s ⋅ (rkl − rjl ) ∀ l ∈ L . Technically, we still use model (12)–(16) 
and substitute rl by the given formula.

• C-UP is the benchmark approach with the decoupled choice situation as 
described in Sect. 3.4, i.e., with Customer class-specific price setting assuming 
the Unconditional Probability. More precisely, the airline neglects what it learned 
about customers’ stochastic utility during the booking horizon. Technically, it 
does not condition customers’ stochastic utility on their choice during the book-
ing horizon but still assumes Gumbel distributed error terms ∈nj . Thus, instead 
of the conditional probability (16), the unconditional binary logit model (17) is 
used.

4.4  Evaluation procedure

To evaluate the pricing methods, in each setting, we first simulate N = 10.000 reali-
zations of the booking horizon for each of the four instances and use them for all 
SOI and upsell price optimization approaches, in the sense of common random 
numbers.

In each of these simulation runs, the airline performs capacity control using the 
CDLP’s primal solution as described above. Customers sequentially arrive and 
choose according to a MNL from the offer set presented to them. Thus, at the end 
of the booking horizon, the flight has a certain capacity of remaining free seats in 
the three compartments. The customers who bought a ticket are partitioned into cus-
tomer classes as described in Sect.  3.1 (combinations of customer segment, seen 
offer set, and bought product).

For the subsequent upsell decision-making, the size of each resulting customer 
class as well as the remaining overall capacity are relevant. For SOI 1, customer 
information is directly used within the upsell price optimization approaches to 
determine upsell prices. For SOI 2 and SOI 3, customer information is degraded as 
described above, the missing information is imputed, and fed into the optimization 
approaches.

Finally, the resulting upsell prices are evaluated. To do so, we use model 
(12)–(16) with full information (SOI 1) as this is supposed to reflect the actual situa-
tion in reality. Consequently, we also use this model to evaluate prices obtained with 
approaches for SOI 2 and SOI 3, and also when upgrade decisions have been made 
on the (simplifying) assumption of unconditional probabilities by our benchmark 
C-UP.

4.5  Results

The following results are averages over all simulation runs, ignoring runs in which 
business and first class are both sold out at the end of the booking horizon (about 
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7–17% depending on the instance) such that no upselling would be possible. Table 1 
gives an overview of the situation at the end of the booking horizon.

4.5.1  C‑CP

The first method analyzed is C-CP. Figure 5 shows the expected upsell revenue from 
the evaluation (second bar in each group of bars) for each instance relative to the 
upsell revenue obtained in the SOI 3 evaluation. Broadly speaking, we see that the 
revenue usually decreases in the state of information. More precisely, in SOI 2 and 
SOI 3 we obtain always significantly less expected revenue than in SOI 1.

Compared to SOI 3, where the least data is recorded during the booking hori-
zon, SOI 1 allows 2–5% higher revenues. Note that the very slight advantage of the 
evaluation of SOI 3 over SOI 2 in instance I1 is instance-specific and may result 
from the fact that many leisure customers are misclassified as business customers 
in SOI3 and are thus assigned higher quality indices. This effect in turn can lead to 
lower upsell prices. In addition, the customer classes can get larger which can result 
in more customers receiving an upsell offer.

Additionally, in Fig.  5, the first bars in each group of bars show the objective 
function value of the optimization model used to obtain the prices for each instance 
and SOI. For SOI 1, this value is identical to the expected revenue by definition. For 
SOI 2 and SOI 3, the objective function values are based on the assumption that the 
imputation is perfect. As it is not, they tend to overestimate the revenue.

Regarding the general benefit from upselling, it can be stated that SOI 1 yields 
the highest additional revenue in all instances compared to the revenue from the 
respective booking horizon. Revenues increase up to 15.80% for instance I1 and 
up to 16.01% , 16.81% , and 13.97% for I2, I3, and I4, respectively (not shown in the 
figure).

To demonstrate significant differences in the methods, Table 2 shows the confi-
dence intervals (in absolute values) based on a paired t-test with a significance level 
of � = 0.99 (see the corresponding confidence intervals for all instances and cus-
tomer class-specific pricing methods in Table 2 and Tables 6, 7 and 8 (Appendix 3)). 
Here again, we can see that SOI 1 always outperforms SOI 2 and SOI 3. This even 
holds for instance I4, where the revenues in SOI 1–3 are close to each other. The 
evaluation values of the methods in the column of each of these tables are subtracted 
from the ones of the methods in the corresponding row. Consequently, positive (neg-
ative) mean values in the tables demonstrate a dominance of the methods in the cor-
responding row (column).

To analyze the potential benefits of upselling in a more systematic way, we 
now partition the set of simulation runs into subclasses according to the free 
capacity observed after the booking horizon. We define eight subclasses by dis-
tinguishing free capacity in the three compartments below/above its median 
value. For instance I2, Table 3 shows the subclasses together with their expected 
upsell revenue relative to the revenue from the booking horizon. Results for the 
other instances are similar and included in Table 9 in the “Appendix 3”.

We observe that more free capacity in business and first class leads to more 
revenue and that free seats in the first-class compartment generate more revenue 
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Fig. 5  Expected upsell revenue (C-CP and S-CP) relative to revenue in SOI 3. Objective function values 
refer to the respective SOI, evaluation values are retrieved by using prices from the respective SOI, but 
evaluating on SOI 1

Table 2  Confidence intervals of the differences of the evaluation values for Instance I1

Positive mean values are interpreted such as that the method in the column is better than the one in the 
corresponding row

C-CP, SOI 1 C-CP, SOI 2 C-CP, SOI 3 C-UP, SOI 1 C-UP, SOI 2 C-UP, SOI 3

C-CP, SOI 1 –
C-CP, SOI 2 85.97 ± 0.78 –
C-CP, SOI 3 81.08 ± 1.07 − 4.89 ± 1.02 –
C-UP, SOI 1 1118.65 ± 13.61 1032.68 ± 13.22 1037.57 ± 13.29 –
C-UP, SOI 2 1230.58 ± 12.79 1144.60 ± 12.43 1149.50 ± 12.48 111.93 ± 7.05 –
C-UP, SOI 3 1470.95 ± 14.95 1384.98 ± 14.52 1389.87 ± 14.57 352.30 ± 6.41 240.37 ± 5.8 –

Table 3  Remaining capacity 
after booking horizon and SOI 
for each subclass

Subclass Remaining capacity after 
booking horizon

SOI

Eco Business First 1 2 3

1 < 12 < 6 < 2 7.30 7.24 6.92
2 < 12 < 6 > 2 19.15 19.06 18.33
3 < 12 > 6 < 2 14.80 14.66 13.87
4 < 12 > 6 > 2 28.95 28.71 27.55
5 > 12 < 6 < 2 6.39 6.34 6.07
6 > 12 < 6 > 2 17.31 17.22 16.60
7 > 12 > 6 < 2 13.63 13.50 12.81
8 > 12 > 6 > 2 26.60 26.37 25.37
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than free business seats. This is intuitive as a free first-class seat always ‘includes’ 
a free business seat (given customers strictly prefer higher compartments). It 
offers the opportunity for two upgrades: First, from the business class compart-
ment to first class, and then a second one from economy that uses the business 
class seat which just freed up.

Of course, it is also important how many passengers are eligible for an upsell 
offer. This is the reason why the situation is different for the economy class. Com-
paring subclasses 1–5, 2–6, 3–7, and 4–8, we see that the more sales (and, thus, the 
fewer free seats) we have in economy class, the higher the expected revenue is. This 
effect also seems to cause the decrease in revenue with decreasing demand, that is, 
from I1 to I4 (see Table 9 in the “Appendix 3” in combination with average reve-
nues from the booking horizon of the instances in Table 1). This highlights again the 
upsell revenue’s dependency on economy ticket sales because the average number of 
free seats in business and first class is nearly the same over all four instances.

4.5.2  S‑CP

The first benchmark approach analyzed is the static share S-CP. As expected, con-
straining the solution space leads to a loss in revenue (fourth bars in each group 
in Fig. 5). The losses can be severe and range from 2 to 14% (compare Evaluation 
C-CP and S-CP in Fig. 5). The differences of the objective function values and 
evaluation values from S-CP show similar behavior as from C-CP. Apparently, 
these differences are mainly driven by the SOI.

4.5.3  C‑UP

Finally, we analyze what happens if the airline does not learn from the booking hori-
zon, that is, it does not condition customers’ stochastic utilities on their choices. Fig-
ure 6 shows the objective function value and expected revenue obtained with C-UP 
relative to the corresponding values obtained with C-CP. The objective function val-
ues (left bars in each group of bars) are between 109 and 114%. A value greater 
than 100% implies that the upsell response probability was overestimated, leading 
to a higher objective value, thus confirming our analytical result from Proposition 
2. More precisely, the unconditional probability according to the binary logit model 
suggests that more customers are willing to buy an upsell at the price selected than 
actually are. This, in turn, leads to upsell prices set higher than in the C-CP, which 
causes huge revenue losses during the upsell horizon, as shown in the second bar 
in each group. For example, with the best information on demand (SOI1), C-UP’s 
upsell revenue only reaches about 13–45% of C-CP’s revenue.
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4.5.4  Group bookings

Up to now, each customer decided individually whether she accepts an upsell 
offer. In reality, this might not be true: Imagine a couple travelling together. Then, 
they will only accept the upsell if both accept the upsell offer. The probability 
that two persons accept an upsell is generally lower than the one for one customer 
alone (see 3.6). First, to investigate the revenue loss resulting from not consid-
ering group bookings in the upsell price optimization problem, we optimize on 
single customers and evaluate on a 50% ratio of group bookings. This means that 
the airline assumes that all customers travel alone, but actually 50% of the pas-
sengers travel in groups. Technically, the prices from the optimization approach 
C-CP (see Sects.  4.3 and 4.5.1) are evaluated with groups (see the second bar 
of each scenario in Fig. 7). For comparison, Fig. 7 additionally shows the mean 
C-CP evaluation values as first bar of each scenario. Next, we correctly consider 
the ratio of groups in the optimization problem (i.e., the airline assumes the 50% 
ratio already in their optimization). The result can also be found in Fig. 7 (third 
bars). As expected, using correct data for groups in the optimization generally 
outperforms assuming single customers in the presence of groups. In Instance I1, 
the improvement of the second over the third bar in SOI 2 does not seem intui-
tive, but can be explained by smaller assumed offer sets in the optimization prob-
lem. The smaller the offer set, the more decreases the upsell response probability. 
If it decreases, prices are set lower, and, consequently, the probability of groups 
accepting an upsell increases (see Eq. (18)).

Fig. 6  Objective function value and expected revenue from C-UP relative to C-CP
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4.5.5  Naive customer segment forecast

In the previous subsections, we assumed that the customer segment is either 
known (SOI 1 and SOI 2), or is determined by considering the bought product 
(SOI 3, for more details, see Sect. 4.2). The idea of the naïve customer segment 
forecast is that the airline does not know the original customer segments, but the 
airline knows the customer segments’ distribution. We then approach the situa-
tion as follows. The arrival probabilities are already known in the booking hori-
zon, e.g., from a market study. For the upsell horizon, these arrival probabili-
ties are scaled to sum up to one. We then randomly assign customer segments 
to the customers (according to the normed arrival probabilities) by means of the 
inverse transformation method. For the upsell optimization problem, we classify 
the customers with their new characteristics into classes l ∈ L . Compared to the 
original data, the naïve forecasting method misclassifies 37.5% ( 62.5% ) of leisure 
(business) customers as business (leisure) customers in each of the instances. The 
resulting upsell prices are, obviously, evaluated again using the original customer 
data (SOI 1).

Fig. 7  Expected upsell revenue with 50% group bookings relative to revenue in SOI 3 with single book-
ings

Table 4  Confidence intervals for the differences of the evaluation values of C-CP (SOI 1) and of the 
method with a naive customer segment forecasting

Instance I1 Instance I2 Instance I3 Instance I4

187.79 ± 3.22 201.77 ± 4.00 221.79 ± 4.48 290.62 ± 4.30
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The results of the comparison to the SOI 1 (full information) via a paired t-test on 
the evaluation values of C-CP (SOI 1) and the above-mentioned method in Table 4 
show, that the naive forecast method performs not only worse than SOI 1 but also 
worse than SOI 2 or SOI 3 (both C-CP, see Tables 2, 6, 7 and 8). Note that the latter 
observation is always dependent on the selected imputation procedure and on the 
instance. Lower error probabilities or worse imputation procedures for SOI 2 and 
SOI 3 could cause the naive customer segment forecast to outperform SOI 2 and 
SOI 3.

5  Managerial insights and conclusion

In this paper, we propose an expectation model to optimize upselling. We model 
customer behavior according to an MNL model and derive a closed-form expression 
for the upsell response probability based on customer-specific booking data from the 
booking horizon and the MNL. Specifically, we assume that customers’ preferences, 
as they are modeled by their stochastic utility, stay constant over time.

A numerical study generated numerous managerial insights. First, recording 
detailed disaggregated booking data is indeed recommended, because this data can 
be used to considerably increase revenue from upsells. We observed mean increases 
of up to 5.28% in the study. If not all the required data is available, such as the 
original offer set seen by the customer or segment information, it must be imputed. 
This ‘guessing’ is shown to often have a very negative impact on revenues. Sec-
ond, targeting upsells to finer customer classes pays off. While offering all upsells 
at a common discount already increases revenue, the benefit is much larger with 
upsell prices tailored to customer classes’ preferences. Third, the upsell revenue 
obviously increases with the number of customers that can be upgraded. For exam-
ple, the potential is higher with many economy bookings and few in business class. 
Fourth, we saw that knowledge about how customer preferences evolve over time 
(i.e., between the time of purchase and the upsell offer) is important. We assumed 
them to be stable and observed that using a benchmark approach with preferences 
that are uncorrelated over time—implying that the customer’s upsell choice situa-
tion is uncoupled from the original one—led to huge revenue losses. Fifth, knowl-
edge about group bookings is essential in the optimization process, because custom-
ers in groups behave differently to single booking customers. Groups are less likely 
to accept an upsell, and not adequately considering them may lead to high revenue 
losses.

There are several potential avenues for further research. First, regarding the evo-
lution of preferences over time mentioned above, we focused on two extremes: no 
change and no correlation over time. It seems desirable to also capture the con-
tinuum in between. Second, customer choice may follow another model than the 
MNL model, e.g., nested logit models (see e.g. Train 2009, Chapter 4.2), the general 
attraction model (Gallego et al. 2015), or random distributions with given probabil-
ity function. If closed-form solutions exist, they could be integrated into the upsell 
optimization model. Otherwise, different approaches seem necessary. Third, more 
sophisticated imputation methods for the different states of information tailored to 
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specific application areas could be investigated. Fourth, similar to dynamic pricing 
with strategic customers, the firm and/or the customers could be forward-looking in 
the sense that they maximize utility over time and already consider during the book-
ing horizon the possibility of later upsell offers. Fifth, upselling can be combined 
with different practices like overbooking or frequent flyer programs to investigate 
the combined effects. In the case of overbooking of the lower compartments, but 
not the overall capacity, our upsell optimization model can already be used as it is to 
upsell customers.

Appendix 1: Model with linearized constraints

Replace rl in (12)–(16) by solving (16) for rl to get the model (19)-(22).

subject to

Appendix 2: Rationale for choice parameters

We want to provide the rationale for the choice of parameters in the numerical study 
to facilitate further research on upselling. Therefore, we first present required values 
and then papers with similar values. Last, we show the connection of our values to 
the ones given in Gallego et al. (2009).

Required values

In terms of capacity, we aimed for a realistic aircraft size. Many papers use 
smaller capacities [see, e.g., Gallego et al. (2009) with up to 24 seats on a sin-
gle leg, Bront et  al. (2009) with between 30 and 50 seats per leg, 5–10 seats/
leg in Liu and Van Ryzin (2008)]. For modelling customer choice behavior, we 
need the quality index q, the price for each product rj , and the scale parameter � . 

(19)

max
(pl ,ul )

�

l∈L

ul ⋅

�
�l ⋅ ln(1 − pl) − �l ⋅ ln

��
e

q0l
�l +

�

i∈Ol

e
1
�l

(qli−ri )

�
− (1 − pl) ⋅

⎛
⎜
⎜
⎝
e

q0l
�l +

�

i∈Ol⧵{kl}

e
1
�l

(qli−ri )
⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠
+ qlkl

− rjl

⎞
⎟
⎟
⎠

(20)
∑

l∈L

yl ⋅ ajlh +
∑

g<h

∑

l∈L

ul ⋅ ajlg ⋅ aklh −
∑

f>h

∑

l∈L

ul ⋅ ajlh ⋅ aklf ≤ ch ∀h ∈ H

(21)0 < pl < 1 ∀l ∈ L

(22)0 ≤ ul ≤ yl ⋅ pl ∀l ∈ L
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With these, we can calculate the deterministic utility Vj = qj − rj or the preference 
weight v = e

(
V

�
) . Most papers directly define these parameters instead of break-

ing them down into the parameters that we need for our approach. An exemplary 
paper with deterministic utilities is Wang et  al. (2016). For preference weights, 
please refer to Liu and Van Ryzin (2008) and Bront et al. (2009).

Papers with similar values

The most similar type of parameters for a numerical study can be found in Gal-
lego et  al. (2009). The authors define the deterministic utility as the differ-
ence between schedule quality and price (both weighted). Although this can be 
adapted to our model, i.e., using fare quality (quality indices for flexibility and 
saver fare) instead of schedule quality, we still see problems in the adaption. 
First, the authors do not consider different customer segments. This forces us to 
come up with different values for the second customer segment, which, in turn, 
makes it very difficult to compare the instances. Second, the authors consider 
different flights and not different compartments. Thus, we would have to come 
up with quality indices for the different compartments. Another paper with a 
similar study is Dong et al. (2009). Here again, we do not have the full param-
eter set for the example in our manuscript. Although the authors provide quality 
indices (a) and cost (c), they do not numerically define their scaling parameter 
� for the MNL model. Thus, with a variable scaling parameter, we are able to 
match one of the given instances with any product pair. This already implies the 
second adaption problem: we would have to propose choice model values for 
four additional products as they only consider two products in their numerical 
study.

Altogether, therefore, there appears to be no paper whose values we can use 
directly. Of course, we could use some values from literature (like capacity and 
choice parameters for one product), but we would still have to come up with a 
multitude of other parameters. This, frankly, would create a largely new setting 
anyway, which cannot be attributed to the literature. Nonetheless, we oriented our 
values on values from literature. More precisely, we have chosen r, q, and � such 
that the absolute value ranges of 1

�
⋅ (q − r) are similar to the ones in Gallego et al. 

(2009).

Appendix 3: Tables

See Tables 5, 6, 7, 8, 9    
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Table 6  Confidence intervals of the differences of the evaluation values for Instance I2

Positive mean values are interpreted such as that the method in the column is better than the one in the 
corresponding row

C-CP, SOI 1 C-CP, SOI 2 C-CP, SOI 3 C-UP, SOI 1 C-UP, SOI 2 C-UP, SOI 3

C-CP, SOI 1 –
C-CP, SOI 2 15.46 ± 0.46 –
C-CP, SOI 3 100.82 ± 1.95 85.36 ± 1.82 –
C-UP, SOI 1 1738.12 ± 18.77 1723.46 ± 18.63 1638.10 ± 17.85 –
C-UP, SOI 2 1783.12 ± 18.51 1767.66 ± 18.38 1682.30 ± 17.62 44.20 ± 4.65 –
C-UP, SOI 3 1845.71 ± 18.40 1830.25 ± 18.26 1744.89 ± 17.42 106.80 ± 5.45 62.60 ± 4.73 –

Table 7  Confidence intervals of the differences of the evaluation values for Instance I3

Positive mean values are interpreted such as that the method in the column is better than the one in the 
corresponding row

C-CP, SOI 1 C-CP, SOI 2 C-CP, SOI 3 C-UP, SOI 1 C-UP, SOI 2 C-UP, SOI 3

C-CP, SOI 1 –
C-CP, SOI 2 13.76 ± 0.85 –
C-CP, SOI 3 96.20 ± 1.94 82.44 ± 1.80 –
C-UP, SOI 1 1426.58 ± 15.96 1412.82 ± 15.83 1330.38 ± 15.34 –
C-UP, SOI 2 1570.38 ± 15.16 1556.62 ± 15.15 1474.18 ± 14.67 143.80 ± 8.52 –
C-UP, SOI 3 1643.19 ± 15.62 1629.42 ± 15.58 1546.98 ± 14.97 216.60 ± 8.30 72.80 ± 5.08 –

Table 8  Confidence intervals of the differences of the evaluation values for Instance I4

Positive mean values are interpreted such as that the method in the column is better than the one in the 
corresponding row

C-CP, SOI 1 C-CP, SOI 2 C-CP, SOI 3 C-UP, SOI 1 C-UP, SOI 2 C-UP, SOI 3

C-CP, SOI 1 –
C-CP, SOI 2 6.54 ± 0.15 –
C-CP, SOI 3 33.21 ± 0.94 26.67 ± 0.89 –
C-UP, SOI 1 704.38 ± 10.81 697.84 ± 10.69 671.17 ± 10.46 –
C-UP, SOI 2 778.72 ± 10.66 772.18 ± 10.54 745.51 ± 10.50 74.34 ± 3.80 –
C-UP, SOI 3 802.21 ± 10.85 795.67 ± 10.74 769.00 ± 10.67 97.83 ± 3.81 23.49 ± 1.03 –
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