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Abstract. Integrated demand management and vehicle routing problems are characterized 
by a stream of customers arriving dynamically over a booking horizon and requesting logis-
tical services, fulfilled by a given fleet of vehicles during a service horizon. Prominent exam-
ples are attended home delivery and same-day delivery problems, where customers 
commonly have heterogeneous preferences regarding service fulfillment and requests differ 
in profitability. Thus, demand management methods are applied to steer the booking pro-
cess to maximize total profit considering the cost of the routing decisions for the resulting 
orders. To measure the requests’ profitability for any demand management method, it is 
common to estimate their opportunity cost. In the context of integrated demand manage-
ment and vehicle routing problems, this estimation differs substantially from the estimation 
in the well-examined demand management problems of traditional revenue management 
applications as, for example, found in the airline or car rental industry. This is because of the 
unique interrelation of demand control decisions and vehicle routing decisions as it inhibits 
a clear quantification and attribution of cost, and of displaced revenue, to certain customer 
requests. In this paper, we extend the theoretical foundation of opportunity cost in inte-
grated demand management and vehicle routing problems. By defining and analyzing a 
generic Markov decision process model, we formally derive a definition of opportunity cost 
and prove opportunity cost properties on a general level. Hence, our findings are valid for a 
wide range of specific problems. Further, based on these theoretical findings, we propose 
approximation approaches that have not yet been applied in the existing literature, and eval-
uate their potential in a computational study. Thereby, we provide evidence that the theo-
retical results can be practically exploited in the development of solution algorithms.
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1. Introduction
The widespread adoption of digital distribution chan-
nels both enables and forces more and more logistical 
service providers to manage booking processes actively 
in order to maintain competitiveness. As a result, their 
operational planning is no longer limited to solving 
vehicle routing problems (VRPs). Instead, providers 
integrate demand management to steer the booking 
process and either make established business models 
more profitable or operate novel ones profitably in the 
first place. These demand management approaches can 
comprise demand control decisions on prices of fulfillment 

options, the availability of fulfillment options, or the 
acceptance/rejection of requests.

Generally, the resulting integrated demand manage-
ment and vehicle routing problems (i-DMVRPs) share a 
common structure (Fleckenstein, Klein, and Steinhardt 
2023, Waßmuth et al. 2023): A service provider offers 
logistical services characterized by origin and destination 
in combination with other parameters like service fees, 
time commitments, or vehicle types. These services are 
sold throughout a booking horizon, with customer 
requests arriving dynamically. The provider specifies a 
set of fulfillment options to offer in response to an 
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incoming customer request, consisting of only a single 
option or multiple options with fixed or varying fees. 
Subsequently, the customer makes a purchase choice, 
that is, places an order, based on their individual prefer-
ences and the offered options. Fulfillment of all cus-
tomer orders takes place throughout the service horizon 
by means of a fixed number of vehicles. Capacities of 
other resources, like driver working hours, may also be 
limited. The booking and service horizons can be dis-
joint, which is typical for attended home delivery pro-
blems, or overlapping, which is common for same-day 
delivery and mobility-on-demand problems. Given the 
capacity restrictions as well as other operational con-
straints, such as potentially guaranteed service levels, 
the provider’s typical objective is to control demand 
and routing in a profit-maximizing way, that is, to maxi-
mize the difference between revenue and cost.

Because i-DMVRPs are stochastic and dynamic, they 
can be modeled as Markov decision processes (MDPs), 
and theoretically, decisions can be optimized by solving 
the well-known Bellman equation. However, as in 
demand management problems from traditional revenue 
management applications, like the airline or car rental 
industry (Klein et al. 2020), solving the Bellman equation 
is intractable for industry-sized instances. Therefore, it is 
common to approach demand management problems by 
decomposing them into two subproblems (Gallego and 
Topaloglu 2019, p. 25), with the aim of eliminating the 
Bellman equation’s recursiveness (Klein et al. 2018). The 
respective subproblems are (1) approximating the oppor-
tunity cost for every potential fulfillment option to mea-
sure its profitability considering the remaining booking 
process and (2) solving the actual demand control prob-
lem based on the opportunity cost approximation. For 
this general decomposition-based solution concept, the 
overall performance largely depends on the quality of the 
underlying opportunity cost approximation (Klein et al. 
2018), which is typically calculated as the difference of the 
state value approximation for the two resulting postdeci-
sion states (selling the fulfillment option versus not sell-
ing it). Hence, in revenue management, the analysis of 
opportunity cost and its properties has already become a 
standard tool (Talluri and Van Ryzin 2004, p. 92; Adel-
man 2007; Gallego and Topaloglu 2019, p. 10). However, 
the corresponding results cannot be transferred directly 
to i-DMVRPs, due to the mutual interdependencies 
between demand control decisions and vehicle routing 
decisions across the entire planning horizon (Agatz et al. 
2013).

This observation is the motivation for our work, which 
aims to inform and accelerate the development of more 
accurate opportunity cost approximation approaches. To 
this end, we consider opportunity cost at a formal level, 
and hence, draw on MDP models of i-DMVRPs as our 
primary object of study. Investigating these models, we 
derive mathematical properties and prove that they are 

valid for the entire family of i-DMVRPs. In a further 
step, we present three opportunity cost approximation 
approaches, which exploit the central property, namely 
the decomposability of opportunity cost. In a computa-
tional study, we analyze the potential of these approaches 
for a variety of problem settings. Primarily, this study is 
intended as a proof of concept for how the theoretical 
knowledge about the concept of opportunity cost can 
drive the development of solution approaches. In 
addition, the performance evaluation of the presented 
approaches can serve as a starting point for future 
research because it hints which approaches have the 
greatest potential in a certain setting.

Overall, our work has the following contributions: 
1. We deepen the theoretical foundation of opportu-

nity cost in the context of i-DMVRPs. We do so by elab-
orating on decisive differences between opportunity 
cost in traditional revenue management applications 
and in i-DMVRPs and by introducing a formal oppor-
tunity cost definition that is specifically tailored to 
i-DMVRPs.

2. We contribute to the existing literature on model-
ing i-DMVRPs and strengthen the connection between 
models and solution approaches by introducing a 
generic MDP model for i-DMVRPs. Further, to the best 
of our knowledge, we are the first to show formally 
how to separate demand control decisions from vehicle 
routing decisions at each decision epoch. This allows 
investigating the profit impact of demand control deci-
sions in isolation. Additionally, we present a valid 
model transformation to restore properties in case a 
certain i-DMVRP application does not naturally inherit 
them.

3. We introduce and prove four central properties of 
opportunity cost for our i-DMVRP model that can be 
exploited within opportunity cost approximation 
approaches. Those properties are decomposability into 
two components, potential component-wise negativity, 
overall nonnegativity, and state value monotonicity.

4. Based on our theoretical findings and focusing on 
the decomposability as the central property, we present 
three types of approximation approaches that exploit 
this property and have yet to be applied to i-DMVRPs: 
single component approximation, a rather naive hybrid 
reward approximation, and a more sophisticated 
hybrid reward approximation. Thereby, we illustrate 
how the theoretical results lead to direct, practical 
advances in algorithm development.

The remainder of this paper is structured as follows: 
In Section 2, we review the literature on opportunity 
cost in the context of demand management problems in 
general and on i-DMVRPs in particular. In Section 3, 
we first model the generic i-DMVRP, for which we 
show how its opportunity cost differs from the tradi-
tional interpretation in revenue management. Then, we 
present a formal definition of opportunity cost for 
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i-DMVRPs. In Section 4, we elaborate and prove four 
central opportunity cost properties, which hold for the 
generic i-DMVRP. In Section 5, we present the approxi-
mation approaches and discuss the computational 
results. In Section 6, we summarize our work and out-
line opportunities for future research.

2. Literature Review
In this section, we give an overview of the related litera-
ture. We divide this overview into two parts. First, we 
briefly sketch the evolution of the integration of demand 
management and vehicle routing as a distinct research 
area (Section 2.1). Second, we review the scientific con-
tributions to the analysis of opportunity cost for both tra-
ditional revenue management problems and i-DMVRPs 
and position our own work relative to these publications 
(Section 2.2).

2.1. Integrating Demand Management and 
Vehicle Routing

Specific similarities between traditional revenue man-
agement applications and selling logistical services, 
such as fixed resources and heterogeneous demand, 
have prompted the establishment of vehicle routing as a 
new application for demand management (Agatz et al. 
2013). The differentiation of i-DMVRPs from “pure” sto-
chastic and dynamic vehicle routing problems (for a 
recent review, see Soeffker, Ulmer, and Mattfeld (2022)) 
is nontrivial. In the remainder of this work, we follow 
the definition in Fleckenstein, Klein, and Steinhardt 
(2023). According to that, the control of demand with 
respect to profitability instead of only feasibility is the 
distinguishing feature of i-DMVRPs.

Thus, although there is some earlier work in the field 
of stochastic and dynamic vehicle routing, the works by 
Campbell and Savelsbergh (2005) and Campbell and 
Savelsbergh (2006) can be viewed as the first contribu-
tions to integrating active demand management and 
vehicle routing. These publications initiate the literature 
stream on attended home delivery problems (Yang et al. 
2016, Koch and Klein 2020, Vinsensius et al. 2020), for 
which Snoeck, Merchán, and Winkenbach (2020) and 
Waßmuth et al. (2023) provide in-depth reviews. The 
corresponding problems feature disjoint booking 
and service horizons, meaning that bookings for a speci-
fic service horizon, usually a working day, are only 
possible until a certain cutoff time, such that there is no 
temporal overlap between booking and fulfillment 
processes.

On the contrary, Azi, Gendreau, and Potvin (2012) 
present the first work on steering booking processes in 
parallel to fulfillment operations, that is, problems with 
overlapping booking and service horizons. Therewith, 
they start the literature stream on same-day delivery 

(Ulmer 2020, Klein and Steinhardt 2023), which is 
reviewed thoroughly by Li, Archetti, and Ljubic (2024).

Another stream of literature on i-DMVRPs is initiated 
by Atasoy et al. (2015) and Hosni, Naoum-Sawaya, and 
Artail (2014) and considers (shared) passenger transpor-
tation problems summed up under the term mobility- 
on-demand (Bertsimas, Jaillet, and Martin 2019, Al-Kanj, 
Nascimento, and Powell 2020, Arian, Bai, and Chen 
2022, Kullman et al. 2022). The corresponding problems 
commonly feature overlapping booking and service hor-
izons as well. For a more extensive, cross-application 
review of the literature on i-DMVRPs, we refer the inter-
ested reader to the recent survey by Fleckenstein, Klein, 
and Steinhardt (2023).

2.2. Theoretical Analysis of Opportunity Cost
As explained in Section 1, instead of approaching 
demand management problems holistically, solution 
concepts usually rely on decomposition. The idea is to 
separate the opportunity cost approximation from opti-
mizing the demand control decision. Both subproblems 
can be tackled with separate approaches. In traditional 
revenue management applications, properties of the 
state values and opportunity cost, such as monotonicity 
or nonnegativity, have been successfully exploited to 
improve both the performance of opportunity cost 
approximation approaches and approaches for optimiz-
ing the subsequent demand control decisions. For the 
first task, that is, the approximation of opportunity cost, 
approaches based on linear programming (Adelman 
2007) as well as on statistical learning (Koch 2017) are 
known to perform better if constraints are imposed to 
ensure that the resulting approximation also exhibits 
existing properties of opportunity cost. For the second 
task, that is, solving the demand control problem, cer-
tain properties simplify the computation of the optimal 
demand control decisions (shown in Talluri and Van 
Ryzin (2004, p. 38) for single-resource capacity control). 
When designing solution approaches for specific appli-
cations of demand management, it is necessary to prove 
whether such structural properties hold or do not hold 
for the specific demand management problem, that is, 
under the assumptions associated with the underlying 
application (see Maddah et al. (2010) for an example 
from cruise ship revenue management or Quante, 
Fleischmann, and Meyr (2009) for a manufacturing 
problem).

Because of the unique problem structure of i-DMVRPs, 
we cannot directly transfer findings from analyses of 
demand management problems in traditional revenue 
management or from other application areas of demand 
management. In the academic literature on i-DMVRPs, 
the majority of authors follow the general decomposition- 
based solution approach described in Section 1 (Fleck-
enstein, Klein, and Steinhardt 2023). However, the 
development of solution approaches is mainly driven 
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by structural reasoning based on characteristics of speci-
fic i-DMVRPs paired with the validation of the respective 
approaches in a computational study. First, there are 
works that design opportunity cost approximations with 
the aim of capturing displacement effects regarding poten-
tial future orders (Prokhorchuk, Dauwels, and Jaillet 2019, 
Ulmer 2020, Avraham and Raviv 2021, Lang, Cleophas, 
and Ehmke 2021). Second, some authors suggest that there 
is another component of opportunity cost in i-DMVRPs to 
be considered besides displacement cost: Arian, Bai, and 
Chen (2022) define opportunity cost as a difference in 
future profit, which includes fulfillment cost. According to 
Klein et al. (2018), opportunity cost quantifies the “[ … ]” 
consequences” concerning potential future requests and 
the resulting routing cost [ … ]” (p. 971). Koch and Klein 
(2020), Yang et al. (2016), and Campbell and Savelsbergh 
(2005) state that the lost revenue of potential future orders 
as well as final fulfillment cost have to be anticipated 
when approximating opportunity cost. Vinsensius et al. 
(2020) introduce the term “marginal fulfillment cost” of a 
potential order, and Akkerman, Mes, and Lalla-Ruiz 
(2022) aim at approximating changes in transportation 
cost. Abdollahi et al. (2023), Strauss, Gülpinar, and Zheng 
(2021), Mackert (2019), and Yang and Strauss (2017) pro-
vide the most extensive discussion of both revenue-side 
and cost-side future effects of a demand control decision.

Despite the substantial progress regarding approxi-
mation approaches, which the aforementioned publica-
tions have contributed to, there is hardly any work on 
formalizing and generalizing the underlying considera-
tions aside from the following three publications 
(Waßmuth et al. 2023): Lebedev, Goulart, and Margellos 
(2021) and Asdemir, Jacob, and Krishnan (2009) conduct 
a structural analysis of a specific i-DMVRP, namely an 
attended home delivery dynamic pricing problem with 
disjoint horizons. Based on MDP formulations that only 
implicitly model vehicle routing, they derive properties 
of the value function and the optimal pricing policy. In 
contrast to Asdemir, Jacob, and Krishnan (2009), Lebe-
dev, Goulart, and Margellos (2021) also model the cost- 
side via a fulfillment cost approximation. In compari-
son, our study is more general in that it considers a 
generic i-DMVRP and explicit vehicle routing decisions. 
It also focuses on the concept of opportunity cost inde-
pendent from a specific demand management approach 
such as dynamic pricing. Although the former two 
works take up a demand management-oriented view, 
Ulmer et al. (2020) focus on dynamic vehicle routing 
problems, which do not necessarily include demand 
management. They propose a novel MDP modeling 
framework and show its benefits for informing the 
design of solution approaches. Our work also aims to 
establish connections between modeling and solving 
i-DMVRPs but, different from Ulmer et al. (2020), with a 
focus on the demand control subproblem rather than on 
the vehicle routing subproblem.

In summary, our work closes existing research gaps 
in two ways: First, we provide a theoretical foundation 
for the existing qualitative reasoning and computational 
results. Second, our analysis provides the basis for 
developing algorithmic approaches that have not been 
considered in existing works, which we demonstrate in 
a computational study.

3. Opportunity Cost in Integrated 
Demand Management and Vehicle 
Routing Problems

In this section, we adapt and discuss the concept of 
opportunity cost specifically for i-DMVRPs. We first 
introduce a generic problem definition, on which we 
base our discussion throughout the whole section. For 
didactical reasons, we consider a problem as generic 
as possible and show later on (Section 4.5) how our 
insights can be transferred to more specific i-DMVRPs. 
We model the prototypical problem as an MDP (Sec-
tion 3.1) and show the relevance of opportunity cost 
for solving the introduced MDP (Section 3.2). Then, 
we discuss the structural differences of opportunity 
cost in i-DMVRPs compared with those in traditional 
revenue management applications and formalize a 
unified definition of opportunity cost specifically tai-
lored to i-DMVRPs (Section 3.3). For ease of readabil-
ity, we provide a list of the notation used throughout 
this paper in Online Appendix A.

3.1. Generic Problem Definition and Modeling
We discuss the concept of opportunity cost in the light 
of i-DMVRPs for the following generic problem: In each 
stage t � 1, : : : , T within a finite booking horizon, at most 
one customer request of type c ∈ C can arrive with a certain 
arrival rate λt

c. A customer request of type c is character-
ized by the locations of its origin and destination, stored 
by parameter lc, and revenue rc. Without loss of generality, 
we assume that multiple individual customer requests 
can arrive from the same location with the same reve-
nue, such that the arrival rates λt

c are independent of 
whether an individual customer request of type c has 
already realized before or not. Because the customer 
requests arrive sequentially, we can distinguish indi-
vidual customer requests by their request time τ.

The provider offers each arriving customer an offer 
set, which is a subset of a set of fulfillment options, for 
example, different time windows for order delivery. 
Once a customer books definitively, their request turns 
into a confirmed customer order that requires a certain 
amount of fulfillment resources, such as driving time or 
physical space in a vehicle, depending on the character-
istics of the corresponding fulfillment option stored in 
parameter o. Requests may arrive in parallel to fulfill-
ment operations, that is, the booking and the finite ser-
vice horizon overlap. During the service horizon, all 
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confirmed customer orders are served, and the provider 
incurs the resulting fulfillment cost defined as variable 
overhead cost arising from the execution of planned 
routes.

Because an individual opportunity cost value is associ-
ated with each (potential) order, that is, with a certain ful-
fillment option, modeling only a single fulfillment option 
is sufficient to generally analyze the concept of opportu-
nity cost. By omitting explicitly modeling multiple fulfill-
ment options, we obtain a much simpler model because 
the provider’s decision space for demand control reduces 
from all possible offer sets to an accept/reject decision 
per request. Hence, for the sake of simplicity, we consider 
a single-option model in the remainder of this work. 
However, we will explain how to generalize the results of 
our discussion for problems requiring the explicit model-
ing of multiple fulfillment options in Section 4.5. In the 
following, we state the corresponding MDP model: 

Decision epoch: A decision epoch defines the begin-
ning of a stage of the MDP. In the considered problem, 
such stages correspond to (constant) time steps t � 1, 
: : : , T. These time steps are sufficiently small to ensure 
that at most one customer request arrives between two 
decision epochs. Hence, λt

c can well approximate the 
probability for observing exactly one request per time 
interval (Lee and Hersh 1993, Subramanian, Stidham, 
and Lautenbacher 1999).

State: The state of the system consists of all informa-
tion that is known so far and relevant for decision mak-
ing. In i-DMVRPs with overlapping booking and 
service horizons, information about orders’ and vehi-
cles’ statuses stored in two separate components are 
part of the state definition. First, state st at decision 
epoch t stores all confirmed customer orders for which 
fulfillment has not yet started as tuples (lc,τ, o) in set Ct. 
The second component is the overall tour plan at deci-
sion epoch t, denoted by φt. It contains the currently 
running tours θv

t for every vehicle v ∈ V. Thus, we 
define the state as st � (Ct,φt). It is important to note 
that we construct the MDP around the postdecision 
state because this is the “natural” formulation when 
making decisions for an observed arriving request 
(Powell 2022, p. 490). Hence, st consistently refers to a 
postdecision state. An important consequence of this is 
that a decision in decision epoch t is based on the infor-
mation stored in state st�1.

Action: In an MDP model, the action at taken at deci-
sion epoch t corresponds to the realization of a certain 
decision. In the considered problem, at most one cus-
tomer request, denoted by its request type c, can arrive 
in any stage between t � 1 and t � T. In the case of a 
request arrival, the provider must integratively make a 
demand control decision gt ∈ G(st�1, c) ⊆ {0, 1}, that is, 
accept or reject the arriving request of type c, and a 
tour planning decision φt(gt) ∈Φ(st�1, c, gt) depending 
on whether the arriving request must be served 

according to the demand control decision. A tour plan-
ning decision is a decision on an update of the tour 
plan stored in the system state, which can also be the 
decision to leave the tour plan unchanged. The set 
Φ(st�1, c, gt) defines all potential tour plans that are fea-
sible given the preceding (postdecision) state st�1 and 
the demand control decision gt for the arriving cus-
tomer request of type c. In general, the tour plan must 
allow for the duly fulfillment of all confirmed customer 
orders. However, the precise definition of any feasible 
tour plan, that is, of the action space for the tour plan-
ning decision, depends on the specific problem. If no 
customer request arrives, we set gt � 0, and thus, only a 
tour planning decision φt(0) ∈Φ(st�1, 0) not including a 
new request is required. In summary, the action at is 
formally defined for three distinct cases:

at �

(0,φt(0)) for t � 1, : : : , T, if there is no
customer request arrival

(0,φt(0)) for t � 1, : : : , T, if the current
customer request is rejected

(1,φt(1)) for t � 1, : : : , T, if the current
customer request is accepted:

8
>>>>>>><

>>>>>>>:

(1) 

The corresponding action space At(st�1, c) at a deci-
sion epoch t when being in state st�1 and receiving a 
customer request of type c comprises the two, above 
introduced components, that is, the demand control 
component G(st�1, c) and the tour planning component 
Φ(st�1, c, gt). Thus, the action space is formally defined 
as At(st�1, c) � {(gt,φt(gt)) : gt ∈ G(st�1, c),φt(gt) ∈Φ(st�1, c, gt)}. 
Thereby, the action space for the demand control deci-
sion depends on tour planning, because accepting a 
request of type c given the relevant state st�1 is only 
feasible if at least one feasible tour plan exists, that is, 
if Φ(st�1, c, 1) ≠ ∅. However, for better readability, we 
omit this dependency as well as the dependency of 
the demand control decision gt on the request type c 
in the notation. In case there is no customer request 
arrival at decision epoch t, the respective action space 
is defined as At(st�1) �Φ(st�1, 0).

Rewards: The demand-control-related rewards rc are 
received with actions gt � 1 for t � 1, : : : , T. They are 
positive and equal the revenue of the customer request 
type c that is accepted at t, respectively. Demand con-
trol actions gt � 0 for t � 1, : : : , T entail no rewards. 
Because we assume that the triangle inequality holds, 
the reward accrued with a tour planning decision is 
either zero (in case no new fulfillment vehicle operation 
is triggered) or negative (otherwise). We call those 
rewards logistics-related rewards and denote them for-
mally by rφt(gt). They equal the negative of all fulfill-
ment cost that are newly triggered with a decision 
φt(gt), that is, the variable overhead cost of all new ful-
fillment operations that are executed definitively.
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Transition: As a consequence of actions and stochas-
ticity, the MDP transitions from a given state st�1 to a 
successor state st. The second state component changes 
due to the execution of fulfillment operations according 
to the tour planning decision φt(gt) in action at. In the 
absence of stochastic elements in the fulfillment opera-
tions, such as stochastic travel times, this transition is 
purely deterministic. Thus, for state st, φt is set to φt(gt)

from at. The first state component Ct�1, that is, the set of 
confirmed customer orders for which fulfillment has 
not yet started, changes as follows: First, the stochasti-
city of the i-DMVRP influences the transition of the first 
state component in the form of the potential request 
arrival according to time-dependent arrival rates λt

c. If 
a customer request arrives and turns into a customer 
order, it is added. We denote this particular order by 
ct � (lt

c,τt, ot). Second, the subset of orders Ψ(φt) for 
which the fulfillment process has started according to 
the new tour plan φt are removed. The transitions of 
the state components can be formalized as follows:
φt � φt(gt), (2) 

Ct �

Ct�1 \Ψ(φt), if there is no customer
request arrival or if gt � 0

(Ct�1 ∪ {ct}) \Ψ(φt), if gt � 1:

8
<

:

(3) 

Objective: The objective of the generic i-DMVRP is 
maximizing the expected profit across all decision 
epochs starting in state s0. Thus, we aim at determining 
a policy x, with ax

t (st�1, ct) � (gx
t (st�1, ct),φx

t (gx
t (st�1, ct)))

denoting the action selected by the policy x at decision 
epoch t, according to the following objective function:

max
x

E
XT

t�1
(rct · gx

t (st�1, ct) + rφx
t (gx

t (st�1, ct))) |s0

 !

: (4) 

3.2. State Values and Opportunity Cost
We now represent the previously introduced objective 
of the generic i-DMVRP (4) by the corresponding value 
function that equals the well-known Bellman equation. 
It captures the value of being in a given state and can be 
applied to find an optimal policy for the MDP model 
(Powell 2022, p. 46). Specified for the generic model, the 
value function explicitly models the mutual temporal 
interdependencies of the two integrated decisions, that 
is, the demand control decision and the tour planning 
decision:
Vt�1(st�1) �

X

c∈C
λt

c · max
gt∈G(st�1,c)

�

gt ·rc + max
φt(gt)∈Φ(st�1,c,gt)

(rφt(gt)

+Vt(st |st�1,φt(gt)))

�

+ 1�
X

c∈C
λt

c

 !

· max
φt(0)∈Φ(st�1,0)

(rφt(0) +Vt(st |st�1,φt(0))),

(5) 

with boundary condition:
VT(sT) � 0: (6) 

In i-DMVRPs, an action can comprise two types of inte-
grated decisions, namely, demand control and tour 
planning decisions. In this work, the effects of a demand 
control decision are of interest. Thus, it is the target to 
calculate opportunity cost from comparing state values 
that reflect such effects separated from potential effects 
of tour planning decisions at the same decision epoch. 
Therefore, we introduce a fictive state for each decision 
epoch t � 1, : : : , T. We refer to it as the interim state and 
denote it as s′

t |st�1, c, gt. Technically, c and gt are cap-
tured in additional state dimensions of the interim state. 
The interim state describes the state that is reached if the 
provider accepts (gt � 1) a customer request of type c 
starting in state st�1 or rejects it (gt � 0). In other words, 
the state is measured after the demand control decision 
but before the integrated tour planning decision. The 
idea behind it is comparable to the idea of the postdeci-
sion state introduced by Powell (2011) (p. 129) with the 
aim of isolating different effects of decisions and infor-
mation on the state variable. However, the postdecision 
state separates the deterministic effect of a decision from 
the stochastic effect of the same decision in order to ease 
decision making. The interim state, instead, separates 
the effects of two different decisions, that is, the effects of 
the demand control decision from the effects of a tour plan-
ning decision taken in the same decision epoch. Figure 1
illustrates the interim state within the decision process 
and its components.

We denote the value of interim state s′
t |st�1, c, gt by 

V′
t (s′

t |st�1, c, gt). Generally, it can be calculated as the 
sum of the succeeding postdecision state’s value, that is, 
of state st |st�1,φ∗

t(gt), and the logistics-related rewards 
of decision epoch t:

V′
t(s

′
t |st�1, c, gt)

� max
φt(gt)∈Φ(st�1, c,gt)

(rφt(gt) + Vt(st |st�1,φt(gt)))

� rφ∗
t (gt) + Vt(st |st�1,φ∗

t(gt)), (7) 

with φ∗
t(gt) denoting the optimal tour planning decision 

given demand control decision gt at decision epoch t. 
Note that this simplification of notation will be used 
repeatedly throughout the remainder of the paper. 
Based on interim state values, we can formulate a sim-
plified variant of the value function (5) isolating the 
demand control decision:

Vt�1(st�1) �
X

c∈C
λt

c · max
gt∈G(st�1,c)

(gt · rc + V′
t(s

′
t |st�1,c,gt))

+ 1 �
X

c∈C
λt

c

 !

· V′
t (s

′
t |st�1,0): (8) 

In the remainder of our discussion, we denote interim 
states s′

t |st�1, c, 1 by s′
t(c) and interim states s′

t |st�1, c, 0 
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(or s′
t |st�1, 0 in case there is no customer request) by s′

t(0)

for ease of presentation. Based on the interim state, the 
following definition formalizes the concept of opportu-
nity cost for solving the demand control problem of our 
generic i-DMVRP.

Definition 1. The opportunity cost ∆Vt(st�1, c) of accept-
ing a customer request of type c in a certain state st�1 is 
calculated as the difference of the values of the follow-
ing two interim states: (1) the interim state following 
the rejection of customer request c and (2) the interim 
state following the acceptance of c. Thus, it is defined as

∆Vt(st�1, c) � V′
t (s

′
t(0)) � V′

t(s
′
t(c)): (9) 

This opportunity cost is then used as input to solve 
the demand control problem, which can be illustrated 
by the following reformulation of the value function 
(8). This reformulation is typical in the revenue man-
agement literature (Strauss, Klein, and Steinhardt 
2018) and yields

Vt�1(st�1) �
X

c∈C
λt

c · max
gt∈G(st�1,c)

(gt · (rc �∆Vt(st�1,c)))

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Demand control subproblem

+V′
t(s

′
t(0)):

(10) 

Because the provider only takes a demand control 
decision when a certain customer request arrives, the 
probability 

P
c∈Cλ

t
c is not relevant for decision mak-

ing. Also, the second summand of Equation (10), that 
is, V′

t(s′
t(0)), is not relevant as it is a constant and inde-

pendent of the decision. Further, the provider knows 
rc. Thus, given the opportunity cost of a customer 
request of type c, ∆Vt(st�1, c), it is possible to solve the 
demand control problem as a deterministic subprob-
lem. This is why, for industry-sized problems, it is 
necessary to find accurate and efficient approximation 
approaches for opportunity cost, that is, for the value 
function (Strauss, Klein, and Steinhardt 2018). This 
motivates a deeper understanding of opportunity cost 

and of its peculiarities and properties in i-DMVRPs. 
Knowing certain properties enables exploiting them 
to accelerate and enhance approaches to approximate 
opportunity cost as discussed in Section 2.2. Conse-
quently, in the following, we compare opportunity 
cost in traditional settings, that is, in revenue manage-
ment problems, and opportunity cost in i-DMVRPs 
and carve out decisive differences.

3.3. Generalization of the Concept of Opportunity 
Cost for i-DMVRPs

In traditional revenue management applications, the 
concept of opportunity cost bases on two main assump-
tions (Weatherford and Bodily 1992) that cause the 
opportunity cost to be equivalent to displacement cost 
(DPC). Those are defined as “[ … ] the expected loss in 
future revenue from using the capacity now rather than 
reserving it for future use” (Talluri and Van Ryzin 2004, 
p. 33). In the following, we show that this definition can-
not be transferred to i-DMVRPs by stating each of the 
underlying assumptions and investigating it in the 
respective context.

Assumption 1. Supply is inflexible, that is, resource 
capacities are fixed.

In i-DMVRPs, either driver working times, fleet sizes, 
or loads represent resources with fixed capacities. As 
expected, such limited resources may cause a displace-
ment of demand (see Example 1 in Online Appendix B.1). 
Thus, in most i-DMVRPs, the first assumption is valid.

Assumption 2. Variable cost associated with the usage 
of capacity are either negligible or at least directly attribut-
able to individual orders.

This does not hold in most i-DMVRPs, which can be 
shown by considering fuel cost as an example: Because 
the fuel consumption of a fulfillment tour depends on 
the specific combination of customer locations in the 
tour, there is no way to calculate and attribute the share 

Figure 1. (Color online) Overview of the MDP Model of the i-DMVRP Booking and Fulfillment Process Including the Interim 
State 
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and the resulting cost of each individual customer loca-
tion (Vinsensius et al. 2020). Further, in i-DMVRPs, such 
variable overhead cost are not negligible. The exact 
same combination of state and customer request of 
the same problem instance can yield different optimal 
demand control decisions depending on whether fulfill-
ment cost are taken into consideration or are neglected 
(see Examples 2a and 2b in Online Appendix B.2).

Consequently, we must adapt the traditional concept 
of opportunity cost, which equalizes opportunity cost 
and expected displacement cost (Talluri and Van Ryzin 
2004, p. 33), for i-DMVRPs. More precisely, a concept is 
needed that explicitly takes into account variable over-
head cost related to order fulfillment: In the literature on 
i-DMVRPs, some authors already explicitly consider the 
marginal increase of variable overhead cost caused by 
the acceptance of a customer request and refer to it as 
marginal cost-to-serve (MCTS) (Vinsensius et al. 2020, 
Strauss, Gülpinar, and Zheng 2021). For myopic deci-
sion making, that is, when neglecting future orders, we 
can calculate a request’s MCTS by optimizing the tour 
plan for all accepted customer orders including the cur-
rent request and comparing its variable fulfillment cost 
with the cost of the optimal tour plan without the cur-
rent request (see Example 2b in Online Appendix B.2). 
However, such myopic MCTS are not sufficient for opti-
mal decision making (see Example 3 in Online Appen-
dix B.3). In summary, for optimal decision making, 
opportunity cost for i-DMVRPs cannot only be revenue 
related in the form of expected DPC, but also have to 
take cost-related effects into account in the form of 
expected MCTS. Correspondingly, we amend the defi-
nition of opportunity cost as follows.

Definition 2. In i-DMVRPs with variable overhead cost 
that are not directly attributable to customer requests, 
opportunity cost comprises two components: DPC as 
the difference of cumulative expected future revenue 
caused by accepting a customer request and MCTS as 
the difference of expected future fulfillment cost caused 
by accepting a customer request.

4. Properties and Analytical Discussion 
of Opportunity Cost for i-DMVRPs

We showed in Section 3 that opportunity cost is calculated 
as the difference of two value functions. Hence, opportu-
nity cost, as well as its components DPC and MCTS, are 
recursive functions that are intractable for realistic-sized 
i-DMVRPs. Consequently, solving i-DMVRPs requires 
accurate approximations of value functions or opportunity 
cost. To support the development and selection of respec-
tive approximation approaches, we discuss four central 
properties of the generic i-DMVRP, or more precisely, of 
the corresponding value function (5) and the derived 
opportunity cost values. Those are as follows. 

1. Decomposability into DPC and MCTS

2. Potential negativity of DPC and MCTS
3. Nonnegativity of opportunity cost
4. Monotonicity of the value function
Please note, for ease of readability, we move the 

minor mathematical proofs to Online Appendix C and 
only state the final proofs of the central properties 
throughout our discussions.

4.1. Decomposability into Displacement Cost and 
Marginal Cost-to-Serve

To prove the decomposability of opportunity cost into 
DPC and MCTS, we first define both terms formally, 
starting with a definition of expected future revenue and 
expected future fulfillment cost of a certain interim state s′

t�1.

Definition 3. The expected future revenue R′
t�1(s′

t�1) of 
a given interim state s′

t�1 at decision epoch t � 1 is 
defined as

R′
t�1(s′

t�1) �
X

c∈C
λt

c · (g∗
t · rc + R′

t(s
′
t |s′

t�1,φ∗
t�1(gt�1), g∗

t))

+ 1 �
X

c∈C
λt

c

 !

· R′
t(s

′
t |s′

t�1,φ∗
t�1(gt�1), 0),

(11) 

with boundary condition
R′

T(s′
T) � 0, (12) 

and g∗
t denoting the optimal demand control decision, 

given that a customer request of type c arrives in state st.

Definition 4. The expected future fulfillment cost 
F′

t�1(s′
t�1) of a given interim state s′

t�1 at decision epoch 
t � 1 is defined as

F′
t�1(s′

t�1) � rφ∗
t�1(gt�1) +

X

c∈C
λt

c · (F′
t(s

′
t |s′

t�1,φ∗
t�1(gt�1), g∗

t))

+ 1 �
X

c∈C
λt

c

 !

· F′
t(s

′
t |s′

t�1,φ∗
t�1(gt�1), 0),

(13) 

with boundary condition
F′

T(s′
T) � rφ∗

T(gT): (14) 

Based on Definitions 3 and 4, we now formally define 
DPC and MCTS.

Definition 5. DPC of accepting a customer request of 
type c at decision epoch t and state st�1 is defined as

∆Rt(st�1, c) � R′
t(s

′
t(0)) � R′

t(s
′
t(c)): (15) 

Definition 6. MCTS of accepting a customer request of 
type c at decision epoch t and state st�1 is defined as

∆Ft(st�1, c) � F′
t(s

′
t(0)) � F′

t(s
′
t(c)): (16) 

DPC and MCTS both depend on the state of the sys-
tem and all consecutive decisions and transitions. 
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Thus, both suffer from the curse of dimensionality 
(Powell, Simao, and Bouzaiene-Ayari 2012) in that the 
number of potential tour planning decisions that must 
be evaluated is intractable for realistic-sized instances.

Now, we show that there is a valid decomposition 
of the value function (7) for interim states into two 
components. In other words, the value of any interim 
state, that is, V′

t (s′
t), equals the sum of expected future 

revenue, R′
t(s′

t), and expected future fulfillment cost, 
F′

t(s′
t). This leads to the following lemma, based on 

which we then define the first property.

Lemma 1. The value (function) of an interim state s′
t can 

be decomposed into two additive components: one capturing 
expected future revenue and one capturing expected future 
fulfillment cost:

V′
t(s

′
t) � R′

t(s
′
t) + F′

t(s
′
t): (17) 

Property 1. Opportunity cost can be decomposed into 
DPC and MCTS:

∆Vt(st�1, c) � ∆Rt(st�1, c) + ∆Ft(st�1, c): (18) 

Proof. To prove Property 1, we substitute Lemma 1
into Equation (9). Further, we substitute Definitions 5
and 6, which results in

∆Vt(st�1, c) � V′
t(s

′
t(0)) � V′

t(s
′
t(c))

� (R′
t(s

′
t(0)) + F′

t(s
′
t(0)))

� (R′
t(s

′
t(c)) + F′

t(s
′
t(c)))

� R′
t(s

′
t(0)) � R′

t(s
′
t(c)) + F′

t(s
′
t(0)) � F′

t(s
′
t(c))

� ∆Rt(st�1, c) + ∆Ft(st�1, c): w

(19) 

Please note, despite that DPC and MCTS can be 
expressed as two separate terms, the decisions they 
stem from are still interconnected. More precisely, to 
optimally calculate one of the components, the other 
one has to be taken into account because both Equations 
(11) and (13) incorporate optimal decisions that can only 
be determined based on the original value function 
including DPC and MCTS.

4.2. Potential Negativity of DPC and MCTS
Contrary to demand management problems of tradi-
tional revenue management applications in which DPC 
can only be nonnegative (Talluri and Van Ryzin 2004, 
p. 217), in i-DVMRPs, DPC and MCTS can be negative, 
which is the next property we discuss. 

Negative DPC: The intuition behind negative DPC, 
as they occur in Example 5 in Online Appendix B.5, is 
the following: turning the considered customer request 
into a customer order enables accepting one or more 
expected future customer requests in its vicinity that 
otherwise would not be profitable regarding their ful-
fillment cost and revenue.

Negative MCTS: The intuition behind negative 
MCTS, as they occur in Example 4 in Online Appendix 
B.4, is the following: Accepting a corresponding cus-
tomer request and following the subsequent optimal 
decisions leads to expected future fulfillment cost that 
is lower than the cost generated by optimal decisions 
following the rejection of the same customer request. In 
other words, accepting a certain customer request inhi-
bits the acceptance of one or more future customer 
requests, which would otherwise be accepted with 
optimal decisions and would lead to a longer tour, that 
is, larger fulfillment cost.

This is a decisive difference between the traditional 
concept of opportunity cost and the newly derived con-
cept for i-DMVRPs.

Property 2. DPC and MCTS can both be negative.

Proof. By Example 4 and Example 5 in Online 
Appendix B. w

4.3. Nonnegativity of Opportunity Cost
Despite the finding that both DPC and MCTS can be 
negative, we can show that for the generic MDP model 
with the value functions defined by (5) or (8), opportu-
nity cost, that is, the sum of DPC and MCTS, is always 
nonnegative. To prove this property, we show that the 
value of the interim state following the acceptance of a 
customer request ct by action gt � 1 cannot be greater 
than the value of the interim state following a rejection 
of the same customer request ct by action gt � 0. The cor-
responding proof builds on three lemmas (Lemma 2, 
Lemma 3, and Lemma 4), which formalize characteris-
tics that are valid for the i-DMVRP model defined in 
Section 3.1. First, Lemma 2 concerns the stochastic 
transition probabilities, that is, the arrival rates λt

c in a 
stage t.

Lemma 2. Stochastic transition probabilities are indepen-
dent of the set of already confirmed customer orders:

∀t ∈ 1, : : : , T, c ∈ C : λt
c independent of Ct�1: (20) 

Second, Lemma 3 concerns the relationship of the action 
spaces at decision epoch t when starting in any two 
states st�1 and ŝt�1 that only differ in that the latter con-
tains exactly one additional customer order, denoted by 
ĉ, that is, Ĉt�1 � Ct�1 ∪ {ĉ}. Starting in those two states, 
the action space resulting from the latter is a subset of 
the action space resulting from the former.

Lemma 3. The action space resulting from any state ŝt�1 �

(Ct�1 ∪ {ĉ},φt�1) is a subset of the action space resulting 
from a corresponding state st�1 � (Ct�1,φt�1):

∀t ∈ 1, : : : , T, c ∈ C, ĉ ∈ C : A(ŝt�1, c) ⊆ A(st�1, c): (21) 

Third, Lemma 4 concerns the state space of an i-DMVRP 
MDP model. More precisely, it claims that, for any state 
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ŝt � (Ĉ t,φt), there exists a state st � (Ct,φt), which only 
differs in that it does not include a certain customer 
order ĉ.

Lemma 4. For every state ŝt � (Ĉ t,φt), there exists a state 
st � (Ct,φt) with Ct � Ĉ t \ {ĉ}:

∀ŝt with t ∈ 1, : : : , T : ∃st : Ct � Ĉ t \ {ĉ}: (22) 

We now consider a certain decision sequence, denoted 
as π � (φt(gt), at+1, at+2, : : : , aT), and apply it to a certain 
sample path ω � (ct, ct+1, ct+2, : : : , cT). Both start in an 
interim state s′

t. A sample path is a specific sequence of 
stochastic realizations throughout the decision epochs. 
Thus, for this sample path, the respective request arrival 
probabilities in Equation (5) equal one and the probabil-
ities of other realizations ω′ ≠ ω equal zero.

Given Lemmas 2–4, two further lemmas regarding the 
resulting revenue, denoted by R′πω

t (s′
t), and regarding the 

resulting fulfillment cost, denoted by F′πω
t (s′

t), can be 
derived: More precisely, Lemma 5 states that, applying π
to ω, assuming it starts in the interim state s′

t(ct), results in 
the same cumulative revenue as assuming ω starts in the 
corresponding interim state s′

t(0). This is because of the 
circumstance that in the interim state the revenue of ct has 
already been collected. Lemma 6 states that, applying π
to ω, assuming it starts in the interim state s′

t(ct), results in 
higher or equal fulfillment cost as assuming ω starts in 
the corresponding interim state s′

t(0).

Lemma 5. Applying decision sequence π to sample path ω, 
assuming it starts in interim state s′

t(ct), results in the 
same cumulative revenue as assuming ω starts in the 
interim state s′

t(0):

R′πω
t (s′

t(ct)) � R′πω
t (s′

t(0)): (23) 

Lemma 6. Applying decision sequence π to sample path ω, 
assuming it starts in the interim state s′

t(ct), results in 
higher or equal fulfillment cost as assuming ω starts in the 
corresponding interim state s′

t(0):

F′πω
t (s′

t(ct)) ≤ F′πω
t (s′

t(0)): (24) 

Combining Lemmas 5 and 6 shows that applying a deci-
sion sequence π to sample path ω starting in interim 
state s′

t(ct) cannot result in a greater objective value than 
starting in interim state s′

t(0). We formalize this in the 
following lemma.

Lemma 7. If the same decision sequence π is applied to 
sample path ω starting in interim state s′

t(ct), it cannot 
yield a greater value than it does when starting in interim 
state s′

t(0):

V′πω
t (s′

t(ct)) ≤ V′πω
t (s′

t(0)): (25) 

With this in mind, we can formally prove the third 
opportunity cost property.

Property 3. Opportunity cost is generally nonnega-
tive:

∀c ∈ C, t � 1, : : : , T : ∆Vt(st�1, c) ≥ 0: (26) 

Proof. The proof is by contradiction. For a sample path 
ω, starting in an interim state s′

t(ct), the optimal sequence 
of decisions, denoted by π∗(ct), results in value 
V

′π∗(ct)ω
t (s′

t(ct)). We now assume that this value is higher 
than any value that we can accrue on the same sample 
path starting in interim state s′

t(0). However, with Lem-
mas 2–4, we can feasibly apply π∗(ct) to the sample path 
starting in interim state s′

t(0) and, with Lemma 7, this 
results in at least the same value. The original assump-
tion is proven wrong. Hence, the following holds:

V′ω
t (s′

t(ct)) � V
′π∗(ct)ω
t (s′

t(ct)) ≤ V
′π∗(ct)ω
t (s′

t(0))

≤ V
′π∗(0)ω
t (s′

t(0)) � V′ω
t (s′

t(0)), (27) 

with π∗(0) being the optimal sequence of decisions for 
sample path ω, starting in interim state s′

t(0). This proof 
by contradiction can be replicated for every sample path 
ω ∈ Ω. Then, because the Bellman function represents 
the expected value over all possible sample paths ω ∈ Ω, 
following their respective optimal decision sequences 
π∗, it holds that

V′
t(s

′
t(ct)) � V

′π∗(ct)
t (s′

t(ct)) ≤ V
′π∗(0)
t (s′

t(0)) � V′
t(s

′
t(0)),

(28) 

and substituted in Equation (9), this proves that 
∆Vt(st�1, ct) ≥ 0. w

4.4. Monotonicity of the Value Function
We now investigate the monotonicity of the value func-
tion in confirmed customer orders, and across decision 
epochs, as typically done in traditional revenue man-
agement (Adelman 2007, Gallego and Topaloglu 2019, 
p. 10). Property 3 directly implies that the value function 
is monotonically decreasing in the confirmed customer 
orders for which fulfillment has not yet started c ∈ Ct�1 
at a certain decision epoch t, that is, the following holds:

∆Vt(st�1, c) � V′
t(s

′
t(0)) � V′

t (s
′
t(c)) ≥ 0�V′

t(s
′
t(0))

≥ V′
t(s

′
t(c)): (29) 

Analogously, we can investigate monotonicity in time 
across decision epochs. More precisely, we consider the 
monotonicity of state values of consecutive states st and 
st′ , with t′ > t. For two states st and st′ to be consecutive, 
there must exist a sequence of (potentially multiple) sto-
chastic transitions, that is, request arrivals, such that 
making optimal decisions a∗

t(st, ct) � (g∗
t ,φ

∗
t(g

∗
t)) causes 

the decision process to transition from st to st′ in a finite 
number of decision epochs. Then, the value function (5) 
of the generic MDP model presented in Section 3.1 is 
clearly not monotonically decreasing across consecutive 
states. This is because of the negative logistics-related 
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rewards arising throughout the decision process. Con-
sider, for example, a decision epoch at which the routing 
constraints do not allow feasibly accepting any new order 
until the end of the service horizon. In this case, no future 
revenue will be collected. However, the tour planning 
decisions required for the fulfillment of the confirmed 
orders cause future logistics-related rewards, which are 
negative. Over the remaining service horizon, these nega-
tive rewards realize and the state value increases, that is, 
becomes less negative, over the remaining decision 
epochs until it equals zero in the terminal state.

Despite this finding, it is possible to achieve value func-
tion monotonicity across consecutive states by modifying 
the generic MDP model as shown in Online Appendix D, 
such that it still models the exact same problem, that is, 
such that the modified model is mathematically equiva-
lent to the original model. Formally, the modified model 
differs from the original model regarding cost realization 
and cost modeling. Cost realization concerns the point of 
time in which the cost is incurred in the real application. 
Cost modeling concerns the decision epoch in which the 
corresponding cost is taken into account within the MDP 
model as a negative reward. In the original model, cost 
realization and cost modeling match. In the modified 
model, we delay cost modeling. To this end, we augment 
the state of the modified model and adapt the transition 
and the value function accordingly, whereas all other 
model components remain unaltered: 

State: For the modified model, we add a third state 
component denoted by rl cum

t . It captures the cumula-
tive logistics-related rewards, that is, the negative of 
the cumulative fulfillment cost that realized before or 
at decision epoch t. Thus, we define the state as 
st � (Ct,φt, rl cum

t ). The state space comprises all combi-
nations of possible customer requests and arrival times 
with potential tour plans and potential cumulative 
logistics-related rewards.

Transition: The transition of the additional state com-
ponent rl cum

t equals rl cum
t � rl cum

t�1 + rφt(gt). The transition of 
all other components remains unaltered as introduced in 
Section 4.

Value function: For the modified model, we delay 
cost modeling to decision epoch T. Consequently, during 
the decision epochs t � 1, : : : , T, only rewards rc are con-
sidered in the value function, which is hence defined as

Ṽt�1(st�1)

�
X

c∈C
λt

c · max
gt∈G(st�1,c)

gt ·rc + max
φt(gt)∈Φ(st�1,c,gt)

Ṽt(st |st�1,φt(gt))

� �

+ 1�
X

c∈C
λt

c

 !

· max
φt(0)∈Φ(st�1,0)

Ṽt(st |st�1,φt(0)):

(30) 

We only consider rewards rφt(gt) in the boundary condi-
tion such that the salvage value equals the respective 

state component:

ṼT(sT) � rl cum
T : (31) 

In the following, we show that the value function of the 
modified model (30), denoted by Ṽt(st), is monotoni-
cally decreasing across consecutive states, that is, 
Ṽt(st) ≥ Ṽ ′

t+1(s′
t+1) ≥ Ṽt′ (st′ ), with Ṽ ′

t+1(s′
t+1) denoting 

the value of interim state s′
t+1 at decision epoch t + 1 in 

the modified model. Thus, we must show that Ṽt(st) ≥

Ṽ ′

t+1(s′
t+1) and Ṽ ′

t+1(s′
t+1) ≥ Ṽt+1(st+1) hold for any pair of 

consecutive states st and st+1 as this directly implies that 
∀t < t′ ≤ T : Ṽ ′

t(s′
t) ≥ Ṽt′ (st′ ).

Property 4. The value function of the modified model 
is monotonically decreasing in the course of decision 
epochs for consecutive states st and st+1:

∀t � 0, : : : , T � 1 : Ṽt(st) ≥ Ṽt+1(st+1): (32) 

Proof. The fact that Ṽt(st) ≥ Ṽ ′

t+1(s′
t+1) holds, follows 

directly from Equation (10) with the following line of 
reasoning: Starting in a certain postdecision state st in 
decision epoch t means that there is one more cus-
tomer request ct+1 potentially contributing to the state 
value compared with starting in the resulting interim 
state s′

t+1. If all potentially arriving requests are not 
profitable based on st, the optimal demand control 
decision is the rejection in any case, and Ṽt(st) �

Ṽ ′

t+1(s′
t+1) holds, as no revenue can be collected in t +

1. Otherwise, if there is a nonempty subset of poten-
tially arriving requests that is profitable, it is optimal 
to accept these requests and the associated expected 
revenue positively contributes to Ṽt(st). Then, Ṽt(st) >

Ṽ ′

t+1(s′
t+1) holds; Ṽ ′

t+1(s′
t+1) ≥ Ṽt+1(st+1) directly follows 

from Equation (7) because for the considered value func-
tion, ∀t ∈ 0, : : : , T � 1 : rφ∗

t+1(gt+1) � 0 holds by definition of 
the modified MDP formulation. Thus, with ∀t � 0, : : : , 
T � 1, it holds that Ṽ ′

t+1(s′
t+1) � Ṽt+1(st+1). w

Please note, Properties 1–3 as well as the monotonic-
ity of the value function in confirmed customer orders 
also hold for the modified model. The respective proofs 
are straightforward with F̃′

t�1(s′
t�1) � F′

t�1(s′
t�1) + rl cum

t 
(analogously to the transformation of Ṽ ′

t�1(s′
t�1) as pre-

viously described and proven in Online Appendix D). 
Because OC, DPC, and MCTS are defined as the differ-
ences of the respective value functions (7), (11), and (13) 
for different interim states on the same stage t, the con-
stant rl cum

t cancels in Equations (9), (15), and (16). Thus, 
for the modified model, our proofs can be applied as 
conducted for the original model.

4.5. Generalization for Multiple Fulfillment 
Options

All properties formulated in Section 4 are also valid for 
i-DMVRPs with multiple fulfillment options. Compared 
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with accept/reject control, the difference in this case is 
that the demand control decision consists of selecting an 
offer set of feasible fulfillment options. Thus, there is an 
interim state for each fulfillment option the customer 
can possibly choose, preceded by an additional stochas-
tic transition according to the customer’s purchase 
choice probabilities. Opportunity cost is then defined 
separately for each fulfillment option as the difference 
of the interim state value for the customer choosing 
the particular option compared with choosing the 
no-purchase option, as shown in Online Appendix E.

Despite these differences, the two types of rewards, 
revenue and cost, can still be separated, such that 
Lemma 1 remains valid and the proof for Property 1 can 
be conducted as presented for a single fulfillment 
option. As the multioption case generalizes the single- 
option case, Example 4 and Example 5 also prove Prop-
erty 2 for multiple options. Likewise, modeling multiple 
options does not affect the validity of Lemma 2 because 
the additional stochastic transition reflecting the custo-
mer’s purchase choice is also independent of the set of 
already confirmed customer orders. Lemma 3 also holds 
for multiple fulfillment options because the feasibility of 
each fulfillment option depends on the tour planning 
component in the same way as described for the single- 
option case. Based on the basic lemmas, the remainder 
of the proof for Property 3 can be conducted in a similar 
way as presented above for the single-option case. 
Finally, the line of reasoning in the proof of Property 4
can also be made based on profitable fulfillment options 
instead of customer requests.

5. Computational Study
The theoretical results obtained in Sections 3 and 4 con-
tribute to a deeper understanding of i-DMVRPs’ mathe-
matical structure, which is useful in itself. On top of that, 
they can also be of direct practical use because they repre-
sent domain knowledge that can be exploited by a 
variety of solution approaches. In the case of the nonne-
gativity of opportunity cost (Property 3) and the monoto-
nicity of the value function (Property 4), first promising 
results in this regard are found by Koch and Klein (2020). 
They consider a problem with disjoint booking and ser-
vice horizons and apply a statistical learning approach 
that imposes structural constraints on policy updates to 
preserve both properties, which facilitates the learning 
process. Because we prove that these properties hold in 
general, such an exploitation is possible for any 
i-DMVRP, including problems with overlapping hori-
zons based on the modified model (Online Appendix D). 
Likewise, our results imply that the opportunity cost 
approximation approach by Adelman (2007), which is 
based on linear programming and includes constraints 
exploiting domain knowledge, can also be validly trans-
ferred to i-DMVRP solution approaches.

In contrast to Property 3 and Property 4, to the best of 
our knowledge, the targeted algorithmic exploitation of 
the decomposability of opportunity cost into DPC and 
MCTS (Property 1 and Property 2) has not yet been pro-
posed by existing research. Hence, in this computational 
study, we systematically explore the potential of three 
general approaches for exploiting the decomposability. 
In Section 5.1, we first present the three approaches. In 
Section 5.2, we then describe the design of the computa-
tional study; that is, we define the specific i-DVPRP and 
the settings we consider. Finally, in Section 5.3, we dis-
cuss the computational results and derive insights 
regarding the potential of each of the three approaches.

5.1. General Algorithmic Approaches Exploiting 
Decomposability

In the following, we explain the algorithmic approaches 
we analyze in the computational experiments. Because 
we are interested in the general potential of exploiting 
decomposability in a certain way rather than in a specific 
(heuristic) algorithm design, we define the algorithms by 
formulating the respective variant of the Bellman equa-
tion and solve it by means of backward recursion. Thus, 
we obtain idealized algorithms by combining each of the 
approximation approaches with an exact method to com-
pute the values of the approximation. For an in-depth 
review on existing heuristic solution approaches for spe-
cific i-DMVRPs, see Fleckenstein, Klein, and Steinhardt 
(2023).

5.1.1. Single-Component Approximations. This approach 
is based on the idea that, in certain problem settings, one of 
the opportunity cost components may generally have a 
considerably greater absolute value than the other. This 
suggests that completely neglecting the other component 
in the opportunity cost approximation should be possible 
with only a small deterioration of performance.

We derive an idealized DPC-based approximation 
∆R̃t(st�1, c) from the following Bellman equation:

R̃t�1(st�1) �
X

c∈C
λt

c · max
gt∈G(st�1, c)

(gt · (rc � ∆R̃t(st�1, c)))

+ R̃′

t(s
′
t(0)), (33) 

with
rφt(s′

t)
� 0 ∀t ∈ {1, : : : , T}: (34) 

Here, we set the logistics-related rewards equal to zero 
while retaining the revenue as the immediate reward of 
an acceptance decision. Thus, decisions are optimized 
comparing the immediate reward, that is, the potential 
immediate revenue, with the exact future revenue 
impact of the acceptance decision neglecting its future 
cost impact.
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Similarly, an idealized MCTS-based approximation 
∆F̃t(st�1, c) results from

F̃t�1(st�1) �
X

c∈C
λt

c · argmax
gt∈G(st�1,c)

(gt · (rc � ∆F̃t(st�1,c)))

· (�∆F̃t(st�1,c)) + F̃′

t(s
′
t(0)): (35) 

By using an argmax(·) operator in Equation (35), we still 
consider the revenue for decision making but at the 
same time prevent it from entering the value function as 
an actual immediate reward. Thereby, we make sure 
that ∆F̃t(st�1, c) only captures logistics-related rewards 
and thus correctly quantifies the future cost impact of 
an acceptance decision. This cost impact is then com-
pared with the revenue to derive the currently optimal 
decision making in each stage.

5.1.2. Hybrid Reward Approximations. Compared 
with single-component policies, an approximation aim-
ing at both components has structural advantages if 
both MCTS and DPC have nonnegligible values. Many 
existing approximation approaches of this type are 
based on value function approximations that return an 
aggregated estimate such that the components are not 
distinguishable (Ulmer 2020). Alternatively, the decom-
posability property allows hybrid approximation 
design. The underlying idea is to compute a separate 
estimate for DPC and MCTS, aggregate the estimates, 
and therewith, use both as an input for demand control 
decision making. A new sampling-based solution 
method recently presented by Abdollahi et al. (2023) 
constitutes a first non-learning-based step in this direc-
tion. They use tentative route planning with sampled 
orders to compute a DPC estimate and an MCTS esti-
mate separately.

In the class of learning-based approaches, the equiva-
lent are hybrid reward architectures that have been suc-
cessfully applied to classical reinforcement learning 
problems (Van Seijen et al. 2017), but, to the best of our 
knowledge, have not yet been applied to i-DMVRPs. In 
such approaches, a separate value function approxima-
tion is computed for revenue and routing cost, that is, 
two single-component opportunity cost approximations 
result, each of which can depend on different features 
such that learning is expedited. To aggregate the two 
estimates, several strategies can be used, like a simple 
additive aggregation (Van Seijen et al. 2017) or a more 
complex delegation architecture (Russell and Zimdars 
2003).

Because Property 1 suggests that i-DMVRPs lend 
themselves to hybrid reward architectures, we evaluate 
the potential of such opportunity cost approximation 
approaches for i-DMVRPs by applying two idealized 
implementations: The first, rather naive one, bases on 
the aggregation of the two single-component approxi-
mations by simply summing up their value functions 

(33) and (35), that is, the corresponding opportunity cost 
approximation is set to ∆R̃t(st�1, c) + ∆F̃t(st�1, c). We 
refer to this approach as naive hybrid reward approxima-
tion (naive HR approximation). The other more sophisti-
cated approach relies on the additive aggregation of an 
offline learned component and an online learned com-
ponent. More precisely, we investigate whether it is 
promising to approximate the DPC offline and the 
MCTS online or vice versa. In the existing literature, 
offline-online learning as a general concept has already 
been successfully applied (Ulmer et al. 2019). However, 
no approach has been proposed yet that specifically 
takes advantage of opportunity cost decomposability. 
For the offline approximation, we draw on the (disag-
gregate) approximation of the respective single- 
component approximation ((33) and (35)) for each state 
and store them in a look-up table by averaging the 
respective estimates over a two-dimensional state space 
representation. The first dimension measures the 
remaining time in the booking process, and the second 
dimension represents the remaining logistical capacity. 
For the online approximation, we use the disaggregate 
DPC (MCTS) value from the original model ((15) and 
(16)). Then, we set the corresponding opportunity cost 
approximation equal to ∆F̃aggr

t (st�1, c) + ∆Rt(st�1, c) (or 
∆R̃aggr

t (st�1, c) + ∆Ft(st�1, c), respectively). We refer to 
this approach as offline-online hybrid reward approximation 
(offline-online HR approximation) and distinguish its var-
iants by using the term DPC (MCTS) when the DPC 
(MCTS) are approximated online.

5.1.3. Compact Overview. In summary, this computa-
tional study compares decision making based on the fol-
lowing approximations, which include the ones described 
above and the true opportunity cost derived from solving 
the dynamic program (9) as the benchmark: 

• DPC-based approximation: ∆Ṽt(st�1, c) � ∆R̃t(st�1, c)

• MCTS-based approximation: ∆Ṽt(st�1, c) � ∆F̃t(st�1, c)

• Naive hybrid reward approximation: ∆Ṽt(st�1, c) �

∆R̃t(st�1, c) + ∆F̃t(st�1, c)

• Offline-online HR approximation (DPC-based): 
∆Ṽt(st�1, c) � ∆F̃aggr

t (st�1, c) + ∆Rt(st�1, c)

• Offline-online HR approximation (MCTS-based): 
∆Ṽt(st�1, c) � ∆R̃aggr

t (st�1, c) + ∆Ft(st�1, c)

• True opportunity cost (benchmark): ∆Ṽt(st�1, c) �

∆Vt(st�1, c)

5.2. Study Design and Methodology
To evaluate the approaches introduced above, we apply 
them for decision making in various different settings. 
All settings have in common that they reflect an 
i-DMVRP with the same problem structure as intro-
duced in Section 3.1 and the following additional 
assumptions: disjoint booking and service horizons, a 
single fulfillment vehicle, pure accept/reject decisions, 
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and a booking horizon of T � 10 potential decision 
epochs. With that, we ensure that the instance size is suf-
ficiently small for being computationally tractable with-
out overly compromising complexity.

The settings differ with regard to four parameters 
whose realizations emulate characteristics of i-DMVRPs 
from typical application areas. Two of those parameters 
define a setting’s customer distribution, one sets the gen-
eral profitability of a setting, and the last defines the type 
of capacity consumption considered in a setting. In the fol-
lowing, we further describe those parameters and moti-
vate our choice of their realizations.

5.2.1. Customer Distribution. The customer distribu-
tion of a setting is characterized by two parameter 
values, which are the customers’ location distribution and 
their revenue distribution, and is further defined by the 
mutual interplay of those two parameters. 

Location distribution: To vary the level of difficulty of 
demand consolidation, we draw the customer locations 
lc from two different customer distributions on a line seg-
ment of 50 length units (LU) in the interval [�25, 25], 
with a centrally located depot. The first customer distri-
bution follows a uniform distribution over the entire 
interval and hence mimics an urban area. The second 
customer distribution is drawn from two truncated nor-
mal distributions with means �10 and 20 and the same 
standard deviation of 2:5LU, from which we draw 50% 
of the customer locations each. Therewith, we obtain two 
clusters that could represent two villages in a rural area.

Revenue distribution: The customers’ revenue distri-
bution is an important characteristic that influences dis-
placement effects, both in a spatial and a temporal 
sense. Thus, on the one hand, we consider homogeneous 
revenues (no additional displacement effects) with a 
value of rc � 15 monetary units (MU). This corresponds 
to, for example, next-day parcel delivery with a static, 
uniform delivery fee. On the other hand, we consider 
heterogeneous settings with 70% low-revenue custo-
mers (rc � 15MU) and 30% high-revenue customers 
(rc � 25MU). We vary their distribution over time as 
follows: The sequence of customer arrivals either fol-
lows a strict high-before-low sorting (low displacement 
effects), a random sorting (medium displacement 
effects), or a strict low-before-high sorting (high displace-
ment effects). Such variations over time can occur, for 

example, as a result of markup pricing or markdown 
pricing. In addition, for each of those three schemes, 
we consider a customer setting in which the high- 
revenue customers only originate from the distant clus-
ter to mimic a distance-based pricing scheme, which is 
common, for example, in mobility-on-demand applica-
tions. We refer to this special combination of location 
distribution and revenue distribution as clustered sorted.

Overall, these two parameters and the combinations 
of their potential realizations yield 11 different customer 
settings, which are marked with a ✓ in Table 1. As men-
tioned before, for all those 11 customer settings, we vary 
two more parameters that address the general profit-
ability of a setting, as well as the capacity consumption.

5.2.2. Profitability. To vary the general level of profit-
ability of a problem setting, we adjust the relation 
between revenues and cost by solving all previously 
mentioned settings for three different routing cost fac-
tors. More precisely, we consider low-cost settings with 
cost of 0:2MU per LU traveled, medium-cost settings 
with 0:6MU, and high-cost settings with 1MU. The dif-
ferent profitability settings represent different fields of 
application. Low-cost settings are dominant in attended 
home delivery due to minimum order values that cause 
high revenue relative to cost. On the contrary, high-cost 
settings occur in mobility-on-demand applications with 
comparatively low revenues equal to the fare the pro-
vider charges.

5.2.3. Capacity Consumption. To consider the impact 
of the marginal capacity consumption per order for all 
our settings, we additionally assume another parame-
ter. Its value either reflects route length constraints, or 
physical capacity constraints such that only one of them is 
restrictive in a setting. First, for the settings with restric-
tive physical capacity, we set the maximum capacity to 
three orders and assume unit demand for all orders. 
Hence, the marginal capacity consumption is both uni-
form and known a priori. A typical application that is 
represented by these settings is attended home delivery 
of bulky goods. Second, for settings with a restrictive 
route length, we set the maximum capacity to 50 LU. 
With this type of constraint, the marginal capacity con-
sumption is variable among the orders and is unknown 
until the final routing decision. This is typical for 

Table 1. Customer Distribution Parameters

Revenue distribution

Location distribution

Uniform (unif) Clustered (clust) Clustered sorted (clust_sort)

Homogeneous (homog) ✓ ✓

High-before-low (h-b-l) ✓ ✓ ✓

Low-before-high (l-b-h) ✓ ✓ ✓

Random (rand) ✓ ✓ ✓
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applications that are mainly time constrained such as 
same-day delivery.

Because we aim at a full-factorial analysis of our 
approaches, we solve all the 11 customer settings from 
Table 1 for all six combinations of parameter values defin-
ing the profitability and capacity consumption. Hence, 
we test our approaches in 66 settings. For each setting, we 
draw 50 instances. Thereby, for each instance, we draw a 
fixed (deterministic) customer stream of 10 customers 
from the setting-dependent customer distribution. Then, 
for each customer, we assume a probability of λt

0 � 0:5 
that the respective request does not arrive, which is the 
only source of stochasticity, once a setting is defined.

5.3. Performance Evaluation
To evaluate the performance of the considered approaches, 
for each of the 66 settings, we calculate the mean objec-
tive value, that is, profit after fulfillment, over the 50 
different instances drawn. In Figure 2 and Online 
Appendix F, we report the results and discuss them in 
the following.

5.3.1. Single-Component Approximation. The compar-
ison between the two variants of this approximation 
approach reveals that the DPC-based variant outper-
forms the MCTS-based variant in high-profitability set-
tings and most route length-constrained settings. 
Especially in the latter settings, it also achieves very 
small optimality gaps and is competitive with the more 
sophisticated approximations. In turn, the MCTS-based 
variant is among the best-performing approaches in 
low-profitability, physical capacity-constrained settings. 
On the downside, the performance of both variants fluc-
tuates strongly across different settings. For example, 
we observe a very bad performance of the MCTS-based 
variant for low-profitability settings with distance- 
dependent revenues and even negative objective values 
for the DPC-based variant in some low-profitability, 
physical capacity-constrained settings. However, despite 
these issues with solution quality fluctuations, single- 
component approximations can be a viable approach 
because their practical implementations usually require 
less computational effort, and if the right variant is 
applied in the right setting, it can offer competitive solu-
tion quality.

5.3.2. Naive Hybrid Reward Approximation. The naive 
hybrid reward approximation is among the best- 
performing policies in many high-profitability settings 
and, with some outliers, also in medium-profitability 
settings. Hence, in these settings, ignoring the interde-
pendency between DPC and MCTS values does not 
appear particularly harmful to the solution quality. 
However, it performs weaker and shows severe outliers 
in low-profitability settings, especially if capacity is route 
length constrained. Because of this lack of robustness 

and the small gains relative to single-component 
approximations, the additional computational effort 
may only be justified in a few specific settings.

5.3.3. Offline-Online HR Approximation. Comparing 
the two variants of the offline-online HR approximation, 
the MCTS-based variant performs superior in physical 
capacity-constrained settings and in low-profitability 
settings. With a few exceptions, it is even the best- 
performing approach for these settings and shows a 
very robust performance overall. The DPC-based vari-
ant is slightly better in some route length-constrained 
settings with medium or high profitability. However, it 
can be considered inferior overall because its perfor-
mance is also more variable. A possible explanation for 
this result is that the MCTS show a stronger variation 
over similar states, whereas the differences in DPC are 
smaller for states with the same decision epoch and 
remaining capacity. If this is indeed the case, anticipat-
ing the MCTS online in disaggreate form should yield 
more accurate opportunity cost estimates. Overall, the 
results are very promising for the MCTS-based variant, 
even though its practical implementations are expected 
to require the highest computational effort. We can con-
clude that none of the presented approaches exploiting 
the decomposability of opportunity cost is strictly domi-
nated such that all are worth being investigated further. 
Our results can serve as rough guidance as to which 
approach is most promising in a certain setting. Interest-
ingly, we also observe that the relevance of DPC and 
MCTS correlates with the performance of the approaches. 
As an example, the MCTS gain relevance with decreasing 
profitability because the fulfillment cost becomes larger 
relative to the revenues, and thus, we would expect a rela-
tive performance gain of the MCTS-based approaches. 
This gain can indeed be observed for both the MCTS- 
based single component approximation and the MCTS- 
based offline-online HR approximation.

6. Conclusion and Future Research 
Opportunities

This work constitutes the first formal generic analysis of 
opportunity cost in i-DMVRPs. We showed that the 
original interpretation of opportunity cost from tradi-
tional revenue management applications cannot be 
transferred to i-DMVRPs and therefore generalized its 
definition. Further, we analytically investigated oppor-
tunity cost properties with the central property being 
the decomposability into DPC and MCTS. Finally, we 
conducted a computational study and applied previ-
ously unconsidered approximation approaches as a 
proof of concept for that the properties can be directly 
exploited in algorithm design. In the following, we first 
briefly summarize our theoretical and computational 
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results. Second, we discuss the future research opportu-
nities emerging from our work.

In existing works, insights are mainly derived either 
from qualitative reasoning and computational studies 

(Mackert 2019, Vinsensius et al. 2020) or from analytical 
analyses for specific i-DMVRPs (Asdemir, Jacob, and 
Krishnan 2009, Lebedev, Margellos, and Goulart 2020). 
In contrast, our approach is both analytical and generic, 

Figure 2. (Color online) Objective Values Resulting from the Different Opportunity Cost Approximations Averaged Across 
50 Instances per Setting 

(a) Physical capacity-constrained settings

(b) Route length-constrained settings
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which is why our results apply to the whole family of 
the most common types of i-DMVRPs. By showing that 
it is possible to substantiate existing observations at the 
modeling level, we not only confirm their general valid-
ity but also highlight the importance of modeling frame-
works for understanding and exploiting the problem 
structure of i-DMVRPs when designing solution con-
cepts. The following summary captures the essence of 
our theoretical framework.

For i-DMVRPs, opportunity cost measures the impact 
of selling an order as a consequence of a demand control 
decision, on both (expected) future revenues, in the 
form of DPC, and (expected) future cost of fulfillment, 
in the form of MCTS (Yang and Strauss 2017). With our 
analysis, we can precisely express this impact in a for-
mal way. First, we show that the impact of a demand 
control decision can be isolated from the impact of the 
subsequent routing decision. Second, we show that both 
revenue impacts and cost impacts can be formally 
expressed and thus mathematically decomposed from 
each other (Property 1). Third, we find that both impacts 
can have a positive or a negative sign (Property 2). 
Fourth, although we can measure the impacts in isola-
tion through MCTS and DPC, the corresponding values 
are still nonseparable and, in sum, nonnegative, which 
leads to the general nonnegativity of opportunity cost 
(Property 3). Finally, the value function decreases 
monotonically in an increasing set of accepted but not 
yet served customer orders and can also be transformed 
to decrease monotonically in time (Property 4).

In addition to these theoretical findings, our computa-
tional study shows that exploiting the decomposability 
of opportunity cost allows transferring new algorithmic 
approaches to i-DMVRPs that have been shown to be 
beneficial in related fields. This includes different 
hybrid reward approximation approaches, which are 
already established in reinforcement learning (Van Sei-
jen et al. 2017). The computational evaluation of ideal-
ized implementations of these approaches illustrates 
their potential in the context of i-DMVRPs. At the same 
time, we also observe that the relative performance of 
the approaches can vary considerably even among simi-
lar settings. This highlights the importance of continu-
ously expanding the available toolbox of approaches 
such that a wide range of settings can be suitably 
tackled.

For future research, we primarily see the opportunity 
to exploit the decomposability and the other properties 
in heuristic solution algorithms for specific i-DMVRPs, 
not only with the aim of improving solution quality but 
also for reducing runtimes. In particular, we believe that 
heuristic versions of the presented hybrid reward 
approximation approaches deserve further investiga-
tion. Another future research question arises in connec-
tion with Property 4. In the case of problems with 
overlapping horizons, it only holds for modified models 

(Online Appendix D). Interestingly, this model transfor-
mation can be viewed as a form of reward shaping 
(Laud 2004), which establishes monotonicity at the cost 
of increasing the delay of rewards. To the best of our 
knowledge, reward shaping has not been applied to 
solve i-DMVRPs. Hence, although it is out of scope for 
the study at hand, our theoretical results suggest that 
there is potential to investigate its application.

Finally, we see the potential for doing similar theoreti-
cal research for other novel demand management pro-
blems that feature integrated combinatorial optimization 
problems to plan service fulfillment, such as scheduling 
problems (Xu, Wang, and Huang 2015).
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