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We introduce a time-energy uncertainty relation within the context of restarts in mon-
itored quantum dynamics. Previous studies have established that the mean recurrence
time, which represents the time taken to return to the initial state, is quantized as an
integer multiple of the sampling time, displaying pointwise discontinuous transitions
at resonances. Our findings demonstrate that the natural utilization of the restart
mechanism in laboratory experiments, driven by finite data collection time spans,
leads to a broadening effect on the transitions of the mean recurrence time. Our
proposed uncertainty relation captures the underlying essence of these phenomena, by
connecting the broadening of the mean hitting time near resonances, to the intrinsic
energies of the quantum system and to the fluctuations of recurrence time. Our
uncertainty relation has also been validated through remote experiments conducted
on an International Business Machines Corporation (IBM) quantum computer. This
work not only contributes to our understanding of fundamental aspects related to
quantum measurements and dynamics, but also offers practical insights for the design
of efficient quantum algorithms with mid-circuit measurements.

uncertainty relation | restart mechanism | monitored quantum dynamics | quantum hitting time

The concept of restarting a process is a ubiquitous phenomenon across various disciplines
(1, 2). When faced with a setback in reaching a desired goal, the instinct to restart
the process often arises, driven by the hope of achieving better success in subsequent
attempts. This notion of restarting, or “resetting,” gives rise to a compelling paradigm
in the realm of classical stochastic processes (2–18). Diffusion processes with resets are
the best-studied example (2). In this scenario, a particle undergoes random diffusion
but, at periodic or random intervals, is brought back to its initial position. Additionally,
within this framework, a specific target awaits the particle’s arrival, prompting us to
inquire about the time it takes for the particle to reach this target for the first time. This
random time, both with and without the restart mechanism, is commonly known as
the “first passage time” and has garnered widespread attention (19). In particular, the
notion of restarts plays a pivotal role in expediting search processes, making these ideas
highly relevant and applicable across diverse fields, including biology (20), computer
science (21, 22), animal foraging (23–25), the study of chemical reactions (26–28), and
quantum dynamics (29–46), among others.

The concept of restarting processes is of particular importance in the context of repeated
mid-circuit measurements performed on quantum computers and more generally in
the context of monitored quantum walks (47). In quantum dynamics, the notion of
“first hitting time” without restart reveals intriguing and novel features, often intimately
connected with topological considerations, resonances, and the concept of dark states
(47–70). Typically, these processes are represented using graphs, which can describe
the states of various quantum systems, such as single particles or qubit systems. Within
this graph, a crucial element is the presence of a target state, often symbolizing the
measurement device.

To detect the system at the target state, it might be tempting to perform measurements
at infinitesimally short intervals. However, this approach encounters the Zeno effect (71),
where frequent strong measurements effectively freeze the system’s dynamics, rendering it
undetectable. As a solution, a sequence of measurements is performed at regular intervals
of � units of time, allowing the system to evolve unitarily between measurements (47–53).
Yet, when implementing this fundamental search process on a quantum computer
or any practical device, practical challenges emerge. Over time, due to measurement
imperfections or interactions with the environment, quantum effects tend to diminish due
to noise and decoherence. In such cases, a common strategy is to restart the process. This
issue of finite-time resolution is not exclusive to the quantum realm and is encountered in
classical systems as well. What distinguishes the quantum realm is the potential for sharp
and discontinuous resonances in mean hitting times, related to quantum revivals (72)
and topological effects (see below). Remarkably, as shown below, even when the restart
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time is significantly longer than the mean first hitting time, the
act of restarting can have a profound impact. Our objective
is to investigate these phenomena by leveraging an uncertainty
relation, which is vastly different from previous ones (73–78).

To illustrate the key aspects of our study, we commence with
an experimental demonstration conducted on an IBM quantum
computer (https://quantum.ibm.com). In this experiment, we
consider a straightforward three-site ring graph with quantum
states represented as |0〉, |1〉, and |2〉. The system is described by
a tight-binding Hamiltonian that accounts for hopping between
these states. Our starting point is state |0〉, which also serves as
the target state for this investigation. We aim to observe the
recurrence of the system to its initial state through periodic
measurements conducted every � unit of time. The measurement
outcomes yield a sequence of “no” responses (indicating null
detection) followed by a “yes” response when the target state
is eventually detected. The first occurrence of “yes” in this
sequence defines the first hitting time (47–53), as demonstrated
in Fig. 1. For instance, an experimental outcome might yield the
sequence {no, no, yes}, which corresponds to a first detection time
of 3�. Through repeated experiments conducted on the quantum
computer, we determine the mean number of measurements
required for detection, denoted as 〈n〉. This quantity, extracted
from the quantum computer, provides us with valuable insight
into the average time it takes to detect the target state.

Theoretical investigations, spanning a wide range of graph
types, have extensively explored the aforementioned problem
(47–62, 66–68). We first present the basic theory ignoring
restart, showing that such a theory does not align with the

experiments. Notably, Grünbaum and colleagues (47) made
a remarkable discovery: The theoretical mean recurrence time
exhibits quantization. In practical terms, this implies that the
value of 〈n〉 is constrained to integer values. Mathematically, this
integer is encapsulated by a winding number w associated with
a generating function and hence the phenomenon is topological.
The integer is defined and denoted as

〈n〉 =
∞∑
n=1

nFn = w. [1]

Here, Fn is the probability of first detection in the n-th mea-
surement, which is normalized, i.e.

∑
∞

n=1 Fn = 1. It is obtained
using the unitary U (�) = exp(−iH�) (ℏ is set as 1, and H is the
Hamiltonian) describing the evolution between measurements
and the projection |0〉〈0| describing the measurements using
collapse theory, so all along this work |0〉 is the target state.
Specifically (47, 49, 51),

Fn =
∣∣〈0|U (�)Sn−1

|0〉
∣∣2 , [2]

where the survival operator S = (1− |0〉〈0|)U (�) (1 is the
identity matrix), demonstrating the unitary evolution in the time
interval � followed by the complementary projection described
by 1−|0〉〈0| (indicating null detection). In general, the winding
number w is computed as follows (47, 55): Given the time-
independent Hamiltonian and assuming a finite graph, we search
for the energy levels and corresponding states of the system,

Fig. 1. The measurement protocol for monitored quantum walks and its output. A quantum walker on a graph is initialized at the spatial state |0〉 (marked “0”).
A projective measurement at the initial state, schematically presented by the eye symbol, is performed following the unitary evolution of time �. The output of
the measurement is either “yes” (1) or “no” (0), rendering the wavefunction of the quantum walker either localized at |0〉 or its amplitude erased at the state |0〉.
We continue the free evolution immediately after the measurement for another duration �, and then measure again, resulting in another binary outcome: 0 or
1. Using an IBM quantum computer, the process of interrupting evolution by stroboscopic measurements, for a tight-binding three-site ring, was implemented
for 20 steps, as a single realization, thus leading to an output string or measurement record of 20 bits. Our goal is to find the number of steps when the first 1
(“yes”) emerges, which is the quantum first hitting time in units of �. Repeating a large number of realizations gives the statistics of hitting times. Two common
statistical measures of estimating the mean hitting time are used. In the first, we disregard the (rare) sequences with all 0 measurements, and this yields the
mean conditioned on detection. In the second, called restarted hitting time, we continue until the first detection, as illustrated in the figure, leading to the
sampling of the mean restarted hitting time. In this example, the restart time is TR = 20 in units of �.
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denoted as H |Ek〉 = Ek|Ek〉. The value of 〈n〉 = w represents
the count of distinct phase factors, such as e−iEk� , associated with
stationary states that exhibit nonzero overlap with the target state.
See details including the proof for Eq. 1 in SI Appendix.

In our experimental example on the three-site ring (Model),
we encounter energy level degeneracy, resulting in 〈n〉 = 2 for
nearly any choice of �. However, a pivotal observation emerges
when the phase factors merge, causing 〈n〉 to become equal
to 1. The merging of phase factors occurs for specific values
of � which are straightforward to identify. Consequently, the
relationship between 〈n〉 and � is predominantly characterized by
the value 2, except for isolated pointwise discontinuities, where
it abruptly becomes 1. These peculiar values of � correspond
to instances of wave packet revivals, wherein certain times lead
to the complete revival of the wave packet to its initial state.
During such moments, the first measurement invariably yields
a “yes” outcome. What makes this phenomenon particularly
extraordinary is the discontinuous nature of 〈n〉 and its intriguing
insensitivity to values of � beyond the revival times themselves.

The theoretical findings described above are valid in principle
for infinitely long time measurements, and they have been
graphically represented in Fig. 2, alongside the corresponding
experimental results from an IBM Eagle processor (IBM Sher-
brooke). Notably, the delta-like narrow transitions predicted by
the theory are observed to exhibit widening in the real-world
experimental data. Nonetheless, a clear alignment between theory
and experiment persists, except in the immediate vicinity of these
transitions. Importantly, the above-mentioned resonances and
broadening effect is a generic phenomenon of first hitting time
statistics, and is not limited to the example under study.

The inception of this research stemmed from the natural
inquiry: Is this widening phenomenon a generic occurrence? Is
it primarily attributed to inherent noise inherent to the system,
such as imperfect timing in measurements or the unitary itself or
is it potentially linked to the fundamental principles of quantum
measurement theory? Specifically, can the basic postulates of
quantum measurement theory provide a quantitative description
of these transitions? When we refer to a “transition,” or a
“topological transition” or “resonance,” we mean the shift of

Fig. 2. Mean hitting time for the three-site ring model. The numeri-
cally/experimentally obtained mean quantum first return time of the three-
site ring model. The exact results for TR = ∞ (black line), as stated under
Eq. 1, present discontinuous jumps or dips of 〈n〉 = w, from w = 2 to
w = 1, at � = 2�k/3 (k = 0,1,2, . . . ). In the experimental data (red crosses,
TR = 20), these transitions are widened. The numerical results for TR = 20
(blue line) perfectly match the experimental results. In the paper, we address
the broadening effect showing how it is related to an uncertainty relation.
Inset is the scheme of the tight-binding model for a ring with three sites, and 
(set as 1) denotes the strength of the hopping matrix element, see Eq. 16. We
measure periodically the target state |0〉 (indicated with an eye). See details
of the IBM remote experiments in Materials and Methods and SI Appendix.

〈n〉 = w (as illustrated by w = 2 in Fig. 2) to 〈n〉 = w − 1
and back, as we systematically vary the parameter �. In this
context, � serves as our control parameter, although it is worth
noting that other parameters of the system Hamiltonian could
be employed for a similar investigation. We claim below that
the widening effects seen in Fig. 2, are generic and are due
to the restart paradigm. Second, we find that the widening
effects are determined by the fluctuations in the system, or to
put it differently, the width of the transition teaches us about
the fluctuations of the hitting time. Further, these uncertainties
in hitting times are shown to be related to the energies of the
system, thus extending the time-energy uncertainty relation to a
case where the time is actually fluctuating.

Using mid-circuit measurements, the experimental output
typically commences with a sequence of null measurements,
characterized by the string {no, no, . . . }. It is important to note
that this string is always finite, and its length is denoted as TR
(with the subscript “R” signifying “restart”). In some instances,
we encounter a “yes” in the sequence, signifying the successful
detection of interest, and thus providing the random hitting time.
However, there are cases where we find a sequence composed
entirely of “no’s,” implying that no detection has occurred until
the time TR�, see Fig. 1 with TR = 20. To analyze the statistical
features of the experiments, we use basics of restart theory.
When we average the results, we focus on two essential statistical
measures. The first is the mean, conditioned on detection within
the first TR attempts, denoted as 〈n〉Con, is given by:

〈n〉Con =
∑TR

n=1 nFn
Pdet

, [3]

where Pdet :=
∑TR

n=1 Fn is defined as the detection probability
within time TR . In the estimation of this mean, we exclude
all sequences that contain TR null measurements. The second
statistical measure is the restarted mean, which counts all
sequences, including those without any “yes,” denoted as 〈nR〉.
Namely, nR gives the total number of attempts until the first
“yes,” regardless of how many restarts have happened. See the
schematics in Fig. 1. Its mean is quantified as (38, 79):

〈nR〉 = 〈n〉Con + TR
1− Pdet

Pdet
. [4]

The first term on the right-hand side corresponds to paths where
detection occurred within TR attempts, while the second term
encompasses paths where detection happened after TR attempts.
Therefore, the mean restart time, 〈nR〉�, provides an estimate of
the average time until the first detection, considering an ensemble
that does not exclude any specific path. In theory, as TR tends
toward infinity, we obtain the idealized limit as expressed in Eq. 1
from Eqs. 3 and 4, though precisely in the vicinity of resonances,
this limit must be considered with care.

We introduce the variance of detection times, measured in
units of �, as:

�2
n = 〈n2

〉 − 〈n〉2 =
∞∑
n=1

n2Fn − w2. [5]

This variance, denoted as�2
n , quantifies the uncertainty associated

with the first hitting time. Importantly, this uncertainty tends
to be substantial in the proximity of the topological transition
under investigation, and notably, these fluctuations become more
pronounced as we approach the transition (55). Our main
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results are relationships between this uncertainty and the restarted
process using the following expressions:

〈n〉Con = w −
(

2TR

�2
n

+ 1
)

exp
(
−

2TR

�2
n

)
, [6]

〈nR〉 = w − exp
(
−

2TR

�2
n

)
. [7]

These equations hold in the limit of large TR and large �2
n while

keeping the ratioTR/�2
n constant. These relationships are general

in nature, describing transitions from w to w−1, a phenomenon
found in a broad class of Hamiltonians when a pair of phase
factors merge. When TR/�2

n → ∞, signifying a state far from
resonance, we observe that 〈n〉Con = 〈nR〉 = w. Conversely,
when TR/�2

n → 0, indicating resonance, we find that 〈n〉Con =
〈nR〉 = w − 1. Thus, Eqs. 6 and 7 describe the broadening of
the transitions that diminishes as we increase the resetting time.
These findings are significant as many aspects of the process, such
as the complete spectrum of S or U , are unimportant and do
not impact the overall outcome. We will soon show that this is
related to a type of time-energy relation.

Experimental Validation

In the analysis of the experimental data depicted in Fig. 3A,
we relied on the use of the conditional mean, as described
earlier. Additionally, we provided a theoretical representation
based on Eq. 6, which exhibits a remarkable alignment with the
experimental results without requiring any fitting procedures.
This indicates that the uncertainty relation, solely based on
measurement postulates and not noise in the IBM quantum com-
puter, is responsible for the broadening. For these experiments,
we set TR = 20. Interestingly, in Fig. 3B, for the restarted mean,
we also observe an alignment of the theory with experiment,
though now we see a small constant shift between predictions
and the data. We now explain this effect.

Consider � in Fig. 3B far from resonance, for instance, at � =
2�/3, the theoretical detection probability within timeTR = 20,
Pdet =

∑TR
n=1 Fn, is approximately equal to 1. However, in our

experimental observations, we find that Pdet is approximately

0.99, indicating a small but notable deviation between theory
and experiment. This slight deviation has a noticeable impact
on the expected value of nR . Recall that (1 − Pdet)TR/Pdet, i.e.
the second term in Eq. 4, is approximately 0, since Pdet ' 1.
However, when we use the experimental values just mentioned,
we find that forTR = 20,TR(1−Pdet)/Pdet = 0.2. Remarkably,
this observed value corresponds exactly to the shift we observe
in 〈nR〉, as presented in Fig. 3B (please refer to SI Appendix,
Supplementary Note 1 for an in-depth discussion on this issue).
We conclude that the small shift is consistent with very small
errors in the estimation of the detection probability Pdet.

This situation highlights a crucial point: When TR is large,
even small errors on the order of 1% can result in a visible shift
in the experimental outcome, 〈nR〉, and this shift grows linearly
with TR . A similar effect is not found for the conditional mean.
As mentioned, the latter neglects experimental realizations with
no detection at all. The conditional mean consistently falls below
the restarted mean, a trend particularly noteworthy in search
contexts, where the primary objective is to expedite the process.
Hence, one should wonder which measure holds greater merit.
We believe that both are valuable statistical measures, and there is
no point in highlighting one over the other. We will later address
the issue of error and noise in our experiment, now we return to
the theoretical analysis of the uncertainty relation.

Uncertainty and Energy

Given that the merging energy phase factors, denoted
exp(−iE+�) and exp(−iE−�), are responsible for the resonances
observed, we aim to establish a connection between the restarted
and conditional means and the underlying energies within the
system. To accomplish this, we provide a sketch of the proof of
the main results and extend them. In the limit of a large number
of attempts (denoted as n), the probability of detection in the
n-th attempt exhibits exponential decay, as expressed by

Fn ∼ a(�max) |�max|
2n . [8]

|�max| is the largest eigenvalue of the survival operatorS satisfying
|�max| < 1. a(�max) is a coefficient independent of n (which will
soon be discussed). A critical aspect to consider is that when we

A B

Fig. 3. Impact of restart on hitting time transitions. (A) The transition from 〈n〉Con = 2 to 〈n〉Con = 1 and back is widened due to restarts. In particular, here we
restart after TR = 20 measurements, as highlighted in the Insets. We compare the exact results (green solid line) found using Eqs. 2 and 3 with the theory (blue
dashed line) obtained using Eq. 6 and IBM quantum computer experiments (red line). The results clearly demonstrate that basic postulates of measurement
theory and the uncertainty relation using the variance of the hitting time perfectly align with the experiment. In turn, noise and imperfect measurements are
not factors in the observed behavior. (B) The mean hitting time under restart, 〈nR〉, as a function of �. We compare the exact results (green solid line), the theory
(blue dashed line, computed with Eq. 7), and experiment results on the IBM quantum computer (red line) for TR = 20. We observe the vertical shift between the
experimental and exact results, which is due to noise in quantum computers, and more specifically, due to a small 1% shift in the detection probability which
is discussed in the text. The model here is a tight-binding three-site ring, the same as in Fig. 2. In both figures, the exact results are obtained using Eq. 2, from
which we find Fn, and then using Eq. 3 for (A) or Eq. 4 for (B). The shaded red region represents the CI 99.7%, signifying an interval spanning three SDs above
and below the mean in a standard normal distribution.
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precisely tune � to the resonance, |�max| → 1 (see below for
graphic explanation) (47, 55, 56, 64). As we soon explain at
resonance lim|�max|→1 a(�max) = 0. This occurrence effectively
reduces the dimension of the Hilbert space, and this reduction
can be demonstrated as the reason for the transition from w to
w − 1 (47), which, in turn, translates to the resonance observed
in the hitting time. To gain insight, let us consider a scenario in
which two phase factors have exactly merged, specifically when
exp(−iE−�) = exp(−iE+�) for some pair of energy levels. In
this case, the following state is called dark (56, 64):

|D〉 = N [〈E+|0〉|E−〉 − 〈E−|0〉|E+〉] . [9]

Here,N is for normalization, and S|D〉 = e−iE+� |D〉, indicating
that the eigenvalue of S resides on the unit circle. Since this state
is orthogonal to the target state |0〉 and also an eigenstate of the
unitary, if we initially populate this state, it is never detected, so
it is a dark state. Hence, in our problem, when we adjust the
parameter �, which is the focus of our resonance and broadening
study, we find that it is intricately linked to the creation of a dark
state within the Hilbert space. Further, when the parameters are
set close to resonance, |�max| is close to unity, indicating a very
slow relaxation of Fn, which in turn is responsible for the novel
effects of the restarted process.

To continue consider the sum in the numerator of Eq. 3 using
Eqs. 1 and 8

TR∑
n=1

nFn =w −
∞∑
TR

nFn

∼ w − a(�max)
TR
(
1− |�max|

2)+ 1

(1− |�max|2)
2 |�max|

2(1+TR) ,

[10]
where we summed an infinite series. As mentioned when phase
factors match, the right-hand side of Eq.10, based on the theorem
in ref. 47, must be w− 1, when TR is large. It then follows that,
taking the limit |�max| → 1 before TR → ∞ in Eq. 10, we
find a(�max) ∼ (1 − |�max|

2)2, a result that can be reached
with rigorous arguments. Applying a similar procedure to the
denominator of Eq. 3 and to Eq. 4 leads to the following main
result: Let � = TR(1−|�max|

2), when |�max| → 1 andTR →∞,
we find

〈n〉Con = w − (�+ 1)e−� and 〈nR〉 = 〈n〉Con + �e−�. [11]

These formulas relate the resonances and the broadening to both
the slowest decaying channel in the problem, i.e. to the eigenvalue
�max, and the restart time TR . They show how an analysis of the
spectrum of the survival operator, in particular, the finding of its
largest eigenvalue |�max| < 1, is crucial for the problem.

We now consider the fluctuations of the hitting time. Splitting
the sum Eq. 5 into two, we have

�2
n =

kc∑
n=1

(n− w)2Fn +
∞∑

kc+1

(n− w)2Fn. [12]

Choosing a large value of kc such that we can use Eq. 8, summing
an infinite series we find (55) �2

n ∼ 2/(1 − |�max|
2). This

quantifies the statement made before: The fluctuations are large
close to the transition since |�max| ' 1. Using this relation
between the uncertainty �n and the eigenvalue �max we obtain
Eqs. 6 and 7. A rigorous proof, including the validity of Eq. 8, is
provided in SI Appendix, Supplementary Note 2.

To complete the physical picture, namely, connect the
resonance width with the energies of the system, we use the results
in ref. 55. A perturbation theory, where the small parameter is
the small arc on the unit disk, connecting the two nearly merging
phases exp(−iE−�) and exp(−iE+�), was used to find �max. The
results in ref. 55 gives |�max|

2
∼ 1− �(Δ̃E�)2 (parameters soon

to be defined). Then with Eq. 11 we find

〈n〉Con = w −
[
1 + �TR(Δ̃E�)2] exp

[
−�TR(Δ̃E�)2] , [13]

〈nR〉 = w − exp
[
−�TR(Δ̃E�)2] , [14]

where � = p+p−/(p+ + p−)3 with the overlaps p± =∑g±
l |〈0|E±, l 〉|

2 (g± is the degeneracy of the energy level E±),
and

Δ̃E� := �|E+ − E−| mod 2�. [15]

Eqs. 13 and 14 clearly show the dependence of the mean hitting
time on the system energies, and also practically, are employed
to obtain the theoretical results in Fig. 3. At resonances, when
Δ̃E� = 0, both 〈n〉Con and 〈nR〉 are equal to w−1. Additionally,
the resonance width decreases when we increase the restart time,
assuming all other parameters remain constant.

We tested our theory using several model systems. For example,
a benzene-type ring (Eq. 16 with L = 6), as presented in Fig. 4,

A B

Fig. 4. The Broadening of the Hitting Time Transitions in the Benzene-Type Ring Model. (A) The conditional mean 〈n〉Con and (B) the restart mean 〈nR〉 as a
function of �. The model here is the benzene-type ring (Eq. 16 with L = 6 and  = 1), and we work in the vicinity of its critical sampling time � = �/2, with the
transition 〈n〉 = 4 to 〈n〉 = 3. The black lines represent the theory from Eqs. 6 and 7. The dots represent the numerical exact results obtained using Eq. 2. In the
figures, from the Bottom to the Top line, the restart time TR is 20, 40, and 60, respectively. Clearly, the transition is narrowed when TR grows. Inset is the scheme
of the benzene-type ring model, and the target state is |0〉.
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A B

Fig. 5. Eigenvalue analysis in the benzene-type ring model. The eigenvalues
{�i } of the survival operator S for the six-site ring model, with the sampling
time � varied in the same range as in Fig. 4. Recall that

∣∣�i ∣∣ in general are less or
equal unity. In (A) we present the eigenvalues as the sampling time � is varied,
and the semicircle is of radius 1. In (B) we plot the absolute values of {�i }. Due
to the degeneracies of S, we have three eigenvalues. As shown in (A), two
eigenvalues (conjugate to each other) are far away from the unit circle and
hence become irrelevant. One eigenvalue approaches the unit circle, and is
solely responsible for the hitting time statistics and the uncertainty relation.
We use arrows to illustrate entering or exiting the resonance at � = �/2. The
red open circles present the eigenvalues when entering the resonance, and
blue closed circles are used for the ones when exiting the resonance. The
corresponding behaviors of the distance of the eigenvalues {�i } to the origin
are demonstrated in (B), where the two irrelevant eigenvalues share one set
of data presented by the lower circles. Clearly, we see |�max| goes to 1 and
back when entering and exiting the resonance. As explained in the text, when
|�max| = 1 we have a dark state in the system; see Eq. 9.

where excellent agreement between the theory and numerically
exact results is witnessed. We see, as predicted by Eqs. 13 and 14,
the width of the transition becomes smaller as the restart time
TR grows. See details of other graph models in SI Appendix. To
verify the uniqueness of �max, in Fig. 5, we present the behaviors
of the eigenvalues {�i} for the model of benzene-type ring, when
the sampling time � is varied. One of the eigenvalues, namely
�max, approaches the unit circle when � goes to �/2, while the
other pair of conjugate eigenvalues are relatively far from the unit
circle. As previously stated, when the largest eigenvalue |�max|
approaches the unit disk, the relevance of the other eigenvalues
is negligible and the restart uncertainty relation presented in this
work becomes relevant.

A natural query is to study the effects of system size on our
main results. To this aim, we analyzed two models: the ring
model and the complete graph with L sites. The case L = 3
corresponds to the experimental study we conducted. For L > 3,
the results exhibit distinct behaviors. Focusing on the merging
of two phases, corresponding to the largest and ground state
energy, we find w = 1 + L/2 (w = (1 + L)/2) for the even
(odd) ring model and w = 2 for the complete graph. Assuming
the hopping amplitude  (as indicated in the Inset of Fig. 2 and
Eq. 16) is L-independent, the width of the resonance decreases as
we increase L (SI Appendix, Supplementary Note 3). However,
considering the resonance related to the first excited state and the
ground state, for the ring model we find that the resonance width
will increase as the size of the system grows. The complete graph
has merely two energy levels hence this choice of energy levels
is clearly the same as the min-max choice, mentioned above.
The key issue for the broadening effect is how the energy gaps
and the parameter � in Eqs. 13 and 14 scale with the size of
the system. w depends on the symmetry of the system and the
degeneracy of the energy levels. For example, in the complete
graph, the number of distinct energy levels is two for any L,
which means w = 2. This results in relatively short mean hitting

times in units of � compared to the ring model. Importantly,
these different behaviors are all captured by our time-energy-like
restart uncertainty principle.

Effect of Random Perturbations

The broadening of resonances in the first hitting time can
arise from various sources. In the triangle model implemented
on the IBM quantum computer, we have demonstrated that
this broadening is attributable to the foundational principles
of quantum theory and the restart paradigm. However, a
broader objective is to explore the relationship between stochastic
perturbations and these broadening effects, and to determine
whether the observed topological invariant w is resilient to
fluctuations of parameters. This investigation, whose details are
provided in SI Appendix, Supplementary Note 4, encompasses
fluctuating sampling times, as well as randomness in restart times.

Utilizing the three-site ring model, we studied the effect of
random sampling time and random restart time on our key
results. Using TR = 20, as we did in the experiment, allowing
for fluctuations of up to five percent in the sampling time �
did not alter our main conclusions. However, when fluctuations
in the sampling time � reached 30 percent, the dip in the
resonances became difficult to observe, as shown in Fig. 6.
There �̃ is the actual sampling time, uniformly distributed on
[�(1 − �), �(1 + �)], and � indicates the fluctuation level. In
addition, we found that the resonance is diminishing when TR
is increased, for a fixed fluctuation level of � (SI Appendix, Fig.
S15). Thus, the larger TR is, the more pronounced the effects
of random sampling times are. Interestingly, the topological
invariant far from the resonance, 〈nR〉 ' w = 2, remained
robust even with significant fluctuations and large TR , indicating
the resilience of this number (Fig. 6 and SI Appendix, Fig. S15).
Similar behaviors are also observed for the benzene-type ring
model, see SI Appendix, Fig. S14.

To study the effects of random restart time TR , we focused on
two models, assuming 〈TR〉 = 20, motivated by our experiments.
Using a narrow distribution of TR (a tent-like distribution)
and a model where TR is Poisson distributed (a relatively wide
distribution), we show in SI Appendix that the effects of random
TR are marginal (SI Appendix, Figs. S16 and S17). This is because
of two reasons: The location of resonances is insensitive to TR , as
they are controlled by energies and the sampling time and because

Fig. 6. Mean hitting time versus the mean sampling time 〈�̃〉, for the three-
site ring model with varying fluctuation levels in the evolution time � and
fixed TR = 20. Utilizing the Monte Carlo method with 30,000 realizations, we
find that as the fluctuations of � increase, the resonances are progressively
diminished, yet the topological number 〈nR〉 = 2, far from the resonance,
remains unaffected and exhibits robustness. The shaded region represents
the CI 99.7% as in Fig. 3.
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we use (roughly) symmetric around the mean distributions for
TR . It should be noted that the restart mechanism is a classical
process, though one could extend it to consider a quantum coin-
tossing process for the restart itself. In SI Appendix, we outline
the Pal-Reuveni framework (6) for random and discrete restart
times, suitable for our study.

Our findings show that the restart time-energy uncertainty
relation does not change considerably for the restart time dis-
tributed symmetrically about its mean, compared with the fixed
restart time theory. And this type of resilience also remains when
the stroboscopicity of our measurement protocol is perturbed
(fluctuating �) and when the measurement time TR is not
vastly exceeding 40 (for the fluctuation level � = 5% which
is already exaggerated on current-day quantum computers).
Notably, the topological number far from resonance is robust
to both significant fluctuations of �, and long measurement time
TR . Although the fluctuations in TR are not likely to happen
in current quantum computing platforms, we speculate that
nonprecise sampling times are not rare and might stem from noise
and errors on quantum computers, suggesting a wider range of
applications of the restart uncertainty relation on noisy quantum
simulation and computations.

Impact of Quantum Error and Noise

We now return to the issue of quantum error and noise existing
in our experimental implementation. Note that in our IBM
experiments, we used two qubits; see Materials and Methods.
This means that we have four states: |01〉, |00〉, |10〉, and |11〉,
where |11〉 is theoretically decoupled from the other three while
the first three states correspond to the graph states |0〉, |1〉, |2〉,
respectively. By measuring the second qubit, we determined
whether the system was in the target state |01〉. Ideally, the
operations should isolate the system from |11〉, but noise existing
on the quantum processors causes minor leakage into this state,
rendering the deviations in Pdet as mentioned, and affecting the
restart recurrence time. A key issue is to develop noise models
that accurately capture the shift observed in Fig. 3B, necessitating
a detailed analysis of the quantum circuit under consideration.
Incorporating IBM-provided noise models (SI Appendix and ref.
80), into the same quantum circuit employed in the experiment
(Fig. 7 in Materials and Methods), namely a four-state model,
we simulated this effect, revealing an upward shift in 〈nR〉 (SI
Appendix, Fig. S3). This is consistent with our experimental
findings (Fig. 3B). More specifically, we incorporated bit-
flip errors and thermal relaxation noise models (SI Appendix).
A key feature of these models is the transfer of amplitude to the
theoretically forbidden state, namely a leakage effect which is
captured by the four-state model.

While the error in our experiment is roughly 1%, as men-
tioned, one might wonder what happens if the noise levels
increase. We anticipate a transition of the recurrence time to its
classical limit. The relevant classical theory, based on a random

walk picture, suggests that for a two-qubit system like the one
we used, with four states, we would expect 〈n〉 = 4 according
to Kac’s theorem (81) when TR → ∞. In this classical limit,
no resonances are observed. This discussion highlights that the
quantum hitting times we measured are consistently shorter than
this classical limit. Whether a quantum-to-classical transition in
the first hitting times occurs due to increased noise levels remains
an open question for future work.

Discussion

In a broader perspective, the observed transitions exhibit similar-
ities to line-shape resonances and broadening encountered across
various fields of spectroscopy (82). However, a distinguishing
feature here is that the periodic driving force is not an external
field acting upon a material system. Rather, they arise from
the intrinsic nature of the measurements themselves and their
periodicity. Notably, resonances are associated with the creation
of dark states, in contrast to traditional resonances linked to
quanta of energy carried by particles such as photons. Dark states
are commonly observed in quantum systems, often appearing as
dips in line shapes due to destructive interference, for example in
electromagnetically induced transparency (83–85) and coherent
population trapping (86–91) experiments. In the recurrence
problems, where we measure the mean hitting time, these states
play a unique role. Similar to the role of dark states in other
fields, where they enhance effects like laser cooling (92–94),
the formation of dark states in our context leads to a speedup
of the recurrence time. This acceleration occurs because dark
states reduce the effective size of the Hilbert space, making
searches more efficient and resulting in faster detection at
resonances. This holds true for the recurrence problem, namely
the initial condition under study is detected with probability one
if TR →∞, so we are focusing on a bright state all along, though
our observable 〈n〉 is clearly influenced by the creation of dark
states in the Hilbert space.

The broadening of the resonances of recurrence time is
intricately linked to three crucial factors: the uncertainty �n,
the slowest decaying mode in the problem, i.e. |�max|, and the
energies of a pair of merging phase factors. This interconnection
establishes fundamental relationships between quantum hitting
time statistics and the system’s underlying characteristics, with the
restart time playing a pivotal role. It is noteworthy that analogous
resonances may be present in related scenarios, particularly when
we venture beyond the recurrence problem or engage in nonlocal
measurements (63). The expansion of our findings to encompass
other observables and the exploration of cases where degeneracies
are associated with the absolute value of the eigenvalue |�max|,
resulting in nonpure exponential decay of Fn and transitions
from w → w − 2 or w → w − 3, etc., rather than the studied
w→ w − 1 case, represents an avenue for future research.

Additionally, we have devised a method for detecting reso-
nances and quantifying their widths in the context of restarted

Fig. 7. Quantum circuit representation for the three-site ring model. Quantum circuit for two qubits representing the three localized states with alternating
unitary U and measurements, with the initial state and target state |0〉 = |01〉.
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hitting times on quantum computers. We anticipate this to
be a valuable tool for investigating the interplay between mid-
circuit measurements and unitary operations. The width of the
resonance can serve as an indicator of whether the fundamental
postulates of measurement theory are effectively functioning on
a given device or if noise and decoherence are exerting control.
In our experimental study, which was remotely conducted on
an IBM quantum computer, we demonstrated that the former
scenario holds true. However, we anticipate that, as we increase
the size of the quantum system or adjust the restart time,
distinct behaviors related to the coupling of these systems to the
environment may emerge. Such insights will provide valuable
information on the operating conditions of the generation of
algorithms with mid-circuit measurements, e.g. dynamic circuits
(95) and error correction (96). Furthermore, quantum dynamics
driven by measurements has emerged as an intriguing method to
study novel phenomena, for example, entanglement transitions
(97, 98), induced chirality (99), and synchronization (100).
When implemented on a quantum computer, finite-time effects
and hence restart will likely emerge as important.

The strategy of restarts used here is nearly mandatory for
several reasons. In real quantum circuits, noise and leakage are
present. Hence, to study the quantumness of the problem, one
is obliged to use finite-time experiments. More generally, unless
one finds a way to perfectly correct noise and eliminate leakage in
quantum computers with mid-circuit measurements, the restart
strategy is nearly a must. The significance of the broadening effect
becomes crucial close to discontinuous behaviors of the hitting
time statistics, leading to a time-energy uncertainty relation
deeply related to the variance of the first detection time. This
insight, promisingly, holds the potential to contribute to a better
understanding and design of efficient quantum algorithms, which
rely on backtracking (restart) and monitored dynamics (101).
More importantly, we provided a restart hitting time uncertainty
relation, and since hitting times are fluctuating, the uncertainty
relation differs from the standard time-energy relation, where
time is a parameter and not an observable.

Materials and Methods

Model. The example we considered in the main text is a ring model governed
by the nearest-neighbor tight-binding Hamiltonian

H = −
L−1∑
j=0

(|x〉〈x + 1|+ |x〉〈x − 1|) , [16]

where  is the hopping amplitude, L is the size of the system, and {|x〉}
are the spatial states composing the ring system. As noted, the main results
in the manuscript are generally valid and are not limited to this model. The
periodical boundary condition indicates |0〉 = |L〉, and |0〉 is the target state.
The eigenvalues of the Hamiltonian [16] are

Ek = −2 cos �k , [17]

with �k = 2�k/L and k = 0, 1, 2, . . . , L − 1. The corresponding eigenstates

are |Ek〉 =
∑L−1

x=0 ei�k x
|x〉/
√

L. Hence, the overlap is
∣∣〈x|Ek〉

∣∣2 = 1/L. In the
main text, for simplicity, we set the hopping amplitude  as 1.

The three-site ring was used in our remote IBM experiments. Using Eq. 17
with L = 3, there are 2 distinct energy levels, {−2, 1}, with |〈x|Ek〉|

2 = 1/3
and the energy level E1 = E2 = 1 is doubly degenerate. Hence, the overlaps
are p− = 2/3, and p+ = 1/3. When � = 2�j/3 with j = 0, 1, 2, . . . , the
mean 〈n〉 for TR → ∞ jumps from w = 2 to w = 1, where energy phases
{e−i� , ei2�

} match. Using the above mentioned p− and p+ and energies,

Eqs. 13 and 14 give � = 2/9, and Δ̃E� =
∣∣3� − 2�j

∣∣ close to each � =
2�j/3. In Fig. 3, j = 1 and the resonance condition � = 2�/3 is used. As
mentioned, these jumps in the mean hitting time correspond to revivals of the
wave packet on the origin.

The benzene-type ring was used in our examples plotted in Fig. 4. Here,
L = 6 and the distinct energies are {±2,±1}, where the energies ±1 are
two-fold degenerate. Hence, the overlaps corresponding to distinct energies
are |〈0|E0 = −2〉|2 = |〈0|E3 = 2〉|2 = 1/6, and |〈0|E1 = −1〉|2 +

|〈0|E5 = −1〉|2 = |〈0|E2 = 1〉|2 + |〈0|E4 = 1〉|2 = 1/3. Using Eq. 1
we therefore expect that, except for a small subset of � ’s, 〈n〉 = 4. When
� = (2j + 1)�/2 with j = 0, 1, 2, . . . , 〈n〉 for TR →∞ jumps from w = 4
to w = 3, where the energy phases{ei2� , e−i2�

}merge, hence E+ and E− used
in the text are−2 and 2, respectively. So the parameters in Eqs. 13 and 14 are,
� = 3/4, and Δ̃E� =

∣∣4� − 2�(2j + 1)
∣∣ close to each � = (2j + 1)�/2.

In Fig. 4, j = 0 or � = �/2 is used.

Sketch of the Rigorous Proof for the Uncertainty Relation. To prove the
uncertainty relation, the key is to validate Eq. 8. Briefly speaking, this can be
done via the generating function method (51). Applying the Z-transform to the
expression inside the bracket of Eq. 2, i.e. �n = 〈0|U(�)Sn−1

|0〉, one can
obtain the generating function, �̃(z) =

∑
∞

n=1 zn�n. Decomposed by the
Hamiltonian’s eigenstates, and being a polynomial, �̃(z) can be factorized by
its zeros and poles, using Blaschke factorization (47). Due to the mathematical
property of the latter, the poles are the reflection of the zeros, with respect to the
unit circle. And also, the zeros are the complex conjugate of the eigenvalues, {�i},
of the survival operator S (SI Appendix, Supplementary Note 2) (56). Hence,
the generating function �̃(z) can be completely factorized by the zeros, or the
eigenvalues {�i}. This allows us, in terms of {�i}, to use the residue theorem,
to recover �n via the inversion formula �n = 1

2�i
∮
|z|=1 �̃(z) z−(n+1) dz.

And then Fn = |�n|
2 can be computed and simplified to Eq. 8. The detailed

derivation is presented in SI Appendix, Supplementary Note 2.

Implementation on a Quantum Computer. We design a three-site ring
model, Fig. 2, using Eq. 16 with L = 3. To realize the three-site system
on a quantum computer, we use two qubits, which can generate four states:
|00〉, |01〉, |10〉 and |11〉. Hence, we employ the following mapping between
the qubits and spatial states representation: |01〉 → |0〉, |00〉 → |1〉 and |10〉
→ |2〉. We design our circuit in such a way that the additional state |11〉 is not
connected to the others and will never be detected at least theoretically.

In our study, we detect the state |0〉 → |01〉. This can be realized by
measuring only the upper (right) qubit. Hence, when measuring the upper
(right) qubit in state |0〉, the measurement does not give any information to
distinguish the state |1〉 → |10〉 and |2〉 → |00〉. Importantly, measuring
the upper (right) qubit in state |1〉 tells that the system is in |0〉 → |01〉 with
certainty. We determine the first detection time, n, by analyzing mid-circuit
measurement outputs from the quantum circuit, as shown in Fig. 7.

We examine the expected value of n as a function of � , considering the
detection of the target state, namely the upper (right) qubit being detected in
state |1〉, as the endpoint of measurement. As detailed earlier, measurements
restart at finite TR, yielding output strings like {0, 1, 0, 1, 1, . . . }, of length TR,
with “0” and “1” indicating the state of the upper (right) qubit, or actually failure
and success in detection, respectively. The experiment ideally concludes after the
first appearance of “1,” but due to technological constraints, we cannot terminate
the quantum computation based on the measurement outputs, necessitating a
finite and constant TR.

The maximum duration for measurement repetitions in the IBM quantum
computer IBM Sherbrooke is set at TR ' 20 . This restriction is influenced by
software limitations specific to the quantum computer we used. This choice is also
chosen to reduce noise and avert nonunitary actions and probability leakage.
Such occurrences could render the system’s Hamiltonian (H) effectively non-
Hermitian. In particular, when performing our experiments on IBM Sherbrooke,
TR = 20 was the maximum number of repeated measurements allowed by the
software.
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As shown in Fig. 1, to calculate the conditional mean 〈n〉Con, we disregarded
null-detection strings, which are strings of length twenty with only zeros
{0, 0, . . . , 0}. Such strings are rare, since the Pdet within 20 measurements is
nearly 1 (at most 2 percent below 1, depending on �), see details and figure for
Pdet in SI Appendix. For the restarted mean, we analyze the unconditional hitting
time with restarts, noting the first detection time as nR. For example, consider the
sequence of {0, 0, . . . , 0}of length 20, which, after a restart event, is followed by
{0, 0, 1, . . . }. Here, the first time for detection under restart is nR = 23. In total,
we conducted 32, 000 runs with TR = 20 bits per run, requiring additional data
processing to identify the first “1” in each string, thus obtaining the first hitting
time n for each run. See SI Appendix, Supplementary Note 5 for more details on
the quantum circuit implementation, error suppression, and data processing.

Data, Materials, and Software Availability. Datasets from experiments data
have been deposited in Zenodo (https://doi.org/10.5281/zenodo.13327746)
(102).
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