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Abstract. Despite advancements in Autoencoders (AEs) for tasks like
dimensionality reduction, representation learning and data generation,
they remain vulnerable to adversarial attacks. Variational Autoencoders
(VAEs), with their probabilistic approach to disentangling latent spaces,
show stronger resistance to such perturbations compared to deterministic
AEs; however, their resilience against adversarial inputs is still a concern.
This study evaluates the robustness of VAEs against non-targeted ad-
versarial attacks by optimizing minimal sample-specific perturbations to
cause maximal damage across diverse demographic subgroups (combina-
tions of age and gender). We investigate two questions: whether there are
robustness disparities among subgroups, and what factors contribute to
these disparities, such as data scarcity and representation entanglement.
Our findings reveal that robustness disparities exist but are not always
correlated with the size of the subgroup. By using downstream gender
and age classifiers and examining latent embeddings, we highlight the
vulnerability of subgroups like older women, who are prone to misclas-
sification due to adversarial perturbations pushing their representations
toward those of other subgroups.

Keywords: Variational autoencoders · Adversarial robustness · Inter-
sectional subgroups · Adversarial attacks · Fairness · Bias

1 Introduction

Autoencoders (AEs) have emerged as a versatile method in machine learning
(ML) for various tasks such as dimensionality reduction [9], representation learn-
ing [24] and data generation [25]. The widespread adoption of AEs, even in crit-
ical applications, naturally raises concerns about their fairness in performance
across different demographic subgroups and their robustness to adversarial at-
tacks.

Despite significant progress in this area, it has become increasingly apparent
that these models often learn biased representations with respect to protected
attributes, such as gender or age, exhibiting discriminatory biases against minor-
ity subgroups like old women in various downstream tasks [28]. A contributing
factor to this issue is the inherent biases present in the training set images [8],
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which often feature a high disparity in representation towards minority sub-
groups. This disparity not only highlights issues of fairness and inclusivity but
also raises critical ethical concerns about the deployment of such technologies
in diverse societies. Autoencoders are also not infallible; they are particularly
susceptible to well-crafted input samples [10]. The adversarial samples, charac-
terized by minimal, humanly imperceptible perturbations, can deceive otherwise
high-performing deep learning models. This vulnerability poses significant chal-
lenges to the integrity and reliability of AEs on applications in critical domains.
Variational Autoencoders (VAEs) [14,11] have emerged as a robust alternative
to their deterministic counterparts (vanilla AEs), demonstrating a higher re-
silience to input perturbations, especially those stemming from adversarial at-
tacks. Nonetheless, adversaries have devised methods to exploit the resilience of
VAEs by introducing minor input perturbations [29] designed to elicit substantial
changes in the encoding process. While the robustness of models against such
adversarial strategies has been extensively studied [17,4,18], a gap remains in
the comprehensive evaluation of model robustness across different demographics
and whether there are differences in the performance.

In this study, we aim to provide a comprehensive evaluation of the robustness
of VAEs against non-targeted adversarial attacks across various demographic
subgroups. Our initial question (Q1) examines whether there are robustness dis-
parities among these subgroups. The second part of our research (Q2) aims to
understand the factors contributing to these disparities. We evaluate the adver-
sarial robustness of different subgroups and examine the effect of the latent space
disentanglement regularization parameter on subgroup robustness inequality. Al-
though the β-VAE with an optimal regularization parameter reduced robustness
disparities, it caused many samples to resemble majority class samples. We con-
firmed this by analyzing variations in prediction accuracy of downstream gender
and age classifiers. To understand this behavior, we explored the latent space
neighborhood of samples prone to subgroup switching reconstruction, identifying
lack of embedding smoothness as a potential cause.

2 Related Work

The evaluation of adversarial robustness involves generating adversarial attacks
against the target model for specific samples and assessing the difficulty by
quantifying the perturbation needed to induce incorrect predictions or recon-
structions [27]. Latent space attacks, as described by [23,15], optimize perturba-
tions to minimize the KL divergence between latent distributions of perturbed
and actual samples. [1] proposed a modified latent space attack, constraining the
perturbation norm by a constant instead of penalizing it within the adversarial
objective. [10] introduced a general targeted adversarial objective for attacking
any autoencoder architecture. [5] suggested generating attacks by maximizing
the Wasserstein distance between latent maps of input data and their adver-
sarially perturbed counterparts, using the projected gradient descent method.
[3] presented the maximum damage attack for generating untargeted adversarial



Adversarial Robustness of VAEs across Intersectional Subgroups 3

perturbations. While targeted attacks focus on producing a predefined output,
untargeted attacks aim to make the autoencoder’s output as different as possible
from the original input, allowing the noise optimizer to explore a variety of per-
turbations that degrade performance. Thus, we choose untargeted adversarial
attacks to evaluate robustness.

Given the widespread application of VAEs [9,19] across various fields [20]
and being trained on datasets containing diverse human faces [16], it is essen-
tial to investigate VAE robustness in intersectional subgroups. These systems,
may underperform for subgroups with specific facial attributes or those under-
represented in the dataset, leading to biased performance. Despite extensive
research, there has been limited investigation into comparing the adversarial
robustness of different data subgroups. Therefore, this study aims to investi-
gate the adversarial robustness of β variants of Variational Autoencoders across
intersectional subgroups.

3 Basic concepts and problem formulation

We assume an unsupervised learning scenario where a VAE model is used to
learn a compact representation of high-dimensional image data. The problem
formulation is presented in Section 3.1, basic concepts on VAE models and ad-
versarial attacks are presented in Section 3.2 and Section 3.3, respectively.

3.1 Problem setup

We assume an image dataset I = {xi, si} , consisting of images xi ∈ RN , and
a vector of k protected values si = [si,1, · · · , si,k], where each si,j describes a
demographic membership of xi (e.g. ‘Female’) w.r.t. a protected attribute si,j
(e.g. ‘Sex’). For simplicity, we assume the protected attributes to be binary:
∀j = 1, · · · , k, si,j ∈ {gj , gj}, where gj and gj respectively represent the pro-
tected group (e.g., female) and the non-protected group (e.g., male). Further, the
intersection of different protected attributes defines the so-called intersectional
subgroups or subgroups, for short. For example, based on the binary protected
attributes age={“young”, “old”}, and sex={“male”, “female”}, four different sub-
groups are formed: {“young-female”,“young-male”, “old-male”,“old-female”}. The
collection of subgroups is denoted by SG and defines as:

SG = {sg = s1 ∩ s2 ∩ · · · ∩ sk | sj ∈ {gj , gj}, j = 1, · · · k}} (1)

Our goal is to learn a compact representation of the data using VAE models
(c.f., Section 3.2). However, as the number of protected attributes increases,
some subgroups may become smaller or even empty [21] resulting in diverse
qualities of representation learning across the subgroups. This variability could
have direct consequences for adversarial robustness. Our goal is to assess the
adversarial robustness of VAE across various subgroups, and examine how the
diverse qualities of representation across the subgroups impact the vulnerability
of each subgroup w.r.t. the adversarial attacks.
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3.2 Variational Autoencoders

Let Fϕ,θ be a generative auto-encoder model utilizing a deep VAE [11] architec-
ture, parameterised by an encoder with parameters ϕ that encodes any image
x ∈ I into a compressed latent space representation z ∈ RM , M < N , and
a decoder with parameters θ that decodes/reconstructs the image x using the
encoded representation z. The aim for Fϕ,θ is to learn z as a generative latent
representation described by a conditional probability distribution qϕ(z|x), such
that the predicted output space described by conditional probability pθ(x|z)
maximizes the likelihood of reconstructing the image x:

max
θ

Ep(z)[log pθ(x|z)]

where p(z) is the estimated prior of the latent representation z drawn from
standard normal distribution. The learning is accomplished using the following
objective function:

L(θ, ϕ) = Ez∼qϕ(z|x)[log pθ(x|z)]− β ·DKL(qϕ(z|x)||p(z)) (2)

where β ≥ 1 is a hyperparameter indicating the emphasis on the regularization
term for latent space to be close to prior, with β = 1 corresponding to the vanilla
VAE [14]. Increasing β forces the model to learn more disentangled latent repre-
sentation separating the distinct, independent and informative generative factors
of variation in the data [26,2]. Studies have shown that learning a disentangled
latent space can positively impact fairness of AEs [6], however it may also have
a negative trade-off impact on the accuracy [13] of the VAE.

3.3 Adversarial examples

Adversarial examples [29] in context of AEs for images are described as original
input images with subtle modifications, typically imperceptible to humans. These
slight alterations are carefully crafted to deceive image encoder, leading to error
in the latent representation encoding, and henceforth, an incorrect reconstruction
that differs highly from the original image.

Formally, given an input image x, and an auto-encoder with learned recon-
struction distribution E[log pθ(x|z)], adversarial examples are defined as a subtle
perturbation/modification δ, which when added to the image as x+δ, maximizes
the gap between expected reconstruction:

max
δ

∥Ez′∼qϕ(z|x+δ)[log pθ(x|z′)]−Ez∼qϕ(z|x)[log pθ(x|z)]∥

s.t. ∥δ∥p ≤ c
(3)

where c is a hyperparameter bounding the norm of δ to ensure suitable perturba-
tion intensity. This process falls under the category of non-targeted and whitebox
adversarial attacks within the taxonomy of adversarial attacks [29], where the
adversary has access to the trained neural network model and tries to evade the
system (e.g., Dodging [22]) by learning an optimal noise using Equation 3.
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4 Evaluating adversarial robustness across subgroups

Schematically, an overview of our approach for evaluating the adversarial ro-
bustness of a β-VAE against non-targeted adversarial attacks across diverse
subgroups is depicted in Figure 1. It consists of two main components, attack
generation and robustness evaluation, explained hereafter:

Fig. 1: An overview of the approach

1. Attack generation: Attacks are generated as maximum damage attack
instances to undermine the robustness of a β-VAE model (Section 4.1).

2. Robustness evaluation: The robustness of a β-VAE model is evaluated
across different (sub)groups against the generated attacks (Section 4.2).

Given a trained β-VAE model Fϕ,θ, we intend to evaluate adversarial ro-
bustness of Fϕ,θ across all the subgroups sg ∈ SG. For each such subgroup sg

we sample a subset I(n)
sg = {xi|si,j = gj , si,k = gk, sg = gj ∩ gk} of n randomly

sampled points from the training dataset I. We select the sample sets from the
training data, to evaluate the model’s vulnerability on the learned distribution
itself, where it is expected to be most robust. Next, to generate the attacks,
we learn an optimal perturbation as detailed in Section 4.1 for each sample
xi ∈ I(n)

sg . We use the learned perturbation to evaluate the model’s robustness
against the generated adversarial attack as described in Section 4.2, by measur-
ing the deviation in the reconstruction of the adversarial input with that of the
original input. Throughout the attack optimization, and the robustness evalu-
ation stages, we consistently normalize the perturbed adversarial image before
presenting it as input to the VAE. This practice mitigates the risk of generating
trivial adversarial examples whose effects can be nullified by mere normalization.

4.1 Maximum damage attack generation

In assessing VAE’s robustness, the choice of the adversarial attack method plays
a crucial role; we opt for maximum damage attacks [3]. This attack method aims
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to generate untargeted adversarial perturbations that inflict maximum damage
on the reconstruction process of VAEs.

The objective of a maximum damage attack is to maximize the discrepancy
between the latent space representations of the original image x and the per-
turbed image x + δ, where δ represents a perturbation satisfying a given norm
constraint. The main intuition is that by pushing the latent map away from the
map of the unperturbed sample, the reconstruction loss at the VAE’s output is
expected to increase. Formally, the objective function is defined as follows:

arg max
δ:∥δ∥∞≤c

∥qϕ(z|x+ δ)− qϕ(z|x)∥2 (4)

where qϕ(z|x) denotes the distribution of latent representations in VAE and c is
a hyperparameter specifying the bound on the norm of the perturbation δ.

The utilization of the maximum damage attack across various protected
groups and subgroups enables us to conduct rigorous assessments of VAE ro-
bustness, contributing to the understanding of the model’s reliability and gen-
eralization capabilities under different demographic scenarios.

4.2 Robustness evaluation for non-targeted adversarial attacks

Robustness to adversarial attacks is typically evaluated with adversarial accuracy
loss [17,4,18]. However, such evaluation set-up is typically applicable under a
targeted adversary attack scenario. In VAE’s for image learning, since there is
no target label to learn, the main intent of the attacks is to deviate the model
from proper reconstruction of the image. Thus, the deviation in the reconstructed
output from the original reconstructed output [3] is used to test robustness.

For each instance x we evaluate the adversarial robustness of VAE (Fϕ,θ)
against attacks on x. We use the generated optimal distortion δ from the attack
generation step (Section 4.1) to get the perturbed image x+δ. Then, we provide
both the original image x and the perturbed image x + δ as inputs to VAE
and we evaluate the deviation of the adversarial output from the output on the
original image as:

∆c = ∥Ez′∼qϕ(z|x+δ)[log pθ(x|z′)]−Ez∼qϕ(z|x)[log pθ(x|z)]∥2 (5)

where ∆c also referred as adversarial deviation is the measured L2 norm dis-
tance between the reconstruction of the original image vs that of the perturbed
image. Lower values of ∆c correspond to higher robustness of the model against
adversarial attacks on samples and vice versa.

5 Experiments

We evaluate the robustness of different β-VAE models on different demographic
subgroups of the CelebA dataset (Section 5.1). We report both quantitative
(Section 6.1) and qualitative (Section 6.2) results.
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5.1 Experimental setup

Dataset We experiment with the large-scale CelebFaces Attributes (CelebA)
dataset [16], which consists of 202,599 celebrity images, each accompanied by
40 attribute annotations featuring diverse facial characteristics. The dataset is
well-suited for this study due to its inclusion of various protected attributes and
inherent imbalances in the population, which enables us to study robustness
across various subgroups with varying cardinalities.

For this study, we consider Age and Gender, both binary, as the protected
attributes to define the subgroups. An overview of the subgroups and their as-
sociated imbalances in cardinalities is shown in Figure 4d, with old women com-
prising the smallest subgroup and young women comprising the largest.

Training Adam optimizer is used for training with a learning rate of 1e-4.
We train three different VAE models, with β = {1, 5, 10}. Higher value of β
refers to higher emphasis of the VAE to the disentanglement factor (c.f. Sec-
tion 3.2) in the latent space. However, when β is too low or too high the
model learns an entangled latent representation due to either too much or too
little capacity in the latent z bottleneck [11]. The full code for all the ex-
periments and evaluation along with additional resources can be accessed at
https://github.com/ChethanKodase/robustness_of_subgroups

Evaluation setting and evaluation measures To evaluate the robustness of
the subgroups, we selected 60 random samples from each subgroup. This deci-
sion was driven by resource constraints, as generating sample-specific white-box
adversarial attacks incurs significant computational overhead. We evaluate the
robustness of VAEs to samples of different groups by measuring the adversarial
deviations according to Equation 5. For all the trained models and chosen ran-
dom samples we optimized adversarial perturbations according to Equation 4
by empirically setting the perturbation norm bound c for all experiments to
enhance robustness comparisons. A very low c may cause no output damage in
some samples, while an extreme c could cause excessive damage in all output
samples, both of which hinder effective comparison. Our work aims to evaluate
and compare adversarial robustness, not to demonstrate attack success. Since
autoencoders are more resilient than classifiers [10], we use perceptibly intense
perturbations, as also seen in [27,10,?], to enable robustness comparisons. Then,
we report on the distribution of adversarial deviation ∆c for different subgroups,
according to Equation 5.

In Figure 2 we show the adversarial deviation (c.f., Equation 5) vs unper-
turbed reconstruction loss (eq. 2) of VAE’s with different β=1,5,and 10, across
different subgroup instances. Higher values of adversarial deviation correspond
to lower adversarial robustness of the model against the chosen samples for ro-
bustness evaluation against a given model. Lower values of unperturbed recon-
struction loss correspond to better reconstruction of the unperturbed image. We
notice that the adversarial deviations of samples are notably higher for attacks

https://github.com/ChethanKodase/robustness_of_subgroups
https://github.com/ChethanKodase/robustness_of_subgroups
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Fig. 2: Adversarial deviation vs original (unperturbed) reconstruction loss for different
subgroup instances (subgroup denoted by symbol) and different β-VAEs (denoted by
color). The lower the adversarial deviation the higher the robustness.

against VAE with β = 1 and β = 10 compared to that with β = 5. This observa-
tion falls inline with the literature suggesting neither low or high values of β are
good [11]. Interestingly, we also notice that samples with relatively higher recon-
struction loss (0.05 - 0.06) in the unperturbed scenario (mostly populated with
young men and women) does not have higher deviance (∆c ≤ 0.125) compared
to some samples (old men and women) with lower unperturbed reconstruction
loss (0.02 - 0.03) with ∆c ≥ 0.2. Reconstruction loss is generally evaluated
as the proxy of models quality in understanding the latent feature semantics.
This finding reveals the vulnerability of certain subgroups where, despite the
low reconstruction loss of the original image, the model fails to comprehend the
feature space and resist adversarial perturbations against samples belonging to
these subgroups.

6 Evaluation results

6.1 Quantitative analysis

Adversarial robustness across gender and age groups We first report on
the adversarial deviations of gender and age groups alongside their respective
cardinalities, in Figure 3. Looking at the Age attribute, we can see that the Old
group exhibits relatively higher adversarial deviation (higher median and higher
variance), indicative of lower adversarial robustness, compared to the Young
group. Looking at the cardinality distribution, we can see that the Young is
much larger than the Old . Looking at the Gender attribute, the distributions of
adversarial deviations among Women are comparatively higher (higher median,
comparable variance) compared to those among Men, suggesting a relatively
lower level of robustness within the Women subgroup. However, Men has a
lower cardinality compared to Women.

Conclusion: From this experiment, we can infer that while imbalances in
subgroup cardinalities do impact adversarial robustness, they do not singularly
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(a) Gender (b) Age

Fig. 3: Distribution of adversarial deviations for Gender and Age along with the group
cardinalities.

(a) β = 1 (b) β = 5

(c) β = 10 (d) Subgroup cardinality

Fig. 4: Distributions of adversarial robustness of vanilla VAE (β = 1), and β-VAE on
subgroups defined by age and gender.
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determine robustness levels. In one instance, the most resilient group (men)
has relatively low cardinality, whereas in another instance, the most resilient
group (youth) has comparatively higher cardinality. Other factors, such as the
heterogeneity of the group, may contribute to a specific subgroup having low
robustness despite its higher cardinality. We plan to further investigate this
aspect in the future.

Adversarial robustness across intersectional subgroups In Figure 4 we
show the adversarial deviations for the four subgroups based on gender and age
for various β values, alongside their respective cardinalities. In the adversarial
deviations plot of the vanilla VAE (β=1), we observe that the groups young
men and young women exhibit higher robustness compared to the groups old
men and old women, respectively. In particular, the variances are higher for the
old subgroups. The old women also have the higher median. The young men
and young women subgroups are the two best represented in the population (see
bottom right). The group old women depicts higher deviation values and greater
variance, followed by old men. Notably, these subgroups are the least represented
in the population.

The effect of β: As β increases to 5.0 (top right), the distributions of adver-
sarial deviations for all subgroups decrease correspondingly, indicating increased
robustness. However, when the VAE was trained with an even higher value of
β = 10, the adversarial robustness of all subgroups deteriorated compared to
β = 5 and became as suboptimal as the vanilla VAE. The old women group
appears to be the most affected, showing significantly higher variability of ad-
versarial deviations at β = 10. Despite the overall improvement in robustness for
β = 5, the relatively higher adversarial deviation (comparatively low robustness)
of the old women group persists. Subgroup cardinalities indicate that the rep-
resentation of the old women subgroup is not sufficient for the model to ensure
smooth and stable embeddings.

Conclusion: Subgroup imbalances, which become more pronounced in the
intersectional case, play a role in adversarial robustness. The disentanglement
parameter β affects the robustness even of imbalanced subgroups, but it re-
quires an optimal value in our case, β = 5. Despite the positive impact of β on
robustness, the relative robustness inequality persists even with optimal β. For
example, the subgroup old women remains relatively the least robust even after
β regularization.

6.2 Qualitative analysis

Analysis of adversarial reconstruction losses We select one sample from
each subgroup (young men, old men, young women, old women): one causing
maximum damage at the vanilla VAE output and generate maximum damage
attack on the selected samples from all the subgroups with higher β-VAE modes.
To compare reconstruction quality and adversarial deviations across β-VAEs, we
plot these samples and observe their resistance to adversarial attacks with higher
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β values (β = 5 and β = 10). Figure 5 shows inputs and reconstructions from
various β-VAE models for both normal and adversarial samples. These sam-
ples demonstrated maximum damage in each subgroup against the vanilla VAE
(β = 1) and illustrate the evolution of their resistance to attacks in other β-VAE
modes. 5a (for β = 1), 5b (for β = 5), and 5c (for β = 10). The reconstruction

(a) β=1

(b) β=5

(c) β=10

Fig. 5: Inputs and reconstructions for normal (x) and perturbed samples (x + δ) from
the groups young men (columns 1 & 2), young women (columns 3 & 4), old men
(columns 5 & 6), and old women (columns 7 & 8) with highest adversarial deviation.

quality of adversarial inputs is superior for β-VAEs with β = 5 compared to
those with β = 1 and β = 10. Figure 5 shows that adversarial reconstructions
are more impaired for old women and old men than for young women and young
men. Comparision between samples at β = 1 and β = 10 is difficult as they
appear to be almost equally damages. Figure 5b demonstrates improvement in
adversarial reconstructions with β = 5 for all groups, especially preserving fa-
cial structure and attributes for young women and young men compared to old
women and old men. Specifically, the young men sample shows substantial im-
provement over the old men sample. Overall, certain subgroups exhibit higher
adversarial deviations, indicating greater susceptibility to attacks and lower ro-
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bustness. During the experiments, we also observed a tendency for some minority
group samples to be reconstructed as majority group samples even with opti-
mal latent space regularization in the β-VAE (β = 5). This poses a concern if
β-VAE is used to mitigate adversarial attacks on a downstream classifier. Thus,
we further investigate this tendency.

Analysis of subgroup switching tendencies in adversarial reconstruc-
tions of minority samples Despite β-VAEs with an optimal β = 5 minimize
adversarial deviation, we observe that adversarial reconstructions often resem-
ble those of majority groups in the dataset. Figure 6 qualitatively shows β-VAE
(β = 5) adversarial reconstructions of old women and old men resembling the
majority group. To quantitatively investigate, we trained CNN classifiers for pre-
dicting gender and age (young/old) on the CelebA dataset, evaluating them on
60 samples from each subgroup. Tables 1 and 2 display the classifiers’ prediction
accuracy on direct images, reconstructions, and adversarial reconstructions for
all three β-VAE modes. Table 1 shows the lowest gender prediction accuracy for
old women across all inputs. Notably, β-VAE (β = 5) adversarial reconstruc-
tions inputs to gender classifier have higher prediction accuracy than those from
vanilla-VAE (β = 1). Table 2 indicates that the greatest reduction in age pre-
diction accuracy for adversarial reconstructions, when used as inputs for the age
classifier, is observed for the old women group. This supports the observation
that β-VAE (β = 5) adversarial reconstructions of some of the minority group
samples resemble the majority group. We visualized latent representations of
different subgroups using t-SNE on samples selected for adversarial robustness
evaluation (Figure 7). Samples with maximum output damage were often in
mixed or peripheral neighborhoods in latent space, while those with minimal
damage were surrounded by similar subgroup points. Figure 7 confirms that old
women and old men samples suffered the most output damage from attacks.

Fig. 6: Inputs and reconstructions of samples that show tendency of subgroup switching
in their reconstructions for β-VAE with β= 5.0

6.3 Demostration of pull tendencies towards majority subgroups

To further investigate, we visualize the embedding shift due to attacks and the
neighborhood around the attacked sample embedding in Figures 9 and 8. These
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Fig. 7: Embeddings of dataset subgroups along with samples chosen for adversarial
robustness evaluation for β-VAE with β=1.0 (top left), β-VAE with β=5.0 (top right)
, β-VAE with β=10.0 (bottom). The gray-black scale color bar indicates the values of
adverarial deviation. higher adversarial deviations ∆c is observed for the subgroups old
men and old women

Fig. 8: Pull effect on subgroup old women: black star point indicates unperturbed
embedding, gray dot indicates adversarial embedding

Fig. 9: Pull effect on subgroup old men: black dot indicates unperturbed embedding,
gray dot indicates adversarial embedding
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Table 1: The table shows the gender classifier prediction accuracy for 60 samples
per subgroup across different input types and models. Accuracy is reported for
direct input to the gender classifier(column 2), direct reconstructions from all
β-VAEs modes (columns 3, 4, 5) and adversarial reconstructions from all β-VAE
modes (columns 6, 7, 8).

subgroup direct input direct reconstruction adversarial reconstruction

β1 β5 β10 β1 β5 β10

Young men 0.9500 0.95 0.9333 0.9333 0.6333 0.8167 0.8667
Old men 0.9833 0.9833 0.9833 0.9667 0.7833 0.8167 0.8833

Young women 0.9667 0.9833 0.9667 0.9667 0.7333 0.9333 0.9161
Old women 0.9000 0.8667 0.90 0.85 0.5833 0.7833 0.7667

Table 2: The table shows the age classifier prediction accuracy for 60 samples
per subgroup across different input types and models. Accuracy is reported for
direct input to the age classifier(column 2), direct reconstructions from all β-
VAEs modes (columns 3, 4, 5) and adversarial reconstructions from all β-VAE
modes (columns 6, 7, 8).

subgroup direct input direct reconstruction adversarial reconstruction

β1 β5 β10 β1 β5 β10

Young men 0.7333 0.6667 0.6500 0.7000 0.4500 0.6833 0.6333
Old men 1.000 0.9667 1.000 1.0000 0.8000 0.9667 0.9667

Young women 0.900 0.900 0.9167 0.9000 0.6167 0.8833 0.8833
Old women 0.9833 0.8833 0.9000 0.8833 0.7167 0.7667 0.7833

figures illustrate samples from old women and old men subgroups that appeares
to be switched to another subgroup in the reconstruction due to attacks against
β-VAE with β = 5. We selected a few samples from the old women and old men
subgroups, plotted their unperturbed embedding and the shifted embedding due
to attack, along with their 10 nearest neighbors from each subgroup choosing
from the whole dataset embedding. The plots reveal that the embedding for old
women adversarial sample is located in a neighborhood of young women. Simi-
larly, the adversarial embedding of old men samples are found in neighborhoods
of young men or young women, influencing their reconstructions.

In Figures. 8 and 9, it is clear that the direct reconstructions of the sam-
ples were not influenced by the majority samples in the neighborhood. How-
ever, a slight shift in the embedding due to adversarial perturbation causes
the reconstruction to be heavily influenced by the surrounding majority group
embeddings. This indicates that certain subgroups in the dataset, due to under-
representation or specific attributes, can lead to non-smooth embeddings with
defective latent manifold topology, potentially driven by the majority subgroup.
These defective embeddings, when surrounded by majority subgroup samples,
result in higher susceptibility to attacks, reduced robustness, and an increased
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tendency for reconstructions to be influenced by the majority subgroup samples
in the neighborhood.

7 Conclusion

Our study highlights the importance of robustness in representation learning
across various (sub)groups to ensure “fairness” aiming for comparable adver-
sarial robustness levels across all subgroups. Despite the widespread adoption
of autoencoders for representation learning in CV and their overall good per-
formance, biases persist, especially against minority subgroups like old women,
reflecting issues of fairness and inclusivity. We found that while the representa-
tion of minority subgroups in training data significantly influences biases, simply
increasing dataset size doesn’t always address disparities. This suggests that a
better notion of representativeness beyond cardinality is needed. Moreover, we
discovered that enhancing disentanglement in the latent space of VAEs can im-
prove fairness. This suggests the potential of deliberate efforts to promote dis-
entanglement in VAE architectures by separating factors related to protected
attributes from other variables, which we look to explore in future. However,
disentanglement alone doesn’t offer a panacea solution, as observed for the old
women subgroup in our experiments. Our research underscores the need for nu-
anced approaches to effectively mitigate biases, which may include enhancing
representation for small subgroups as well implementing disentanglement.
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