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A B S T R A C T

The objective of this study is to investigate the relationship between the Normalized Difference Vegetation
Index (NDVI) and Synthetic Aperture Radar (SAR) data at multiple frequencies, focusing on S- and C-band
data with additional analysis for X- and L-band. This is the foundation for the translation of SAR data into
NDVI values, thereby enabling the filling of gaps in NDVI data due to cloud cover. This study encompasses three
distinct study areas in Argentina, Australia, and Vietnam, which exhibit considerable climatic and agricultural
differences. NovaSAR-1 S-band and Sentinel-1 C-band data were acquired for all areas, with the addition of
COSMO-SkyMed X-band and SAOCOM L-band SAR data for one region. Following the processing of the SAR
data and the derivation of NDVI values from optical Sentinel-2 data, the relationship between them is analyzed
for field-wise aggregated data.

The relationship between S- and C-band SAR data and NDVI values is observed to be strong for all fields.
Consequently, cross-polarized (HV or VH) data demonstrated this relationship for all fields with a Pearson
correlation coefficient 𝜌 > 0.5, whereas for co-polarized data (HH or VV), this could only be shown for some
fields and crops. In the case of rice paddy fields, however, a different relationship is observed. While both S-
and C-band data demonstrate a good relationship, this is primarily evident in the case of co-polarized data, with
cross-polarized data exhibiting a comparatively weaker relationship. A relationship was observed for X-band
data, but no relationship could be attested for L-band data. Neither the cross-ratio nor the radar vegetation
index (RVI) generally showed a stronger relationship with the NDVI compared to a single polarization.

The demonstrated relationship between NDVI values and SAR backscatter data allows for a translation to be
feasible. Consequently, the planned launch of the NISAR satellite, comprising S- and L-band SAR sensors, will
facilitate new opportunities for agricultural monitoring. However, the retrieval of NDVI values from SAR data
is a complex topic, as numerous factors, including crop type, crop phenology, SAR geometry and frequency,
and others, influence this relationship.
1. Introduction

Agriculture provides food for humans and animals alike and there-
fore is of utmost importance. The importance of monitoring agricultural
fields and landscapes is driven by the need to estimate yields and
anticipate food insecurity (Weiss et al., 2020) or observe the occurrence
and spread of pests and diseases (Zhang et al., 2019). A variety of sensor
types are employed for agricultural monitoring, with multispectral opti-
cal and synthetic aperture radar (SAR) sensors representing the primary
focus. Although there has been a greater focus on optical sensors, their
primary limitation—the lack of data due to cloud coverage and reliance
on solar illumination—has hindered their adoption, particularly in
tropical regions. In contrast, synthetic aperture radar (SAR) data offers
significant advantages, including the ability to acquire images in all
weather conditions and at any time of day or night. Nevertheless, the
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adoption of SAR data for agricultural monitoring is relatively slow, due
to several factors, including the lower resolution of freely available
data, the greater difficulty of visual interpretation, and the lack of
historical data for comparison.

Vegetation indices (VIs) are a common tool in the analysis of
optical data due to their ease of use, which allows for the integration
of information from multiple spectral bands into a single value. In
the context of vegetation, the normalized difference vegetation index
(NDVI) is the most popular one. The NDVI is a measure of vegetation
greenness (Chuvieco, 2020), which can be used as a rough indicator
of crop state. One potential solution to this challenge is to translate
the SAR data into NDVI values, which relies on a relationship between
the two modalities. This approach offers a means of combining the
advantages of the SAR sensor’s all-weather imaging capability with
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the ease of interpretation of vegetation indices. For C-band data, a
elationship between the two modalities was demonstrated, as well as
he successful estimation of NDVI from SAR data. However, for S-band
ata, neither of these outcomes has yet been shown and for X- and
-band, this was also not exhaustively studied. The planned launch
f NASA-ISRO Synthetic Aperture Radar (NISAR) in 2024, which will
nclude S- and L-band SAR sensors, makes further investigation into this
rea highly valuable.

1.1. Related research

This paper examines the relationship between SAR backscatter and
DVI values. In this regard, existing research on this relationship is

relevant, as are approaches to estimating NDVI values from SAR data,
iven that this process necessarily entails a relationship.

The relationship between L-, X-, and especially C-band SAR data
and optical vegetation indices or crop parameters has been explored
in numerous studies. Thereby, the choice of SAR frequencies investi-
ated in each study is influenced by two primary factors: the optimal
avelength and the availability of data for that specific wavelength.
he chosen wavelength is crucial as it determines the penetration depth

nto the crop canopy and also determines, which parts of the vegetation
ontribute to the radar response, because backscattering only occurs for
bjects of a similar or larger size than the radar wavelength (Rosenqvist

and Killough, 2018). For instance, short X-band waves with a 3 cm
avelength interact already with the topmost leaves of the vegetation

and therefore the waves do not penetrate deeply into canopy. In
contrast, L-band waves with a 20 cm wavelength do not interact so
strongly with small leaves, but more with larger structures like stalks
and therefore they can penetrate the whole crop volume even for tall
crops like Maize.

Very little research was carried out so far investigating S-band SAR
ata for different applications like vegetation monitoring, because only
 limited number of S-band SAR systems were deployed so far. Only
ecently has there been an increase in research utilizing this frequency,
ollowing the launch of NovaSAR-1 and in anticipation of the launch of
ISAR, which will have both S- and L-band SAR sensors. Nevertheless,
o studies have yet been conducted that establish a link between NDVI
nd S-band backscatter data.

In contrast, numerous publications examine the relationship be-
ween X-, C-, and L-band SAR data and crop and plant parameters, as
ell as optical vegetation indices, due to the availability of a multitude
f sensors. For C-band, a relationship between NDVI values and SAR
ackscatter has been demonstrated for maize (Alvarez-Mozos et al.,

2021), barley, wheat, grassland, and maize (Holtgrave et al., 2020),
or canola (Jiao et al., 2021). Moreover, the biomass of corn could
be estimated with both SAR and optical data (Hosseini et al., 2019),
and the same was possible for wheat with both C- and L-band data
Hosseini and McNairn, 2017). Additionally, time series of Sentinel-1’s

interferometric coherence and the NDVI are well related (Villarroya-
Carpio et al., 2022). Similar to C-band, X-band SAR data is related to
he height, biomass, and water content of maize (Baup et al., 2016)) or
o the NDVI values of carrot fields (Segalini et al., 2014). In the second

study, the authors note a strong dependence of the field orientation
with respect to the SAR sensor. Furthermore, the leaf area index and
plant height of sunflowers have been demonstrated to be related to SAR
backscatter data of X-, C-, and L-band frequencies (Fieuzal and Baup,
2016). Similarly, a relationship between the same three frequencies
nd NDVI values has been observed in meadows (Wang et al., 2013).

The aforementioned studies collectively demonstrate the existence of a
elationship between SAR data and vegetation indices.

The successful estimation of VI values from SAR data provides
urther evidence that a relationship exists between the two sets of
ata. Consequently, both machine learning techniques, such as random
orests, and deep learning techniques, including convolutional neural
etworks, are employed. The estimation of NDVI from C-band SAR
 t

2 
backscatter has been demonstrated for small areas in several studies
Scarpa et al., 2018; Filgueiras et al., 2019; de Castro et al., 2024).
oth NDVI and enhanced vegetation index (EVI) are estimated for a

larger study area (dos Santos et al., 2022), and the global applicability
to retrieve NDVI values from single-date SAR images has also been
emonstrated (Roßberg and Schmitt, 2023). Collectively, these studies

underscore the relationship between C-band SAR data and NDVI.

1.2. Contributions

This study makes two significant contributions to the field. It is
the first to analyze the relationship between NDVI values and S-Band
SAR backscatter. Additionally, it is unique in that SAR backscatter and
NDVI values are related to each other for multiple SAR frequencies and
multiple study areas, thereby providing more comprehensive insights
into the spatial applicability and performance of SAR-based vegetation
monitoring.

2. Data

For this study, three diverse areas were selected with varying cli-
mates and agricultural practices (Section 2.1), for which SAR and
optical data are acquired (Sections 2.2 and 2.3) and field outlines
extracted (Section 2.4).

2.1. Study areas

To gain a broad understanding of the relationship between SAR
ackscatter and NDVI values, three different areas with distinct cli-

mates and agricultural practices were selected: near the cities of Bell
Ville in Argentina and Boort in Australia, and an area in the Mekong
River Delta in Vietnam. Their location on the globe is shown in
Fig. 1(a). The choice of study areas was limited due to the limited
vailability of suitable S-band NovaSAR-1 data. Nevertheless, these
hree regions offer a variety of climates and crop types, providing a

robust basis for analysis. Mainly Sentinel-1 C-band and NovaSAR-1 S-
band data are used, but for one study area COSMO-SkyMed X-band and
SAOCOM L-band data are also used. The study areas are described in
detail in the following sections.

2.1.1. Bell Ville (Argentina)
Bell Ville, located in Argentina, experiences a monsoon-influenced

umid subtropical climate (Köppen-Geiger classification: Cwa) with an
verage temperature of 17.4 ◦C and 952 mm of annual precipitation.
he region has mild winters from June to August with temperatures
f 10 to 12 ◦C and minimal precipitation (13–17 mm/month), and hot
ummers from December to February with average temperatures of 23–

24 ◦C and significant precipitation (120–160 mm/month). In the Union
Department, whose capital is Bell Ville, soy (46%), corn (29%), and
wheat (16%) are the main crops (Dirección de Estimaciones Agrícolas,
2023). The agricultural season runs from November to May, with soy
planted from mid-November to mid-January, corn from mid-September
to November, and wheat from mid-May to July, with corresponding
harvest seasons of mid-March to mid-June for soy and corn, and mid-
November to mid-January for wheat (U.S. Department of Agriculture,
2024). The region is relatively flat, with elevations ranging from 115
m to 140 m.

Six NovaSAR-1 acquisitions were selected for further analysis. They
re acquired in the 20 m ScanSAR mode with two polarizations, HH and
V, and have an angle of incidence between 22◦ and 31◦. They are pro-
ided by CSIRO in ScanSAR detected (SCD) format. The corresponding
entinel-1 and −2 images are usually acquired within three days of the
ovaSAR-1 acquisition, with two exceptions, where Sentinel-1 data are
cquired four and six days before the NovaSAR-1 one. All scenes were
cquired between December 2023 and April 2024, the main growing
eason for this area. The exact acquisition times of all three sensors
ogether with the incidence angle are given in Table 1.
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Table 1
Overview of the acquisition dates of the three sensors utilized for the Bell Ville study
rea in Argentina. The incidence angle is given for the SAR data.

NovaSAR-1 Sentinel-1 Sentinel-2

date angle date angle date

2023-12-24 27◦–30◦ 2023-12-20 35◦–37◦ 2023-12-25
2024-01-02 29◦–31◦ 2024-01-01 35◦–37◦ 2024-01-04
2024-01-19 24◦–27◦ 2024-01-13 35◦–37◦ 2024-01-19
2024-02-16 29◦–30◦ 2024-02-18 35◦–37◦ 2024-02-13
2024-03-03 22◦–24◦ 2024-03-01 35◦–37◦ 2024-03-04
2024-03-25 24◦–27◦ 2024-03-25 35◦–37◦ 2024-03-24

Table 2
Overview of the used SAR and optical scenes used for the Boort study area in

ustralia. The incidence angle of each scene is given for both NovaSAR-1 and Sentinel-
1. Additionally, the ScanSAR mode resolution of each NovaSAR-1 scene is listed.

NovaSAR-1 Sentinel-1 Sentinel-2

date resolution angle date angle date

2021-08-07 35 m 15◦–22◦ 2021-08-06 34◦–38◦ 2021-08-08
2022-01-20 30 m 24◦–29◦ 2022-01-21 34◦–38◦ 2022-01-20
2022-06-01 35 m 15◦–22◦ 2022-06-02 34◦–38◦ 2022-06-04

2.1.2. Boort (Australia)
Boort, located in Australia, is characterized by a cold semi-arid cli-

ate (BSk of the Köppen-Geiger classification) with an average annual
emperature of 15.6 ◦C and 371 mm of precipitation. The climate fea-

tures warm summers from December to February with average temper-
atures ranging from 20–22 ◦C and low precipitation (20 mm/month),
and cooler winters from June to August with temperatures around 8–
9 ◦C and higher precipitation (40 mm/month) (Karger et al., 2017,
2021).

The region’s elevation varies from 60 m to 110 m, with mild
elevation changes and slopes of less than 1◦. The primary crops include

heat (42%), barley (25%), and canola (17%), as well as pasture
(13.2%) (Australian Bureau of Statistics, 2024). Wheat and barley are
typically planted from April to June and harvested between October
and January, while canola is planted in April and harvested from mid-
October (U.S. Department of Agriculture, Foreign Agricultural Service,
International Production Assessment Division, 2021).

Three NovaSAR-1 acquisitions were selected for this area, two
during the winter growing season (2021-08-07 and 2022-06-01) and
 third on 2022-01-20 during the drier summer without much green
egetation. All three images were acquired in ScanSAR mode with three
olarizations VV, HH, and HV. They have slightly different resolutions
f 35 m and 30 m for the summer and winter acquisitions, respectively,
nd also different incidence angles ranging from 15.1◦ to 28.5◦, as
hey were acquired from different orbits. For this area, CSIRO provided
nalysis-ready data (ARD) with radiometric terrain correction, which
e used. The optical and Sentinel-1 C-band SAR images are acquired on
pproximately the same days as the NovaSAR-1 data, with a maximum
ifference of three days. The exact acquisition dates of all three sensors,
ogether with the incidence angles and, for NovaSAR-1, the ScanSAR
ode resolution used, are detailed in Table 2.

2.1.3. Mekong River Delta (Vietnam)
The third study area is located in the Mekong River Delta in south-

rn Vietnam in the province of Ðống Tháp. It is almost entirely covered
ith rice fields, as the Mekong Delta produces 56% of Vietnam’s rice

U.S. Department of Agriculture, Foreign Agricultural Service, Interna-
ional Production Assessment Division, 2017). The terrain is extremely
lat, with elevations ranging from 0 m to 10 m above sea level.
he climate of the region is predominantly monsoonal (Köppen-Geiger
lassification As and Aw), with an average annual precipitation of
600 mm. The rainy season occurs from May to November, with more
han 150 mm of rain per month, while the dry season from December
3 
to April has less than 50 mm of rain per month. Temperatures remain
fairly constant throughout the year, ranging from 26–29 ◦C. Rice is
cultivated up to three times per year, with our study period covering
the summer–autumn (July 1 to January 31) and autumn–winter (March
1 to August 31) seasons (Clauss et al., 2018).

Two dates were chosen in March and August 2023. For these dates,
AR data could be acquired at four frequencies: NovaSAR-1 S-band,
AOCOM L-band, Sentinel-1 C-band, and COSMO-SkyMed Second Gen-
ration (CSG) X-band data. Only CSG data could not be acquired on

both dates, but only for August 2023. Data from all sensors are acquired
no more than three days apart from the Sentinel-2 optical acquisition.
For Sentinel-1, both ascending and descending orbits could be used.
Similarly, two SAOCOM acquisitions were available in August 2023.

The NovaSAR-1 data are acquired in 20 m resolution dual-polarized
canSAR mode with HH and HV polarization and are provided by

CSIRO in SCD format. The orbit state and position are inaccurate for the
acquisition on 2023-08-06, resulting in a geolocation error of several
kilometers, which was manually corrected after data processing. This
leads to small errors in the backscatter, as the angle of incidence is
off by 0.2◦, as well as errors where the terrain is not flat. Since most of
the terrain is very flat, this does not affect the data analysis and results.
SAOCOM and CSG data were acquired in stripmap mode with HH and
HV polarization, Sentinel-1 in IW mode. All three SAOCOM acquisitions
were not perfectly geolocated but were off by 10 m to 50 m, which was
corrected manually.

For all five sensors, the exact acquisition dates as well as the
ncidence angles of the SAR scenes are given in Table 3.

2.2. SAR data

This study utilizes SAR data from multiple sensors with different
requencies and imaging modes.

NovaSAR-1 is a space-borne S-band SAR system launched in 2018
and operated by a consortium of various space agencies and partners
Held et al., 2019). Australia’s Commonwealth Scientific and Industrial

Research Organisation (CSIRO) provides data free of charge on their
ata portal.1

Sentinel-1 is a global monitoring mission by the European Space
gency (ESA) utilizing C-band SAR to provide continuous data of the

Earth’s surface (Torres et al., 2012). The Sentinel-1 data used in this
study were captured in interferometric wide swath (IW) mode with VV
and VH polarizations with a raw resolution of 3 × 22 m (Rg × Az).
The Level-1 Ground Range Detected (GRD) data were downloaded from
the Copernicus Browser data platform,2 which are already detected,
multi-looked, and projected to ground range.

The Argentine SAOCOM 1 A and 1B satellites are part of the L-band
SAR constellation, which is overseen by the National Space Activities
Commission (CONAE). This study uses Single Look Complex (SLC) data
from SAOCOM in Stripmap mode. The data utilized in this study is
taken in dual-polarized stripmap mode with a ground resolution of
10 m × 5 m (Rg × Az) and includes HH and HV polarizations.

The fourth sensor used is from the second-generation COSMO-
SkyMed (CSG) satellite constellation, which carries X-band SAR systems
and is operated by the Italian Space Agency (ASI). Images are taken
n dual-polarized (HH and HV) stripmap mode with a resolution of

× 3 m. The data are provided in the Level-1B format, which is
lready focused, amplitude-detected, radiometrically equalized, and
epresented in ground projection.

An overview of the data from all sensors including the imaging
ode and data product for each study area is provided in Table 4. Upon

visualizing an example image of each SAR sensor the resolution differ-
ences of the sensors become evident. CSG and SAOCOM demonstrate

1 https://data.novasar.csiro.au/
2 https://browser.dataspace.copernicus.eu/

https://data.novasar.csiro.au/
https://browser.dataspace.copernicus.eu/
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Table 3
Overview of the acquisition dates for the Mekong River Delta study area in Vietnam along with the incidence angle for all
SAR scenes.

NovaSAR Sentinel-1 SAOCOM CSG Sentinel-2

date angle date angle date angle date angle date

2023-03-05 25–27◦ 2023-03-05 38◦–41◦ 2023-03-03 21◦–23◦ 2023-03-06
2023-03-06 40◦–43◦ 2023-03-06 29◦–31◦

2023-08-08 13–15◦ 2023-08-08 38◦–41◦ 2023-08-05 29◦–31◦ 2023-08-06 44◦–46◦ 2023-08-08
2023-08-09 40◦–43◦
Fig. 1. Overview of the three study areas with their location (1(a)) and a Sentinel-2 RGB visualization overlaid with the field outlines (1(b),1(c),1(d).
Table 4
Overview of SAR sensors utilized in this study, along with their imaging parameters and data availability for each of the three study areas Boort (B),
Bell Ville (BV), and Mekong River Delta (MRD).

Sensor Band Fre- Wave- Image mode Polarization Resolution Data Pixel spacing Study region
quency length (Rg × Az) product (m × m) B BV MRD
(GHz) (cm) (m × m)

NovaSAR-1 S 3.200 9.4 cm ScanSAR HH,HV,VV 30 × 30, 35 × 35 ARD 22.3 × 22.3 x – –
NovaSAR-1 S 3.200 9.4 cm ScanSAR HH,HV 20 × 20 CSD 10 × 10 – x x
Sentinel-1 C 5.405 5.5 cm IW VH,VV 20 × 22 GRD 10 × 10 x x x
SAOCOM L 1.275 23.5 cm Stripmap HH,HV 3.75 × 3.23 L1A 2.4 × 6.95 – – x

CSG X 9.600 3.1 cm Stripmap HH,HV 3 × 3 DGM_B 1.25 × 1.25 – – x
superior resolution compared to Sentinel-1, which still exhibits a better
resolution compared to NovaSAR-1 data. For each sensor, the data over
the Mekong River Delta of a single date together with a zoomed-in
detail view is displayed in Fig. 2.

2.3. Optical data

The optical data utilized in this study is from Sentinel-2, a global
monitoring mission by the European Space Agency (ESA) and provides
4 
multispectral imagery with a 10 m resolution. Captured spectral data
includes visible, near-infrared, and shortwave infrared light with wave-
lengths from 443 nm to 2200 nm. Surface reflectance data (Level-2A)
are used in this study, which are processed using Sen2Cor by ESA. In
addition to providing surface reflectance data free from atmospheric
effects, Sen2Cor also generates a scene classification layer (SCL) that
annotates, among other things, cirrus and other clouds, their shadows,
and water surfaces. An example visualization of the optical data for
each study area is given in Figs. 1(b)–1(d).
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Fig. 2. Visualization of the SAR data for the Mekong River Delta study area. A zoomed-in detail view is shown to illustrate the different image resolutions. The polarizations of
each image are displayed in the red and green channels of the image, and the acquisition date is given for each image. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
2.4. Field outlines

The outlines of the agricultural fields in all three study regions were
delineated manually using data from the Sentinel-2 satellite as well
as Google aerial imagery. It was ascertained that all fields exhibit a
uniform NDVI across all dates, as well as a homogeneous appearance
in the SAR imagery. To avoid mixed pixels at the field boundaries, all
polygons are designed to remain entirely within the field edges, with a
buffer zone around the edge.

In total, around 200 fields were delineated for each of the three
study areas. The Boort study area encompasses 174 fields, the Bell Ville
area 204, and the Mekong River Delta region 208. Because of different
agricultural practices, the field sizes change substantially between the
study regions: Both Boort and Bell Ville feature larger fields with a
median size of 16.4 hectares and 30 hectares, respectively. In the
case of Boort, one-third of the fields are less than 10 hectares in size,
another third are between 10 and 40 hectares, and the remainder
are up to 120 hectares in size. In the Bell Ville area, field sizes are
more homogeneous, with 60% of fields measuring between 10 and 40
hectares. In contrast, the fields in the Mekong River Delta are relatively
small, with 85% of them being smaller than 2 hectares and almost
all of them being smaller than 4 hectares. For all three regions, the
labeled polygons are shown in Fig. 1, superimposed on the Sentinel-2
RGB image.

2.5. Crop classification

The relationship between NDVI and SAR backscatter is distinct for
different crops (Villarroya-Carpio and Lopez-Sanchez, 2023). There-
fore, the relationship should be investigating separately per crop, which
requires a crop type map.

For the Bell Ville study area, the National Map of Crops 2023/24 is
used (de Abelleyra et al., 2024), which is depicted for the study area in
Fig. 3. For this crop map, features derived from Landsat and Sentinel-2
imagery are used to train a random forest classifier using samples taken
at field surveys. An overall accuracy of 0.91 is reported for the region
Bell Ville is located in.

In the Mekong River Delta study area, rice is grown almost ex-
clusively (Truong et al., 2024). The only difference between fields is
therefore the agricultural management, like when sowing, flooding,
or harvesting is taking place. With multiple dates being examined,
capturing various vegetative states, all fields in the study area can be
5 
Fig. 3. Crop type map for the Bell Ville study area in Argentina for the winter season
2024. The classified crops are from the Argentina National Map of Crops (de Abelleyra
et al., 2024).

considered to belong to the same class and should exhibit the same
SAR–NDVI relationship.

In the Boort study region, crop classifications for the investigated
years were unavailable. To still analyze the behavior of different crop
types, one option is to apply unsupervised clustering to the fields.
However, examining relationships among clusters with unknown prop-
erties and compositions yields very few insights. Therefore, no separate
analysis per crop or cluster is carried out.

3. Methods

In the following sections, the perquisites for the data analysis are
detailed. This includes SAR and optical data processing in Sections 3.1
and 3.2 and ends with a description of the data analysis methods
(Section 3.3).
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3.1. SAR data processing

The SAR data used in this study is sourced from different sensors
nd each sensor needs different processing steps to yield data suitable
or analysis.

For the NovaSAR-1 data, both ScanSAR detected (SCD) and Analysis
eady Data (ARD) products were utilized. To the SCD data, we applied

errain correction and calibration in order to convert the digital num-
ers (DN) to 𝜎◦ intensity values. The ARD products that were utilized
ere already multi-looked, geocoded, and had undergone radiometric

errain flattening resulting in 𝛾◦ backscatter intensities. Accordingly,
he ARD intensity data were solely transformed to a logarithmic scale.
t should be noted that neither the SCD nor the ARD products include
ny corrections for antenna patterns or scalloping effects.

The processing of Sentinel-1 data was performed in a standard
manner: precise orbit application, thermal and border noise removal,
calibration, and geocoding. The processing chain for SAOCOM data
included calibration to intensity values, multi-looking with 1 × 3 looks
n range × azimuth, conversion from slant range to ground range, and
eocoding. COSMO-SkyMed (CSG) data processing involved 3 × 3
ulti-looking and geocoding. Sentinel-1, SAOCOM and CSG data are

normalized to 𝜎◦ backscatter coefficients.
For processing the Sentinel toolbox SNAP was employed. Geocoding

as performed using the Copernicus 30 m Digital Elevation Model
(DEM). All data were converted to intensity values on a logarithmic
scale, expressed in decibels (dB).

Given that all sensors provided both cross- and co-polarized data,
he cross-ratio can be calculated by dividing the co-polarized data
y the cross-polarized data, with both polarizations expressed in a
inear scale: co-pol

cross-pol . If the values are expressed in a logarithmic scale,
this results in a subtraction of the decibel values. The combination
f both polarizations into a single value enables a joint analysis of
oth polarizations and may potentially enhance the strength of the

relationship. As the sensors provide different polarizations, different
cross-ratios can be calculated: 𝐻 𝐻∕𝐻 𝑉 , 𝑉 𝑉∕𝐻 𝑉 , or 𝑉 𝑉∕𝑉 𝐻.

Next to the cross-ratio, the radar vegetation index (RVI) is calcu-
ated. Originally, it was defined for quad-polarized data (Kim and van
yl, 2000) combining three polarization:

RVI =
8𝜎𝐻 𝑉

𝜎𝐻 𝐻 + 𝜎𝑉 𝑉 + 2𝜎𝐻 𝑉
. (1)

However, often only two polarizations are acquired with one transmit
and two receive polarizations. Therefore, the RVI is adapted assuming
that the cross- and the two co-polarized data are identical, e.g. 𝜎𝐻 𝐻 =
𝜎𝑉 𝑉 and 𝜎𝑉 𝐻 = 𝜎𝐻 𝑉 . Then, the RVI using only two polarizations can
e calculated (Trudel et al., 2012; Nasirzadehdizaji et al., 2019):

RVI𝑉 𝑉 ,𝑉 𝐻 =
4𝜎𝑉 𝐻

𝜎𝑉 𝑉 + 𝜎𝑉 𝐻
(2)

RVI𝐻 𝐻 ,𝐻 𝑉 =
4𝜎𝐻 𝑉

𝜎𝐻 𝐻 + 𝜎𝐻 𝑉
. (3)

The geolocation accuracy of several SAOCOM and NovaSAR-1
scenes was insufficient, which required a manual correction. As this was
done solely on the processed data, minor inaccuracies were introduced
during the SAR processing due to the mislocated DEM and potentially
erroneous incidence angles. However, these errors are sufficiently small
to not affect the results. The geolocation accuracy of NovaSAR-1 is
particularly poor when the satellite state vector is based on two-
line element (TLE) data, as opposed to the more accurate GPS. The
use of ground control points has the potential to enhance the SAR
orthorectification, as demonstrated in Joshi et al. (2022), but was not
used in this study due to the manual effort required for accurately
acquiring them.

For one Sentinel-1 acquisition in Australia, implausibly low VH
SAR backscatter values occur with median values of fields of −40 dB.
This is the result of SNAP’s thermal noise removal, where pixels with
backscatter values below zero are clipped and set to 1 × 10−5 (or
6 
−50 dB). After subsequent processing and resampling steps, this results
n backscatter values dropping below −45 dB. To address this issue, any

fields with more than 5% of pixels below −45dB are excluded for the
analysis. Furthermore, in all remaining fields, pixels with values less
than −45 dB are masked.

3.2. Optical data processing

Sentinel-2’s optical data and the NDVI calculated from it are em-
ployed to establish a relationship with the SAR backscatter data. The
optical data comes with a scene classification map (SCL), which con-
tains information about the depicted object or surface of each pixel
like clouds or snow. This mask is used to mask cirrus and other clouds
as well as their shadows. Consequently, only those pixels classified as
either vegetated or non-vegetated are kept. The SCL mask is upsampled
from a resolution of 20 m to 10 m using nearest neighbor upsampling,
as the used multi-spectral bands have a resolution of 10 m.

The NDVI is calculated using the red (R) and infrared (NIR) bands,
specifically Sentinel-2 bands B04 and B08, using

NDVI = NIR − R
NIR + R (4)

To ensure numerical stability and avoid divisions by zero, a small
ositive number can be added to the denominator.

In the Mekong River Delta, the rice paddy fields are flooded at
he beginning of the season. As the classification of water in the SCL
as insufficient in detecting this flooding, we additionally calculate

he modified normalized difference water index (mNDWI) (Xu, 2006).
he mNDWI utilizes green (G) and short wave infrared (SWIR) spectral

bands, for which we chose Sentinel-2 bands B03 and B11, respectively,
with the following equation

mNDWI =
G − SWIR1
G + SWIR1

(5)

As Sentinel-2’s SWIR channel B11 is acquired at a resolution of 20
m, we upsampled it to 10 m resolution using bilinear interpolation.
During data analysis, the mNDWI value is used to filter out fields that
re potentially flooded, as described in the following Section 3.3.

3.3. Data analysis

For this study, a field-wise approach was employed for data analysis
o assess the relationship between SAR backscatter and NDVI values.
 preliminary pixel-wise analysis did not show a significant relation-
hip between them, which is likely due to the strong influence of

speckle. This is also described in Roßberg and Schmitt (2024), where
a pixel-wise analysis yielded inconclusive results.

The delineated field polygons were used to extract the median
values from the SAR and optical raster images. Taking the median
mitigates the impact of speckle and noise and enhances the reliability
of the data. In the case of the Mekong River Delta study area, flooded
fields with an average mNDWI above 0.2 were excluded to ensure that
only relevant agricultural fields were analyzed.

To quantify the linear relationship between the SAR backscatter
and NDVI values, Pearson’s 𝜌 correlation coefficient was employed.
Pearson’s 𝜌 is a statistical measure that ranges from −1 to 1, indicating a
perfect negative to perfect positive linear correlation, with 0 signifying
no relationship. As Pearson’s 𝜌 is sensitive to outliers, extreme values
were masked in the analysis. If a field has a mean NDVI or backscatter
within the top or bottom 1% of all fields, it is excluded. The calculation
of 𝜌 was performed using the Python package SciPy.

Scatter plots were generated to visualize the relationship between
backscatter and NDVI values. An ideal scenario would be a 1:1 mapping

here each backscatter value directly corresponds to an NDVI value,
which would imply a perfect linear relationship. This visualization aids
in assessing the potential for direct translation of backscatter data to
NDVI values, which is crucial for evaluating the suitability of SAR
data, particularly at the S-band, for vegetation monitoring and NDVI
estimation.
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4. Results

The results of each study area are presented in the following sub-
sections.

4.1. Bell Ville (Argentina)

The NDVI values for all fields fall between 0.2 and 1, indicating
that the data encompass all vegetative stages, from barren to fully
grown fields. Values around 0.25 and 0.9 are more common than values
situated between these distribution peaks.

Both NovaSAR-1 and Sentinel-1 backscatter distributions are ap-
roximately bell-shaped but differ in magnitude. Co-polarized backscat-
er values exceed cross-polarized ones by 10 dB.

For both polarizations HH and HV of the NovaSAR-1 data a positive
relationship with the NDVI is evident, whereby an increase in backscat-
tered energy corresponds with an increase in NDVI values, which can
be seen in Fig. 4. The relationship between cross-polarized HV data
is higher than for cross-polarized HH data, which can be numerically
verified by the high 𝜌 of 0.68 and a weak 𝜌 of 0.35, respectively, as
listed in Table 5. Using the cross-ratio 𝐻 𝐻∕𝐻 𝑉 or the RVI results in a

oderate relationship with 𝜌 of −0.48 or 0.46, respectively.
These numeric results can be confirmed visually when analyzing the

resulting scatter plots (see Fig. 4). While for the HV polarized backscat-
er the points follow a line more closely, they are more dispersed for HH
ata. For both cross-ratio and RVI, there is a clearly visible relationship,
hich is more dispersed than the HV data but not as much dispersed
s the HH data. The local incidence angle, ranging from 23◦ to 31◦,
nfluences the backscatter values with higher backscatter occurring for
ower incidence angles. Also RVI and cross-ratio are influenced by the
ocal incidence angle.

The results for the Sentinel-1 data are similar to the NovaSAR-1 data
only for the cross-polarized backscatter with a strong relationship being
bserved (𝜌 = 0.68). In contrast to the results with NovaSAR-1, also for
entinel-1’s co-polarized VV backscatter a strong relationship is found
𝜌 = 0.62), but no relationship with either RVI or cross-ratio 𝑉 𝑉∕𝑉 𝐻 is

discernible. Another difference is between Sentinel-1 and NovaSAR-
1 data is less variation of the local incidence angle, which ranges
only between 35◦ and 36.5◦. Visually, a clearly discernible relationship
between backscatter of both polarizations is found as illustrated in
Fig. 5

To analyze the SAR–NDVI-relationship separately for each crop,
the Argentine National Map of Crops is utilized, which is shown in
Fig. 3. Only two crops are dominant for the labeled fields with 40%
f the fields having soybean grown on them (𝑁 = 83) and 37% maize
𝑁 = 75). The remainder of the fields are categorized as ‘‘no cropland’’
𝑁 = 46), which includes grasslands and pastures.

For Soybean, both Sentinel-1 polarizations achieve a very strong
elationship with the NDVI values (𝜌 > 0.8), whereas with NovaSAR-1
ata, only the cross-polarized HV backscatter is strongly related (𝜌 =

0.74). NovaSAR-1 HH data is weakly related to the NDVI for soy beans
(𝜌 = 0.32). The magnitude of 𝜌 is very similar for the RVI and cross-
ratios for all crops, as listed in Table 5. Despite the better relationship of
he Sentinel-1 backscatter with NDVI values compared to NovaSAR-1,
he RVI and 𝐻 𝐻∕𝐻 𝑉 cross-ratio calculated using NovaSAR-1 data is better
elated to the NDVI (|𝑟| 0.45 for NovaSAR-1, |𝑟| ≈ 0.3 for Sentinel-1).

For maize, NovaSAR-1 backscatter values related similar strongly
with NDVI data as for soybean (𝜌 = 0.69 and 0.34 for HV and HH
data), which is depicted in Fig. 6. In contrast, Sentinel-1 backscatter
values are related less strongly with NDVI values for Maize fields than
or Soybean fields as shown in Fig. 7. However, the there is still a

moderate to strong positive relationship found (𝜌 = 0.62 and 0.54 for
VH and VV backscatter). The magnitude of 𝜌 for cross-ratio and RVI
of both sensors is similar between soybean and maize fields. Notably,
in the case of Sentinel-1’s cross-ratio 𝑉 𝑉∕𝑉 𝐻 and RVI, the sign of the
relationship changes. Visually, for both soybean and maize fields, no
7 
proper relationship between NDVI data and either RVI or cross-ratio
of Sentinel-1 data can be confirmed, which is illustrated for the RVI in
Fig. 7(c).

For grasslands and pastures (‘‘no cropland’’), the relationship be-
tween NDVI and SAR data is weak across sensors, polarizations and
ratios. The best relation is found for Sentinel-1’s RVI with a correlation
coefficient 𝜌 of −0.36. Despite this weak relationship, visually no such
relationship is discernible as shown in Fig. 7(c).

The Pearson’s correlation coefficient 𝜌 for both NovaSAR-1 and
Sentinel-1 data as given in Table 5. In that table, they are given for
all fields together and also separately per crop type.

4.2. Boort (Australia)

In general, the findings for this study area are comparable to those
of Boort, Australia, as previously presented in Section 4.1

A positive relationship between backscatter values and NDVI is
evident for NovaSAR-1 cross-polarized HV data as shown in Fig. 8(b).
No discernible relationship is evident between the backscatter values
and the NDVI for both co-polarized waves HH and VV. This can be
numerically verified by the moderately high 𝜌 of 0.54 for HV, but the
egligible low ones of 0.0 and −0.14 for HH and VV, respectively.

Using the cross-ratio instead of single polarization does increase the
relationship with NDVI values mildly for the 𝑉 𝑉∕𝐻 𝑉 cross-ratio to 𝜌 =
−0.64, but is in the same range for the 𝐻 𝐻∕𝐻 𝑉 cross-ratio with 𝜌 = −0.55.
The relationship strength between RVI and NDVI is in between the two
cross-ratios and moderately strong with 𝜌 = 0.59. Visually, a better
elationship with NDVI values of the cross-ratio data compared to the
V polarization cannot be clearly attested. The local incidence angle

influences the backscatter values with higher backscatter occurring for
lower incidence angles. This effect does not occur for the cross-ratio.
The scatter plots for all three NovaSAR-1 polarizations relating them
to Sentinel-2 NDVI are presented in Fig. 8.

The results for the Sentinel-1 backscatter data are analogous to
those observed for the NovaSAR-1 backscatter. Cross-polarized VH
backscatter demonstrates a positive correlation with NDVI values, while
no discernible relationship is evident in the case of co-polarized VV
data. Once more, this yields a moderately high 𝜌 value of 0.52 for VH
olarization, but a 𝜌 of zero for VV-polarization data.

As with the NovaSAR-1 data, the cross-ratio results in an improve-
ment in the correlation coefficient, 𝜌, for Sentinel-1 data, with a value
f 0.52 for VH polarization and −0.74 for the cross-ratio 𝑉 𝑉∕𝑉 𝐻. While
his effect is not readily apparent in visual inspection, it may be present,
s evidenced by the scatter plots in Fig. 9 that compare NDVI data

with VH and VV polarizations and the cross-ratio. The RVI achieves
the highest relationship with the NDVI with 𝜌 = 0.82.

The correlation coefficient 𝜌 for the two sensors, their polarizations,
and cross-ratio is given in Table 6.

4.3. Mekong River Delta (Vietnam)

The results of the Mekong River Delta study area differ from those
of the previous two regions. The results demonstrate that, in the case
of NovaSAR-1 S-band data, the HH polarized data exhibits a positive
correlation with NDVI values, rather than the HV polarized data, which
is shown in the scatter plots in Fig. 10. This can be confirmed by
the high correlation coefficient for HH data with 𝜌 = 0.51 compared
o 𝜌 = 0.15 for HV data. Additionally, only the cross-ratio 𝐻 𝐻∕𝐻 𝑉 is
chieving a moderate relationship with the NDVI with 𝜌 = 0.51, while
o relationship is found for the RVI. As observed in the previous two
tudy regions, the incidence angle influences the backscatter values.

A similar pattern to NovaSAR-1 data is observable for Sentinel-1
data: co-polarized VV data exhibits a high negative relationship with
NDVI values with 𝜌 = −0.59 but cross-polarized data shows no rela-
tionship with the NDVI with 𝜌 = −0.02. The cross-ratio 𝑉 𝑉∕𝑉 𝐻 and the

RVI exhibits a similar relationship with the NDVI as the HV polarized
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Fig. 4. Comparison of NDVI and NovaSAR-1 data for the HH and HV polarized backscatter as well as the RVI and the cross-ratio 𝐻 𝐻∕𝐻 𝑉 for the Bell Ville study area in Argentina.
The local incidence angle is indicated for each data point by its color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 5. Comparison of NDVI and Sentinel-1 data for the two polarizations VV and VH for the Bell Ville study area in Argentina. The local incidence angle is indicated for each
data point by its color.
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Fig. 6. Relationship between NovaSAR-1 SAR backscatter and NDVI data for the Bell Ville study area in Argentina given for each of the three classified crops.
Table 5
Relationship between NDVI values and SAR data for the study area Bell Ville (Argentina). Next to the
polarizations, the cross-ratios and RVI are displayed. 𝜌 denotes the Pearson’s correlation coefficient and 𝑁
the number of samples.
Sensor Data All fields Soybean Maize No cropland

𝜌 𝑁 𝜌 𝑁 𝜌 𝑁 𝜌 𝑁

NovaSAR-1

HV 0.68 (706) 0.74 (238) 0.69 (214) 0.33 (128)
HH 0.35 (703) 0.32 (238) 0.34 (212) 0.25 (128)
𝐻 𝐻∕𝐻 𝑉 −0.48 (704) −0.49 (239) −0.50 (212) 0.04 (129)
RVI 0.46 (704) 0.46 (239) 0.50 (212) −0.03 (129)

Sentinel-1

VH 0.68 (1096) 0.80 (387) 0.62 (340) 0.34 (193)
VV 0.62 (1095) 0.89 (387) 0.54 (340) 0.28 (192)
𝑉 𝑉∕𝑉 𝐻 −0.10 (1097) 0.30 (390) −0.37 (340) −0.36 (194)
RVI 0.05 (1095) −0.34 (388) 0.34 (339) 0.27 (193)
f
N
o
c
r
h

s

data with 𝜌 = −0.62 and 𝜌 = 0.61, respectively. When analyzing
he scatter plots in Fig. 11, the distribution for VH data exhibits two

regions. The first region encompasses higher NDVI values above 0.25,
where a negative relationship appears to be present. In contrast, a
ositive relationship is observed for the second region encompassing
DVI values below 0.25. This can be verified by calculating 𝜌 separately

or fields with NDVI values above and below 0.25. For vegetated fields
NDVI> 0.25) a moderate negative relationship is found with 𝜌 = −0.43,
hereas for fields with NDVI< 0.25 a weak positive relationship is

ound with 𝜌 = 0.32. The relationship between backscatter and NDVI
s illustrated in Fig. 11.

For COSMO-SkyMed (CSG) X-band data, the cross-polarized HV
data seems to have a negative relationship with the NDVI data with
𝜌 = −0.59. In contrast, the co-polarized HH data exhibits no discernible
relationship. Both RVI and cross-ratio 𝐻 𝐻∕𝐻 𝑉 achieve a moderately
strong relationship with the NDVI of 𝜌 ≈ 0.6. As CSG data were only
available for a single date in August the amount of samples and data
9 
diversity is limited which decreases the certainty of the results. Scatter
plots of both polarizations are given in Fig. 12.

The L-band SAOCOM data represents the fourth investigated SAR
requency and appears to have no discernible relationship with the
DVI data. All backscatter values in both HV and HH polarizations
ccur for all NDVI values. This is shown in Fig. 13 and confirmed by
orrelation coefficients 𝜌 of 0.0 and −0.18 for HH and HV polarization,
espectively. Only the cross-ratio 𝐻 𝐻∕𝐻 𝑉 and the RVI exhibits a slightly
igher |𝜌| of 0.24, indicating a very weak relationship.

An overview of all Pearson’s correlation coefficients of the different
ensors, their polarizations, and cross-ratios is given in Table 7.

5. Discussion

This study investigates the relationship between the SAR backscatter
of different frequencies and the NDVI. The findings suggest a relation-
ship between NDVI and C- and S-band SAR backscatter and potentially
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Fig. 7. Relationship between Sentinel-1 SAR data and NDVI data for the Bell Ville study area in Argentina given for each of the three classified crops.
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Table 6
Relationship between NDVI values and SAR data for
the study area Boort (Australia). Next to the polariza-
tion, the cross-ratio and the RVI formed from them
is used. 𝜌 denotes the Pearson’s correlation coefficient
and 𝑁 the number of samples.
Sensor Data 𝜌 𝑁

NovaSAR-1

HV 0.54 (366)
HH 0.00 (366)
VV −0.14 (366)
𝐻 𝐻∕𝐻 𝑉 −0.55 (366)
𝑉 𝑉∕𝐻 𝑉 −0.64 (366)
RVI 0.59 (366)

Sentinel-1

VV 0.00 (455)
VH 0.52 (455)
𝑉 𝑉∕𝑉 𝐻 −0.74 (457)
RVI 0.82 (457)

also with X-band data. However, no such relationship was observed in
he L-band data.
10 
The analysis encompassed three study areas with different char-
cteristics. The results for two areas, Boort (Australia) and Bell Ville
Argentina), indicate a strong correlation between S- and C-band cross-

polarized backscatter and NDVI. This is to be expected, as the vol-
umetric scattering of vegetation increases with increasing vegetation
volume, which in turn leads to higher cross-polarized responses (Flores
et al., 2019). In Bell Ville, not only cross-polarized but also co-polarized
S- and C-band data exhibited a notable relationship with the NDVI,

hich may be due to the different crop types. While broad-leaf crops
ike soybeans and maize are the predominant crops in Bell Ville,
arrow-leaf crops like wheat and barley are the primary crops in
oort (cf. Section 2.1). The distinct backscatter characteristics of these

two crop types (Macelloni et al., 2001) may be responsible for the
different backscatter–NDVI relationships observed. For instance, one
study demonstrated that the crop height of corn, a broad-leaf crop,
exhibits a good relationship with both HH and HV C-band RADARSAT-2
backscatter. However, for wheat, a narrow-leaf crop, only HV polarized
data demonstrated a significant relationship (Liao et al., 2017).
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Fig. 8. Comparison of NDVI and NovaSAR-1 data for the Boort study area in Australia. All three polarizations HH, HV, VV, and the two cross-ratios 𝑉 𝑉∕𝐻 𝑉 and 𝐻 𝐻∕𝐻 𝑉 which can
be calculated from these polarizations are given. The local incidence angle of the SAR data is indicated by different colors. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 9. Comparison of NDVI and Sentinel-1 data for the two polarizations VV, VH, as well as the cross-ratio for the Boort study area in Australia.

Fig. 10. Relationship between NovaSAR-1 backscatter and NDVI values for the Mekong River Delta study area in Vietnam. The local incidence angle of the NovaSAR-1 data is
indicated for each data point by its color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Relationship between Sentinel-1 backscatter and NDVI values for the Mekong River Delta study area in Vietnam. The Sentinel-1 acquisition data of each sample is indicated
by its color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Relationship between COSMO-SkyMed Second Generation (CSG) SAR backscatter and NDVI values for the Mekong River Delta study area in Vietnam.

Fig. 13. Relationship between SAOCOM SAR backscatter and Sentinel-2 NDVI values for the Mekong River Delta study area in Vietnam. The local incidence angle of the SAOCOM
data is indicated for each data point by its color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 7
Relationship between NDVI values and SAR data for the study
area Mekong River Delta (Vietnam). 𝜌 denotes the Pearson’s
correlation coefficient and 𝑁 the number of samples. Next to
the polarization, the cross-ratio and the RVI formed from them
is used. Additionally, for Sentinel-1 cross-polarized VH data, the
relationship is given for NDVI values above and below 0.25,
because two distinct relationships are apparent in the scatter
plot of the data (cf. Fig. 11).
Sensor Data 𝜌 𝑁

NovaSAR-1

HV 0.15 (313)
HH 0.51 (313)
𝐻 𝐻∕𝐻 𝑉 0.51 (313)
RVI 0.01 (313)

Sentinel-1

VV −0.59 (633)
VH −0.02 (632)
𝑉 𝑉∕𝑉 𝐻 −0.62 (629)
RVI 0.61 (629)
VH for NDVI < 0.25 0.32 (143)
VH for NDVI > 0.25 −0.46 (485)

CSG

HH −0.01 (153)
HV −0.59 (152)
𝐻 𝐻∕𝐻 𝑉 0.61 (152)
RVI −0.63 (152)

SAOCOM

HH 0.00 (478)
HV −0.18 (478)
𝐻 𝐻∕𝐻 𝑉 0.24 (479)
RVI −0.24 (479)

The results for Sentinel-1 C-band data are in line with the existing
literature. Villarroya-Carpio and Lopez-Sanchez (2023) could show,
hat there exists a good relationship between the NDVI and both cross-

ratio and RVI of Sentinel-1 data next to the coherence. The strength
of the relationship is very different for the crops of the investigated
fields located in Spain. While for instance a very strong relationship
is found for Maize or Rice (R2 > 0.6 for a linear fit for all of the five
investigated years), the relationship is less strong and more variable
for Wheat (R between 0.4 and 0.75). For chickpeas, which belong to
the Leguminosae subfamily like soy beans and have a similar plant
structure, the relationship is strong for all but one year with R2 above
.5.

Holtgrave et al. (2020) investigate the relationship between NDVI
nd Sentinel-1 SAR data for agricultural fields and grasslands in North-
rn Germany and also find a good relationship between both. They find
he strongest relationship for Maize, with the single VH polarization

being better than the cross-ratio or RVI and the VV polarized data
having the weakest relationship. This is similar to the results we report
for Maize in the Bell Ville study area in Table 5, where we find
VV polarized data to having the best relationship. For grasslands, the
results are also similar, with a generally weaker relationship (𝜌 around
0.3). The only difference is, that we still find a relationship between VV
olarized backscatter values with the NDVI for grasslands (𝜌 = 0.28),
hile Holtgrave et al. (2020) do not find this (𝜌 = 0.11).

A third study investigating C-band data also finds a relationship
etween backscatter and NDVI values for winter wheat fields in India,

with a negative 𝜌 for the cross-ratio 𝑉 𝑉∕𝑉 𝐻 (Pandit et al., 2023).
Contrastingly, the third study area comprising rice paddy fields in

ietnam exhibited distinctive backscatter characteristics that set them
apart from the other two regions. For these fields, co-polarized HH
and VV data were related to NDVI, while cross-polarized HV and VH
data were not. It is unclear, why a relationship can be found only
for co-polarized and not cross-polarized data, especially given that
other researchers have identified a relationship between plant parame-
ters and backscatter for paddy rice. For instance, the cross-polarized
backscatter of a ground-based scatterometer has been demonstrated
to relate well to the leaf area index (LAI), fresh weight or biomass,
and canopy height (Inoue et al., 2002; Jia et al., 2014). Additionally,
13 
RADARSAT-2 backscatter and phenology are linked for rice (Lopez-
Sanchez et al., 2014). Another particularity of the cross-polarized VH
C-band data is the existence of two distinct relationships between C-
band VH backscatter and NDVI values, one for NDVI values below
and another one for values above 0.25. A possible explanation for this
phenomenon is that low NDVI values, which are likely due to the
presence of water surfaces without much vegetation cover, result in
a low backscatter, which is to be expected given that water acts as
a specular surface and mirror, reflecting most of the signal’s energy
away from the sensor. As more of the surface is covered by rice and
not by water, the NDVI as well as the backscatter increase because
the surface becomes less specular. As the NDVI increases above 0.25,
a negative relationship between NDVI and VH backscatter occurs with
a VH backscatter decrease for increasing NDVI values. The reason for
this behavior is currently unknown. It is similarly unclear, why these
two relationships could not be observed for S-band data. One potential
explanation might be attenuation whereby the vertically polarized
waves interact strongly with the vertically oriented rice stalks leading
to some attenuation. It remains unclear, why volumetric scattering
which leads to a high cross-polarized response and is typically high for
dense vegetation, is not the dominant factor in this case.

An unknown factor influencing the result might be the availability
f optical imagery. In the event that optical data is only available
or certain vegetative periods, a comprehensive analysis cannot be
onducted. In particular, if the monsoon period, which is often accom-
anied by heavy cloud cover, coincides with the transplanting of rice
nd the early growth stages, when the NDVI increases, then no data
ay be suitable for analysis. For rice, this presents a more significant

hallenge, as the crop develops from seedlings to mature plants in less
han 30 days, and the NDVI increases from approximately zero to nearly
ne during this period (Onojeghuo et al., 2018). Capturing this rapid

change is difficult due to the frequent cloud cover. Consequently, only
he later vegetative stages can be readily captured with optical data
nd analyzed.

The different signs of 𝜌 of S-band HH and C-band VV backscatter
indicating positive and negative relationships can be explained by the
geometric properties of the rice plants. One strong scattering effect for
this area with the inundated surface is double bounce, which typically
results in a higher HH response (Flores et al., 2019). Additionally,
the vertical orientation of the rice stems contributes to the higher HH
esponse relative to the VV one (Oh et al., 2009).

5.1. L- and X-band sensitivity to vegetation indices

No discernible relationship was observed between L-band backscat-
ter and NDVI values. This finding is surprising, as other studies have
demonstrated that L-band backscatter is highly sensitive to the leaf
area index (LAI) of rice (Inoue et al., 2002; Kim et al., 2013), and a
relationship exists between LAI and NDVI (Zhou et al., 2017). However,
no clear explanation for the lack of a relationship could be identified.
While saturation of the NDVI at high biomass and LAI values may
explain the disconnect at late vegetation stages, and the double-bounce
ffect could be influencing early growth stages, these factors should
imilarly affect relationships at other SAR frequencies. A possible ex-
lanation is provided by Paloscia (2002), who observed differences

in biomass sensitivity between broad-leaf and narrow-leaf crops, such
as rice. Specifically, L-band data proved more effective for broad-leaf
crops, while C-band data showed greater suitability for narrow-leaf
crops. This aligns with findings by Hosseini and McNairn (2017), who
noted that RADARSAT C-band data outperformed UAVSAR L-band data
in estimating wheat biomass, a crop with a similar plant structure to
rice.

The results for the X-band data were inconclusive due to the
availability of only one suitable scene. A relationship between cross-
polarized HV data and NDVI may exist, but this is not the case for HH
co-polarized data. This finding is inconsistent with the results of other
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research, which demonstrated a relationship between HH X-band data
and NDVI values as well as leaf area index (LAI) for 30 flooded rice
paddy fields with a high 𝜌 of 0.584 (Hirooka et al., 2015).

However, another study investigated wheat and barley, which have
a similar plant structure to rice but are not cultivated on flooded fields,
and demonstrated a negative relationship between co-polarized HH and
VV X-band data and LAI (Fontanelli et al., 2013). Consequently, further
esearch is required to examine the behavior of X-band data in relation

to the NDVI and plant parameters.

5.2. Effectiveness of the cross-ratio and RVI

This study also evaluated the effectiveness of the cross-ratio (CR),
inding it beneficial only in certain cases, dependent on the specific
tudy area and sensor used. In a few areas, the relationship between
R and NDVI values was comparable or slightly stronger than that
bserved with a single polarization. If a study would like to use only

one feature, calculating the CR would make selecting the optimal
polarization unnecessary. However, in some cases, no relationship be-
tween CR and NDVI could be demonstrated, whereas with a single
polarization a relationship existed. This illustrates, that no universal
guidance can be derived from the data, and in each case, the utility of
the CR must be reassessed.

For the radar vegetation index (RVI), results mirrored those ob-
served with the cross-ratio. In some instances, the RVI showed a
tronger relationship with the NDVI than single polarizations; however,
ore often, the relationship was weaker or even nonexistent.

5.3. Exploring the relationship between NDVI and interferometric coherence

Although interferometric coherence is a valuable indicator of vege-
ation state, particularly for short temporal baselines (Villarroya-Carpio

and Lopez-Sanchez, 2024), it was not analyzed here. This is primar-
ly due to limitations in data availability. Of the four investigated
AR sensors, only the full Cosmo-SkyMed constellation, comprising
oth first and second-generation satellites, can provide interferometric
cquisitions with a temporal baseline between one to six days. This
ould warrant a separate investigation, but similar X-band data of the
erraSAR-X, TanDEM-X, and PAZ sensors has already been investi-
ated (Villarroya-Carpio and Lopez-Sanchez, 2024). There it could be
hown, that the NDVI is highly correlated with the coherence for short
emporal baselines.

The Sentinel-1 mission allows interferometric analysis, but currently
only for a temporal baseline of 12 days due to the failure of Sentinel-
1B at the end of 2021. Such a long temporal baseline is unsuitable for
most vegetation types. Following the launch of Sentinel-1C at the end
of 2024 and completing its commissioning phase, temporal baselines of
six days will once again be available for this C-band sensor.

NovaSAR-1 and SAOCOM are unsuitable for interferometric anal-
sis of vegetation. Their orbital tubes are not narrowly controlled
o maintain consistent spatial baselines. Only by chance a suitable
patial baseline for InSAR analysis is achieved (Li et al., 2022; Roa

et al., 2021). This results in very long temporal baselines, significantly
educing the coherence for vegetated surfaces, rendering their data
nsuitable for such an investigation.

In conclusion, although interferometric coherence holds promise
or understanding vegetation states, its effective analysis is currently
imited by the lack of suitable data. The main challenge is the necessity
or frequent revisits to achieve adequately short temporal baselines.
14 
5.4. Implications for SAR-based NDVI estimation

All these results show that the relationship between SAR backscatter
and NDVI values is multifaceted and influenced by various factors. Our
findings suggest that while a discernible relationship exists between
ackscatter and NDVI, its complexity is heightened by a number of fac-
ors. These include vegetation-related factors such as crop type, plant

phenology, plant shape, or leaf arrangement; factors related to the SAR
data such as SAR frequency and polarization; and geometric consid-
erations including incidence angle and field orientation. In particular,
different crop types, characterized by unique phenological stages, plant
shapes, and leaf arrangements, exhibit varying backscatter responses.
These findings underscore the challenges in developing a universal

odel for NDVI retrieval from SAR data due to the complex interplay
f these factors. A generalized model would require the simultaneous
isentanglement of the influence of all the different factors, which is a
hallenging task.

In conclusion, while this study confirms the relationship between
SAR backscatter and NDVI for specific frequency bands and conditions,
it also highlights several challenges and gaps that require further
investigation to optimize SAR-based vegetation monitoring.

6. Conclusion

This paper examines the relationship between SAR backscatter data
from multiple frequencies and the optically-derived normalized differ-
ence vegetation index (NDVI) in agricultural areas. The present study
demonstrates that both C- and S-band cross-polarized backscatter (HV,
VH) are associated with NDVI values, with the association also evident
in some areas for co-polarized backscatter (HH, VV). Establishing this
relationship is a prerequisite for reliably estimating NDVI values using
SAR imagery, which combines both ease of use and application of
vegetation indices with the all-weather imaging capabilities of SAR
systems.

Three study areas with distinct climates and crops were selected
for analysis, which are located in Argentina, Australia, and Vietnam.
For these areas, data were acquired from the Sentinel-2 optical sensor,
as well as from the NovaSAR-1 S-band, the Sentinel-1 C-band SAR
sensor, and, in the case of Vietnam, the COSMO-SkyMed X-band and
SAOCOM L-band SAR sensors. The NDVI showed a robust relationship
with cross-polarized S- and C-band backscatter in the study regions
of Australia and Argentina, with a Pearson correlation coefficient 𝜌
exceeding 0.5. In the case of the Argentinean study area, the co-
polarized backscatter also demonstrated a relationship with the NDVI,
with correlation coefficients of 𝜌 = 0.35 and 𝜌 = 0.62 for the S-
nd C-band data, respectively. In Argentina, where crop type maps
ere available, a stronger relationship was observed for soybeans and
aize, whereas meadows and grasslands showed a considerably weaker

elationship. The results for the third study area in Vietnam, which is
lmost exclusively cultivated with rice, are in contrast to those of the
ther two areas. In this case, co-polarized S- and C-band backscatter
elate to NDVI values with a correlation coefficient 𝜌 = 0.51 and
= −0.59, respectively. For the same study area, X-band cross-polarized
ackscatter relates with NDVI (𝜌 = −0.59), yet no relationship could
e shown for L-band data. The discrepancy in the strength of the
elationship can be attributed to various factors, including the specific
rop type and its structural characteristics, the utilized wavelength, and
onsequently, the SAR penetration depth.

In addition to single polarizations, the cross-ratio and the radar
vegetation index (RVI) were included in the analysis. However, neither
he cross-ratio nor the RVI consistently showed a stronger relationship
ith the NDVI than single polarizations, and in some cases, they

howed no relationship at all.
The results indicate that NDVI can be linked to SAR backscatter

across a range of frequencies. However, the results also show that
no universal relationship exists; rather, various factors, including crop
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type, agricultural practices, and SAR frequencies, influence the relation-
ship between NDVI and SAR backscatter. In order to estimate NDVI
alues from the SAR backscatter, it might be necessary to provide
he models with additional data beyond just the SAR backscatter,
uch as the crop type, or include SAR data of multiple acquisitions.
lternatively, complex models can be used to extract this information

mplicitly from the provided data. Following the launch of NISAR, its S-
and L-band SAR sensors will provide a substantial amount of novel and
upplementary data to Sentinel-1 C-band data. This will likely facilitate
he development of models that use data from both sensors for precise
DVI retrieval on a global scale.
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