
Constructing Mobile Agents

using Transformations

Von der

Fakultät für Informatik

der

Universität der Bundeswehr München

zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation

von

Oliver Braun

Vorsitzender des Promotionsausschusses: Prof. Dr. Burkhard Stiller

1. Gutachter: Prof. Dr. Gunther Schmidt

2. Gutachter: Prof. Dr. Wolfram Kahl, McMaster Univ., Hamilton, Ontario, Kanada

Tag des Kolloquiums: 11. August 2004

Für Simone

Abstract

Although mobile agents are widely accepted as a useful and elegant way to develop

software for distributed systems, they are not widely-used. One of the main reasons

for this is the lack of provable and manageable protection of an agent platform.

We present a working prototype of a mobile agent programming and execution en-

vironment based on term graph transformation and the strongly typed functional

programming language Haskell. The well-understood type system of Haskell can be

used to guarantee that a mobile agent cannot do arbitrary I/O on an agent platform.

Therefore the mobile agent migrates as Haskell source code and is type-checked on

each platform.

The services a platform offers to a mobile agent are encapsulated in so-called possibly-

provided functions (PPFs). A PPF is a function that returns a value of type Maybe a

for arbitrary a. A PPF need not be available on all platforms. If it is not available,

it will be temporarily replaced with a function returning the value Nothing of type

Maybe a by a preprocessor on the agent platform. In order to be able to replace a

PPF, the Haskell code is encapsulated in a list of code fragments.

A strongly typed mobile agent which consists of one complex function with a complex

parameter which has to be encapsulated in a list of code fragments is a very awkward

piece of software. The complex parameter is the data part of the mobile agent and is

called its suitcase. Conventional programming using a normal text editor is not feasi-

ble. Therefore we use the Higher Object Programming System HOPS, a graphically

interactive program development and transformation system based on term graphs,

for developing a mobile agent.

When using HOPS we have the ability to define an easy-to-use domain-specific lan-

guage for mobile agents and to derive the necessary shape of the mobile agent code

using term graph transformation. Not only the encapsulation into the code fragment

data type can be automated, but also the complex suitcase can be generated automat-

ically from small manageable pieces.

With this thesis we demonstrate that the combination of a strongly typed functional

language and a development process which is aided by term graph transformation

together with our concept of PPFs is a very well suited approach towards a fully-

fledged mobile agent system.

Contents

1 Introduction 1

2 Higher Object Programming System HOPS 7

2.1 Term Graphs . 8

2.2 Homomorphy . 11

2.3 Typing . 11

2.4 Term Graph Transformation . 13

2.5 Transformation Strategies and Term Graph Patterns 16

2.6 Code Output . 17

3 Mobile Agents 19

3.1 Alternatives to Mobile Agents . 20

3.2 Properties of Mobile Agents . 20

3.3 Applications for Mobile Agents . 22

3.4 Standardisation . 23

3.5 Mobile Agent Languages . 23

4 Design Overview 27

4.1 Definitions . 27

4.2 Objectives . 31

4.3 Realisation . 34

5 User Interface Domain-Specific Language (UI-DSL) 37

5.1 Primitive Agents . 37

5.1.1 Stateful Agent . 37

5.1.2 Stateless Agent . 38

5.2 Possibly-Provided Functions . 39

5.3 Meta Data . 40

i

Contents

5.4 Basic Agent Combinators . 40

5.4.1 Agent Pairs . 40

5.4.2 Agent Functions . 41

5.5 Mobile Agents . 42

5.6 Meta Agent Combinators . 44

6 Internal Domain-Specific Language (I-DSL) 51

6.1 Internal Agents . 51

6.2 Possibly-Provided Functions and Meta Agent Combinators 52

6.3 Suitcase Handler . 53

6.4 Internal Mobile Agent . 54

7 Transforming UI-DSL to I-DSL 55

7.1 Meta Agent Combinators . 55

7.2 Sharing . 60

7.3 Value in Suitcase . 61

7.4 Suitcase Handler . 67

7.5 Cleanup . 72

8 Haskell Mobile Agent Platform (HaMAP) 75

8.0 Haskell Prerequisites . 75

8.1 Design Overview . 76

8.1.1 Haskell Mobile Agent . 76

8.1.2 Agent Monad . 79

8.1.3 Mobile Agent Platform . 81

8.2 Implementation of Mobile Agent Platforms 83

8.2.1 Agent Platform . 83

8.2.2 Home Platform . 91

8.2.3 Proxy Platform . 91

8.3 Migration and Inter-Platform Communication 92

8.3.1 Haskell Mobile Agent Platform Protocol 92

8.3.2 Electronic Mail . 96

8.3.3 Common Gateway Interface . 97

9 Transforming I-DSL to HaMAP-Code 99

9.1 Replace Agent Combinators . 99

9.2 Meta Data . 104

ii

Contents

9.3 Monad Laws . 105

9.4 Code Transformation . 107

9.5 HaMAP Sharing . 111

9.6 Code Output . 112

10 Example Agents 117

10.1 GetListOfPossiblyProvidedFunctions Agent 117

10.2 GetFlight Agent . 119

10.3 Travel-Searching Agent 1 . 120

10.4 Travel-Searching Agent 2 . 121

10.5 Travel-Searching Agent 3 . 123

10.6 Travel-Searching and Booking Agent 124

10.7 GetWeatherAndTrafficJam Agent . 128

11 Conclusions and Future Work 131

A Transformed Example Agents 135

A.1 GetListOfPossiblyProvidedFunctions Agent 136

A.2 GetFlight Agent . 140

A.3 Travel-Searching Agent 1 . 144

A.4 Travel-Searching Agent 2 . 148

A.5 Travel-Searching Agent 3 . 152

A.6 Travel-Searching and Booking Agent 156

A.7 GetWeatherAndTrafficJam Agent . 160

B Z-Notation 165

Bibliography 167

Glossary 175

Index 177

iii

1 Introduction

A mobile agent is a code-containing object which is able to migrate under its own

control from agent platform to agent platform in order to achieve a specific task. A

representative example is an agent which searches on a couple of servers for the cheap-

est travelling arrangement, that fulfils some particular requirements. In traditional

client/server computing all information about travelling arrangements is transmitted

from the server to the client where the client process filters the data. By using mobile

agents, the client process is transmitted to the server in order to process the available

data. Subsequently, the mobile agent returns with the cheapest arrangement in its

so-called suitcase, the data part of the agent. Other applications of mobile agents are,

for instance, information dissemination or monitoring of remote resources.

Although the mobile agent paradigm provides an elegant way to develop software for

distributed systems, mobile agents have seldom be used outside closed environments.

One of the main reasons for this is the lack of provable and manageable protection of

an agent platform. Nearly all mobile agent systems use imperative languages, most

notably Java which uses a so-called sandbox for addressing security concerns. The

weaknesses of the Java sandbox, especially in distributed environments, have already

been pointed out by Zhong and Edwards (1998).

Our design of a mobile agent platform uses the strongly typed, purely functional

language Haskell. A mobile agent, which migrates as Haskell source code, can be

type-checked and compiled on the agent platform before its execution. On the one

hand, this leads to higher loads on an agent platform, but, on the other hand, the

well-understood type system of Haskell can be used to guarantee that a mobile agent

cannot do arbitrary I/O.

An agent platform has to provide the functions defined in the Haskell 98 report

(Peyton Jones et al., 2002) except for I/O functions, and it has to provide a set of

five so-called platform functions, e.g., a function for migrating to another platform.

1

1 Introduction

The additional functionality that a platform offers to a mobile agent, such as a function

to access information provided by the platform, is encapsulated in special functions.

We call those functions possibly-provided functions (PPF).

As mentioned before, a mobile agent is type-checked and compiled on each platform.

This means that all PPFs the mobile agent code contains, have to be available on

the platform on which the mobile agent should be executed. Providing every single

function on all platforms is not manageable, not scalable, and not flexible. A much

better solution is to remove all non-available PPFs temporarily from the mobile agent

code. This is done by a preprocessor on each agent platform before the mobile agent

is type-checked, compiled and executed. Furthermore, the mobile agent is able to

transform its own code. This is useful, for instance, to simulate partial evaluation

by replacing a part of the mobile agent with the value of this part calculated on a

platform.

Since a mobile agent in Haskell is a function and a PPF is a fragment of that function, a

PPF cannot simply be removed. It has to be replaced with some other code fragment.

Therefore, we demand that all PPFs have a Maybe type. This means, the value x

calculated by a PPF has to be returned as Just x. This way, a non-available possibly-

provided function can be replaced by a function returning the value Nothing which is

of type Maybe a for arbitrary a.

In order to be able to replace those non-available PPFs on an agent platform, the

PPFs and their parameters have to be marked somehow. We decided to encapsulate

the mobile agent code into a list of code fragments. A code fragment is a self-defined

Haskell data type whose possible values include plain code chunks and PPFs. With

the concept of replaceable PPFs, which cannot be found in any other mobile agent

environment, it is furthermore possible to replace even bigger parts of a mobile agent

depending on the availability of PPFs.

A strongly typed mobile agent which consists of one complex function with a complex

suitcase as parameter and which has to be encapsulated into a list of code fragments is a

very awkward piece of software. Conventional programming using a normal text editor

is not feasible. Therefore, we use the Higher Object Programming System HOPS, a

graphically interactive program development and transformation system based on term

graphs, for developing a mobile agent. We were favourable to enjoy an environment

in which we were able to employ higher-order transformations.

A term graph in HOPS is already type-checked during the development. By this

means, it is ensured that the mobile agent developed in HOPS neither contains any

2

syntax error nor any type error. Furthermore, when using HOPS we have the ability

to define an easy-to-use domain-specific language for mobile agents and to derive the

necessary shape of the mobile agent code using term graph transformation. Not only

the encapsulation into the code fragment data type can be automated, but also the

complex suitcase can be generated automatically from small manageable pieces.

Aims

This thesis is a case study in program development with mathematical precision. It

is a demonstration, how programs for the net that undergo frequent changes may be

kept in a satisfactory status and do not migrate to junk status.

It is the aim of this thesis:

1. to develop a mobile agent execution environment which is secure by means of

using a strongly typed standard programming language with a small, manageable

set of possibly-provided functions, which can differ on each platform;

2. to develop a powerful, easy-to-use and extensible domain-specific language for

mobile agents without the need to provide this domain-specific language on the

agent platform;

3. to develop transformation rules and strategies that can be used to convert the

domain-specific language into the standard programming language;

4. to demonstrate that term graph transformation aids the development process of

software and, in particular, of mobile agents.

Looking at this thesis, one should separate the two main concerns. Firstly we tried

to contribute to the design of mobile agents. Secondly, we have tried to develop the

mobile agent we decided to use, with mathematical precision.

It is the combination of the two aims that is important. If someone proposes yet

another item for the agents, we will probably be able to integrate it by transformation.

On the other hand side, it may well be that we did not yet head for the utmost ideas

to incorporate into the agents.

3

1 Introduction

Haskell

We use the pure, strongly-typed, lazy, non-strict, functional programming language

Haskell (Peyton Jones et al., 2002) for the implementation of the mobile agent execu-

tion environment.

A functional program is a single expression which is executed by evaluating this ex-

pression. Expressions are formed by using functions to combine basic values. The

term “purely functional” is often used to describe languages that perform all their

computations via function application. In a broader sense this means that languages

might incorporate computational effects, but without altering the notion of function.

Typically, the evaluation of an expression can yield a task which is then executed sep-

arately to cause computational effects. Haskell is a purely-functional language. Input

and output is done within a monad abstraction.

Haskell is polymorphically typed. It supports a systematic form of overloading and

a module system. Furthermore Haskell supports higher order functions which are

functions where either one of its arguments or its result or both are functions. Lazy

evaluation means that an argument to a function will only be evaluated if its value is

needed to compute the overall result. If an argument is structured like a list or a tuple

for instance only those parts of the argument which are needed will be examined.

An argument is almost evaluated only once. This is done in the implementation

by replacing expressions by graphs and term reduction by graph reduction. Lazy

evaluation has consequences for the style of programs. With lazy evaluation it is

possible to describe infinite structures.

In a strict language the arguments to a function are always evaluated before the func-

tion definition is invoked. This results in the fact that if the evaluation of an expression

e does not terminate properly (this may happen when it generates a run-time error

or enters an infinite loop), then neither will an expression of the form f(e). In a

non-strict language the arguments to a function are not evaluated until their values

are actually required. For example evaluating an expression of the form f(e) may still

terminate properly if the value of the parameter e is not used in the body of f, even

if evaluation of e would not.

Until the mid-1980s there was no“standard”non-strict, purely-functional programming

language. A language-design committee was set up in 1987, and the Haskell language

is the result. We use Haskell 98 (Peyton Jones et al., 2002), the latest version of the

language. For compiling the mobile agents and the mobile agent platform we use the

4

Glasgow Haskell Compiler (Peyton Jones, 1993), a robust, fully-featured, optimising

compiler for Haskell 98.

Overview

There is an inherent problem in presenting a thesis like this. While a mathematician

may develop his exposition with a formalised proof, e.g., presented in TEX, we here

are formal in the same way but cannot present such details for lack of space. Once

the mathematician has found his way to prove, he can easily present this proof with

a simple sequence of rather complicated steps. In this thesis, however, the situation

is reversed: We have a highly complicated (i.e., strategically determined) sequence of

comparatively simple steps.

In the following chapter the Higher Object Programming System HOPS, a graphically

interactive development and program transformation system based on term graphs, is

introduced. Mobile agents are described in Chapter 3. Chapter 4 gives an overview

of the mobile agent programming and execution environment based on HOPS and

Haskell.

The development of a mobile agent is divided into three different phases. First of all,

a mobile agent developer has to define a mobile agent in terms of the User Interface

Domain-Specific Language (UI-DSL). UI-DSL is a combinator language and is intro-

duced in Chapter 5. The second phase is the transformation of the UI-DSL mobile

agent into an internal mobile agent using term graph transformation. I-DSL is the

Internal Domain-Specific Language and is used to represent a mobile agent with an

automatically generated suitcase. I-DSL is introduced in Chapter 6 and the transfor-

mation from UI-DSL to I-DSL is presented in Chapter 7. Some items of the strategies,

e.g., in Chapter 7, are hard to communicate. The indications given in this exposition

may seen sloppy, they nevertheless, refer to a representation greatly checked — against

the HOPS system.

The third phase is the transformation of the internal mobile agent into a monadic

form which can easily be used to create standard Haskell code using the simple code

output facility of HOPS. The Haskell Mobile Agent Platform (HaMAP) which we have

developed especially for this approach is introduced in Chapter 8. Transformation from

I-DSL to the monadic form and code output is described in Chapter 9. In Chapter 10

different examples of mobile agents are presented in order to illustrate our approach.

5

1 Introduction

The transformed versions of those agents and the generated Haskell code are shown in

Appendix A. In Appendix B the parts of the Z-Notation that are used in Chapter 2

are introduced.

The effort required for this approach is considerable. It should however be compared

to the gain in being able to maintaining the status. It is shown that with the help

of these ideas very long-range transformation suites may safely be executed and also

adapted to newly occurring situations.

Acknowledgements

Most of all I would like to thank my supervisor Prof. Dr. Gunther Schmidt. He gave me

a lot of help and encouragement and provided the necessary freedom for my research.

Furthermore, I would like to thank Dr. Frank Derichsweiler and Prof. Dr. Wolfram

Kahl for the introduction to term graph transformation and HOPS, and for hours and

hours of productive discussions about my ideas. Thanks also to Michael Ebert for

taking over those discussions after Frank and Wolfram left the faculty. Last but not

least, I would like to thank my colleagues at the Institute for Software Technology

and at the Institute for Information Systems for the scientific environment that is an

essential support for an endeavour like this.

6

2 Higher Object Programming

System HOPS

As mentioned in Chapter 1, we use term graphs and term graph transformation for the

development of mobile agents. Programming with term graphs is not yet widely used,

but facilitates the development of programs which are correct by construction. Our tool

was the Higher Object Programming System HOPS, which is a graphically interactive

program development and transformation system based on term graphs. HOPS has

been developed by a group led by Gunther Schmidt since the mid-eighties of the

20th century (Bayer et al., 1996) (Zierer et al., 1986) (Kahl, 1996) (Kahl, 1998) (Kahl,

1999). The current implementation of HOPS is theoretically founded on the work of

Wolfram Kahl. Kahl (1996) seems to have presented the first algebraic approach to

term graph rewriting encompassing the treatment of bound variables.

The term graphs used in HOPS are directed acyclic graphs (DAGs), where all the

structure usually encoded via name and scope is made explicit. Variables in HOPS

are nameless. An explicit variable identity edge can be used to denote which nodes

stand for the same variable. Binding of variables is denoted by an explicit directed

binding edge from the bound variable to its binder. All problems usually connected

with name clashes and variable renaming are avoided this way.

HOPS uses term graph transformation for manipulating DAGs. Transformation rules

are also given as term graphs with an additional arrow connecting the roots of the

left- and right-hand sides. Application of rules is always possible while developing

term graphs and can be automated by using strategies (Derichsweiler, 2002).

Although, it is not essential for programming in HOPS to know all formal definitions of

its theoretical foundation, it is one of the strengths of HOPS that the underlying theory

is mathematically sound. When programming in HOPS it is, for instance, possible

to guarantee algebraic properties of the programs developed. So, we have decided to

introduce a small part of the theoretical foundation by providing the formal definitions.

In-between we give short explanations and examples to illustrate those definitions.

7

2 Higher Object Programming System HOPS

A mobile agent in this approach is a term graph which is manipulated using term

graph transformation. As mentioned before, a transformation rule is also given as a

term graph. In order to apply a rule to a term graph, a graph homomorphism from one

rule side to the term graph has to be constructed. This homomorphism, which is also

called matching homomorphism or matching, identifies the parts of the term graph

representing the nodes of the appropriate side of the rule. If such a homomorphism

exists, the rule can be applied to this term graph. In HOPS it is possible to use a rule

in both directions from left-to-right and from right-to-left.

HOPS supports second-order term graphs, i.e., metavariables may have successors.

The matching homomorphism maps a metavariable to a so-called interval. HOPS

enforces term graph consistency and, therefore, ensures that the initial term graph as

well as the transformed program does not contain any syntax error introduced by the

user or by transformation. Furthermore, the utilisation of HOPS prevents type errors

by using strong online term graph typing. Besides interactive application of a rule, a

sequence of transformations can be automated with transformation strategies.

The present introduction to HOPS is limited to the concepts necessary for under-

standing the following chapters. Since term graphs are the main concept, they are

formally introduced in Section 2.1. Homomorphy and typing are explained in Section

2.2, respectively in Section 2.3. All formal definitions presented in Section 2.1 and

in Section 2.3, except for Definition 2.4, are verbally taken over from Kahl (1998).

Transformation of term graphs is presented in Section 2.4. Term graph patterns and

strategies can be used to automate term graph transformation. Those concepts are

introduced in parts and in an informal manner in Section 2.5, which is sufficient for

understanding the following chapters. More complete information and formal defini-

tions can be found in Derichsweiler (2002), the doctoral thesis of Frank Derichsweiler,

which essentially deals with those concepts. The formal definitions presented in this

chapter are using the Z-Notation (Spivey, 1992) which is introduced in Appendix B.

2.1 Term Graphs

In HOPS typed, second-order term graphs are used to represent programs. A formal

introduction is given by the following definitions.

8

2.1 Term Graphs

Definition 2.1 (Term Graph Alphabet)

A term graph alphabet is a tuple (L,A, C,B,M) with the set L of node labels,

the arity function A : L → N, and a partition of L into the sets C of labels for

constant constructors, B for bindable variables, and M for metavariables. 2

The structure of a term graph alphabet is essentially the same as the structure of

second-order terms (Klop, 1980), but there is no separate class of binders, and the

“constant constructor” refers to what is usually called “function symbol”. In the fol-

lowing a fixed term graph alphabet (L,A, C,B,M) is assumed.

Definition 2.2 (Term Graph)

A term graph is a tuple G = (N ,L, S ,D ,B ,W ,T) with

- N , the finite node set,

- L : N → L, the node labelling function,

- S : N → N ∗ the successor function with L o

9 A = S o

9 len, i.e., the length of the

successor list of each node has to be the arity of its label,

- D : N ↔ N , the associated relation, D := {(x , l) : S ; y : ran .l • (x , y)},

- T : N 7→ N , the partial typing function, where (D ∪ T) has to be acyclic,

- B : N 7→ N , the binding function, where for (x , b) : B the bound variable x

has to have a label in B, the binder b a label in C, and b dominates x in the

graph induced by (D ∪ T),

- W : N ↔ N , the variable identity, a partial equivalence relation defined

exactly on variables, i.e., on nodes with labels from B ∪M . The variable identity

has to be compatible with the labelling: W o

9 L ⊆ L, and with the binding:

W o

9 B ⊆ B .

Roots are considered with respect to (D ∪ T), and the type part of a typed term

graph is the set ran .(T o

9
(D ∪ T)∗) containing all nodes reachable from typing nodes.

2

The term graphs used in HOPS are directed and acyclic. In the following they are

therefore also called DAG, which is the abbreviation for directed acyclic graph.

In Figure 2.1 three example DAGs are shown. The left one corresponds to the term

(λ x .x +1) 1, the DAG in the middle to (λ x .f x) g , and the right one to (f 1)+ (f 2).

The black arrows are the successor edges with the sequence indicated by their left-

to-right order. The red respectively thick, dark grey arrow is the binding edge from

the bound variable to the binder and the blue respectively thick, medium grey line is

the variable identity. The green respectively bright grey arrows represent the typing

9

2 Higher Object Programming System HOPS

@

Int
Lambda

−>

x
+

1

@

b
Lambda

−>

a
x

MVAR

MVAR
+ Int

MVAR

1

MVAR

2

Figure 2.1: Example DAGs

function. The black labelled nodes are constant constructors, the blue respectively

grey labelled nodes with normal font are metavariables, the blue respectively grey

labelled nodes with bold font are bindable variables. The nodes which are source of a

typing arrow, i.e., the nodes which are element of dom .T , are in the object layer of

the DAG. The nodes which are sink of a typing arrow or reachable from such a sink,

i.e., ran .(T o
9 (D ∪ T)∗), are building the type layer of the DAG. The object layer

and the type layer are disjoint.

Definition 2.3 (Free Variable, Encapsulation)

A variable node x is free below a node a, if there is a (D ∪T)-path from a to x such

that no binder of x lies on that path; if in this constellation x is bound by b, then b

encapsulates a. The encapsulation C : N ↔ N relates b with a exactly when b

encapsulates a. 2

In the DAG shown on the left-hand side of Figure 2.1 the variable x is encapsulated

by the node Lambda and x is free below the node +.

In the following chapters, we sometimes refer to only part of a DAG. Therefore, we

define the term sub-DAG.

Definition 2.4 (Sub-DAG, Induced Sub-DAG)

A term graph G ′ = (N ′,L′, S ′,D ′,B ′,W ′,T ′) is called sub-DAG of a DAG G =

(N ,L, S ,D ,B ,W ,T) if

- N ′ ⊆ N ,

- N ′ is closed with respect to S and T ,

- all components restricted to N ′ are corresponding to the components of G ′, i.e.,

L′ = N ′
C L, S ′ = N ′

C S , D ′ = N ′
C D , T ′ = N ′

C T , B ′ = N ′
C B BN ′, and

W ′ = N ′
C W B N ′.

For a node n ∈ N the sub-DAG which contains n and has the smallest set of nodes

with respect to set inclusion is called sub-DAG induced by n. 2

10

2.2 Homomorphy

2.2 Homomorphy

In second-order term graphs metavariables may have successors. Therefore the images

of metavariables have to stop before the image nodes of their successors.

In HOPS the image of a metavariable is called (image) interval. An interval con-

sists of a top node and a partial node sequence, the lower border. The lower border

represents the images resp. the top nodes of the image intervals of the successors of

the metavariable.

All nodes that are reachable from the top node via paths on which there lies no node

of the lower border are called inner nodes. If for an interval the top node is element

of the lower border the interval contains no inner node and is called empty.

+

*

4 5

8

MVAR

4 8

Figure 2.2: Two graphs with homomorphism

In Figure 2.2 two graphs and a function from one graph to the other is shown. The

function, illustrated by the arrows from the left-hand side to the right-hand side, maps

MVAR to +, 4 to 4, and 8 to 8. Since MVAR is a metavariable node, + is the top node of

its image interval. The lower border contains the nodes 4 and 8, the inner nodes are

* and 5.

The function shown in Figure 2.2 is called term graph homomorphism. Term

graph homomorphisms will later mainly be used to serve as matchings from rule sides

into application graphs. Rules are introduced in Section 2.4.

2.3 Typing

Term graphs in HOPS have to be well-formed as described in the preceding sections

and they have to be well-typed as described below.

Definition 2.5 (Typing Element)

A typing element is a typed term graph G which either is rooted or has all its

sources related to each other by the variable identity, and where all successors of the

11

2 Higher Object Programming System HOPS

source nodes are meta variables and all successors of those metavariables are bound

by the root node. Such a typing element is said to be for the label of its root node. 2

Typing elements closely correspond to typing rules in type derivation systems, e.g.,

presented in Barendregt (1992). Typing elements are also called bricks in the context

of HOPS.

Definition 2.6 (Term Graph Language)

A term graph language is a set T of typing elements, such that T contains at most

one typing element for each node label l : C. 2

The available implementations of HOPS do not support any kind of overloading of

bricks. Thus, Definition 2.6 is not really a restriction in this context. A term graph

language in the context of HOPS is also called domain-specific language (DSL),

since it is a language which has been designed for a specific domain.

Definition 2.7 (Well-Typed Term Graph)

A typed term graph G is well-typed with respect to a term graph language T if for

every node n : N of G there is a typing element τ for L.n and a homomorphism from

τ into G that maps a source node of τ to n. 2

In Figure 2.3 a typing element representing function abstraction is shown. This brick

declares that λ is of type a->b, if the successor MVAR is of type b and the bound variable

x is of type a.

Lambda −>

a

b

x

MVAR

Figure 2.3: Typing element for the function abstraction

In HOPS only three bricks were “hard-coded”: zero-ary bindable variables and n-ary

(n : N) metavariables in the object layer, and zero-ary metavariables in the type layer.

During the development of our mobile agents we have added two additional hard-

coded bricks to the object layer: the node metavariable NVAR and the distinct edges

metavariable DEMVAR. The node metavariable is a metavariable with an image interval

consisting of exactly one node, the top node, and no inner nodes.

The distinct edges metavariable is a metavariable with an image interval where all

edges to successors of the DEMVAR are represented with edges that are distinct from

12

2.4 Term Graph Transformation

each other in the image of the term graph homomorphism. In Figure 2.4 three term

graphs are shown. Since the left one uses the DEMVAR, it is only possible to find a

matching homomorphism from the left one to the one in the middle, but not to the

graph on the right-hand side of Figure 2.4, since the right graph does not contain two

different edges from the matching of the metavariable to the node with the label 4.

DEMVAR

4

+

4

+

4 5

Figure 2.4: Three graphs for the illustration of the DEMVAR

When using a normal metavariable instead of the distinct edges metavariable in the

graph on the left-hand side of Figure 2.4 a matching homomorphism from this term

graph to the right one can be constructed, too. In this case, both outgoing edges are

represented by the single edge from + to 4.

Kahl (1998) has shown that for every DAG we are able to use in HOPS there is a

principal type in the following sense: Among all well-typed graphs with isomorphic

object layers there is always one from which there is a homomorphism to every other.

In HOPS the principal type of a DAG is calculated automatically at each modification

of the graph.

2.4 Term Graph Transformation

HOPS supports two different operations on term graphs: Application of a transforma-

tion rule and (maximal-)identification. In the following we only describe the applica-

tion of a rule from left to right. A rule is applied from right to left in the analogous way.

Maximal-identification is the recognition of common sub-DAGs and their identification

and is introduced at the end of this section.

SLA

body

SFA

initial suitcase

Figure 2.5: Example rule

As mentioned before, a transformation rule is a term graph with an additional arrow

connecting the roots of the left- and right-hand sides. In Figure 2.5 an example of a

13

2 Higher Object Programming System HOPS

rule is shown. The left-hand side is the source of the orange respectively thick, medium

grey arrow with the label SFA. The right-hand side is the sink of this arrow with the

label SLA. The rule can be used to transform a stateful agent (SFA) into a stateless

agent (SLA) and vice versa. It is explained in Section 5.1.

A rule is applicable from left to right to a node in an application graph, if and only

if there exists a homomorphism from the left rule side to the application graph. If

and only if there exists a homomorphism from the right-hand side of the rule to the

application graph the rule is applicable from right to left. Such a homomorphism is

also called matching-homomorphism or matching. If there is more than one matching

for a rule side, the user has to choose one of them interactively.

Body

A

@

Lambda

x

Body

Figure 2.6: Rule for beta reduction

In Figure 2.6 the rule for beta reduction in the λ calculus is shown. In Figure 2.7

the matching homomorphism from the left-hand side of this rule to an application

graph representing the term (λ x .x + 3) 1 is shown. The term graph homomorphism

is illustrated by the black arrows from left to right.

@

Lambda

x

+

3

1

@

Lambda

x

Body

A

Figure 2.7: Term graph homomorphism from the left-hand side of the beta reduction rule to
an application graph

The matching homomorphism shown in Figure 2.7 maps the constant nodes, namely λ

and @, to the corresponding constant nodes in the application graph. The metavariable

A is mapped to the interval consisting of the top node 1 with an empty lower border

and no inner nodes. The top node of the interval on which the metavariable Body

is mapped, consists of the top node + and the lower border consisting of the bound

14

2.4 Term Graph Transformation

variable x. The inner node is the node with the label 3. The bound variable x

is mapped to the bound variable in the application graph. Since the above matching

homomorphism exists, the rule is applicable from left to right to the application graph.

Applying the rule means replacing the image of the left-hand side of the rule with the

“corresponding” right-hand side of the rule. By the corresponding right-hand side of

the rule we mean the constant parts of the right-hand side of the rule and the images of

all metavariables which also are part of the left-hand side of the rule or have a variable

identity to one of the metavariables of the left-hand side. If a metavariable only occurs

in the right-hand side without any variable identity relation to any metavariable which

is part of the left-hand side, this metavariable will be inserted as it is into the term

graph.

+

1 3

Figure 2.8: Application graph after applying beta reduction rule

In Figure 2.8 a term graph is shown, which is the application graph from Figure 2.7

after applying the rule shown in Figure 2.6 from left to right. The image of Body is

the interval consisting of the top node + and the inner node 3. The bound variable x

has been replaced by the image of the metavariable A.

+

*

4 −

2 3

*

*

5 −

2 3

−

4 5

+

*

4 −

2 3

*

*

5

−

Figure 2.9: Two graphs representing the same term, one without sharing and one as maximal-
identified graph

As mentioned above, maximal-identification is the recognition of common sub-DAGs

and their identification. In Figure 2.9 two term graphs representing the same term

are shown. In the graph on left-hand side common sub-DAGs, e.g., the sub-DAGs

representing the term 2 − 3, are not shared. The graph on the right-hand side uses

sharing for all common sub-DAGs. Since it is not possible to find more common sub-

DAGs which are not already shared, the graph on the right-hand side of Figure 2.9 is

called maximal-identified.

15

2 Higher Object Programming System HOPS

2.5 Transformation Strategies and Term Graph

Patterns

Strategies and term graph patterns can be used for automating term graph transfor-

mations. In this section, only those parts of these concepts that are necessary for

understanding the following chapters are introduced in an informal manner. Defining

them formally goes beyond the scope of this introduction to HOPS and is not essen-

tial for this thesis. Furthermore, the syntax used for strategies in this approach is

simplified in contrast to the syntax introduced in Derichsweiler (2002), where a more

complete introduction and formal definitions of those concepts can be found.

A transformation strategy is a root-DAG consisting of nodes with the following

labels:

- Units no pat, consisting of

- no ∈ {NO, TD, TDLR, BU}; the navigation order which is node-only, top-down,

top-down-local-restart, or bottom-up, and

- pat , the set of term graph patterns used in this strategy.

Units no pat is only allowed to be the label of the root of the strategy DAG.

Furthermore, the root has to be a node with this label.

- Ref sn, the reference to another strategy, where sn is the name of that strategy.

- Rule rs dir, consisting of

- rs, the set of rules with the label rs

- dir ∈ {LR,RL,LRRL}, the allowed directions of the applications of the

rules in rs, which can be left-to-right, right-to-left, or left-to-right-and-right-

to-left.

- Search nl dir, consisting of

- nl , the node label, and

- dir ∈ {Up,Down,Node}, the direction in which the node label is searched.

- SeqComp, the sequential composition of its two successors,

- Alternative, which uses its second successor if and only if the first successor

has not led to any transformation of the DAG.

- IfThen, which uses its second successor if and only if the first successor has led

to a transformation of the DAG.

- MaxId, the maximal-identification,

- Star, which repeats its successor infinitely.

16

2.6 Code Output

- Finish, which can be used to stop the strategy immediately.

A transformation strategy is applied to a node of a term graph and is started at its

root. The strategies used in Chapter 7 and Chapter 9 are all explained explicitly in

those chapters.

A term graph pattern is a term graph which can be used to specify where a particular

transformation has to be done. In this approach the only purpose where term graph

patterns are used, is to be able to apply a transformation strategy to the top-node,

but transform only a part of the DAG. Term graph patterns are used in Section 9.4

and in Section 9.6.

2.6 Code Output

The implementation of HOPS used for the prototypical implementation of the ap-

proach presented in this thesis has a simple code output mechanism. The code output

mechanism can be applied to a node of a DAG in order to generate code for the sub-

DAG induced by this node. Therefore, a code string has to be defined for each brick

that occurs in this sub-DAG. Besides constant parts of a string it is possible to use

special strings to denote the code generated for successors and the like. In Table 2.1

all special strings are shown.

Code string Denotation
$<number>$ code generated for successor <number>
$B<number>$ code generated for bound variable <number>

$DL<name>$ generates a unique number which is bound to <name>

$L<name>$ uses previously generated unique number bound to <name>

T code generated for the type of the brick

Table 2.1: Special strings for the code generation

For example, the code in the programming language Haskell which is generated for

the node λ in the DAGs shown in Figure 2.1 can be denoted by “\$B1$ -> 1”. This

means, the code for the first bindable variable and for the first successor is generated,

and is used to replace $B1$ respectivley 1 in the above code string.

17

2 Higher Object Programming System HOPS

18

3 Mobile Agents

At least two categories of agents exist: Intelligent agents and mobile agents. While in-

telligent agents (Wooldridge and Jennings, 1994) have been studied mainly by the AI1

community, mobile agents are originated in distributed computing and programming

language research communities. Mobility and intelligence in the context of agents are

considered to be orthogonal. An intelligent agent may be mobile or not and a mobile

agent may be intelligent or not. The focus of the approach presented in this thesis is

on agents that are mobile following the definition presented in Gray (1997):

A mobile agent is an autonomous program that can migrate under its own

control from machine to machine in a heterogeneous network.

Autonomous program means that the program does not depend on any user interaction

while executing. All machines have to provide a mobile agent execution environment,

which is often called agent platform. Obviously, it is possible to add code to a mobile

agent which makes the mobile agent intelligent in any way. Nevertheless, this approach

does not provide any special feature to aid the development of intelligence.

Thomsen and Thomsen (1997) stated that mobile agents are the new paradigm in

computing and there will be “one of the most important paradigm shifts in computing

since object oriented methods and client/server based distributed systems”. Although,

no killer application2 for mobile agents has been identified until now, there are plenty

of applications that benefit from using mobile agents, e.g., distributed information

retrieval, information dissemination, monitoring and notification, as well as personal

assistance.

1Artificial intelligence (AI) is the science and engineering of making intelligent machines, especially
intelligent computer programs.

2Killer application or ”killer app” is a buzzword that describes a software application that surpasses
all of its competitors.

19

3 Mobile Agents

3.1 Alternatives to Mobile Agents

Alternatives to mobile agents for client/server interaction can be divided into two

classes (Chess et al., 1994), asynchronous protocols and synchronous protocols. An

example for asynchronous protocols is messaging, an example for synchronous pro-

tocols is remote procedure call. In both cases, only data is transferred between the

client and the server. The procedures that handle the data are stationary on the server

respectively on the client.

The remote procedure call (RPC) (Birrell and Nelson, 1983) is an extension of the

traditional procedure call mechanism. The client application opens a communication

channel to the server process and passes the parameters to the server process. Interface

routines are used to marshal the parameters into a form that is suitable for transmission

and to unpack them after the transmission. The server processes the parameters and

returns the result through the communication channel to the waiting client application.

High efficiency and low latency are the strengths of remote procedure calls.

Messaging is an outgrowth of electronic mail systems and earlier distributing comput-

ing schemes with communications done via pipes or files. A message composed by

the client application typically consists of tagged or structured text. This message is

delivered to a software processor which is appropriate for this kind of message and is

mostly indicated in the message header. A popular example is the Simple Mail Trans-

port Protocol (SMTP) (Postel, 1982). Messaging is asynchronous, i.e., a client which

has handed of the message continues its execution. The main advantage of messaging

is its robustness, particularly over wide area networks (WANs).

3.2 Properties of Mobile Agents

Individual advantages of mobile agents have been already pointed out by Chess et al.

(1994):

• Reduction of network traffic. In traditional client/server environments the client

fetches a possibly huge amount of data to filter out a particular needed small

part. With the utilisation of mobile agents filtering is already done at the server.

• Better support for mobile clients. Mobile devices are not permanently connected

to the internet. A mobile client can launch the agent, disconnect, and receive the

returning agent during a subsequent connection session. Mobile clients are often

20

3.2 Properties of Mobile Agents

connected through a relatively low bandwidth. Furthermore, mobile clients have

limited storage and processing capacity.

• Asynchronous interaction. Although all message-based systems, e.g., the Sim-

ple Mail Transport Protocol (Postel, 1982), provide asynchronous interaction,

the utilisation of mobile agents allows to process arbitrary computations asyn-

chronously.

• Queries and transactions can be more robust. RPC computation was developed

for LAN3-based systems with strong assumptions about the integrity of commu-

nications and the availability of the server. Nowadays, RPC is often realised over

WANs which results in less reliable connections. Using mobile agents moves the

computations over the WAN to the server and thus leads to more robust queries

and transactions.

• Avoid the need to preserve process state. A mobile agent migrates with its explicit

state from platform to platform. This explicit state is often called its suitcase.

The mobile agent, and not the agent platform or the underlying operating system,

is responsible for its own state.

• Remote real-time control. If the transmission latency in a network is to high

to achieve real-time constraints, a mobile agent can be executed locally on the

remote machine.

Each of the above properties, except for the remote real-time control, can be accom-

plished with systems that do not use mobile agents, but a mobile agent framework

addresses all of them at once (Chess et al., 1994).

Obviously, a mobile agent environment has also some disadvantages. The main dis-

advantage, besides the application-specific disadvantages of mobile agents, e.g. trans-

mission efficiency of a courier agent compared to a simple SMTP mail message, is the

need for a highly secure agent execution environment. Two main security concerns

have been identified (Gray et al., 1998): Protecting the mobile agent and protecting

the agent platform. While this first approach does not focus on security, the mini-

mal requirement, protecting the agent platform, has been satisfied by using a strongly

typed language, namely Haskell. A mobile agent migrates as Haskell source code and

thus will be type-checked and compiled before execution.

3LAN: Local Area Network

21

3 Mobile Agents

Usual protection techniques are the sandbox model, code signing, and proof-carrying

code. The sandbox model (Fritzinger and Mueller, 1996) provides strict limitations

on what system resources the mobile agents can request or access. The compliance

with those limitations is verified before the mobile code will be executed. Interactions

with the outside world are mediated by a monitor. Code signing is a concept which

is orthogonal to the sandbox model. Code is divided into two classes, trusted and

untrusted. Trusted code has to be signed by a trusted entity and is allowed to run

outside the restrictions of a sandbox. The proof-carrying code (Necula and Lee, 1997)

technique constructs a proof that guarantees that the code does not violate some

safety policies. The proof which is delivered with the code can be verified before the

code will be executed. The utilisation of proof-carrying code within a heterogeneous

environment is not possible, because this technique is tied to the hardware and the

operating system of the agent platform.

3.3 Applications for Mobile Agents

Applications that benefit from using mobile agents have already been identified by sev-

eral authors (Sanneck et al., 2002) (Kotz and Gray, 1999) (Lange and Oshima, 1999).

Examples of those applications are:

• Distributed information retrieval. Move the computation which searches for data

and filters data to the servers instead of fetching a large amount of data to the

client.

• E-commerce. Real-time access to remote resources such as stock quotes or agent-

to-agent negotiation.

• Personal assistance. Perform tasks independently from network connectivity of

users.

• Telecommunication network services. Dynamic network reconfiguration and user

customisation.

• Workflow applications and groupware. Mobile agents may contain workflow

items.

• Monitoring and notification. Mobile agents can monitor a given information

source and notify the user if certain kinds of information become available.

22

3.4 Standardisation

• Information dissemination. Mobile agents can be used to disseminate news or

automatic software updates.

3.4 Standardisation

There are two standards for mobile agent technology: The Mobile Agent System In-

teroperability Facility (MASIF) developed by the Object Management Group (OMG)

and the specifications published by the Foundation for Intelligent Physical Agents

(FIPA). OMG is a non-profit organisation which was formed in 1989. OMG’s work in-

cludes CORBA, a standard for distributed software systems. FIPA is also a non-profit

organisation with a focus especially on standards for agent technology.

MASIF is based on agent platforms and enables agents to migrate from one platform

to another. Mobile agents have to migrate via CORBA interfaces. FIPA aims at

enabling the intelligent agents interoperability via standardised agent communication

and content languages. The approach presented in this thesis is an academic prototype

which does not use CORBA for migration, in particular because it is not available in

Haskell yet. Since this approach focuses on mobile agents that are not intelligent per

se the FIPA standard has also not been taken into consideration.

3.5 Mobile Agent Languages

Nearly all mobile agent systems use imperative programming languages, most no-

tably Java (Tripathi et al., 2002) (Tripathi et al., 1999) (Karjoth et al., 1997), C/C++

(Lucco et al., 1995) (Peine and Stolpmann, 1997) (Johansen et al., 1996), and various

scripting languages (White, 1994) (Gray, 1997). Functional programming languages

are used only in a few systems (Knabe, 1995) (Gray, 1997).

Frederick Knabe distinguishes in his PhD thesis (Knabe, 1995) mobile agent program-

ming languages from other programming languages by naming some essential proper-

ties which are a minimum for agent applications in real distributed environments:

• Support for manipulating, transmitting, receiving, and executing code-containing

objects

• Support for heterogeneous computer systems

23

3 Mobile Agents

• Performance sufficient to meet the needs of applications

Knabe (1995) also adds some desirable properties for improving agent programming,

namely remote resource access, strong typing, automatic memory management, stand-

alone execution, independent compilation, and security. Strong static typing is very

important when programming with agents, since it is extremely difficult to debug

distributed programs. His proposed language is based on Facile (Thomsen et al., 1993),

a higher-order, mostly functional language that integrates support for concurrency

and distribution. In Facile it is possible to send and receive function closures and

communicate through channels.

The modifications done by Knabe (1995) include a code representation that can be

executed on heterogeneous architectures, dynamic linking on the execution site and

lazy compilation of received agents. Since remote resource access is strongly typed, the

type of those remote resources has to be known during agent programming, and every

platform has to provide all remote resources with this type. In an open environment

this is too restrictive.

The approach presented in this thesis does not only use a strongly typed functional

programming language, namely Haskell, for the execution environment, it uses a typed

representation already at the time of developing a mobile agent in HOPS (see Chapter

2). Remote resources, which we call possibly-provided functions, may be available on a

platform, but they do not have to be available on all platforms. Our approach provides

support for removing possibly-provided functions temporarily from the mobile agent

code on an agent platform which does not provide the particular function. Further-

more, it is also possible to migrate only to those platforms that provide the necessary

functions.

In order to be able to remove non-available functions temporarily the mobile agents

migrate as Haskell source-code. This means each mobile agent is type-checked and

compiled on any agent platform before it is executed. Beneath the drawback of gener-

ating some overhead in agent execution this makes it possible to use the type system of

Haskell for the protection of the agent platform. Therefore, the function representing

the mobile agent is encapsulated in the runAgent function which uses rank-2 polymor-

phism in one of its arguments. This makes it impossible to use arbitrary I/O functions

in the mobile agent code. More detailed information can be found in Section 8.2.1.

Our mobile agents use so-called weak mobility, i.e., a mobile agent does not resume its

execution from the instruction following the migration — this would be called strong

24

3.5 Mobile Agent Languages

mobility — it always “restarts”the entire mobile agent function. We use weak mobility

for our first approach, since it appears in the functional programming context to be

the more natural way to express mobility. Bettini and Nicola (2001) have introduced

a purely syntactic translation from strong mobility to weak mobility. This translation

can be integrated into a future version of our development system.

25

3 Mobile Agents

26

4 Design Overview

The mobile agent programming and execution environment is based on the Higher

Object Programming System HOPS and the purely functional programming language

Haskell. The main objective is to develop a working prototype of a mobile agent

programming and execution environment based on term-graph transformation and

functional programming. This work is considered to be a case study and a first step

towards a fully-fledged mobile agent programming and execution environment. In the

following two types of notation can be found: Declarations and expressions written

in Haskell (Peyton Jones et al., 2002) and directed acyclic graphs (DAGs) as used in

HOPS (see Chapter 2).

In Section 4.1 the terms which are used in the following chapters are defined. The terms

agent platform, home platform, agent, mobile agent, and suitcase can also be found

in other approaches whereas the distinction between the local and the global suitcase,

the terms primitive agent, stateful agent, stateless agent, agent combinator, platform

agent, and value agent are unique in the present approach. Furthermore, the concept

of possibly-provided functions is an outcome of this work and cannot be found in any

other mobile agent environment. In Section 4.2 the objectives of the approach towards

the first mobile agent development and execution environment based on term graph

transformation and functional programming are described. Section 4.3 gives a sketch

of the realisation. The author has developed both, the mobile agent programming

environment based on HOPS and the mobile agent execution environment based on

Haskell, from scratch in a joint development.

4.1 Definitions

As already mentioned in Chapter 3, the following definition for a mobile agent, taken

from Gray (1997), is used as a starting point for this approach:

27

4 Design Overview

A mobile agent is an autonomous program that can migrate under its own

control from machine to machine in a heterogeneous network.

Obviously, a mobile agent needs a run-time environment on each machine: The agent

platform.

Definition 4.1 (Agent Platform, Home Platform)

An agent platform, or platform for short, is a mobile agent execution environment.

The platform where a user starts a mobile agent is called the home platform of the

mobile agent. 2

Since an agent platform is implemented as server process on a machine, it is possible to

run more than one platform on each machine. On the other hand, each agent platform

runs on exactly one machine. The implementation of agent platforms is called the

Haskell Mobile Agent Platform (HaMAP) and is introduced in Chapter 8.

Definition 4.2 (Primitive Agent)

A primitive agent of type Agent a is a function returning a value of type a, where

a is a Standard Haskell Type (Peyton Jones et al., 2002) excluding I/O types. 2

A primitive agent consists only of functions and values defined in the Haskell 98 report

(Peyton Jones et al., 2002) except for functions and values with an I/O type. An agent

cannot use I/O functions in the usual way. The only facility to do I/O within a mobile

agent is by using platform functions or possibly-provided functions (see Definition 4.4).

The mechanism to ensure that a mobile agent cannot do arbitrary I/O is described in

Section 8.2.1.

Definition 4.3 (Stateless Agent, Stateful Agent, Local Suitcase)

A primitive agent calculating a value which is independent from the value calculated

on the previous platform is called stateless agent. A primitive agent calculating a

value depending on the previously calculated value is called a stateful agent. The

value of a stateful agent is also called its suitcase or local suitcase. 2

The services and information a platform provides to the mobile agent are encapsulated

in possibly-provided functions and platform functions.

Definition 4.4 (Possibly-Provided Function, Platform Function)

A possibly-provided function is a function that may be available on a platform;

a platform function is a function that has to be available on each platform. A

possibly-provided function returns a value of type Maybe a for arbitrary a. The set of

28

4.1 Definitions

platform functions consists of five functions, namely migrate, getPFID, getPPFInfo,

hasPPFs, and replaceCF. 2

Since a possibly-provided function returns a value of type Maybe a, it is possible to

replace a function that is not available on a platform by a function returning the value

Nothing. This is done by a preprocessor on the Haskell Mobile Agent Platform (see

Section 8.2.1). With this concept, a possibly-provided function can be used within

a mobile agent even if it is not available on an agent platform visited by the mobile

agent.

With the concept of meta agent combinators, which is introduced in Section 5.6, it

is possible to transform away parts of the agent’s code depending on the availability

of possibly-provided functions on the current platform. Without using meta agent

combinators it is not possible to distinguish between the result Nothing caused by the

fact that the possibly-provided function is not available and the same result caused

by a temporary or request-dependend failure. However, this design decision has been

made in order to provide possibly-provided functions following the principle of least

astonishment by using a type of a -> Maybe b for a function for which the user

expects a type of a -> b. The requirement to distinguish between non-availability

and a failure would lead, for instance, to a function of type Maybe (a -> Maybe b).

The platform function migrate is needed to migrate from the current agent platform

to another platform. The platform identifier of the current platform is returned by the

function getPFID. The function getPPFInfo returns a list of pairs consisting of plat-

form identifiers and possibly-provided functions which are available on that platform.

The function hasPPFs can be used to filter all platform identifiers of platforms provid-

ing a list of possibly-provided functions from a list of platform-identifiers, and the fifth

function, replaceCF can be used to replace a code fragment of the mobile agent code

with another code fragment. More detailed information about those functions can be

found in Section 5.2 and in Section 8.1.2.

Definition 4.5 (Agent Combinator)

An n-ary function returning a value of type Agent a for arbitrary a is called an (n-ary)

agent combinator. At least, one argument has to be of type Agent b for arbitrary

b. 2

29

4 Design Overview

The second sentence of Definition 4.5 is needed to ensure that primitive agents are not

considered to be agent combinators. An example of an agent combinator is the pair

agent combinator.

agentPair (agent1 :: Agent a) (agent2 :: Agent b) :: Agent (a,b)

The pair agent combinator combines two agents, one returning a value x of type a, the

other returning a value y of type b, to an agent returning the pair (x,y).

We now introduce the agent.

Definition 4.6 (Agent, Value of the Agent)

1. A primitive agent is an agent.

2. The application of an n-ary agent combinator to n appropriately chosen argu-

ments is an agent.

3. A platform function is an agent.

4. A possibly-provided function is an agent.

An agent which returns a value v of type a is of type Agent a, v is called the value of

the agent. 2

Mobility is introduced by the mobile agent combinator.

Definition 4.7 (Mobile Agent, Platform Agent, Value Agent)

A mobile agent consists of two agents: The platform agent and the value agent.

The platform agent is an agent returning a value of type [PFID]. The value of the

value agent is called the the value of the mobile agent. 2

A value of type PFID is called platform identifier. The platform agent is responsible

for the calculation of the next platform to which the agent migrates. The platform

agent returns a list of platforms where the mobile agent tries to migrate to. If the

migration to the head of the list fails, the mobile agent tries to migrate to the next

platform in the list, until the migration to a platform succeeds or the attempt to

migrate to all platforms fails. If migration has failed for all platforms in the list, the

current agent platform will send the mobile agent back to the home platform.

The value agent is responsible for the value the mobile agent calculates on each plat-

form.

Definition 4.8 (Global Suitcase)

A mobile agent has exactly one global suitcase. The global suitcase contains all

local suitcases and the value of the value agent. 2

30

4.2 Objectives

The mobile agent programmer has to define only local suitcases. The term-graph

transformation in HOPS generates a global suitcase containing the local suitcases.

Furthermore, it will be ensured by the transformations that the value of the mobile

agent is part of the global suitcase.

For a mobile agent with a value agent calculating a value val of type a and a global

suitcase sc of type b, there exists a function valueFromSuitcase of type b -> a for

which the following equation holds:

valueFromSuitcase sc == val

This function to extract the value from the suitcase will be generated by the transfor-

mations in HOPS. It can be used to present the value of the mobile agent to the user

once the mobile agent has returned to the home platform.

4.2 Objectives

The main objectives of the approach to develop a mobile agent system with HOPS

and Haskell are presented below.

Separation of Concerns

Separation of concerns is a concept to encapsulate those parts of software that are

relevant to a particular concern. Furthermore, it refers to the ability to identify and

manipulate those parts. With an appropriate separation of concerns software com-

plexity can be reduced and reusability of software can be improved.

A kind of separation of concerns used in functional programming languages are com-

binator libraries, for instance parser combinators (Swierstra and Duponcheel, 1996)

(Leijen, 2000). A main advantage of combinator libraries is compositionality, and thus

greater modularity. With combinators it is possible to “combine” manageable pieces

of code to a complex function. A manageable piece of code should be small enough to

review and should be limited to only one concern, or even some part of a concern.

In the context of this approach the following aspects help to separate the concerns and

make programming of mobile agents less error-prone:

31

4 Design Overview

1. The calculation on a platform and the calculation of the next platforms to visit

is split into the value and the platform agent. Both parts will be transformed

into one function.

2. An agent can be decomposed into smaller agents. These smaller agents can be

composed using agent combinators.

3. Only local suitcases have to be defined by the mobile agent programmer. The

global suitcase and the function to extract the value from the global suitcase are

generated automatically.

Possibly-Provided Functions

An agent platform has to provide the set of platform functions (see Definition 4.4)

beneath Haskell 98 (Peyton Jones et al., 2002) without I/O. Additional functionality

a platform offers to a mobile agent is encapsulated in so-called possibly-provided func-

tions (PPF). The concept of possibly-provided functions has been developed by the

author and cannot be found in any other mobile agent environment. Since possibly-

provided functions are Haskell 98 functions everything that is programmable in Haskell

can be used in possibly-provided functions. Although, the main purpose of possibly-

provided functions is to encapsulate functions that return some information, it is pos-

sible to define functions that change the state of the agent platform. Such a function

can be, for instance, a function for booking a journey. All possibly-provided functions

return their value x of type a encapsulated in the value Just x of type Maybe a. This

way, it is possible to use a strongly typed execution environment without the need

to provide every possibly-provided function on each agent platform. If a possibly-

provided function ppf is not available a platform pf, the preprocessor of pf replaces

ppf with a function returning the value Nothing.

Furthermore, with the concept of possibly-provided functions it is possible to migrate

only to platforms that provide the set of possibly-provided functions needed. With the

meta agent combinators introduced in Section 5.6 it is also possible to calculate values

only if a specific set of possibly-provided functions is available, or to use an alternative

code fragment if not all necessary possibly-provided functions are available. Moreover,

the utilisation of a preprocessor to replace possibly-provided functions provides the

opportunity to replace a non-available possibly-provided function ppf1 with a possibly-

provided function ppf2 returning the appropriate value. As the same behaviour can be

achieved by defining a possibly-provided function ppf2 which uses ppf1, this allows to

32

4.2 Objectives

minimise the number of possibly-provided functions and thus to make the code of the

platform more manageable. Since all I/O is done using possibly-provided functions,

those functions are the only parts of the agent platform that may contain security

holes.

Modularity, Extensibility and Reusability

In the majority of cases, a mobile agent is a piece of software which is used only a few

times or even only once. Therefore, a mobile agent programming environment should

provide a facility to adapt existing agents for new tasks and to easily reuse parts

of existing mobile agents when developing a new one. In the context of functional

programming, this requirement is almost fulfilled by using a combinator library. With

term graph transformation it is even possible to remove unwanted parts of a reused

agent automatically.

By using HOPS it is also straight-forward to extend the domain-specific language used

with some new agent combinators and the transformation rules needed for converting

the new combinator into accurate Haskell. A mobile agent in Haskell is not a complete

Haskell module, it is only one function containing only Haskell 98 without I/O, plat-

form functions and possibly-provided functions. By this means, the Haskell code of a

mobile agent can be very complex, because it is not possible to define small functions

and use them by name in the mobile agent code. Nevertheless, it is possible to develop

an agent in small pieces in HOPS and using appropriate transformation rules to inline1

these functions.

Strong Typing

The functional language Haskell, which is used in this approach, is strongly typed.

This eliminates a huge class of easy-to-make errors at compile time. Since a mobile

agent migrates in its Haskell source code representation, it has to be compiled on each

platform. Using a strongly typed language, which is type-checked and compiled before

executions on each platform, adds security for the agent platforms (see below).

For the mobile agent programmer type-checking just before compilation is not suffi-

cient, because the mobile agent will not be compiled and type-checked on the home

platform. Obviously, it is possible to compile the mobile agent on the home platform

1Inlining functions is an optimisation technique used by most compilers.

33

4 Design Overview

before migrating it to an agent platform. But since the mobile agent code which will be

compiled and executed on an agent platform depends on the availability of possibly-

provided functions on this particular platform, it would be necessary to implement

prototypes of all possibly-provided functions appearing in the mobile agent code and

to type-check the mobile agent code in all different forms.

Fortunately, HOPS provides online type-checking while programming. In particular

this means that every mobile agent DAG which can be built and transformed in HOPS

is well-typed at any time. It is simply not possible in HOPS to create a DAG containing

a type-error.

To sum up, the utilisation of HOPS and Haskell provides a strongly typed develop-

ment and execution environment which is essential in the context of mobile agent

programming. A mobile agent failing on an agent platform due to errors which might

be detected by type-checking is not acceptable.

Secure Execution

In the context of mobile agents, two main security concerns have been identified

(Gray et al., 1998): Protecting the mobile agent and protecting the agent platform.

While this first approach does not focus on security, the minimal requirement, pro-

tecting the agent platform, has been satisfied by using a strongly typed language. In

particular this means, that rank-2 polymorphism in the type of a function which en-

capsulates mobile agent execution ensures that the mobile agent cannot do arbitrary

I/O. More detailed information about this can be found in Section 8.2.1.

4.3 Realisation

The development and execution environment for mobile agents based on HOPS and

Haskell has been developed from scratch by the author. It is the first approach which

uses term graph transformation and functional programming for mobile agents. The

development of a mobile agent can be divided into different phases which are illustrated

in Figure 4.1.

First of all, a mobile agent developer has to define a mobile agent in terms of the

User Interface Domain-Specific Language (UI-DSL). UI-DSL is a combinator language

and is introduced in Chapter 5. In UI-DSL primitive agents are combined to complex

34

4.3 Realisation

Code Output

?

?

?

User Interface Domain-Specific Language

Internal Domain-Specific Language

Haskell Mobile Agent DAG

Haskell Mobile Agent Code

Termgraph Transformation

Termgraph Transformation

Figure 4.1: Steps from UI-DSL to Haskell Code

agents using agent combinators. An UI-DSL mobile agent is transformed into an

internal mobile agent. I-DSL is the Internal Domain-Specific Language and is used

to represent a mobile agent with a global suitcase containing the value of the value

agent and all local suitcases of the UI-DSL representation of the mobile agent. The

transformation from UI-DSL to I-DSL creates this global suitcase. Furthermore, all

self-defined functions used in the UI-DSL mobile agent are expanded in the I-DSL

mobile agent. I-DSL is introduced in Chapter 6 and the transformation from UI-DSL

to I-DSL is presented in Chapter 7.

The internal mobile agent is then transformed into a monadic form which can be

easily used to create standard Haskell code using the simple code output facility of

HOPS. It is also conceivable to transform the I-DSL mobile agent into another form

to create, e.g., Java code which can be used within existing mobile agent execution

environments. Nevertheless, this thesis focuses on a purely functional development and

execution environment. Furthermore, design aspects like possibly-provided functions

are not available in this form in any other existing mobile agent environment known to

the author. The Haskell Mobile Agent Platform (HaMAP) which has been developed

especially for this approach is introduced in Chapter 8. Transformation from I-DSL

to the monadic form and code output is described in Chapter 9.

The generated Haskell code is not in a form which can be compiled directly. The

code has to be processed by a preprocessor on each mobile agent platform. This

preprocessor replaces all non-available possibly-provided functions temporarily with a

35

4 Design Overview

function returning Nothing, respectively transforms the Haskell code in dependence on

the available possibly-provided functions. The home platform adds some information

like its identifier and an identifier for the mobile agent to the code before migrating

the agent to the first agent platform. After the mobile agent gets back on the home

platform a function, which is generated while transforming UI-DSL into I-DSL, is used

to extract the value of the value agent from the global suitcase. By this means, the

utilisation of the global suitcase is transparent for the user of the mobile agent.

36

5 User Interface Domain-Specific

Language

The User Interface Domain-Specific Language (UI-DSL) for mobile agents is a term

graph language, which has been developed in HOPS by the author. UI-DSL is a combi-

nator language consisting of primitive agents (see Section 5.1) and agent combinators

(see Section 5.4, 5.5, and 5.6). A mobile agent can interact with the agent platform

only through a fixed set of platform functions and a variable set of possibly-provided

functions (see Section 5.2), which can be different on each platform. The meta data of

a mobile agent (see Section 5.3) is its run-time information, e.g., its home platform.

5.1 Primitive Agents

A primitive agent of type Agent a is a function returning a value of type a. The UI-

DSL provides two slightly different primitive agents: The stateful agent (see Section

5.1.1) and the stateless agent (see Section 5.1.2).

5.1.1 Stateful Agent

The stateful agent SFA of type Agent a consists of a function body returning a value of

type a which depends on the value of the evaluation of body on the previous platform.

Therefore, the stateful agent has a local suitcase where the result of body is stored

during the migration to another platform. This local suitcase is the state of the stateful

agent. For the first evaluation of body an initial value of type a is needed. This initial

value is called the initial suitcase of the stateful agent. The stateful agent can also be

regarded as a recursive function with one recursive call on each platform. Figure 5.1

shows the HOPS declaration of the stateful agent.

37

5 User Interface Domain-Specific Language (UI-DSL)

SFA Agent

asuitcase

body initial suitcase

Figure 5.1: HOPS declaration of the stateful agent SFA

Figure 5.2 shows an example of a stateful agent which counts the number of visits to

platforms. For this purpose it simply adds the integer 1 to the current suitcase starting

with an initial suitcase containing the integer 0. Since this function will be evaluated

once on each visit to a platform the suitcase always contains the number of visits to

platforms so far.

SFA

suitcase

+

1

0

Figure 5.2: Stateful agent that counts the number of visits to platforms

5.1.2 Stateless Agent

A stateless agent SLA consists of a function body that does not depend on the previous

calculated value. Therefore, a stateless agent does not need a suitcase and has no

state. Figure 5.3 shows the HOPS declaration of the stateless agent.

SLA Agent

abody

Figure 5.3: HOPS declaration of the stateless agent SLA

A stateless agent can be useful, for instance, to calculate a value that will be passed

as an argument to another agent using the λAgent combinator (see Section 5.4.2).

Obviously, a stateful agent which is not using its suitcase is equivalent to a stateless

agent with the same body. Therefore, all stateful agents without a bound variable will

be transformed to stateless agents by the rule shown in Figure 5.4.

38

5.2 Possibly-Provided Functions

SLA

body

SFA

initial suitcase

Figure 5.4: Rule to transform a SFA which does not use its suitcase into a SLA

5.2 Possibly-Provided Functions

A mobile agent that cannot interact with an agent platform is almost useless but, on

the other hand, a mobile agent which is able to use arbitrary I/O functions on an agent

platform is a high security risk. In this approach, where a mobile agent is migrated as

Haskell source code which will be type-checked and compiled on each platform, it is

possible to restrict the interaction with a platform to a set of special functions: The

platform functions and the possibly-provided functions.

As already mentioned in Definition 4.4, a platform function must be available on

each platform, whereas possibly-provided functions may be available only on a few

platforms.

Two platform functions, namely getPFID and getPPFInfo, are available in the UI-

DSL. The function getPFID returns the platform identifier of the current platform;

getPPFInfo returns a list of pairs consisting of a platform identifier and a list con-

taining information about the possibly-provided functions available on this platform.

Figure 5.5 shows the HOPS declaration of getPFID and getPPFInfo. The other plat-

form functions, namely migrate, hasPPFs, and replaceCF, are not intended to be

used directly in UI-DSL. They are automatically inserted by the transformation of an

UI-DSL mobile agent into an internal mobile agent (see Chapter 7).

getPFID Agent

PFID

getPPFInfo Agent

[]

X

PFID []

PPFInfo

Figure 5.5: HOPS declaration of getPFID and getPPFInfo

A possibly-provided function returns a value of type Maybe a. By this means, it is pos-

sible to replace all possibly-provided functions which are not available on the current

platform automatically with a function returning the value Nothing. Thus, a mobile

39

5 User Interface Domain-Specific Language (UI-DSL)

agent programmer does not need to think about whether a particular possibly-provided

function is available on each platform or not; he can simply use the possibly-provided

function in his DAG. Since a possibly-provided function can be an arbitrary function,

the author decided to abstain from introducing any possibly-provided function at this

point. Particular possibly-provided functions are introduced when they are used.

5.3 Meta Data

The mobile agents meta data is a set of information like the home platform identifier

and the mobile agent identifier. These meta data will not be generated by HOPS, they

will be generated on the home platform when starting the mobile agent. Therefore, it is

also called the mobile agents run-time information. Since this information is generated

on the home platform, it is possible to use the generated code more than once with

different agent identifiers and even from different home platforms. Although the meta

data is not generated by HOPS it is possible to use access-functions in the UI-DSL,

i.e., there are bricks like homePF, agentID, etc. in the UI-DSL.

5.4 Basic Agent Combinators

Two sets of basic agent combinators are part of the UI-DSL: Agent pairs and agent

functions. Both sets are described in this section.

5.4.1 Agent Pairs

The first set of agent combinators consists of three basic combinators: (,)Agent, πAgent,

and ρAgent. The agent pair combinator (,)Agent can be used to build an agent which

returns the pair (x,y) from an agent returning x and an agent returning y. Figure

5.6 shows the HOPS declaration of (,)Agent.

AP Agent

X

a bagent1

Agent

agent2

Agent

Figure 5.6: HOPS declaration of the agent pair combinator (,)Agent

40

5.4 Basic Agent Combinators

The agent pi combinator πAgent and the agent rho combinator ρAgent are the usual

projections. The following equations will hold for arbitrary agent1 :: Agent a and

agent2 :: Agent b:

πAgent(agent1, agent2)Agent ≡ agent1

ρAgent(agent1, agent2)Agent ≡ agent2

Rules to transform the left side to the right side of the above equations are automat-

ically applied to make the mobile agents code smaller in size. Figure 5.7 and Figure

5.8 show the HOPS declaration of the πAgent and the ρAgent combinator.

APi Agent

a

agent
Agent

X

b

Figure 5.7: HOPS declaration of the agent pi combinator πAgent

ARho Agent

b

agent

Agent

X

a

Figure 5.8: HOPS declaration of the agent rho combinator ρAgent

5.4.2 Agent Functions

The second set of combinators consists of two combinators: λAgent and @Agent. The

agent abstraction combinator λAgent can be used to build an agent which needs an input

value of type a to calculate a value of type b. Figure 5.9 shows the HOPS declaration

of λAgent.

In order to apply an agent abstraction of type a -> Agent b to an agent of type

Agent a the agent application combinator @Agent has to be used. Figure 5.10 shows

the HOPS declaration of @Agent.

Figure 5.11 shows an example agent which calculates a list of pairs consisting of a con-

secutive number and a platform identifier. The consecutive number is calculated by the

41

5 User Interface Domain-Specific Language (UI-DSL)

ALambda −>

a

Agent

bx

agent

Figure 5.9: HOPS declaration of the agent abstraction combinator λAgent

A@

Agent

b

fagent

−>

a

agent Agent

Figure 5.10: HOPS declaration of the agent application combinator @Agent

agent shown in Figure 5.2; the platform identifier is returned by the platform function

getPFID. The stateful agent on the left hand side prefixes a list with a value which is

bound by the λAgent combinator. This λAgent is applied to the (,)Agent combinator.

A@

ALambda

x

SFA

suitcase

: []

AP

SFA

suitcase

+

1

0

getPFID

Figure 5.11: Agent which calculates a list of pairs consisting of a consecutive number and a
platform identifier of a visited platform

5.5 Mobile Agents

As mentioned in Definition 4.7, a mobile agent consists of two agents: The value

agent and the platform agent. The value agent is of type Agent a where a is not

an I/O type. The platform agent is of type Agent [PFID]. PFID is the type of a

platform identifier, thus a platform agent has to calculate a list of platform identifiers.

This list of platforms is not necessarily the list of platforms which will be visited by

the mobile agent before returning to the home platform. In fact the list calculated

on the current platform specifies only where to migrate to from this platform. The

42

5.5 Mobile Agents

mobile agent tries to migrate to each platform beginning with the head of the list

until migration to a platform succeeds. Execution of the mobile agent on the current

platform immediately stops after a successful migration. The HOPS declaration of the

mobile agent combinator is shown in Figure 5.12.

MobileAgent MobileAgentType

platform agent

Agent

[]

PFIDvalue agent

Agent

a

Figure 5.12: HOPS declaration of the mobile agent combinator

A mobile agent is of type MobileAgentType. A mobile agent is not of type Agent a to

ensure that it cannot be used within other agent combinators. The mobile agent brick

has to be the top node of a DAG representing a mobile agent. This design decision

has been made because of the semantics of a mobile agent with its platform agent and

its value agent. All agent combinators combine values of agents. Since the value of a

mobile agent is the value of its value agent, there is no advantage in allowing mobile

agents to be used within agent combinators. In addition, the UI-DSL does not provide

any special combinator for combining mobile agents, because this does not lead to any

benefit.

Figure 5.13 shows an agent which can be used as platform agent. The agent consists of

two primitive agents, a stateless and a stateful agent, and uses two platform functions,

namely getPFID and getPPFInfo. The stateful agent calculates a list of already visited

platforms. The platform identifier of the current platform — the value of getPFID —

will be prefixed to the list calculated on the previous platform. The stateless agent

extracts all platform identifiers from the list returned by getPPFInfo and returns only

those platform identifiers not included in the list of already visited platforms.

As already mentioned in Chapter 2, variables in HOPS are nameless, because variable

binding, variable identity and scope is encoded explicitly. In particular, this means the

node-names representing different variables in the DAGs may be identical. In Figure

5.13, for instance, there are four nodes represented by the string x, but each of them

stands for a different variable since there is no variable identity edge between them.

In Figure 5.14 a mobile agent is shown, which migrates from platform to platform

until getPPFInfo returns information about already visited platforms only. On each

platform the mobile agent prefixes a list of pairs with a pair consisting of a consecutive

number and the platform identifier of the current platform. The platform agent is the

agent shown in Figure 5.13; the value agent is the agent shown in Figure 5.11.

43

5 User Interface Domain-Specific Language (UI-DSL)

A@

ALambda

x

A@

ALambda

x

SLA

Filter

Lambda

x

Not

IncludedIn

@

@

map pi

getPPFInfo

A@

ALambda

x

SFA

suitcase

: []

getPFID

Figure 5.13: Agent which returns a list of not yet visited platforms

5.6 Meta Agent Combinators

With the concept of possibly-provided functions, which could be available on a par-

ticular agent platform or not, arises the need for being able to formulate calculations

depending on the availability of possibly-provided functions. Within the approach pre-

sented here this is done in an additional layer, called the meta layer, with meta agent

combinators. This means that in the Haskell implementation of the agent platform the

functions of the meta layer are not part of the compilable agent code, which is called

the code layer. These functions are embedded in the mobile agent code during migra-

tion and they are used to transform the code before type-checking and compilation.

This transformation is done by the agent platform through a preprocessor. During the

execution of a mobile agent, the mobile agent is also able to transform its code. These

transformations will not take effect before migrating to the next platform.

In the UI-DSL meta combinators can be used directly in the DAG like any other agent

combinator. In the remainder of this section the following UI-DSL meta agent combi-

nators are introduced: The ALLPPF combinator, the ORPPF combinator, the ValueMarker

and the OldValueMarker combinator, and the Replace combinator.

44

5.6 Meta Agent Combinators

MobileAgent

A@

ALambda

x

A@

ALambda

x

SLA

Filter

Lambda

x

Not

IncludedIn

@

@

map pi

getPPFInfo

A@

ALambda

x

SFA

suitcase

:
[]

getPFID

A@

ALambda

x

SFA

suitcase

:
[]

AP

SFA

suitcase

+

1

0

Figure 5.14: Mobile agent which calculates a list of pairs consisting of a consecutive number
and the platform identifier of a visited platform while visiting platforms that
are known by any other platform

The ALLPPF combinator can be used to calculate a value only if all needed possibly-

provided functions in the sub-DAG induced by the ALLPPF brick are available on the

current agent platform. For an agent agent of type Agent a, ALLPPF (agent) is of type

Agent (Maybe a). By this means, ALLPPF (agent) will be replaced by a function which

returns the value val calculated by agent as Just val if all needed possibly-provided

functions in agent are available. Otherwise, it will be replaced by a function returning

the value Nothing. Figure 5.15 shows the HOPS declaration of the ALLPPF combinator.

ALL Agent

Maybe

a

agent Agent

Figure 5.15: HOPS declaration of the ALLPPF combinator

With the ORPPF combinator it is possible to specify two alternatives for calculating a

value. For agent1 of type Agent a and agent2 of type Agent b in ORPPF (agent1,

agent2) the equation a ≡ b must hold. ORPPF (agent1, agent2) will be replaced with

agent1 if and only if all possibly-provided functions needed in agent1 are available.

45

5 User Interface Domain-Specific Language (UI-DSL)

Otherwise, it will be replaced with agent2. Figure 5.16 shows the HOPS declaration

of the ORPPF combinator.

OR Agent

aagent1 agent2

Figure 5.16: HOPS declaration of the ORPPF combinator

As mentioned before, in the UI-DSL there are only local suitcases, which are part of

stateful agents. Thus, it is not intended to provide something like a “shared suitcase”

directly for the ORPPF combinator. Nevertheless, it is possible to use a shared suitcase

for both alternatives as the examples in Figure 5.17 and Figure 5.18 show. The agent

shown in Figure 5.17 uses a shared suitcase whereupon the old suitcase value is not

used by the agents in the ORPPF combinator. The value calculated by either agent1 or

agent2 is used as input value for the λAgent combinator. In this case the computations

done in agent1 and agent2 are independent of the current suitcase value.

A@

ALambda

x

SFA

suitcase

body
initial suitcase

OR

agent1 agent2

Figure 5.17: Example DAG with ORPPF using a shared suitcase

If the functions in agent1 or agent2 depend on the current suitcase value the combi-

nation of the ValueMarker and the OldValueMarker combinator has to be used. The

combination of both is needed to avoid problems with bound variables which always

have to be dominated by their binder. An edge from agent1 to ValueMarker in Fig-

ure 5.18, for example, would be a domination violation with respect to the variable x

bound by λAgent.

The semantics of ValueMarker and OldValueMarker is as follows: The value calculated

by the first successor of ValueMarker on the current platform will be used to replace

the OldValueMarker — the second successor of ValueMarker — in the mobile agent

code and, thus, is used as old suitcase value on the next platform. The successor of

46

5.6 Meta Agent Combinators

OldValueMarker is the initial value. In the example shown in Figure 5.18 this initial

value is the initial suitcase of the stateless agent.

A@

ALambda

x

ValueMarker

SFA

suitcase

body
initial suitcase

OldValueMarker

OR

agent1 agent2

Figure 5.18: Example DAG with ORPPF calculating a value which depends on the shared
suitcase value

The initial value can be automatically generated by HOPS using the initial suitcases

of the involved stateful agents. Since it is possible to use the ValueMarker and the

OldValueMarker at arbitrary positions inside a mobile agent DAG, the generation

of the initial value does not necessarily result in a proper initial value. If, e.g., a

stateless agent is part of the DAG induced by ValueMarker, the transformation would

insert a polymorphic undefined brick which has to be replaced with a proper value

by the mobile agent programmer. If the undefined part of the value is not used in

any calculation, it is appropriate to leave the undefined brick in the DAG untouched.

Figure 5.19 shows an example DAG with an automatically generated initial value

including an undefined brick.

All meta agent combinators introduced so far are transforming the mobile agent code

automatically. The Replace combinator can be used to transform the mobile agent

code only if an arbitrary condition has been fulfilled. Therefore, the Replace com-

binator, which is shown in Figure 5.20, has three successors: The condition cond,

the old code old, and the new code new. The old code is an agent of type Agent

a. The value calculated by this agent is passed to the condition which results in an

agent of type Agent Bool. The third successor, namely new, is also a function which

will be applied to the value calculated by old. The result of new is an agent of type

Agent (ReplacementType (Agent a)). A value of type Replacement b for arbitrary

47

5 User Interface Domain-Specific Language (UI-DSL)

ValueMarker

AP

SLA

body

SFA

suitcase

body

initial suitcase

OldValueMarker

Pair

undefined

Figure 5.19: Example DAG with ValueMarker and generated initial value

b is called a replacement, and can be used to replace a code fragment of type b. By this

means, the value of type Agent (ReplacementType (Agent a)) is an agent returning

a replacement to replace an agent of type Agent a, which is old in the context of the

Replace combinator.

Replace

Agent

a

cond −>
Agent

B

old
new

−>
Agent

ReplacementType

Figure 5.20: HOPS declaration of the Replace combinator

A replacement is a DAG induced by one of the three bricks shown in Figure 5.21.

The ReplacementValue brick has to be used if the replacement is the value which is

calculated by the successor of this brick. If the code fragment which is represented

by the first successor should be used as replacement without being evaluated first,

the Replacement brick has to be used. If only a part of the replacement should be

calculated, the Replacement@ brick can be used. The first successor of Replacement@

of type b -> a will not be evaluated whereas the second successor will be evaluated.

This results in a replacement consisting of the application of the function represented

by the first successor to the value calculated by the second successor.

An example application of the Replace combinator is the EvaluateOnce combinator,

which is defined by the HOPS rule shown in Figure 5.22. The agent is the agent that

should be evaluated only once, i.e., once the value of agent is available, agent should

be replaced with the value. The availability of the value is indicated by the value

48

5.6 Meta Agent Combinators

ReplacementValue ReplacementType

ax
Replacement ReplacementType

aa
Replacement@ ReplacementType

af

−>

bx

Figure 5.21: HOPS declaration of the Replace combinator

Just x for some x. Therefore, the condition agent is a stateless agent that applies the

function isJust1 to the value calculated by agent.

Replace

ALambda

x

SLA

isJust

agent
ALambda

x

SLA

Replacement@

Lambda

x

SLA

EvaluateOnce

Figure 5.22: Rule for EvaluateOnce

The replacement agent consists of a stateless agent with a Replacement@ brick as its

successor. By this means, the replacement is a stateless agent returning the value which

has been calculated by agent. An example agent using the EvaluateOnce combinator

can be found in Chapter 10.

1isJust :: Maybe a -> Bool

49

5 User Interface Domain-Specific Language (UI-DSL)

50

6 Internal Domain-Specific Language

The Internal Domain-Specific Language (I-DSL) is used as interface between the UI-

DSL (see Chapter 5) and the target programming language which will be generated.

The purely functional programming language Haskell (Peyton Jones et al., 2002) is

used here as target language. The main difference between an UI-DSL mobile agent

and an I-DSL mobile agent is, that the former has only local suitcases whereas the

latter has one global suitcase. The global suitcase contains all local suitcases and the

value of the value agent.

The I-DSL agents and agent combinators are described in the following sections. The

I-DSL primitive agent is the internal agent (see Section 6.1). All UI-DSL basic agent

combinators are also available in the I-DSL. The letInA combinator, which is also

introduced in Section 6.1 is used temporarily during the transformation from UI-DSL

to I-DSL. In Section 6.2 the I-DSL meta combinators are presented. The suitcase

handler (see Section 6.3) is used for the step-by-step generation of the global suitcase.

In Section 6.4 the internal mobile agent is introduced.

6.1 Internal Agents

The I-DSL provides only one primitive agent: The internal agent. The internal agent

of type Agent a consists of a body of type a. Thus, the internal agent is identical to

the stateless agent (see Section 5.1.2). Although the internal agent and the SLA are

identical, the internal agent brick is needed to indicate whether all primitive agents

have been taken into account when transforming UI-DSL to I-DSL. If the mobile agent

DAG still contains a stateless agent, the transformation to I-DSL has not been finished

yet. In I-DSL the mobile agent has a global suitcase which is generated from the local

suitcases. By this means, the state of an I-DSL mobile agent corresponds to its global

suitcase. Since local suitcases do not exist in I-DSL an I-DSL primitive agent cannot

have a state, anyway. Figure 6.1 shows the HOPS declaration of the internal agent.

51

6 Internal Domain-Specific Language (I-DSL)

I_A Agent

abody

Figure 6.1: HOPS declaration of the internal agent

All UI-DSL basic agent combinators introduced in Section 5.4 are available in I-DSL

as well. The letInA combinator is an I-DSL combinator which is only used during

the transformation from UI-DSL to I-DSL. In Figure 6.2 the HOPS declaration of the

letInA combinator is shown.

letInA Agent

b

x

Agent

a

agent2

agent1

Figure 6.2: HOPS declaration of the letInA combinator

The semantics of the letInA combinator is similar to the semantics of the let expression

in Haskell, let x = agent1 in agent2.

6.2 Possibly-Provided Functions and Meta Agent

Combinators

For all UI-DSL meta agent combinators which are dependent on the availability of

possibly-provided functions, there exist corresponding I-DSL meta agent combinators.

The difference between the UI-DSL version and the I-DSL version of a meta combina-

tor is that the latter has an additional successor of type PPFName which represents the

necessary possibly-provided functions for this meta agent combinator. This informa-

tion is required, because a possibly-provided function which is needed for a particular

meta agent combinator is not necessarily part of a successor of this meta agent combi-

nator after all transformations in HOPS took place. For instance, a possibly-provided

function which is also used in another part of a mobile agent will be moved to a po-

sition above both occurrences before the Haskell code is generated. Figure 6.3 shows

the HOPS declaration of the I ALLPPF and the I ORPPF combinator.

52

6.3 Suitcase Handler

I_ALL Agent

Maybe

appfs PPFName

agent Agent

I_OR

Agent

appfs PPFName
agent1

agent2

Figure 6.3: HOPS declaration of the I ALLPPF and the I ORPPF combinator

6.3 Suitcase Handler

As mentioned before, an I-DSL mobile agent has one global suitcase and contains no

local ones. During the generation of the global suitcase, which is described in Chapter

7, an additional agent combinator is needed to handle the suitcase of an arbitrary

agent. This agent combinator is called the suitcase handler. The HOPS declaration of

the suitcase handler is shown in Figure 6.4.

SuitcaseHandler

b

suitcase

c

agent

a

initial suitcase

suitcase extractor

−>

Agent

value extractor

−>
value from suitcase

−>

d

Figure 6.4: HOPS declaration of the suitcase handler

The main part of the suitcase handler is the agent which depends on the suitcase.

The initial suitcase is the initial value of the suitcase. So far, the suitcase

handler is quite similar to the UI-DSL stateful agent (see Section 5.1.1). The value

calculated by agent contains the new suitcase and the value of the suitcase handler.

Since agent is an arbitrary agent consisting of primitive agents and agent combinators,

the suitcase and the value can differ from each other. To extract the suitcase and the

value of the suitcase handler from the value of agent the suitcase extractor and the

value extractor are used. Finally, value from suitcase is a function to extract

the value from the suitcase. For an arbitrary agent it is possible that value from

suitcase may not be defined, because the value of the suitcase handler is not part of

its suitcase. However, this function is needed for the mobile agent to extract the value

of the mobile agent from its suitcase after it has returned to its home platform.

53

6 Internal Domain-Specific Language (I-DSL)

During the transformation from UI-DSL to I-DSL it is ensured, that the value of the

entire mobile agent is part of its global suitcase (see Section 7.3).

6.4 Internal Mobile Agent

The counterpart of the UI-DSL mobile agent (see Section 5.5) in I-DSL is the internal

mobile agent. The UI-DSL mobile agent consists only of the platform agent and the

value agent, whereas the internal mobile agent is the suitcase handler for its global

suitcase. The internal mobile agent and the suitcase handler only differ concerning

the extraction functions. The suitcase extractor and the platform extractor

are used to calculate the suitcase respectively the list of platforms from the value

calculated by agent. Both values are needed for the migration to the next platform.

The value extractor is a function to calculate the value of the mobile agent from

its global suitcase. This function is not needed until the mobile agent has returned

to its home platform. Therefore, the Haskell Mobile Agent Platform (see Chapter 8)

provides the possibility to leave this function on the home platform when starting the

mobile agent. Obviously, the value extractor can be used only if the value is part of

the global suitcase, which, in fact, is guaranteed by the transformations from UI-DSL

to I-DSL (see Chapter 7).

The agent, the suitcase, and the initial suitcase have the same semantics as the

appropriate parts of the suitcase handler. Figure 6.5 shows the HOPS declaration of

the internal mobile agent.

I_MA MobileAgent

suitcase a

agent

Agent

binitial suitcase
suitcase extractor

−>

Agent

value extractor

−>

c

platform extractor

−>

Agent

[]

PFID

Figure 6.5: HOPS declaration of the internal mobile agent

54

7 Transforming UI-DSL to I-DSL

The transformation from the User-Interface Domain-Specific Language to the Internal

Domain-Specific Language is the second step in the development of a mobile agent. In

Figure 7.1 the HOPS transformation strategy is shown, which basically consists of the

sequential application of five strategies, namely the MetaAgent strategy, the Sharing

strategy, the VinSC strategy, the Suitcase Handler strategy, and the Cleanup strat-

egy. Before applying the Sharing strategy respectively the Cleanup strategy the DAG

has to be maximal-identified.

The MetaAgent strategy is described in Section 7.1 and is used to replace the UI-DSL

meta agent combinators with I-DSL meta agent combinators. The Sharing strategy

is described in Section 7.2 and is used to replace the sharing of agents with the letInA

combinator. The VinSC strategy (see Section 7.3) is used to ensure that the value

of the mobile agent is part of its suitcase. The global suitcase of the mobile agent

is generated with the Suitcase Handler strategy which is introduced in Section 7.4.

The last steps of the transformation of an UI-DSL mobile agent to an I-DSL mobile

agent are the maximal-identification and the application of the Cleanup strategy which

is described in Section 7.5.

7.1 Meta Agent Combinators

With the MetaAgent strategy the UI-DSL meta agent combinators, which are de-

pendent on the availability of possibly-provided functions, are transformed into the

corresponding I-DSL meta agent combinators. Furthermore the MetaAgent strategy

calculates the list of necessary possibly-provided functions for the entire mobile agent.

This list is used to replace the neededPPFs brick (see Chapter 10). The MetaAgent

strategy is shown in Figure 7.2. This strategy is a sequential application of a few steps

which are described below.

55

7 Transforming UI-DSL to I-DSL

Ref Cleanup

@
@@R

@
@

@
@@R

@
@

@
@@R

@
@@R

�
�

�
�

��	

@
@

@
@

@R

�
�

�
�

�	

�
�

�
�

��	

�
�

�
��	

�
�

�	

�
�

��	

@
@

@
@@R

SeqComp

Units NO ∅

SeqComp

Ref Suitcase Handler

SeqComp

SeqComp

SeqComp

Ref VinSC

SeqComp

Ref SharingMaxId

Ref MetaAgent

MaxId

?

Figure 7.1: Strategy to transform an UI-DSL mobile agent into an I-DSL mobile agent

The ppfname strategy, which is referenced from the MetaAgent strategy, is shown in

Figure 7.3. Within this strategy all possibly-provided functions will be marked with the

PPF Marker. The ALLPPF combinators and the ORPPF combinators are replaced by the

I ALLPPF respectively the I ORPPF combinators (see Figure 6.3). Moreover, the UI-DSL

mobile agent combinator will be replaced with the MAPPF (see Figure 7.4) combinator.

The first successor of the MAPPF combinator is the list of necessary possibly-provided

functions of type [PPFName].

Figure 7.5 shows the HOPS declaration of the PPF Marker; ppf is the possibly-provided

function and ppfname is a value of type PPFName which contains a string with the name

of the possibly-provided function.

In order to insert the PPF Marker into the mobile agent DAG, a transformation rule

has to be defined for each possibly-provided function. This is necessary since each

possibly-provided function is represented as unique constant brick which has to be

used in the corresponding transformation rule. Figure 7.6 shows an example of such

a rule: The rule for the possibly-provided function GetHotel. The function GetHotel

has three arguments: The town in, the arrival date fromdate, and the departure date

56

7.1 Meta Agent Combinators

Rule needed-PPFs LR

?

?

?

?

�
�

�
�

�	

?

�
�

�
�

�	

�
�

�
�

�	

�
�

�
�

�	
Star Rule MobileAgent-PPF LR

SeqComp

Ref ppfname

Units NO ∅

SeqComp

MaxId SeqComp

SeqCompRef ppf-all-or

@
@

@
@

@R

Figure 7.2: MetaAgent strategy to transform UI-DSL meta agent combinators into an I-DSL
meta agent combinator

?

Rule ppfname LR

Units BU ∅

Figure 7.3: ppfname strategy

57

7 Transforming UI-DSL to I-DSL

MA_PPF MobileAgent

ppfs

[]

PPFName

platformA

Agent

[]

PFID

valueA Agent

a

Figure 7.4: HOPS declaration of the MAPPF combinator

PPF_Marker Agent

Maybe

a
ppfname PPFName

ppf

Figure 7.5: HOPS declaration of the PPF Marker

todate. It returns a list of pairs consisting of the price and a description of available

hotels encapsulated in the Just data constructor.

PPF_Marker

PPF Name

getHotel
GetHotel

in fromdate todate

Figure 7.6: Transformation rule to insert PPF Marker for the possibly-provided function
GetHotel

This is the only step where a special transformation rule is needed for each possibly-

provided function. After applying these rules, the PPF Marker brick is used as an

abstraction from the particular possibly-provided function.

All ALLPPF combinators are replaced with I ALLPPF combinators and all ORPPF combi-

nators are replaced with I ORPPF combinators using the transformation rules shown in

Figure 7.7. This has to be done, because the possibly-provided functions, which are

now contained in the sub-DAG induced by the meta agent combinators, are not neces-

sarily contained in the induced sub-DAGs after all transformation strategies have been

applied, e.g., a possibly-provided function which is also used outside the induced sub-

58

7.1 Meta Agent Combinators

DAG will be transformed out of this sub-DAG by the FlattenBind strategy, which is

described in Section 9.3. The ppfname parts of those internal meta agent combinators

include only empty lists after applying the rules shown in Figure 7.7. The elements of

these lists are generated as a next step of the MetaAgent strategy.

I_ALL

ALL PPF

[]

agent

ALL

I_OR

OR PPF

[]

agent1 agent2

OR

Figure 7.7: Transformation rules to replace ALLPPF with I ALLPPF and ORPPF with I ORPPF

Before applying the ppf-all-or strategy the DAG will be maximal-identified with the

MaxId step in order to avoid duplicates in the generated lists of necessary possibly-

provided functions. The ppf-all-or strategy is shown in Figure 7.8.

IfThen

?

�
�

�
��	

@
@

@
@R

@
@

@
@R

�
�

�
��	

Star

Alternative

Rule ppf-all-or LR

Rule all-or-ppf marker LR Finish

Units BU ∅

?

Figure 7.8: ppf-all-or strategy

With the ppf-all-or strategy the lists in the ppfname part of the I ALLPPF combinator

and the I ORPPF combinator are generated. Furthermore the list of needed possibly-

provided functions for the entire mobile agent is calculated. The strategy works as

follows: The focus moves bottom-up until an I ALLPPF, an I ORPPF or the MAPPF brick is

59

7 Transforming UI-DSL to I-DSL

found. The rules in the rule set labelled with ppf-all-or are applied until no more

PPF Marker is found in the sub-DAG induced by the focused brick. Subsequently,

the PPF Marker is inserted above the focused brick using one of the rules labelled by

all-or-ppf marker and the step is finished. Afterwards, the focus is moved upwards

to the next I ALLPPF, I ORPPF or MAPPF brick and the same steps are performed. The

strategy ends after the list for the MAPPF combinator has been generated.

Figure 7.9 shows the rules for the I ALLPPF combinator. The rule on the left hand

side is the rule labelled with ppf-all-or which is used to generate the list of needed

possibly-provided functions. The rule on the right hand side is used to insert the

PPF Marker atop of the I ALLPPF combinator and is contained in the rule-set labelled

with all-or-ppf marker.

I_ALL

ALL PPF

:

ppf

ppfs

agent

agent

I_ALL

ALL PPF

agent

PPF_Marker PPF_Marker

ppfs

I_ALL

agent

Figure 7.9: A rule to generate the list of needed possibly-provided functions for the I ALLPPF
combinator and a rule to insert the PPF Marker above the I ALLPPF combinator

The rules appropriate for the I ORPPF combinator and the MAPPF combinator are analog

to the rules shown in Figure 7.9 and are, therefore, not presented here.

The last two sequential steps of the MetaAgent strategy are the application of the rules

labelled with needed-PPFs and the rules labelled with MobileAgent-PPF. The rules

labelled with needed-PPFs are used to replace all neededPPFs bricks with the list of

needed possibly-provided functions. The rule labelled with MobileAgent-PPF reverses

the replacement of the UI-DSL mobile agent combinator with the MAPPF brick.

7.2 Sharing

The Sharing strategy is used to replace the sharing of agents with the letInA com-

binator (see Section 6.1). This replacement is needed to ensure that the suitcase of a

60

7.3 Value in Suitcase

shared agent is included in the generated global suitcase only once. Before applying

the Sharing strategy the mobile agent DAG will be maximal-identified (see Figure

7.1). The Sharing strategy traverses the DAG top-down and uses only one rule (see

Figure 7.10) to transform the sharing of an agent into the letInA combinator.

letInA

x

INVAR

MVAR

NVAR

DEMVAR

DEMVAR

Figure 7.10: Rule to transform a shared agent into a letInA combinator

In this rule some special hard-coded meta variables are used, namely the DEMVAR, the

NVAR, and the INVAR. The distinct edges meta variable DEMVAR is a meta variable where

all outgoing edges have to be distinct from each other. The node variable NVAR matches

on exactly one node. The interval node variable INVAR matches on at least one node

and the matching nodes of all successors of INVAR have to be immediate successors of

the matching node of INVAR. The left side of the rule shown in Figure 7.10 matches

if there is a sub-DAG consisting of at least two nodes with at least two distinct edges

from the matching of DEMVAR to the top-node of this sub-DAG.

7.3 Value in Suitcase

The VinSC strategy ensures that the value of the mobile agent is part of its suitcase

which will be generated with the Suitcase Handler strategy (see Section 7.4). The

VinSC strategy is shown in Figure 7.12.

The VinSC strategy is divided into three sub-strategies: The VinSC-pre strategy, the

VinSC-main strategy, and the VinSC-post strategy. The VinSC-pre strategy prepares

a DAG for the VinSC-main strategy in the following way:

• All possibly-provided functions are marked with the PPF Marker (see Figure 7.5).

• All stateful agents which do not use their suitcase, i.e. stateful agents without a

bound variable, are replaced by a stateless agent with the same body using the

rule shown in Figure 5.4.

• An initial VinSC-Marker is inserted using the rule shown in Figure 7.13.

61

7 Transforming UI-DSL to I-DSL

?

Rule VinSC-pre LR

Units TDLR ∅

Figure 7.11: VinSC-pre strategy

Ref VinSC-main

�
�

�
�

�	

@
@

@
@

@R

�
�

�
�

�	

@
@

@
@

@R

?

�
�

�
�

�	

@
@

@
@

@R

�
�

�
�

�	

@
@

@
@

@R

Ref VinSC-post

Units NO ∅

SeqComp

Ref VinSC-pre SeqComp

Star

Search VinSC-Marker Down

FinishSeqComp

MaxId

?

Figure 7.12: VinSC strategy

62

7.3 Value in Suitcase

MobileAgent

platformA

VinSC−Marker

valueA

MobileAgent

Figure 7.13: Rule to insert the initial VinSC-Marker

The main part of the VinSC strategy is the VinSC-main strategy which is shown in Fig-

ure 7.14. This strategy will be applied to the mobile agent as long as a VinSC-Marker

is found in the DAG (see Figure 7.12). Prior to any application of the VinSC-main

strategy the mobile agent DAG will be maximal-identified. The reason for both, the

search of the VinSC-Marker and the maximal-identification, is the letInA combinator.

Alternative

?

�
�

�
�

�	

@
@

@
@

@R

Rule VinSC-high-priority LR Rule VinSC-low-priority LR

Units TDLR ∅

Figure 7.14: VinSC-main strategy

There are two rules for the letInA combinator (see Figure 7.15). The left rule in Figure

7.15 is used to move the VinSC-Marker under the letInA combinator, but only above

its second successor. The rule on the right-hand side of Figure 7.15 is used to move

a VinSC-Marker immediately above the bound variable to the first successor of the

letInA combinator. But with the otherwise needed navigation top-down left-right of

the VinSC-main strategy this rule can never be applied. Therefore the transformation

strategy starts again from the top node if a VinSC-Marker is still in the DAG. With

the maximal-identification all VinSC-Marker immediately above the bound variable

are identified and the rule on the right hand side of Figure 7.15 is applicable at most

once for each letInA combinator.

Within the VinSC-main strategy two sets of rules are used, one set with a higher prior-

ity and one set with a lower priority. The different priority is given by the Alternative

node of the VinSC-main strategy. Only if no rule labelled with VinSC-high-priority

63

7 Transforming UI-DSL to I-DSL

letInA

x

agent

VinSC−Marker

agent

VinSC−Marker

letInA

x

agent

letInA

x

VinSC−Marker

agent

agent

letInA

x

agent

VinSC−Marker

Figure 7.15: Rules for the VinSC-Marker in conjunction with the letInA combinator

is applicable the rules labelled with VinSC-low-priority are used. By this means, it

is, for instance, possible to use two different rules for the stateless agent, one which is

always applicable and the other one which can be used only if the stateless agent is of

type Agent (Maybe a) (see Figure 7.17).

The idea of the VinSC-main strategy is to move the VinSC-Marker top-down across

the agent combinators until a platform function, a possibly-provided function, or a

primitive agent — a stateful or a stateless agent — has been reached. The rules for

the agent combinators are almost straightforward. All those rules, except for the rule

for the @Agent combinator which is shown in Figure 7.16 and the rules for the letInA

combinator (see Figure 7.15), are moving the VinSC-Marker from above the particular

agent combinator directly above all successors of the agent combinator.

A@

VinSC−Marker

fagent agent

VinSC−Marker

A@

ALambda

x

VinSC−Marker

agent

VinSC−Marker

ALambda

x

agent

Figure 7.16: Rule to move the VinSC-Marker over the @Agent combinator and the λAgent

combinator

The value of the @Agent combinator is calculated by the function agent fagent. There-

fore, the VinSC-Marker is only moved above the fagent.

Figure 7.17 shows the rules for the stateless agent. The rule on the left hand side

is in the set of rules with the higher priority. This rule can only be applied if the

64

7.3 Value in Suitcase

stateless agent is of type Agent (Maybe a). In this case the stateless agent can be

transformed into a stateful agent. Since the suitcase is of type Maybe a the value

Nothing can be used as initial suitcase. The rule on the right hand side is in the set

of rules with the lower priority. This rule can be applied to each stateless agent. It

transforms a stateless agent into a stateless agent VinSC, a temporarily used brick

which will be replaced within the Suitcase Handler strategy (see Section 7.4). The

platform functions are transformed similarly into special temporary bricks which are

also replaced in the Suitcase Handler strategy.

SFA
Agent

Maybe

a
body

Nothing

VinSC−Marker

SLA

VinSC−Marker

SLA

body

SLA VinSC

Figure 7.17: Rules to apply the VinSC-Marker to the stateless agent

Since the value of the stateful agent is already contained in its local suitcase, the

VinSC-Marker atop of a stateful agent is just removed with the rule shown in Figure

7.18. In Figure 7.19 the rule for a possibly-provided function represented by the

PPF Marker is shown. As mentioned before, the value of a possibly-provided function

is always of type Maybe a. By this means, this value can easily be stored in the local

suitcase of a stateful agent with the value Nothing as its initial suitcase.

VinSC−Marker

SFA

suitcase

body initial suitcase

Figure 7.18: Rule to apply the VinSC-Marker to the stateful agent

The VinSC-post strategy is used to remove any remaining PPF Marker which have

been inserted by the VinSC-pre strategy but have not yet been removed by the

VinSC-main strategy. Furthermore, all letInA combinators are replaced with @Agent

combinators using the rule shown in Figure 7.20.

65

7 Transforming UI-DSL to I-DSL

A@

ALambda

x

SFA

Nothing

ppf

VinSC−Marker

PPF_Marker

ppfname

Figure 7.19: Rule to apply the VinSC-Marker to a possibly-provided function

A@

ALambda

x

agent

SLA

agent

letInA

x

agent

Figure 7.20: Rule to replace the letInA combinator with the @Agent combinator

66

7.4 Suitcase Handler

7.4 Suitcase Handler

The Suitcase Handler strategy is used to generate the global suitcase of the mobile

agent. After applying the VinSC strategy it is ensured that the value of the mobile agent

will be part of the generated global suitcase. In Figure 7.21 the Suitcase Handler

strategy is shown. The Suitcase Handler strategy assembles the suitcases of sub-

DAGs step-by-step from the bottom to the top of the mobile agent DAG using two

sets of rules, one set with a high priority and one set with a low priority. The set

with the high priority contains all rules where all successors of the matching node are

suitcase handlers.

Alternative

?

�
�

�
�

�	

@
@

@
@

@R

Rule SC-H-high-priority LR Rule SC-H-low-priority LR

Units BU ∅

Figure 7.21: Suitcase Handler strategy

A suitcase of a sub-DAG is handled by the suitcase handler (see Section 6.3). As

mentioned in Chapter 6, the I-DSL has only one primitive agent, the internal agent

(see Section 6.1). All stateful agents are transformed by the rule shown in Figure 7.22

to a suitcase handler and an internal agent.

SuitcaseHandler

suitcase

I_A

body

initial suitcase

Lambda

x

Lambda

x

SFA

suitcase

body

Figure 7.22: Rule to transform a stateful agent into a suitcase handler

Since the value of a stateful agent is identical to its suitcase, the suitcase extractor

and the value extractor both coincide with the identity. Furthermore, the value

67

7 Transforming UI-DSL to I-DSL

from suitcase function is the identity. The particular type of the identity is the rea-

son why only the suitcase extractor and the value extractor can be represented

as one shared DAG. The type of the suitcase extractor respectively the value

extractor is Agent a -> Agent a, whereas the value from suitcase function is of

type a -> a.

The identity is frequently drawn as λ x .x (e.g. in Figure 7.22) and not represented by

a single node id, since the pattern consisting of λ and the bound variable is needed by

most of the rules for transforming agent combinators (e.g. the rule shown in Figure

7.25).

Figure 7.23 shows the rule to transform a stateless agent into an internal agent. The

transformation rule for the stateless agent VinSC is shown in Figure 7.24. This

agent is of type Agent a with a 6= Maybe b for all b, since all stateless agents of type

Agent (Maybe b) for an arbitrary b have been transformed already to a stateful agent

by the rule with higher priority shown in Figure 7.17.

I_A

body

SLA

Figure 7.23: Rule to transform a stateless agent into an internal agent

The initial suitcase is the main issue of the transformation of the stateless agent

VinSC into a suitcase handler. Since the initial suitcase is never used, one possibility

is to use an arbitrary value of the particular type. For this approach, however, it is

necessary to define a special rule for every possible type. Another solution is to use a

polymorphic undefined :: a brick. The drawback of this idea is that the undefined

value can not be read and shown by the standard Haskell functions read and show.

Since the suitcase is of an arbitrary type, the Haskell Mobile Agent Platform only

handles a string representation of the suitcase and the mobile agent uses read and

show for converting the suitcase from this string representation to the real value and

vice versa. More detailed information about this can be found in Section 8.1.

A more elegant solution is to encapsulate the value val of type a calculated by the

stateless agent into the value Just val of type Maybe a. By this means, it is possible

to use the value Nothing as initial suitcase. The suitcase extractor is the identity,

but the value extractor and the value from suitcase function need to extract the

value val from the value Just val using the function fromJust :: Maybe a -> a.

68

7.4 Suitcase Handler

SuitcaseHandler

I_A

Just

body

Nothing
Lambda

x

Lambda

x

A@

ALambda

x

I_A

fromJust

Lambda

x

fromJust

SLA VinSC

Figure 7.24: Rule to transform a stateless agent VinSC into a suitcase handler

The rule to transform a λAgent combinator with a suitcase handler as successor into

a suitcase handler is shown in Figure 7.25. The undefined brick in the suitcase

extractor can be used without any difficulty, since it will be removed when applying

the rule for the appropriate @Agent combinator.

Three different rules are used for the @Agent combinator depending on whether the

first successor, the second successor, or both successors of the @Agent combinator are

suitcase handlers. Since it is not possible in HOPS to define “negative” constraints

for matchings, like “this node should be anything but a suitcase handler”, the rule for

a @Agent where both successors are suitcase handlers has to be used with a higher

priority. Therefore, this rule is element of the set of rules with high priority whereas

the other rules for the @Agent combinator are in the set of rules with low priority (see

Figure 7.21).

In Figure 7.26 the rule to transform an @Agent combinator with a suitcase handler as

first successor into a suitcase handler is shown. In Figure 7.27 the rule to transform an

@Agent combinator with a suitcase handler as second successor into a suitcase handler

is shown. The rule in Figure 7.27 ignores the value from suitcase function and uses

the undefined brick as new value from suitcase function, because the value of the

@Agent combinator is not part of the suitcase. Otherwise, the first successor has to be

a suitcase handler.

69

7 Transforming UI-DSL to I-DSL

SuitcaseHandler

suitcase

ALambda

x

agent

initial suitcase

Lambda

x

MVAR

@

undefined

Lambda

x

ALambda

x

MVAR

@

Lambda

x

Lambda

MVAR

ALambda

x

SuitcaseHandler

suitcase

agent
Lambda

x

MVAR
Lambda

x

MVAR

Lambda

x

MVAR

Figure 7.25: Rule to transform a λAgent combinator with a suitcase handler as successor into
a suitcase handler

SuitcaseHandler

suitcase

A@

agent

agent

initial suitcase

Lambda

x

MVAR

Lambda

x

MVAR

Lambda

x

MVAR

A@

SuitcaseHandler

suitcase

agent

Lambda

x

MVAR

@

MVAR

Lambda

x

ALambda

x

MVAR

@

Lambda

x

Lambda

MVAR

Figure 7.26: Rule to transform an @Agent combinator with a suitcase handler as first successor
into a suitcase handler

70

7.4 Suitcase Handler

Since the value and the suitcase of the @Agent combinator shown in Figure 7.27 are

different from each other, a (,)Agent combinator is used to combine the agent calculating

the value and the agent calculating the suitcase. The first successor of the (,)Agent

combinator is an @Agent combinator with the old fagent as first successor and the

application of the old suitcase extractor to the old argument, the agent, as second

successor. The second successor of the (,)Agent combinator is the application of the old

value extractor to the agent. The new suitcase extractor and the new value

extractor are the projections to the particular component using the πAgent respectively

the ρAgent combinator.

SuitcaseHandler

suitcase

AP

A@

fagent

MVAR

agent

MVAR

initial suitcase

Lambda

x

ARho

Lambda

x

APi

undefined

A@

SuitcaseHandler

suitcase

agent Lambda

x

MVAR

Lambda

x

MVAR

MVAR

Figure 7.27: Rule to transform an @Agent combinator with a suitcase handler as second suc-
cessor into a suitcase handler

In Figure 7.28 the rule to transform an @Agent combinator with a suitcase handler as

first and as second successor into a suitcase handler is shown.

The rule to transform a mobile agent with a suitcase handler as a first as well as a

second successor is shown in Figure 7.29. The agent of the internal mobile agent is

an agent pair consisting of the platform agent and the value agent. The suitcase

extractor of the internal mobile agent is the combination of the platform agent

suitcase extractor and the value agent suitcase extractor. The value extractor

of the internal mobile agent is the composition of the projection on the second com-

ponent and the value from suitcase function of the value agent. The platform

extractor is the composition of the πAgent combinator and the value extractor of

71

7 Transforming UI-DSL to I-DSL

SuitcaseHandler

suitcase

AP

AP

MVAR

A@

agent

Pi

MVAR

agent

Rho

MVAR

MVAR

Pair

initial suitcase
initial suitcase

Lambda

x

APi

Lambda

x

ARho

Lambda

x

MVAR

Pi

A@

SuitcaseHandler

suitcase

agent

Lambda

x

MVAR

@

MVAR

Lambda

x

ALambda

x

MVAR

@

Lambda

x

Lambda

MVAR

SuitcaseHandler

suitcase

agent

Lambda

x

MVAR

Lambda

x

MVAR

MVAR

Figure 7.28: Rule to transform an @Agent combinator with a suitcase handler as first and as
second successor into a suitcase handler

the platform agent. The value extractor of the value agent as well as the value

from suitcase function of the platform agent is not needed in the internal mobile

agent.

The second rule to transform a mobile agent to an internal mobile agent is shown in

Figure 7.30. In this case only the value agent is considered to be a suitcase handler.

Obviously, the rule shown in Figure 7.29 has to be element of the set of rules with the

higher priority.

A rule to transform a mobile agent to an internal mobile agent where only the platform

agent is a suitcase is not necessary, because the value agent is always a suitcase handler

containing at least its value in its suitcase. The rules for the (,)Agent combinator, the

πAgent combinator, and the ρAgent combinator are straightforward and, therefore, the

author decided to abstain from presenting these rules.

7.5 Cleanup

The Cleanup strategy is used to simplify reducible parts of the internal mobile agent

which have been generated by the transformations described in this chapter. Before

72

7.5 Cleanup

I_MA

suitcase

AP

agent

Pi

agent

Rho

Pair

initial suitcase initial suitcase

Lambda

x

AP

MVAR

APi

MVAR

ARho

Lambda

x

MVAR

Rho

Lambda

x

MVAR

APi

MobileAgent

SuitcaseHandler

suitcase

agent

Lambda

x

MVAR

Lambda

x

MVAR

MVAR

SuitcaseHandler

suitcase

agent

Lambda

x

MVAR

MVAR

Lambda

x

MVAR

Figure 7.29: Rule to transform a mobile agent with suitcase handlers as successors into a
internal mobile agent

I_MA

suitcase

AP

platformAgent

agent

initial suitcase

Lambda

x

MVAR

ARho

Lambda

x

MVAR

Lambda

x

APi

MobileAgent

SuitcaseHandler

suitcase

agent
Lambda

x

MVAR

Lambda

x

MVAR

Lambda

x

MVAR

Figure 7.30: Rule to transform a mobile agent with a suitcase handlers as second successor
into a internal mobile agent

73

7 Transforming UI-DSL to I-DSL

applying the Cleanup strategy the mobile agent DAG will be maximal-identified (see

Figure 7.1). The Cleanup strategy is shown in Figure 7.31.

?

Rule Cleanup-Rules LR

Units TDLR ∅

Figure 7.31: Cleanup strategy

In Figure 7.32 two rules are shown to exemplify the rules with the label Cleanup-Rules.

The rule on the left-hand side is used to transform an agent of the form (πAgent(agent),

ρAgent(agent))Agent into agent. The rule on the left-hand side transforms fromJust

(Just x) into x.

AP

APi

agent

ARho

fromJust

Just

x

Figure 7.32: Two rules which are element of the set of rules labelled with Cleanup-Rules

74

8 Haskell Mobile Agent Platform

The Haskell Mobile Agent Platform (HaMAP) has been created in a joint development

with the mobile agent development system based on the Higher Object Programming

System HOPS. The main focus in the context of this thesis is to provide a test bed for

mobile agents developed, transformed, and generated with HOPS. The core of HaMAP

has been designed and implemented with the option of extensibility. Since the devel-

opment of a fully-fledged mobile agent execution environment goes beyond the scope

of this thesis, scalability, efficiency and interoperability with existing environments

have not been taken into consideration. HaMAP is written in the purely functional

language Haskell (Peyton Jones et al., 2002). A first working prototype of an agent

platform written in Haskell has been presented by Morbach (2001).

The design and the implementation of the Haskell Mobile Agent Platform are described

in Section 8.1 respectively in Section 8.2. In Section 8.3 migration and communication

between mobile agent platforms are introduced.

8.0 Haskell Prerequisites

In the following we use the socalled Agent monad. A monad is a mathematical

structure which comes from a mathematical discipline, called the category theory

(Asperti and Longo, 1991). A characteristic of a monad are the following three laws

which will hold for an arbitrary monad:

(return x) >>= f == f x

m >>= return == m

(f >>= g) >>= h == f >>= (\x -> g x >>= h)

The first law means that return is left-identity with respect to >>=. The second law

states that return is also right-identity with respect to >>=. The third law is the

associativity law for >>=.

75

8 Haskell Mobile Agent Platform (HaMAP)

8.1 Design Overview

The design of the HaMAP components is outlined in the following sections. The

Haskell Mobile Agent is introduced in Section 8.1.1. Section 8.1.2 describes the Agent

Monad and the minimal set of monadic functions a mobile agent platform has to

provide. The different mobile agent platforms and the different migration functions

will be explained in Section 8.1.3.

8.1.1 Haskell Mobile Agent

A Haskell Mobile Agent consists of three parts: The code, the suitcase, and the meta

data. The code and the suitcase are generated by the code output facility of HOPS

(see Section 9.6).

data MobileAgent = MobileAgent { code :: [CodeFragment]

, suitcase :: Suitcase

, metadata :: MetaData

}

The code part is a list of code fragments. In order to execute the mobile agent,

the code part has to be transformed to a code string by the mobile agent plat-

form. The objective of this transformation is to replace all possibly-provided func-

tions which are not available on the particular platform with a function returning the

value Nothing :: Maybe a. Therefore, all possibly-provided functions have to return

a value of type Maybe a for arbitrary a. Each code fragment will be transformed into

a string, and these strings will be concatenated to one string, which is the compil-

able mobile agent code. The implementation of the transformation function will be

introduced in Section 8.2.1.

The code fragment data type consists of seven constructors as alternatives, namely

Code, PPF, ALL, OR, Replaceable, Replacement, and CFList. Those constructors

with an extreme nesting are necessary, since the code fragments are used for controlling

the preprocessor, and the meta agent combinators are all expressed in terms of code

fragment values.

data CodeFragment = Code String

| PPF PPFName [CodeFragment]

| ALL PPFName [CodeFragment]

76

8.1 Design Overview

| OR PPFName [CodeFragment] [CodeFragment]

| Replaceable Integer [CodeFragment]

| Replacement [CodeFragment]

| CFList [CodeFragment]

The code fragment Code string is a plain code chunk. A possibly-provided function

is represented as PPF ppfname ppfargs, where ppfname contains the name of the

possibly-provided function and ppfargs is a list of code fragments representing the

arguments of the possibly-provided function.

The PPFName data type is used to denote the needed possibly-provided functions. The

value, which is used for the ALL and the OR code fragment, is generated already while

transforming the UI-DSL mobile agent to an I-DSL mobile agent (see Section 7.1).

data PPFName = PPFName String

| ALLPPF [PPFName]

| ORPPF [PPFName] [PPFName]

| ReplaceablePPF Integer [PPFName]

| EmptyPPF

A code fragment ALL (ALLPPF ppfnames) codefrags has to be replaced, unless all

possibly-provided functions needed1 in ppfnames are available. A code fragment

OR (ORPPF ppfnames1 ppfnames2) codefrags1 codefrags2 consists of two alter-

native lists of code fragments. The first alternative codefrags1 will be used, if and

only if all possibly-provided functions needed in ppfnames1 are available. Otherwise,

codefrags2 will be used.

A code fragment Replaceable int codefrags can be replaced with another list

of code fragments using the function replaceCF (see Section 8.1.2). The function

application replaceCF pos new old replaces the code fragment Replaceable int

codefrags in old with the list of code fragments new if int == pos. If codefrags con-

tains possibly-provided functions, these functions are represented as ReplaceablePPF

int’ ppfnames. The function replaceCF replaces this value with EmptyPPF if int’

== pos.

With the Replacement constructor it is possible to use a list of code fragments that

will not be modified by the preprocessor. In particular, this is useful for the list of

1The term“needed” is used, since not all functions which are found in a list of PPFName’s are needed.
Functions which occur only in the alternative of the OR constructor which is not used, are obviously
not needed.

77

8 Haskell Mobile Agent Platform (HaMAP)

code fragments which are used to replace a Replaceable code fragment. The CFList

constructor represents a list of code fragments. This is necessary for replacing a code

fragment with a list of code fragments, because a value of type CodeFragment cannot

be replaced with a value of type [CodeFragment].

A mobile agent has a suitcase, which has been built by HOPS using term graph

transformation. Such a suitcase can be different for each mobile agent. Since Haskell
is a strongly typed language, it is not possible to use such a value with an arbitrary

type directly. But in this approach, it is possible to use an “untyped” suitcase without
losing the type-safety, since the suitcase has been type-checked already by HOPS. The

“untyped” suitcase is the string representation of the structured suitcase value.

newtype Suitcase = Suitcase String

Once the mobile agent is executed, the string representation has to be converted into

the structured suitcase value. This conversion can be done by the mobile agent, since

the type of its suitcase is known in the context of the particular mobile agent.

Haskell provides a way to convert a value of type a to a string and vice versa, using

the Haskell Standard Prelude functions read and show.

read :: (Read a) => String -> a

show :: (Show a) => a -> String

Read a and Show a in the type signatures above are called context. This means that

the type a has to be an instance of the Haskell class Read to be read, and an instance of

the Haskell class Show to be convertible to a string. All Standard Haskell Types except

function types and I/O types are instances of Read and Show. Using the transformation

mechanisms of HOPS it can be ensured that the type of the suitcase is an instance

of Read and Show. Values with function or I/O types are not allowed in the suitcase.

The functions of the mobile agent are part of the code, not of the data of a mobile

agent. Values with an IO type are not very useful in the mobile agent, since the agent

cannot do I/O, anyway. The mechanism to ensure that the mobile agent cannot do

I/O is explained in Section 8.2.1.

The fact that the mobile agent platform cannot simply2 access the suitcase leads to

the introduction of the third part of the mobile agent, the meta data.

2Note: It is possible for the mobile agent platform to access the structured suitcase value. The read
function application including the type of the suitcase is part of the mobile agent code. Thus, the
suitcase is not secure in terms of privacy.

78

8.1 Design Overview

data MetaData = MetaData { agentID :: MAID

, homePF :: PFID

, ...

, logs :: [(PFID,[String])]

}

The meta data is a second suitcase, which is accessible by the mobile agent platform.

It contains among other things the mobile agent identifier, the home platform identifier

and log information from all platforms visited so far. All mobile agent platforms have

to be able to process at least three different kinds of platform identifiers: The socket

platform identifier, the electronic mail platform identifier and the common gateway

interface platform identifier. The socket platform identifier consists of the Internet

Protocol address or the host-name, and the socket number. The electronic mail plat-

form identifier contains the electronic mail address, and the common gateway platform

identifier contains the uniform resource locator. The mobile agent identifier consists

of an integer, which has to be unique on the home platform. Since cloning of mobile

agents is not yet included in HaMAP, the home platform identifier together with the

mobile agent identifier builds a unique attribute of a mobile agent.

With the meta data suitcase it will be possible, for example, to send the mobile agent

back to the home platform and add some information to the logs, if the mobile agent

fails during execution or even during compilation. The meta data is not part of the

mobile agent generated by HOPS. It has to be created on the home platform. This

will be explained further in Section 8.2.2.

8.1.2 Agent Monad

For the purpose of providing information on the execution of a mobile agent, e.g. used

possibly-provided functions or error messages, the mobile agent platform maintains a

state. The exact type and contents of the state depends on the platform only and not

on any mobile agent. The usual way to handle this in Haskell is using a monad. With

the concept of monads it is possible to encapsulate a state transforming function into

a pure calculation.

A monad in Haskell has to be an instance of the class Monad, and has to implement at

least the following two functions:

return :: Monad m => a -> m a

(>>=) :: Monad m => m a -> (a -> m b) -> m b

79

8 Haskell Mobile Agent Platform (HaMAP)

The first function is the identity function of the monad. The function application

return x lifts the value x into the monad m and returns x. The second function is

pronounced “bind” and is used for the composition of monadic computations. With

the bind function it is also possible to sequence calculations. Therefore, bind is also

called “and then”. I/O in Haskell is done in a monad, where e.g., an input is read “and

then” some calculations are made “and then” the calculated value is printed. In this

thesis the term “evaluating g after evaluating f” means f >>= g. In this context “the

code after f” is g. The instance of monad used in this approach is called the Agent

Monad.

class Monad m => Agent m

This agent monad can be implemented in different ways on different platforms. Five

monadic functions, namely migrate, getPFID, getPPFInfo, hasPPFs, and replaceCF,

have to be implemented on every mobile agent platform, besides return and (>>=).

migrate :: Agent m

=> [CodeFragment] -> Suitcase -> MetaData -> PFID -> m ()

getPFID :: Agent m => m PFID

getPPFInfo :: Agent m => m [(PFID,PPFInfo)]

hasPPFs :: Agent m => [PFID] -> [PPFName] -> m [PFID]

replaceCF :: Agent m

=> Integer -> [CodeFragment] -> [CodeFragment] -> m [CodeFragment]

The monadic function migrate provides the option to migrate to another platform.

The first argument is the code, the second the suitcase and the third the meta data

of the mobile agent. The fourth argument is the platform identifier of the platform to

migrate to. If the migration was successful, migrate will exit using the Haskell function

exitWith ExitSuccess. In this case, the code of the mobile agent after the migrate

function will not be evaluated. If the migration was not successful, migrate returns the

trivial value (). In that case the code of the mobile agent after the migrate function

can react on the failure and for instance can try to migrate to another platform. By

this means, the code of a mobile agent trying to migrate to one of a list of platforms,

can be written in the following way:

sequence_ (map (migrate code suitcase metadata) [pf1,pf2,pf3,pf4,pf5])

With this code the mobile agent tries to migrate to pf1, and if that fails to pf2, and if

that fails to pf3 and so on. Information about the Haskell Standard Prelude functions

80

8.1 Design Overview

sequence and map can be found in (Peyton Jones et al., 2002). If the mobile agent

code does not react on the failure or the reaction fails, the mobile agent platform has

to react (see Section 8.2).

The function getPFID returns the platform identifier of the current platform. The

function getPPFInfo returns a list of pairs, consisting of platform identifiers and in-

formation about the possibly-provided functions on this platform. The maintenance

of this list will be introduced in Section 8.3.1. The first pair is always the information

about the current platform, i.e. the following equation must hold:

getPFID == getPPFInfo >>= return . fst . head

Splitting getPPFInfo into two functions, getThisPPFInfo returning the information of

the current platform only and getOthersPPFInfo returning the list of pairs containing

the information about other platforms, would be a safer approach. Nevertheless, we use

getPPFInfo only, in order to keep the number of required platform functions a little

bit smaller. Obviously, a concrete implementation can simply provide getPPFInfo

based on getThisPPFInfo and getOthersPPFInfo.

The function application hasPPFs pfids ppfnames returns a list of platform iden-

tifiers. A platform identifier is element of this list if it is element of pfids and all

needed possibly-provided functions which are part of ppfnames are available on that

particular platform.

Obviously, it is possible to define getPFID, getPPFInfo, and hasPPFs in a non-monadic

style assuming there is nothing really useful to be mentioned in the state about a

mobile agent using one of these functions. As mentioned above, I/O in Haskell is also

monadic, and by using the agent monad for getPFID, getPPFInfo, and hasPPFs it will

be possible to encapsulate I/O. That way a mobile agent platform can for instance

query a database for information about the possibly-provided functions.

The fifth monadic function, namely replaceCF, can be used to replace a part of the

mobile agent code with a list of code fragments. In the function application replaceCF

pos old cfs the part of old which is selected by pos will be replaced with cfs.

8.1.3 Mobile Agent Platform

The Haskell Mobile Agent Platform consists of three different types of platforms: The

Agent Platform, the Home Platform, and the Proxy Platform. For further details on

the implementation of the different platforms see Section 8.2.1, 8.2.2, and 8.2.3.

81

8 Haskell Mobile Agent Platform (HaMAP)

The life-cycle of a mobile agent starts and ends on the home platform. The mobile

agent will be sent to an agent platform and migrates from agent platform to agent

platform under its own control. If the mobile agent has finished its work, it will

migrate back to the home platform.

In the above scenario the home platform has to be online continuously. Since this is

not very practicable, particularly when the home platform is on a mobile device or on

a personal computer, the approach presented in this thesis uses also proxy platforms.

The main objective of a proxy platform is to store the mobile agent after its work

has been done and provide an opportunity to download the mobile agent to the home

platform. Furthermore, it is possible to send the agent directly from the home platform

to the proxy platform.

Figure 8.1 shows the three different types of mobile agent platforms and the paths

pictured as arrows to migrate from one to another.

Figure 8.1: The mobile agent platforms and migration paths.

Mobile agent migration can be done in different ways. Three basic approaches are

used in the prototypical implementation. The standard migration procedure is using

a network connection through sockets. The messages used for migration are part of

the Haskell Mobile Agent Platform Protocol which will be introduced in Section 8.3.1.

In order to provide a secure transfer it is possible to use pre-connected tunnels based

on the tunnelling mechanisms of SSH (Barrett and Silverman, 2001).

Another way to migrate is through electronic mail (see Section 8.3.2, (Crocker, 1982)).

The agent platform sends the agent by electronic mail to a mailbox. This mailbox can

either be read by a human user, who injects the agent to the next platform or by a

mobile agent platform which handles the agent itself. The third way to migrate used

in this approach is uploading a mobile agent through the Common Gateway Interface

82

8.2 Implementation of Mobile Agent Platforms

(CGI, see Section 8.3.3, (Robinson and Coar, 2003)) onto a web-server that passes the

mobile agent to a mobile agent platform.

8.2 Implementation of Mobile Agent Platforms

A part of the prototypical implementation of HaMAP is described below. Section 8.2.1

introduces the agent platform and explains the mechanism to prevent the mobile agent

from using arbitrary I/O functions. Furthermore, the integration of security levels is

presented. Section 8.2.2 and 8.2.3 give a short explanation of the implementation of

the home platform and the proxy platform.

8.2.1 Agent Platform

The mobile agent migrates from platform to platform and does some calculations

on each platform. After the mobile agent has migrated to an agent platform, this

platform has to transform, compile, and execute the mobile agent. Figure 8.2 shows

this procedure.

Run Agent

Process Agent

Transform
Agent

Compile
Agent

agentMain

Suitcase
Meta Data

Agent Code

Possibly
Provided
Function

Migrate

Send Home

Email

Socket

CGI

Figure 8.2: Processing a mobile agent on an agent platform.

Transformation, compilation and execution of a mobile agent is done under the control

of the processAgent program. After the migration to a platform processAgent is

executed. The first step is the transformation of the mobile agent code. This is done

using the function transformAgentCode.

transformAgentCode :: Platform -> [CodeFragment] -> String

83

8 Haskell Mobile Agent Platform (HaMAP)

The first argument is a value of type Platform. This value is used to encapsulate

all platform-dependent information and configuration parameters. Not only the value,

but also the data type can be different on each platform, to fit the needs for the

particular platform. Usually it contains the platform identifier and information about

the possibly-provided functions. The second argument of transformAgentCode is the

list of code fragments from the mobile agent. The result is the string representation

of the compilable code.

As already mentioned, the objective of transformAgentCode is to remove all non-

available possibly-provided functions. Therefore, all possibly-provided functions have

to be encapsulated into a code fragment of the form PPF ppfname ppfargs. If a

possibly-provided function occurs in a code fragment of the form Code string, it will

not be possible to remove it when it is not available on the particular platform. All

possibly-provided functions return their calculated value val of type a encapsulated in

the value Just val of type Maybe a. By this means non-available possibly-provided

functions can easily be replaced with a code chunk returning Nothing. In the proto-

typical implementation the following function is used:

ppfNotAvailable :: Agent m => String -> m (Maybe a)

The function application ppfNotAvailable ppfname adds an entry about

ppfname being not available to the mobile agent logs and returns Nothing. With

this design it is necessary that each possibly-provided function is used in the following

way:

ppf args

>>= maybe (...) -- do something if ppf is not available

(\ val -> ...) -- do something with the value returned by ppf

While this requirement would be hard to demand for “normal” development of mobile

agents, it is easy to ensure for mobile agents developed and transformed into Haskell

code with HOPS.

The implementation of the transformation of the code fragments Code string, ALL

ppfnames codefragments, and OR ppfnames codefragments1 codefragments2 is

straightforward, and therefore further explanation will be omitted at this point.

The transformation is done using a preprocessor, but it is principally also possible to

use Template Haskell (Sheard and Peyton Jones, 2002). Template Haskell is an exten-

sion to Haskell that supports compile-time meta-programming. But in the context of

84

8.2 Implementation of Mobile Agent Platforms

mobile agents the execution of arbitrary code while compiling is absolutely unaccept-

able. Therefore Template Haskell is not used in the prototypical implementation.

The transformed mobile agent code plus the suitcase and the meta data will be written

into a file in order to compile the mobile agent. The transformed mobile agent code has

to be encapsulated into a function, which returns a value of type IO (), in order to be

able to compile it into an executable program. The function used for the encapsulation

is called runAgent.

runAgent :: (forall m .

Agent m => [CodeFragment] -> Suitcase -> MetaData -> m ())

-> [CodeFragment] -> Suitcase -> MetaData -> Platform -> IO ()

The type of runAgent is not a Hindley-Milner type, since rank-2 polymorphism is

used in the first argument. The idea is based on a paper about encapsulating state

in Haskell (Launchbury and Jones, 1994). John Launchbury and Simon Peyton Jones

have pointed out in this paper that rank-2 polymorphism in the type of their state

encapsulating function makes it impossible to use a state reference from one stateful

thread in another. In the context of mobile agents the type of runAgent ensures that

a mobile agent cannot do arbitrary I/O. In order to be able to explain how this works,

one choice of a concrete agent monad is introduced below.

The agent monad on an agent platform manages a state, the agent platform state

APFState. The APFState contains amongst other things information about the plat-

form and logs about possibly-provided functions used by the mobile agent. The agent

platform type APF and the inverse function unAPF are defined in the following way:

newtype APF a = APF (APFState -> IO (a, APFState))

unAPF (APF x) = x

This means APF a is a function type which takes an agent platform state of type

APFState, does some I/O, and returns a pair consisting of the calculated value of type

a and the new agent platform state. In order to be used for the mobile agent code,

APF has to be an instance of the class Monad, i.e. return and (>>=) have to be defined

for APF.

instance Monad APF where

return a = APF $ curry return a

f >>= g = APF $ flip (>>=) (uncurry (unAPF . g)) . unAPF f

85

8 Haskell Mobile Agent Platform (HaMAP)

The function application return a takes an agent platform state and returns a pair

consisting of a and the unchanged agent platform state. In the definition of (>>=) first

unAPF f is applied to the platform state resulting in a value of type IO (a,APFState).

The function flip (>>=) (uncurry (unAPF . g)) is then applied to this result,

whereas the first argument of flip is the bind function of the IO monad. By this

means f will be evaluated “and then” g.

For the illustration of the need of rank-2 polymorphism in the type of runAgent to

ensure that a mobile agent cannot do arbitrary I/O, the function runAgent’ without

rank-2 polymorphism in the type and a example code chunk will be used. The im-

plementation of the function runAgent’ is exactly the same as the definition of the

function runAgent, only the type has no rank-2 polymorphism.

runAgent’ :: ([CodeFragment] -> Suitcase -> MetaData -> APF ())

-> [CodeFragment] -> Suitcase -> MetaData -> Platform -> IO ()

When using the mobile agent code with runAgent’ the mobile agent code containing

the following code chunk can be type-checked and compiled successfully:

APF (\ s -> removeDirectory "." >> return ((),s)) :: APF ()

This code chunk removes the current directory of the mobile agent process. Obviously,

this is not wanted by the agent platform administrator. When using this code chunk

with runAgent, type-checking will exit issuing the following error message:

Cannot unify the type-signature variable ‘m’ with the type ‘APF’

Expected type: [CodeFragment] -> Suitcase -> MetaData -> m ()

Inferred type: [CodeFragment] -> Suitcase -> MetaData -> APF ()

Although, the APF monad will be used in the definition of runAgent, the mobile

agent code cannot contain the above code of type APF () to be successfully type-

checked, because of the rank-2 polymorphic type of the first argument of runAgent.

The expected type is more general than the inferred one.

To sum up, with the rank-2 polymorphic type of the first argument of runAgent it

is possible to use only monadic functions defined in the class Agent. These functions

are, besides migrate, getPFID, getPPFInfo, hasPPFs, and replaceCF, the possibly-

provided functions available on the particular platform. Other monadic functions,

most notably functions defined in the IO monad, are not usable in the mobile agent

code.

86

8.2 Implementation of Mobile Agent Platforms

The Glasgow Haskell Compiler, which is used for compiling the mobile agent code,

provides a back door into the IO monad for allowing I/O computation to be performed

in a non-monadic context, using the function unsafePerformIO. In the context of

the Haskell Mobile Agent Platform this is not a problem at all, since the function

unsafePerformIO cannot be used unless a module containing it has been imported.

Importing any module is not possible in the mobile agent code, since the mobile agent

code is just one function, not a complete module.

By this means, the rank-2 polymorphism and the fact that the mobile agent code is

just one function, not a module, ensures that the mobile agent cannot do any I/O,

except for the I/O provided within the available possibly-provided functions.

In the implementation of runAgent, the mobile agent function agent will be applied

to the code, the suitcase, and the meta data resulting in a value of type APF (). The

application of unAPF results in a function of type APFState -> IO ((),APFState),

which will be applied to an initial agent platform state.

1 runAgent agent code suitcase metadata platform =

2 unAPF (agent code suitcase metadata) (mkAPFState platform)

3 >>= \ (_,s) ->

4 let mobileAgent = mkMobileAgent code suitcase metadata’

5 metadata’ = metadata {logs = (pfID platform, logsForAgent s)

6 : logs metadata }

7 in migrateToPF (homePF metadata) mobileAgent

8 >> maybe (return ())

9 (\proxyPF -> migrateToPF proxyPF mobileAgent)

10 (proxyPF metadata)

11 >> maybe (return ())

12 (\ownerEmail -> migrateByMail ownerEmail mobileAgent)

13 (ownerEmail metadata)

As already mentioned, the mobile agent migrates under its own control using the func-

tion migrate, and migrate exits the mobile agent process after a successful migration.

In this case the code in line 3 to line 13 will not be executed. If the migration was

not successful, the mobile agent including the new logs (line 4 – 6) will be migrated

to the home platform (line 7). If this fails and the mobile agent meta data contains a

proxy platform, the mobile agent will be migrated to the proxy platform (line 8 – 10).

If this also does not work and the mobile agent meta data contains the electronic mail

address of the owner of the mobile agent, the mobile agent will be sent by electronic

mail to this address (line 11 – 13).

87

8 Haskell Mobile Agent Platform (HaMAP)

Obviously, this kind of error handling only works if the mobile agent code termi-

nates. Since runAgent is executed as a stand-alone process under the control of

processAgent, it is possible to limit the execution time of the mobile agent pro-

cess. After a time-out, the mobile agent process will be terminated and the mobile

agent will be sent home. The time-out interval can be set depending on the used

possibly-provided functions. Furthermore, the mobile agent can request an amount of

execution time by including the value in its meta data. If the requested amount of

execution time is too large, the agent platform can avoid executing the mobile agent

and send it back to the home platform. If the mobile agent meta data also contains

a list of agent platforms, the mobile agent wants to migrate to, the agent platform

can send the mobile agent to one of these platforms. To avoid the problem of sending

the mobile agent from platform to platform in an infinite loop, the current platform

identifier will be removed from this list of platforms.

Integrating Security Levels

So far, all mobile agents are able to use the same set of possibly-provided functions on

a particular agent platform. With a concept of security levels it is possible to provide

different sets of functions for mobile agents depending on their trustworthiness and

authentication. Within the approach presented in this thesis it is not necessary that

all agent platforms use security levels. If the agent platform does not provide security

levels or the authentication of a mobile agent has failed, the mobile agent can still be

executed without any security level or in the lowest security level.

To run a mobile agent in a higher security level the following scenarios are conceivable

in the context of HaMAP:

1. The mobile agent code is cryptographically signed. Therefore, the cryptographic

signature of the mobile agent code is included in the meta data of the mobile

agent. The platform needs the public key of the owner to verify the signature.

The drawback of this is that the mobile agent must not transform its code.

2. The mobile agent has migrated over a trusted connection or from a trusted agent

platform. This introduces the risk that if one of the trusted agent platforms is

compromised, the whole network of trusted agent platforms is vulnerable.

3. The processAgent program can be started manually with a security level as

optional command line argument. This is especially useful when using mobile

88

8.2 Implementation of Mobile Agent Platforms

agents that require user interaction and need resources to interact with the user,

e.g. more I/O functionality or access to the graphical user interface.

4. The agent platform can provide a function for authentication. After a successful

authentication the mobile agent can be lifted to a higher security level. This

is problematic, because the information needed for an authentication has to be

part of the mobile agent and can be spied out by other platforms. Anyway, it is

quite useful in a network of trustworthy agent platforms.

For scenario 1 – 3 a verification of the security level has to be included into the

transformation function transformAgentCode. The security level has to be passed as

additional argument to transformAgentCode and for each possibly-provided function

the availability in the particular security level has to be checked.

For scenario 4 a verification of the security level has to be included in each possibly-

provided function, except the possibly-provided functions in the lowest security level.

The current security level has to be included in the agent platform state and has to

be increased after a successful authentication. For each possibly-provided function

in a higher security level, the current security level has to be checked before the

platform provided function will be executed. The wrapper function used is called

execPPFIfAllowedInSecLevel.

execPPFIfAllowedInSecLevel name ppf = APF $ \s ->

if ppfAllowedInSecLevel (platform s) name (securityLevel s)

then unAPF ppf s

else return (Nothing

,addToLogsForAgent s $ name ++ " not allowed in SecLevel")

As long as the mobile agent programmer uses all possibly-provided functions in a

PPF code fragment this concept is sufficient. Without security levels using possibly-

provided functions in Code code fragments has no advantage. It only introduces the

possibility that the mobile agent code is not type-checkable and compilable, because

a used possibly-provided function, which is not available, was not removed in the

transformAgentCode function. By this means one can assume that all mobile agent

programmers use possibly-provided functions only in the PPF code fragment and, if

they do not, this is no problem for the agent platform, since the mobile agent will not

be executed.

With the introduction of security levels this changes. Possibly-provided functions that

are included in a Code code fragment or are part of the arguments of a possibly-

89

8 Haskell Mobile Agent Platform (HaMAP)

provided function are neither checked in the transformAgentCode function nor are

they checked during execution with the execPPFIfAllowedInSecLevel function. Con-

sider the following code chunk, which could be part of the mobile agent code.

,Code "ppf1 >> "

,PPF "ppf2" ["arg1 arg2"," >> ppf3 "]

The function ppf2 will be checked, but ppf1 and ppf3 will not be checked. So, if

ppf1 or ppf3 are not allowed in the current security level, nevertheless, they will be

executed. This undermines the concept of security levels.

To solve this problem there are mainly three different approaches. The first solution

is to check the complete code for occurrences of possibly-provided functions. The

second option is to replace all occurrences of PPF code chunks with return Nothing

and try to compile the code without importing any of the possibly-provided functions.

If the compilation succeeds, the Code code chunks do not contain possibly-provided

functions. But the argument list of the PPF code chunks have to be checked, too. This

can be done by replacing the possibly-provided functions with dummy functions and

trying to compile this.

The most elegant way is to use so-called“Security Cookies”. A security cookie is a value

of type Cookie which is passed as an additional argument to each possibly-provided

function. The cookie is a random value, which will be included in the mobile agent

code during the transformation. During the execution the same cookie is contained in

the agent platform state. The evaluation of a possibly-provided function always starts

with the comparison of the cookie passed as argument and the cookie contained in the

agent platform state. Only if they are equal, the possibly-provided function will be

executed.

In the above code chunk ppf2 will be replaced with ppf2 cookie, whereas ppf1 and

ppf3 will not be replaced. In this case the type-checking of ppf1 and ppf3 already

fails. If a mobile agent programmer includes a cookie in the code after ppf1 and ppf3

it is almost impossible that this cookie is identical with the random cookie, which will

be calculated during the transformAgentCode function.

Since the cookies will be included only locally on an agent platform, it is possible that

some agent platforms use security cookies whereas others do not.

90

8.2 Implementation of Mobile Agent Platforms

8.2.2 Home Platform

The life-cycle of a mobile agent begins and ends on its home platform. The home

platform takes a mobile agent generated by HOPS and pushes it to an agent platform

or a proxy platform. If the mobile agent has finished its work, the home platform

accepts the mobile agent on a socket, by electronic mail or through the common

gateway interface, and presents the value to the user. In case the home platform is

not always online, the mobile agent will be stored on the proxy platform and the home

platform is able to fetch the mobile agent from the proxy platform once the home

platform will get online again.

The mobile agent generated with the code output facility of HOPS consists of the

mobile agent code, the suitcase and a function to extract the value the user wants

to see from the suitcase. The home platform has to split off the function to extract

the value and the home platform has to insert the mobile agent meta data. The home

platform generates an identifier for the mobile agent which will be included in the meta

data, besides the platform identifier of the home platform, the electronic mail address

of the owner of the mobile agent and other optional information. If needed, the home

platform also calculates the cryptographic signature of the mobile agent code and puts

it in the corresponding meta data field. With the mobile agent identifier it is possible

to associate the function to extract the value and the mobile agent, once the mobile

agent returns. The extracting function will be stored on the home platform, and the

mobile agent will be sent either to an agent platform or to a proxy platform.

8.2.3 Proxy Platform

The proxy platform is used to relay mobile agents from a home platform to an agent

platform and vice versa. The home platform sends a mobile agent to the proxy plat-

form. The proxy platform forwards the mobile agent either to one of the agent plat-

forms from the list of platform identifiers included in the mobile agent meta data or, if

the list is empty or none of the platforms can be reached, to another platform known

by the proxy platform. Furthermore, a proxy platform can implement an analysis of

the mobile agent code with respect to the needed possibly-provided functions and can

send the mobile agent to an agent platform providing the needed set of functions.

91

8 Haskell Mobile Agent Platform (HaMAP)

If a mobile agent has migrated from an agent platform to a proxy platform, the proxy

platform tries to send the mobile agent at regular intervals to the home platform.

Furthermore, the proxy platform runs a server program which allows a home platform

to fetch the mobile agent.

8.3 Migration and Inter-Platform Communication

Migration of mobile agents and communication between agent platforms can be done

in different ways. Section 8.3.1 introduces the Haskell Mobile Agent Platform Protocol,

a network protocol based on TCP/IP which has been completely implemented in the

prototype. Section 8.3.2 describes a simple migration mechanism using electronic mail

and Section 8.3.3 discusses the migration over the common gateway interface. Both

of them, the electronic mail and the common gateway interface migration, are only

partially integrated in the prototypical implementation yet.

8.3.1 Haskell Mobile Agent Platform Protocol

The Haskell Mobile Agent Platform Protocol is a network protocol based on TCP/IP.

It makes use of the socket mechanism provided by the Glasgow Haskell Compiler GHC.

Processes on different machines or on the same machine can exchange messages through

data streams using the concept of internet sockets. In order to use these messages for

migration and communication of mobile agent platforms a protocol has to be defined.

The Haskell Mobile Agent Platform Protocol is based on the APPRequest and the

APPResponse data types.

data APPRequest = TREQ

| DATA MobileAgent

| FETCH PFID MAID

| SENDPPFINFO PFID

| EAPPRequest

data APPResponse = TACK | TREJ

| ACK PFID MAID

| NAVAIL PFID MAID

| PPFS [(PFID,(EpochTime,[PPFInfo]))]

| SHUTDOWN PFID

| EAPPResponse

92

8.3 Migration and Inter-Platform Communication

A value of type APPRequest is called an agent platform protocol request, and a value

of type APPResponse is called an agent platform protocol response. In order to send

a message to a socket, a process has to listen on this socket. This process is called

agentd, the agent daemon. The term “daemon” is used in the context of UNIX and

the Internet for a process that runs silently and permanent as a background process.

All kind of server processes, e.g. a web server or an ftp server are daemon processes

on the machine they are running on.

To connect to a daemon process, the communication partner has to know the machine

identifier, i.e. the Internet Protocol number or the host-name, and the port number.

In the context of HaMAP this information is contained in the platform identifier.

The Haskell Mobile Agent Platform Protocol can be divided into a transfer and a

communication part. With the transfer part it is possible to migrate and fetch mobile

agents. Messages used in the transfer part of the protocol are: TREQ, TACK, TREJ,

DATA ma, and ACK pfid maid. The messages FETCH pfid maid, NAVAIL pfid maid,

PPFS ppfs, SENDPPFINFO pfid, and SHUTDOWN pfid are used for the inter-platform

communication. The EAPPRequest and the EAPPResponse constructors represent error

messages, which can be used to reset the connection. The error messages are also used

for the handling of communication errors for example if an incoming message cannot

be parsed.

Migrating a Mobile Agent

DATA mobileAgent

Platform pf1 Platform pf2

TREQ

TACK

ACK pfid maid

Figure 8.3: A migration of a mobile agent

When a mobile agent wants to migrate from platform pf1 to platform pf2, pf1 tries to

establish a connection to pf2. If the connection is established, pf1 sends a transfer re-

quest message TREQ to pf2. If pf2 accepts the transfer, it will answer with the transfer

acknowledge message TACK (see Figure 8.3). Otherwise, pf2 sends the transfer reject

message TREJ and closes the connection (see Figure 8.4). If pf1 received the transfer

93

8 Haskell Mobile Agent Platform (HaMAP)

TREJ

Platform pf1 Platform pf2

TREQ

Figure 8.4: A migration request, which has not been acknowledged

acknowledge message, it sends the mobile agent in a data message DATA mobileAgent.

pf2 then answers with the acknowledge ACK pfid maid, where pfid is the identifier

of the home platform and maid is the identifier of the mobile agent.

Fetching a Mobile Agent

ACK pfid maid

Proxy PlatformHome Platform

FETCH pfid maid

DATA mobileAgent

Figure 8.5: Fetching of a mobile agent

A mobile agent can be fetched to the home platform from a proxy platform. The

home platform sends the fetch request FETCH pfid maid to the proxy platform. As

mentioned before, the combination of the platform identifier pfid and the mobile agent

identifier maid is a unique identifier of a mobile agent. If the mobile agent specified

by pfid and maid is available on the proxy platform, the proxy platform will send

this mobile agent as a data message. The home platform acknowledges with ACK pfid

maid (see Figure 8.5). If the mobile agent is not available, the proxy platform sends

NAVAIL pfid maid

Proxy PlatformHome Platform

FETCH pfid maid

Figure 8.6: A fetch request of a mobile agent, which is not available

the non-available message NAVAIL pfid maid and closes the connection (see Figure

8.6).

94

8.3 Migration and Inter-Platform Communication

Inter-Platform Communication

Each agent platform and each proxy platform maintains a list of platform provided

functions on other platforms. This list is especially useful for a mobile agent that wants

to migrate to an agent platform where a particular set of possibly-provided functions

is available. The mobile agent can check this with the getPPFInfo and the hasPPFs

function introduced in Section 8.1.2.

Obviously, it is important that the list of possibly-provided functions on other agent

platforms is up-to-date. An agent platform can change its set of possibly-provided

functions or it can be shut down. Moreover, new agent platforms can be made available.

To keep the information up to date, inter-platform communication will be used. This

could be done also with mobile agents, but this kind of computation is more efficient

with direct communication of mobile agent platforms, especially in this approach,

where a mobile agent is transformed, compiled and executed, and not only interpreted.

An element (pfid,(time,ppfs)) of the list of possibly-provided functions has the

type (PFID,(EpochTime,[PPFInfo])). The value ppfs is the list of possibly-provided

functions available on the agent platform pfid. The value time is the timestamp of

the information. With this timestamp it is possible to distinguish between newer and

older information about an agent platform, and it is possible to define a time interval

after which the information expires.

To avoid that the information on other agent platform expires, an agent platform has

to broadcast its list in regular intervals to all known agent platforms. This is done by

using the possibly-provided functions message PPFS list. An agent platform receiving

this message merges this information with its own information in the following way:

• Information which is older than the specified interval is removed from the list.

• Information about agent platforms that is not yet part of the own information

is inserted.

• Information about agent platforms that is already part of the own information

is used to replace the old information about this agent platform, unless the

timestamp of the old information is newer.

It is known to the author, that sending always the complete list does not scale very

well. Anyway, it is used in this first approach to provide a simple mechanism to

95

8 Haskell Mobile Agent Platform (HaMAP)

distribute information about a new platform automatically. By this means a new

agent platform should sent a list containing information about itself to an existing

agent platform. Furthermore, a new platform can request the list from another agent

platform by sending the message SENDPPFINFO pfid to the other platform. The value

pfid has to be the platform identifier of the new agent platform. The other agent

platform answers with the PPFS list message.

An agent platform that receives information about a new agent platform can broadcast

this information immediately. To avoid high traffic it is recommended that only an

agent platform which receives a singleton list3 broadcasts this information immediately.

Even though information about an agent platform that is no longer available expires

after a specified time interval, it is recommended that an agent platform sends the

shutdown message SHUTDOWN pfid to all known platforms. Again, pfid is the iden-

tifier of the sending agent platform. The receiving agent platforms can remove the

information about this agent platform immediately and does not need to wait for the

expiration.

As mentioned above, proxy platforms also maintain a list of possibly-provided functions

available on other platforms. Since proxy platforms are never receiving a list from an

agent platform automatically, proxy platforms have to use the SENDPPFINFO pfid

message in a regular interval to request the list from an agent platform in order to

keep their list up to date. Home platforms do not communicate with other platforms,

they are used only for sending, receiving and fetching agents.

8.3.2 Electronic Mail

Electronic mail (Crocker, 1982) can be used to migrate mobile agents. Migration of

mobile agents by electronic mail can be done automatically or manually on the sending

and on the receiving communication side. On the sending side the file containing the

mobile agent has to be attached to an electronic mail message and has to be sent

either to an electronic mail address of an agent platform or a proxy platform, or to an

electronic mail address of a human user. A platform receiving a mobile agent in an

electronic mail message splits off the attached file containing the mobile agent. After

that, the platform can process the mobile agent as usual. A mobile agent that wants

to migrate by electronic mail to a mobile agent platform has to pass the address email

as value Email PF email of type PFID to the migrate function.

3A singleton list is a list containing exactly one element.

96

8.3 Migration and Inter-Platform Communication

8.3.3 Common Gateway Interface

The Common Gateway Interface (CGI) (Robinson and Coar, 2003) is a standard for

interfacing external applications with web servers. In the context of HaMAP this is

used for passing a file containing a mobile agent to an agent platform or a proxy

platform. Furthermore, it is also possible to download a mobile agent that has been

stored on a proxy platform.

97

8 Haskell Mobile Agent Platform (HaMAP)

98

9 Transforming I-DSL to

HaMAP-Code

The last steps of the development of a mobile agent in HOPS are the transformation of

an I-DSL mobile agent to a HaMAP mobile agent and the generation of Haskell code

using the simple code output facility of HOPS. In Figure 9.1 the HOPS strategy for

the transformation from I-DSL to a HaMAP DAG is shown. This strategy references

six strategies, namely the ReplaceAgentCombinators strategy, the UseMetaData strat-

egy, the FlattenBind strategy, the CodeTransformation strategy, the HaMAP Sharing

strategy, and the DistinguishPPFName strategy.

The ReplaceAgentCombinators strategy is used to replace the agent combinators

with bricks representing appropriate Haskell code. It is introduced in Section 9.1. The

UseMetaData strategy, which replaces meta data values with the appropriate access

functions, is explained in Section 9.2. The monad laws are applied to the mobile

agent DAG by the FlattenBind strategy (see Section 9.3). The functions to trans-

form the mobile agent code during the execution on an agent platform are inserted

by the CodeTransformation strategy (see Section 9.4). The HaMAP Sharing strategy

transforms shared sub-DAGs and is introduced in Section 9.5. The result of the trans-

formation is a DAG which can be used to generate code using the simple code-output

mechanism of HOPS. The simple code-output rules and the DistinguishPPFName

strategy are introduced in Section 9.6. The DistinguishPPFName strategy is needed

to distinguish PPFName bricks which are successors of meta agent combinators from

PPFName bricks which are successors of the hasPPFs brick.

9.1 Replace Agent Combinators

The ReplaceAgentCombinators strategy is used to replace the internal agent and

the basic agent combinators with bricks representing the appropriate Haskell code.

99

9 Transforming I-DSL to HaMAP-Code

Ref DistinguishPPFName

�
�

�
�

��	

@
@

@
@

@@R

�
�

�
�

��	

?

@
@

@
@

@R

?

@
@

@
@@R

@
@

@
@

@
@

@
@

@
@

@
@
@R

�
�

�
�

�
�

�
�

�
�

�
�

�	

�
�

�
��	

@
@

@
@

@R

@
@

@R

@
@

@
@

@
@

@
@@R

@
@

@
@

@@R

�
�

�
�

�
�	

?

Units NO ∅

SeqComp

Ref CodeTransformation

Ref FlattenBind

Ref UseMetaData

Ref ReplaceAgentCombinators

SeqComp

SeqComp

SeqComp

SeqComp

MaxId

SeqComp Ref HaMAP Sharing

SeqComp

SeqComp

?

Figure 9.1: Strategy to transform an I-DSL mobile agent into a HaMAP mobile agent

100

9.1 Replace Agent Combinators

Furthermore, the internal mobile agent will be replaced with the HaMAP mobile agent.

Since mobile agent code is encapsulated in the agent monad (see Section 8.1.2) the

basic bricks for this purpose are bind and return. The HOPS declaration of both is

shown in Figure 9.2.

>>=

Agent

bf

Agent

ag

−>
return Agent

ax

Figure 9.2: HOPS declaration of bind and return

While navigating top-down the ReplaceAgentCombinators strategy applies rules from

a set of rules with the label AgentCombinatorsToHaskell. The strategy is shown in

Figure 9.3.

?

Rule AgentCombinatorsToHaskell LR

Units TDLR ∅

Figure 9.3: Strategy to transform primitive agents, basic agent combinators, and the internal
mobile agent into Haskell

The transformation of an internal agent to the appropriate Haskell version is straight-

forward. The corresponding HOPS rule is shown in Figure 9.4.

return

body

I_A

Figure 9.4: Rule to transform an internal agent into Haskell

The λAgent combinator can be replaced with a λ abstraction. When replacing the @Agent

combinator with bind the sequence of the successors has to be changed. The HOPS

rules for the λAgent combinator and the @Agent combinator are shown in Figure 9.5.

The transformation rules for the (,)Agent combinator and for the πAgent combinator are

shown in Figure 9.6. The transformation rule for the ρAgent combinator is similar to

the rule for the πAgent combinator except for using ρ instead of π.

101

9 Transforming I-DSL to HaMAP-Code

Lambda

x

agent

ALambda

x

agent

>>=

agent

fagent

A@

Figure 9.5: Rules to transform the λAgent combinator and the @Agent combinator into Haskell

>>=

agent1

Lambda

x

>>=

agent2 Lambda

x

return

Pair

AP

>>=

agent
Lambda

x

return

Pi

APi

Figure 9.6: Rules to transform the (,)Agent combinator and the πAgent combinator into Haskell

The HaMAP mobile agent consists of the code, the initial suitcase, and the value

from suitcase function. The code is a monadic function with three arguments re-

turning the value (). The three arguments are the list of code fragments representing

the mobile agent code, the suitcase in its string representation and the meta data suit-

case. The initial suitcase is the initial value of the global suitcase of the mobile

agent, and the value from suitcase function is the function to extract the value

from the suitcase. The HOPS declaration of the HaMAP mobile agent is shown in

Figure 9.7.

HaMAP_MA MobileAgent

code

−>

[]

CodeFragment

−>

String
−>

MetaData Agent

Triv
initial suitcase a

value from suitcase −>

b

Figure 9.7: HOPS declaration of the HaMAP mobile agent

102

9.1 Replace Agent Combinators

HaMAP_MA

Lambda

codefragments

Lambda

suitcase

Lambda

metadata

>>=

agent

read

suitcasetype

Lambda

agent

>>=

scex

return

Lambda

suitcase

>>=

return Lambda

metadata

>>=
pfex

return

Lambda

pfs

>>=

>>=

return

codefragmentmarker

Lambda

x

return

Lambda

codefragments

sequence_

@

@

map @

@

@

migrate
Suitcase

show

initial suitcase

Lambda

x

valex

type_output

I_MA

suitcase

agent

Lambda

x

scex

Lambda

x

valex

Lambda

x

pfex

Figure 9.8: Rule to transform an I-DSL mobile agent to a HaMAP mobile agent

The rule to transform an I-DSL mobile agent brick to a HaMAP mobile agent brick is

shown in Figure 9.8. The first successor of the HaMAP mobile agent is the monadic

103

9 Transforming I-DSL to HaMAP-Code

function which represents the mobile agent code. The agent is identical to the agent

in the internal mobile agent. Since the suitcase variable of the HaMAP mobile agent

represents the string representation of the actual suitcase value the read function is

inserted between the agent and the suitcase.

Normally, the λ occurrences in the left-hand side of a rule like the one shown in Fig-

ure 9.8 make the rule harder to fit into transformation sequences. However, since

the I-DSL mobile agent has been automatically generated by the transformation se-

quences introduced in Chapter 7 the λ’s are guaranteed to be available at this stage

of transformation.

In Haskell it is necessary that the type of a value which should be converted using

the read function and the show function is instance of the Read class respectively

of the Show class. The suitcasetype brick as second successor of read, show, and

type output is used to make sure the type of the suitcase does not contain any type-

variables in the generated code.

The scex and the pfex are utilised to extract the suitcase respectively the list of

platforms from the result of agent. The metadata is simply returned in this phase

of the transformation. This gives the possibility to change the meta data within the

UseMetaData strategy (see Section 9.2).

The code fragments representing the mobile agent code are returned by the function

marked with codefragmentmarker. Using this marker the code transforming functions

can be inserted with the CodeTransformation strategy which is described in Section

9.4. The sub-DAG induced by the sequence brick is responsible for the migration to

one of the agent platforms in the list of agent platforms calculated by the agent.

9.2 Meta Data

The aim of the UseMetaData strategy is to replace all UI-DSL bricks representing an

element of the meta data with a function returning this element from the meta data

suitcase of the mobile agent. The UseMetaData strategy is shown in Figure 9.9.

In Figure 9.10 the rule for the homePF — the home platform which is element of the

meta data — is shown as an example for rules used within the UseMetaData strategy.

104

9.3 Monad Laws

?

Rule use-Meta-Data LR

Units TDLR ∅

Figure 9.9: UseMetaData strategy

HaMAP_MA

Lambda

x

Lambda

x

Lambda

x

MVAR

homePF

suitcase
valuefunction

HaMAP_MA

Lambda

x

Lambda

x

Lambda

x
MVAR

homePF

Figure 9.10: Rule to transform the UI-DSL homePF brick into the HaMAP homePF function

9.3 Monad Laws

As already mentioned in Section 8.0, a monad is a mathematical structure for which
the following three laws will hold:

(return x) >>= f == f x

m >>= return == m

(f >>= g) >>= h == f >>= (\x -> g x >>= h)

The HOPS rules representing those monad laws are shown in Figure 9.11.

Within the FlattenBind strategy the monad rules shown in Figure 9.11 are applied

to remove unnecessary parts using the first two laws and to obtain a “flat” structure

105

9 Transforming I-DSL to HaMAP-Code

f

x

>>=

return Lambda

x

f
>>=

m
Lambda

x

return

>>=

f

Lambda

x

>>=

g

h

>>=

>>=

Lambda

x

g

Figure 9.11: HOPS declaration of the monad laws

with respect to >>= using the third law. Flat structure with respect to >>= means that

the DAG induced by the first successor of >>= should not contain any >>= brick. In

Figure 9.12 the FlattenBind strategy is shown.

The intention of the FlattenBind strategy is to reorder the monadic computations

in a way such that the value of a monadic computation is available in all following

monadic computations. In the code chunk (f >>= g) >>= h , for instance, the value

of f is available in g but not in h unless g returns the value of f.

After applying the FlattenBind strategy it is possible to optimise the code using rules

like the one shown in Figure 9.13 which removes a duplicate of a monadic computation.

?

Rule Monad-Laws LR

Units TDLR ∅

Figure 9.12: FlattenBind strategy

106

9.4 Code Transformation

The rule shown in Figure 9.13 is part of the HaMAPSharing strategy which is described

in Section 9.5.

>>=

return

x

Lambda

x

MVAR

MVAR

>>=

Lambda

x

MVAR

>>=

Lambda

x

MVAR

Figure 9.13: Rule to remove a duplicate of a monadic computation

In Figure 9.14 an example is shown to illustrate the mode of operation of the Flatten-

Bind strategy and the subsequent optimisation. The DAG on the left hand side is the

starting point. The DAG in the middle of Figure 9.14 is the result after applying the

FlattenBind strategy to the DAG on the left hand side. The DAG on the right hand

side is the result of the application of the rule shown in Figure 9.13 to the DAG in the

middle of Figure 9.14.

9.4 Code Transformation

The CodeTransformation strategy is used to insert the functions to transform the

mobile agent code during the execution on an agent platform. Obviously, this strategy

should be applied only to the code of the mobile agent. Therefore, the term-graph

pattern which is shown in Figure 9.15 is used to encapsulate the CodeTransformation

strategy.

The term graph pattern, which matches on the top-node of the DAG, indicates with

the integer 1 near the code node that the first action should be applied to the code

node. The first action is the application of the CodeTransformation strategy which

is described below. Since there are no further integers in the term graph pattern, this

action is the only action which takes place.

107

9 Transforming I-DSL to HaMAP-Code

>>=

return

x

Lambda

x

>>=

Lambda

x

MVAR

>>=

return

x

Lambda

x

>>=

>>=

Lambda

x

return

Lambda

x
MVAR

>>=

return

x

Lambda

x

MVAR

Figure 9.14: Example DAG, same Example DAG after applying the FlattenBind strategy,
and same Example DAG after applying the FlattenBind strategy and the rule
shown in Figure 9.13

HaMAP_MA

code

initial suitcase

value from suitcase
1

Figure 9.15: Term-graph pattern for the CodeTransformation strategy

While navigating top-down with local restart the CodeTransformation strategy re-

places the Replace combinator, the ValueMarker and the OldValueMarker. The

CodeTransformation strategy is shown on Figure 9.16. The rules which are element

of the set of rules with the label CodeTransformation are described in the remainder

of this section.

?

Rule CodeTransformation LR

Units TDLR ∅

Figure 9.16: CodeTransformation strategy

In order to explain the rules to insert the code transforming functions, two new bricks

have to be introduced first. The Replaceable brick is used to mark the code chunk

108

9.4 Code Transformation

code which will be replaced. The Replaceable brick corresponds to the HaMAP

CodeFragment constructor Replaceable (see Section 8.1.1). The int is used to en-

sure that the replaceable code and the replacement for this code are of the same type

a. Therefore, int has to be a meta variable which is used as first successor of the

Replaceable brick and as first successor of the replaceCF brick which will be intro-

duced in the following paragraph. Using a meta variable instead of a constant brick or

a DAG has the advantage that the meta variable will not be identified with another

meta variable and, thus, can be distinguished from each other. By this means, each

int meta variable is a global identifier for exactly one replaceable code chunk and its

replacement. The name int has been chosen, because an integer is used in the Haskell

code to represent this identifier. The Replaceable brick is shown in Figure 9.17.

Replaceable a

int code

Figure 9.17: Replaceable brick

The other new brick is the replaceCF brick which is shown in Figure 9.18. The

replaceCF brick corresponds to the HaMAP function replaceCF (see Section 8.1.2).

There has to be always a corresponding Replaceable brick for the replaceCF brick

which uses the same int. The replaceable code chunk in old will be replaced with the

replacement cf.

replaceCF Agent

[]

CodeFragmentint a

cf

ReplacementType

old

Figure 9.18: replaceCF brick

In Figure 9.19 the rule to replace the Replace combinator is shown. The second succes-

sor of the Replace combinator, namely old, will become successor of a Replaceable

brick. The cond function is applied to the value calculated by old in order to calcu-

late the condition for the replacement. Only if the calculated value is true, old will

be replaced. In case old shall be replaced the replacement has to be calculated first

by the application of the function new to the value calculated by old. The sub-DAG

to replace old will become also successor of a Replaceable brick, because once old

109

9 Transforming I-DSL to HaMAP-Code

has been replaced the replacement function is not needed anymore. After replacing

old the replacement function will be replaced with return c using the corresponding

replaceCF sub-DAG.

MVAR

Replace

cond

old

new

codefragmentmarker

MVAR

>>=

Replaceable

int

Lambda

x

>>=

@
Lambda

x

MVAR

return Lambda

c

>>=

Replaceable

int

If

>>=

@ Lambda

x

>>=

replaceCF Lambda

x

replaceCF

Replacement

return

return

Figure 9.19: Rule to replace the Replace combinator with code transforming functions

In Figure 9.20 the rule to replace the ValueMarker and the OldValueMarke with code

transforming functions is shown. The main difference between this rule and the rule

shown in Figure 9.19 is the fact that this rule does not include the code transforming

functions as successor of a Replaceable brick, because the replaceable code fragment

has to be replaced on each platform, not only once.

110

9.5 HaMAP Sharing

>>=

agent

Lambda

x

MVAR

return
Replaceable

int

oldValue

Lambda

x

>>=

replaceCF

ReplacementValue

codefragmentmarker

MVAR

MVAR

ValueMarker

OldValueMarker

Figure 9.20: Rule to replace the ValueMarker and the OldValueMarke with code transform-
ing functions

9.5 HaMAP Sharing

The HaMAP Sharing strategy consists of two strategies, namely the SharingPattern

strategy and the ReverseSharing strategy, which are applied sequentially to the

HAMAP mobile agent DAG. The HaMAP Sharing strategy is shown in Figure 9.21.

The SharingPattern strategy uses a term-graph pattern similar to the term-graph

pattern shown in Figure 9.15 to ensure that the rules are only applied to the code part

of the HaMAP mobile agent DAG. The SharingPattern strategy uses a rule which is

quite similar to the rule used in the Sharing strategy (see Section 7.2). In Figure 9.22

the SharingPattern strategy is shown. The rule is shown in Figure 9.23. Moreover,

rules like the one shown in Figure 9.13 are used.

The ReverseSharing strategy is used to reverse the application of the rule shown in

Figure 9.23 in two special cases: In the PPFName parts of the meta agent combinators

and if the second successor of a @ brick is a bound variable. For the latter case the

rule shown in Figure 9.24 is applied. In Figure 9.25 the ReverseSharing strategy is

shown.

111

9 Transforming I-DSL to HaMAP-Code

SeqComp

�
�

�
�

�	

?

@
@

@
@

@R
Ref SharingPattern Ref ReverseSharing

Units NO ∅

Figure 9.21: HaMAP Sharing strategy

?

Units TDLR ∅

Rule SharingPattern LR

Figure 9.22: SharingPattern strategy

@

Lambda

x

DEMVAR

INVAR

MVAR

NVAR

DEMVAR

Figure 9.23: HaMAP sharing rule

Reversing in the PPFName parts of the meta agent combinators is necessary, because

these parts are already needed for the preprocessor of the Haskell Mobile Agent Plat-

form (see Section 8.2.1) which transforms the mobile agent code before its compilation

and execution. In Figure 9.26 two rules are shown exemplary for the rules used in the

ReverseSharing strategy.

9.6 Code Output

The final step to create Haskell code from a mobile agent DAG is code output using the

simple code output facility of HOPS (see Chapter 2). With this code output facility it is

112

9.6 Code Output

Lambda

x

MVAR

MVAR

Lambda

x

MVAR

@

Lambda

x

MVAR

Figure 9.24: Beta reduction if the argument is a bound variable

?

Rule ReverseSharing LR

Units TDLR ∅

Figure 9.25: HaMAP Sharing strategy

agent

PPFName

name

@

Lambda

x

agent

agent

ORPPF

ppfs1 ppfs2

@

Lambda

x

agent

Figure 9.26: Two rules to reverse the sharing of the PPFName part of a meta agent combinator

not possible to define different output strings for one brick in dependence on its context,

i.e. the successors or predecessors of this brick. But the code generated by the PPFName

bricks should be different depending on whether they occur as successor of a meta agent

combinator or as successor of the hasPPFs brick, because the former are needed for the

HaMAP preprocessor whereas the latter are used during the execution of the mobile

agent. Therefore, the DistinguishPPFName strategy is applied to the mobile agent

DAG before generating Haskell code. In the DistinguishPPFName strategy all bricks

of PPFName sub-DAGs of I ALLPPF combinators and I ORPPF combinators are replaced

with another brick of the same semantics. In order to replace only these bricks, and

not also the PPFName bricks which are successor of the hasPPFs brick, two term-graph

patterns are used. The term-graph patterns are shown in Figure 9.27.

113

9 Transforming I-DSL to HaMAP-Code

I_OR

ppfs agent1 agent2

I_ALL

ppfs agent1 1

Figure 9.27: Two term-graph patterns for the DistinguishPPFName strategy

The term graph patterns match on the I ALLPPF respectively the I ORPPF combina-

tor and apply the DistinguishPPFName strategy to the first successor, which is the

PPFName part of the particular meta agent combinator.

In Figure 9.28 the DistinguishPPFName strategy is shown. Each rule in the set of rules

labelled with DistinguishPPFName replaces exactly one brick with the corresponding

brick.

?

Rule DistinguishPPFName LR

Units TDLR ∅

Figure 9.28: DistinguishPPFName strategy

After applying the DistinguishPPFName strategy the Haskell code can be generated.

The generated code has to be a value of type MobileAgent HOPS.

data MobileAgent_HOPS = MobileAgent_HOPS

{ code_HOPS :: [CodeFragment]

, suitcase_HOPS :: [CodeFragment]

, value_HOPS :: [CodeFragment]

}

This value has to be transformed into a value of type MobileAgent on the home

platform. The value HOPS function will be stored on the home platform and the meta

data, which is generated by the home platform, will be added. In the remainder of

this section output strings for various bricks are presented.

The code generation starts with the HaMAP mobile agent brick. In Figure 9.29 the

HaMAP mobile agent brick and the generated code are shown. The term 1 denotes

the code generated for the first successor, 2 and 3 denote the code generated for

the second respectively the third successor.

The code chunk Code "x$DLa$$La$" is generated for a bound variable. As mentioned

in Section 2.6, DLa generates an integer which is unique with respect to the current

114

9.6 Code Output

HaMAP_MA

code

initial suitcase

value from suitcase

MobileAgent_HOPS {code_HOPS = [1]

,suitcase_HOPS = [2]

,value_HOPS = [3]

}

Figure 9.29: HaMAP mobile agent brick and generated code

code output process and which is associated with an instance of the brick, i.e. if an

integer has been already generated for a node, DLa does not generate a new one.

With the term La this integer can be used for the code output. By this means, all

occurrences of a bound variable in the generated code are named the same whereas all

occurrences of an other bound variable are named different.

The code chunk Code "$DLa$$La$" is used for a meta variable. As mentioned in

Section 9.4, meta variables are only used for associating replaceable code and the

corresponding replacement. In HaMAP this association is denoted by a unique integer.

The code which is generated for the bind brick is shown in Figure 9.30. The code

generated for bricks like return, @, or ++ is quite similar to the code shown in Figure

9.30.

>>=

f g
Code "(", 1, Code ") >>= (", 2, Code ")"

Figure 9.30: bind brick and generated code

In Figure 9.31 the code generated for the λ brick is shown. The \ is escaped since it is

element of a string. The term $B1$ denotes the code generated for the bound variable.

Lambda

x

MVAR Code "\\", $B1$, Code "->", 1

Figure 9.31: λ brick and generated code

The generated code for the read brick, which corresponds to the Haskell function

read1, contains the generated code for the type of the result, which is denoted with

the term T.

1read :: Read a => String -> a

115

9 Transforming I-DSL to HaMAP-Code

Code "read (",1,Code ") :: (",T,Code ")"

In Table 9.1 the generated code for the PPFName bricks, depending on whether they

are successor of the I ALLPPF or the I ORPPF meta agent combinator, or of the hasPPFs

brick, is shown.

Name Code for brick which is successor
of I ALLPPF or I ORPPF

Code for brick which is successor of
hasPPFs

emptyList EmptyPPF Code "[]"

Cons 1,2 Code "(",1,Code ") : (",

2,Code ")"

PPFName PPFName "1" Code "PPFName \"1\""

ALLPPF ALLPPF [1] Code "ALLPPF (",1,Code ")"

ORPPF ORPPF [1] [2] Code "ORPPF (",1,Code ")(",

2,Code ")"

ReplaceablePPF ReplaceablePPF 1 [2] Code "ReplaceablePPF 1 (",

2,Code ")"

Table 9.1: Code for the PPFName bricks in dependence on their context

The following code is generated for the meta agent combinators I ALLPPF and I ORPPF.

ALL (1) [2,Code ">>= return . Just"]

OR (1) [2] [3]

In Table 9.2 the generated code for the replacement bricks is shown. The replacement

code for the Replacement brick is left untouched by the HaMAP preprocessor whereas

the replacement code for the ReplacementValue brick is calculated during the execu-

tion of the mobile agent. The Replacement@ brick combines both approaches: The

code for the first successor is left untouched whereas the code for the second successor

is calculated during the execution.

Brick Generated code

Replacement Replacement [1]

ReplacementValue Code "[Code (show (",1,Code "))]"

Replacement@ CFList [Replacement [Code "(",1,Code ")"],

Code " ++ [Code \"(\",Code (show (",2,

Code ")),Code \")\"]"]

Table 9.2: Code for the replacement bricks

116

10 Example Agents

The following UI-DSL representations of mobile agents are presented in order to il-

lustrate the usage of the approach of an mobile agent environment based on HOPS

and Haskell. For the sake of clearness the mobile agents are split into several DAGs,

each of them representing an agent that is responsible for a particular concern. The

completely expanded UI-DSL representation consisting of primitive agents and agent

combinators, the I-DSL representation, the HaMAP DAG and the generated Haskell

code can be found in Appendix A.

10.1 GetListOfPossiblyProvidedFunctions Agent

The first example of a mobile agent is a very simple mobile agent which does not use

any possibly-provided function. The mobile agent visits all agent platforms and cal-

culates a list of possibly-provided functions the platforms provide. In Figure 10.1 the

GetListOfPossiblyProvidedFunctions agent is shown. The visitAll agent, which

is used as platform agent, is introduced below. The value agent adds the information

about the agent platform the agent is currently running on to its suitcase. The infor-

mation about the current platform is always the first element of the list returned by

the platform function getPPFInfo.

The implementation of the platform agent is shown as HOPS rule in Figure 10.2. By

defining a HOPS rule it is possible to use the visitAll brick in the definition of the

mobile agent which makes the mobile agent DAG much more concise. Obviously, this

rule has to be applied before any other transformation.

The visitAll agent can be divided basically into three parts, two stateful agents

and one stateless agent. One of the stateful agents is used to calculate the list of

visited platforms including the platform the agent is currently running on. The second

stateful agent calculates a list of platforms to visit by adding all platforms known by

the current platform to the list in the suitcase and filtering out the platforms calculated

117

10 Example Agents

MobileAgent

visitAll A@

ALambda

x

SFA

suitcase

:

Head

[]

getPPFInfo

Figure 10.1: GetListOfPossiblyProvidedFunctions agent

visitAll A@

ALambda

x

SLA

If

isEmpty

:

homePF

[]

A@

ALambda

x

A@

ALambda

x

SFA

suitcase

@

nub Filter

Lambda

x

Not

IncludedIn

@

@
++

@

@

map pi

[]

getPPFInfo

A@

ALambda

x

SFA

suitcase

:
[]

getPFID

Figure 10.2: Rule for visitAll

by the first stateful agent. Although, even if the list contains duplicates no platform

is visited more than once, the function nub is used to remove duplicates which makes

the suitcase “smaller”. The stateless agent ensures the “home-coming” of the mobile

agent if the list of platforms to visit is empty.

118

10.2 GetFlight Agent

10.2 GetFlight Agent

The GetFlight agent, which is shown in Figure 10.3, visits all platforms providing the

possibly-provided function GetFlight and calculates the cheapest flight from Munich

to Cologne on 31.12.03.

MobileAgent

visitAllWithNeededPPFs takeCheapest

GetFlight

Munich Cologne 31.12.03

Figure 10.3: GetFlight agent

In Figure 10.4 the implementation of the visitAllWithNeededPPFs is shown. This

agent is based on the visitAll2 agent which is almost identical to the visitAll

agent which is shown in Figure 10.2. The only difference is that visitAll2 does not

return the home platform when the list of platforms is empty. The list of needed

possibly-provided functions is denoted by the brick neededPPFs and will be generated

automatically while transforming the mobile agent into an internal mobile agent.

comeHomeIf

ALambda

x

SLA

isEmpty

IfPPFsAvailable

neededPPFs visitAll2

visitAllWithNeededPPFs

Figure 10.4: Rule for visitAllWithNeededPPFs

The IfPPFsAvailable agent is shown in Figure 10.5. This agent uses the platform

function HasPPFs to filter all platforms providing the possibly-provided functions ppfs

from the list of pfs.

A@
ALambda

x

HasPPFs
ppfs

list of pfs

IfPPFsAvailable

Figure 10.5: Rule for IfPPFsAvailable

119

10 Example Agents

The comeHomeIf agent is shown in Figure 10.6. This agent returns the singleton list

containing the home platform identifier if the condition is true. Otherwise it returns

the list listOfPlatforms.

A@

ALambda

x

A@

ALambda

x

SLA

If

:

homePF []

listOfPlatforms

A@

cond

comeHomeIf

Figure 10.6: Rule for comeHomeIf

The takeCheapest agent is shown in Figure 10.7. This agent compares the first

component of a pair, which is an integer, with the first component of the pair in the

suitcase. The pair which has the smaller first component is stored in the suitcase.

Since both pairs are encapsulated in a Maybe type the takeCheapest also deals with

possible values of Nothing.

10.3 Travel-Searching Agent 1

In Figure 10.8 the Travel-Searching Agent 1 is shown. This agent calculates the cheap-

est flight from Munich to New York on 24.12.03, the cheapest flight from New York

to Munich on 06.01.04, and the cheapest hotel in New York from 24.12.03 to 06.01.04.

The agent uses the visitAllWithNeededPPFs agent (see Figure 10.4) as platform

agent. GetHotel and GetFlight are possibly-provided functions returning a value of

type Maybe (Int,String), where the integer component is the price and the string

component is an description. The takeCheapest agent is shown in Figure 10.7.

The Travel-Searching Agent 1 calculates the cheapest hotel and the cheapest outward

and return flights independently, i.e., the hotel and the flights may be found on different

platforms.

120

10.4 Travel-Searching Agent 2

A@
ALambda

x

SFA

suitcase

maybe

Lambda

x

If

isEmpty

maybe

Just

Head

@
@

sortBy Lambda

x

Lambda

x

@
@

compare
Pi

Pi

Lambda

x

If

<
Pi Pi

Nothing

agent

takeCheapest

Figure 10.7: Rule for takeCheapest

MobileAgent

visitAllWithNeededPPFs AP

takeCheapest

GetHotel

New York 24.12.03 06.01.04

AP

takeCheapest

GetFlight

Munich

takeCheapest

GetFlight

Figure 10.8: Travel-Searching Agent 1

10.4 Travel-Searching Agent 2

In Figure 10.9 the Travel-Searching Agent 2 is shown. This agent calculates the cheap-

est bundle consisting of a flight from Munich to New York on 24.12.03, a flight from

New York to Munich on 06.01.04, and a hotel in New York from 24.12.03 to 06.01.04.

121

10 Example Agents

Bundle means both flights and the hotel has to be provided by the same platform. The

agent uses the visitAllWithNeededPPFs agent (see Figure 10.4) as platform agent.

MobileAgent

visitAllWithNeededPPFs saveCheapest

ALL

CombineIntStringPair

calcCheapest

GetHotel

New York 24.12.0306.01.04

CombineIntStringPair
calcCheapest

GetFlight

Munich

calcCheapest

GetFlight

Figure 10.9: Travel-Searching Agent 2

The utilisation of the visitAllWithNeededPPFs agent together with the ALLPPF combi-

nator ensure that the mobile agent migrates only to platforms providing both possibly-

provided functions, namely GetFlight and GetHotel.

The takeCheapest agent (see Figure 10.7) is split into the calcCheapest and the

saveCheapest agent. The pairs, consisting of an integer and a string, returned by

the possibly-provided functions GetFlight and GetHotel are combined using the

CombineIntStringPair agent.

A@
ALambda

x

SFA

suitcase

maybe

Lambda

x

maybe

Just

Lambda

x

If
<

Pi
Pi

Nothing

agent

saveCheapest

Figure 10.10: Rule for saveCheapest

The calcCheapest agent calculates the cheapest pair from a list of pairs returned

by ppf. The saveCheapest agent compares a pair with the pair in its suitcase, and

122

10.5 Travel-Searching Agent 3

stores the cheaper one in its suitcase. Cheaper in this context means that the first

component of the pair, which is an integer, is smaller. The saveCheapest agent is

shown in Figure 10.10. The calcCheapest agent is shown in Figure 10.11.

A@

ALambda

x

SLA

maybe

Nothing

Lambda

x

If

isEmpty Just

Head

@
@

sortBy
Lambda

x

Lambda

x

@
@

compare Pi
Pi

ppf

calcCheapest

Figure 10.11: Rule for calcCheapest

The CombineIntStringPair agent is shown in Figure 10.12. If one of the values of

agent1 and agent2 is Nothing, the CombineIntStringPair agent returns Nothing.

Otherwise the first components of the pairs encapsulated in the Maybe type are added

and the second components are concatenated.

10.5 Travel-Searching Agent 3

The difference between the Travel-Searching Agent 2, which has been introduced in

the previous section, and the Travel-Searching Agent 3 is that the latter uses the ORPPF

combinator and a third possibly-provided function, namely GetAllExpenseTour. This

agent searches for an all expense tour. Only if the GetAllExpenseTour function is not

provided on the current platform, the mobile agent uses GetHotel and GetFlight to

calculate a bundle consisting of two flights and the hotel. The visitAllWithNeeded-

PPFs agent in combination with the ORPPF and the ALLPPF combinator calculates a list

123

10 Example Agents

A@
ALambda

x

SLA

maybe

Pi Lambda

x

maybe

RhoLambda

x

Just

Pair
+

Pi Pi
Concat

Rho Rho

AP

agent1 agent2

CombineIntStringPair

Figure 10.12: Rule for CombineIntStringPair

of platforms providing either GetAllExpenseTour or GetHotel and GetFlight.

MobileAgent

visitAllWithNeededPPFs
saveCheapest

OR

calcCheapest

GetAllExpenseTour

Munich New York 24.12.03 06.01.04

ALL

CombineIntStringPair

calcCheapest

GetHotel

CombineIntStringPair

calcCheapest

GetFlight

calcCheapest

GetFlight

Figure 10.13: Travel-Searching Agent 3

10.6 Travel-Searching and Booking Agent

In Figure 10.14 the Travel-Searching and Booking Agent is shown. This agent searches

the cheapest journey to New York from 24.12.03 to 06.01.04 starting in Munich us-

ing the possibly-provided function GetAllExpenseTour. After visiting all platforms

providing this possibly-provided function the mobile agent returns to the platform

where the cheapest journey was found and books that journey. The IfPPFsAvailable

agent, the visitAll2 agent, the comeHomeIf agent, and the calcCheapest agent

124

10.6 Travel-Searching and Booking Agent

have been introduced already in the previous sections. The difference between the

saveCheapestWithPFID agent and the saveCheapest agent is that the former saves

the pair consisting of the cheapest journey and the platform identifier providing this

journey, whereas the latter saves only the cheapest journey.

MobileAgent

comeHomeIf

emptyPFList
migrateToIf

emptyListAndJourneyFound

saveCheapestWithPFID

calcCheapest

GetAllExpenseTour

Munich New York 24.12.03 06.01.04

IfPPFsAvailable

neededPPFs visitAll2

pfWithCheapestJourney

findCheapestAndBook

Figure 10.14: Travel-Searching Agent 4

In Figure 10.15 the emptyPFList agent, which tests whether a list is empty or not, is

shown.

ALambda

x

SLA

isEmpty

emptyPFList

Figure 10.15: Rule for emptyPFList

In Figure 10.16 the emptyListAndJourneyFound agent is shown. This agent checks

whether the list of platforms, which is the bindable variable bound to the root of

the right-hand rule side, is empty and whether the current platform is the platform

providing the cheapest journey.

The pfWithCheapestJourney agent is shown in Figure 10.17. This agent returns a

singleton list containing the platform identifier of the platform providing the cheapest

journey or an empty list if no journey was found.

In Figure 10.18 the migrateToIf agent is shown. This agent returns new if the con-

dition cond applied to listOfPlatforms gives true. Otherwise listOfPlatforms is

125

10 Example Agents

emptyListAndJourneyFound

agent

ALambda

x

A@
ALambda

x

A@
ALambda

x

SLA

And
isEmpty maybe

FalseLambda

x

/=
Rho

getPFID

Figure 10.16: Rule for emptyListAndJourneyFound

pfWithCheapestJourney

agent

A@

ALambda

x

SLA

maybe

[]

Lambda

x

:

Rho

Figure 10.17: Rule for pfWithCheapestJourney

returned. By this means, the occurrence of migrateToIf in the mobile agent shown

in Figure 10.14 returns the list of platforms providing the GetAllExpenseTour func-

tion unless this list is empty and a journey has been found already. In that case, the

singleton list containing the platform providing the cheapest journey is returned.

In Figure 10.19 the findCheapestAndBook agent is shown. This agent calculates

a pair consisting of a boolean which indicates whether a journey has been booked

and the cheapest journey. For this purpose two pairs are constructed using (,)Agent

combinators. One of those pairs consists of the constant value Just False and the

value returned from the bookJourney function, which is also of type Maybe Bool.

The other pair consists of the journey calculated by agent and the value calculated

by agent on the previous platform. The latter value is inserted by the combination

of the ValueMaker and the OldValueMarker combinator. If the platform identifier of

the current platform is identical to the platform identifier of the platform on which

126

10.6 Travel-Searching and Booking Agent

A@

ALambda

x

A@
ALambda

x

A@

ALambda

x

SLA

If

listOfPlatforms

A@

cond

new

migrateToIf

Figure 10.18: Rule for migrateToIf

the cheapest journey has been found, the second components of the two pairs are

used to build the return value of the findCheapestAndBook agent. Otherwise the first

components are used. By this means, this agent searches for the cheapest journey on

different platforms and books the cheapest journey on the appropriate platform. Due

to lazy evaluation bookJourney is only executed if this component is used.

findCheapestAndBook

agent

A@
ALambda

x

A@
ALambda

x

A@
ALambda

x

SLA

maybe

Pair

Pi Pi

Lambda

x

If
==

Rho
Pair

Rho Rho

getPFID

AP
SLA

Just

False bookJourney

Pi

fromJust

AP

ValueMarker

OldValueMarker

Nothing

SLA

Figure 10.19: Rule for findCheapestAndBook

127

10 Example Agents

10.7 GetWeatherAndTrafficJam Agent

In Figure 10.20 the GetWeatherAndTrafficJam Agent is shown. This agent visits

platforms providing getWeatherIn or getTrafficJamMessagesBetween. If one of

those functions returns a value Just x, this function will be replaced by this value.

If both values are calculated, indicated by a value of Just x for appropriate x, the

mobile agent returns to its home platform.

MobileAgent

comeHomeIf
ALambda

AndAgent

isJustAgent

EvaluateOnce

getWeatherIn

Berlin

isJustAgent

EvaluateOnce

getTrafficJamMessagesBetween

Munich

IfPPFsAvailable

neededPPFs visitAll2
AP

Figure 10.20: GetWeatherAndTrafficJam Agent

In Figure 10.21 the EvaluateOnce agent is shown. This agent is based on the Replace

combinator which can be used to replace a code fragment with another code fragment.

The condition agent, the first successor of Replace, verifies whether the value calcu-

lated by agent is Just x. In that case agent will be replaced by the replacement

agent, the third successor of Replace.

Replace

ALambda

x

SLA

isJust

agent
ALambda

x

SLA

Replacement@

Lambda

x

SLA

EvaluateOnce

Figure 10.21: Rule for EvaluateOnce

In Figure 10.22 the AndAgent and the isJustAgent are shown. The AndAgent com-

bines the values of agent1 and agent2 with the logical and -operator. The isJust-

Agent returns false if and only if agent returns the value Nothing.

128

10.7 GetWeatherAndTrafficJam Agent

A@
ALambda

x

SLA

And

Pi Rho

AP

agent1
agent2

AndAgent

A@
ALambda

x

SLA

isJust

agent

isJustAgent

Figure 10.22: Rule for AndAgent and isJustAgent

129

10 Example Agents

130

11 Conclusions and Future Work

We have examined the design and implementation of a mobile agent programming and

execution environment based on term graph transformation and functional program-

ming. The mobile agent execution environment uses the well-understood type system

of Haskell to guarantee that a mobile agent cannot do arbitrary I/O on an agent plat-

form and therefore the execution of a mobile agent cannot be a security risk for the

machine on which the agent platform is running.

An agent platform provides only a small, manageable set of possibly-provided func-

tions, a set of five platform functions, and the functions defined in the Haskell 98 report

(Peyton Jones et al., 2002) except for I/O functions. The set of possibly-provided func-

tions can be different on each platform, i.e., a particular possibly-provided function

need not be available on all platforms. We use a preprocessor and a code fragment

data type in order to replace non-available possibly-provided functions temporarily on

a platform. Therefore we demand that all possibly-provided functions return a value

of type Maybe a for arbitrary a. Furthermore, it is possible to replace arbitrary parts

of the mobile agent temporarily depending on the availability of possibly-provided

functions using so-called meta agent combinators.

The mobile agent is able to transform its own code permanently, which enables, e.g.,

the simulation of partial evaluation. The mobile agent can replace a code fragment

with its value once the value has been calculated on a platform. The concept of

transforming the mobile agent code depending on the availability of possibly-provided

functions and the capability of the mobile agent to transform its own code cannot be

found in any other existing mobile agent environment.

We have developed a powerful, easy-to-use and extensible domain-specific language

for the definition of a mobile agent in HOPS. This term graph language is called the

User Interface Domain-Specific Language (UI-DSL). UI-DSL is a combinator language

consisting of primitive agents and agent combinators. By using a combinator language

we are able to separate the concerns and reuse parts of a mobile agent in an elegant way.

In order to use the mobile agent it has to be transformed into a DAG representing the

131

11 Conclusions and Future Work

appropriate Haskell code. In Figure 11.1 the transformation process from the UI-DSL

mobile agent to Haskell code is shown.

Code Output

?

?

?

User Interface Domain-Specific Language

Internal Domain-Specific Language

Haskell Mobile Agent DAG

Haskell Mobile Agent Code

Termgraph Transformation

Termgraph Transformation

Figure 11.1: Steps from UI-DSL to Haskell Code

After defining a mobile agent in UI-DSL it is transformed into an internal mobile

agent. I-DSL is the Internal Domain-Specific Language. It is used to represent a

mobile agent with an automatically generated suitcase. The suitcase is the data part

of the mobile agent. In UI-DSL only local suitcases of primitive agents have to be

defined. Those local suitcases are the data part for one concern or even a part of a

concern. Furthermore, it is ensured by the transformation from UI-DSL to I-DSL that

the value of the value agent is part of the global suitcase. A function for extracting

this value is also generated automatically.

We have developed the Haskell Mobile Agent Platform (HaMAP) from scratch. HaMAP

is a mobile agent execution environment that satisfies the requirements of our mobile

agents, e.g., the possibility to transform the mobile agent code. HaMAP is a first

working prototype of a fully-fledged mobile agent environment. Scalability, efficiency

and interoperability with existing environments have not been taken into consideration

yet, since this goes beyond the scope of this thesis.

Before Haskell code can be generated, the mobile agent DAG has to be transformed into

a monadic form. With the FlattenBind strategy, for instance, we have shown how to

optimise the code size by applying mathematical laws. The code output encapsulates

the mobile agent in a list of code fragments. Examples of mobile agents, as UI-DSL

132

mobile agent, as internal mobile agent in I-DSL, as Haskell DAG, and as Haskell code,

were presented in order to illustrate our approach.

Our transformation rules and strategies are used to convert a mobile agent represented

in terms of a domain-specific language into a standard programming language. With

this work we have shown how term graph transformation can aid the process of software

development. Summing up, our system based on HOPS is a very powerful approach of

a mobile agent programming environment, especially for those who are already familiar

with functional programming and term graph transformation.

Although our system was a first approach with a prototypical implementation intended

to be a proof of concept, the implementation is ready-to-use. We have tested the

implementation with approximately 20 agent platforms and 100 concurrently running

mobile agents which was satisfactory with respect to efficiency. The main scalability

issue is the replication of the information about possibly-provided functions within the

Haskell Mobile Agent Platform Protocol. We have only implemented a very simple

protocol because this thesis focusses on the development of mobile agents and not

networking protocols. In a future version of HaMAP also dissemination of information

may be done with mobile agents.

The mobile agents developed with HOPS use weak mobility, since it appears in the

functional programming context to be the more natural way to express mobility.

Bettini and Nicola (2001) have introduced a purely syntactic translation from strong

mobility to weak mobility. This translation can be integrated into future versions of

our HOPS strategies.

Furthermore, it is possible to adapt the UI-DSL to the need of the particular mobile

agent programmer. Our first approach uses one value agent and one platform agent,

since we wanted to develop mobile agents visiting a list of platforms and calculating a

value using the same function on each platform. Another scenario can be, for instance,

a mobile agent which uses different functions on different types of platforms. The user

can simply add new agent combinators and the appropriate rules to transform them

into the necessary layout.

Adding interoperability with existing mobile agent environments is counterproduc-

tive at the moment, because no other environment supports our concept of possibly-

provided functions and transformable agent code.

Further enhancements of HaMAP can be, e.g., support for agent communication or

cloning of mobile agents. The version of HOPS we used for our approach is an academic

133

11 Conclusions and Future Work

prototype. Although, it fulfils our requirements for providing an academic prototype

of our system, it has not yet been optimised with respect to efficiency. We have slightly

adapted HOPS to our needs. We have added, for example, three new hard-coded bricks

in order to be able to formulate rules like the one shown in Figure 9.23 on page 112.

134

A Transformed Example Agents

For the sake of clarity, the example agents in Chapter 10 have been split into several

DAGs, each of them representing an agent that is responsible for a particular concern.

Therefore, the completely expanded UI-DSL representations consisting of primitive

agents and agent combinators, the I-DSL representations, the HaMAP DAGs and the

generated Haskell code are presented in the following pages.

The DAGs are generated with the Smalltalk version of the Higher Object Program-

ming System HOPS. The layout has been calculated automatically. All nodes are

represented as rectangles with the particular node label. The edges have no arrow-

head. Thin edges represent the successor relation. They are directed top-down. The

thick edges represent the binding relation. They are directed bottom-up. Other edges

cannot be found in the DAGs presented in this Appendix.

The Haskell code is generated by the code output facility of HOPS and is prettified

using a pretty-printer written in Haskell.

Contents

A.1 GetListOfPossiblyProvidedFunctions Agent 136

A.2 GetFlight Agent . 140

A.3 Travel-Searching Agent 1 . 144

A.4 Travel-Searching Agent 2 . 148

A.5 Travel-Searching Agent 3 . 152

A.6 Travel-Searching and Booking Agent 156

A.7 GetWeatherAndTrafficJam Agent 160

135

A Transformed Example Agents

A.1 GetListOfPossiblyProvidedFunctions Agent

Figure A.1: GetListOfPossiblyProvidedFunctions Agent in UI-DSL

136

A.1 GetListOfPossiblyProvidedFunctions Agent

Figure A.2: GetListOfPossiblyProvidedFunctions Agent in I-DSL

137

A Transformed Example Agents

Figure A.3: GetListOfPossiblyProvidedFunctions Agent as HaMAP mobile agent DAG

138

A.1 GetListOfPossiblyProvidedFunctions Agent

MobileAgent_HOPS

{code_HOPS =

[Code "\\x0 -> \\x13 -> (\\x7 -> (\\x11 -> \\x3 -> getPFID >>= (\\x12 ->"

,Code "(\\ x9 -> getPPFInfo >>= (\\x6 -> (\\x8 -> (\\x5 -> (\\x4 ->"

,Code "(\\x2 -> (\\x1 -> sequence_ ((map ((migrate x0 (Suitcase"

,Code "(show ((snd x1,snd x2) :: (([PFID],[PFID]),[(PFID,[PPFInfo])])))))"

,Code "x3))(fst x1)))(fst x2))(((if null x4 then ((homePF x3) : []) else"

,Code "x4,fst x5),(head x6) : (snd x7))))(snd x5))(((x8,x9),x8)))(nub"

,Code "(filter (\\x10 -> not (elem x10 x9)) (((++)(fst x11))((map (\\x ->"

,Code "fst x)) x6))))))(x12 : (snd x11))))(fst x7))(read x13 :: ((([PFID]"

,Code ",[PFID]), [(PFID,[PPFInfo])])))"]

,suitcase_HOPS = [Code "(([],[]),[])"]

,value_HOPS =

[Code "\\x14 -> snd (x14 :: ((([PFID],[PFID]),[(PFID,[PPFInfo])])))"]

}

Figure A.4: Generated Haskell code for the GetListOfPossiblyProvidedFunctions Agent

139

A Transformed Example Agents

A.2 GetFlight Agent

Figure A.5: GetFlight Agent in UI-DSL

140

A.2 GetFlight Agent

Figure A.6: GetFlight Agent in I-DSL

141

A Transformed Example Agents

Figure A.7: GetFlight Agent as HaMAP mobile agent DAG

142

A.2 GetFlight Agent

MobileAgent_HOPS

{code_HOPS =

[Code "\\x1 -> \\x23 -> (\\x7 -> (\\x20 -> \\x4 -> getPFID >>= (\\x22 ->"

,Code "(\\x18 -> getPPFInfo >>= (\\x21 -> (\\x17 -> (\\x0 -> (hasPPFs (snd"

,Code "x0) ((PPFName \"getFlight\"):[])) >>= (\\x16 -> (\\x6 -> (\\x5 -> ("

,PPF (PPFName "getFlight") [Code "\"Munich\" \"Cologne\" \"31.12.03\""]

,Code ") >>= (\\x15 -> (\\x3 -> (\\x2 -> sequence_ ((map (((migrate x1)("

,Code "Suitcase (show (((snd x2,snd x3))::((([PFID],[PFID]),Maybe((Integer"

,Code ",String)))))))) x4))(fst x2)))(fst x3))(((if (null x5) then (("

,Code "homePF x4):[]) else x5, snd x6),maybe (snd x7)(\\x8 -> (\\x10 -> ("

,Code "\\x9 -> if (null x8) then (snd x7) else ((\\x12 -> maybe x9 (\\x11"

,Code "-> if ((fst x10) < (fst x11)) then x9 else x12) x12)(snd x7)))(Just"

,Code "x10))(head ((sortBy (\\x13 -> \\x14 -> ((compare :: ((Integer -> ("

,Code "Integer -> Ordering))))(fst x13))(fst x14))) x8))) x15))))(fst x6))"

,Code "((x16,fst x0))))(((x17,x18),x17)))(nub (filter (\\x19 -> not (elem"

,Code "x19 x18))(((++)(fst x20))((map (\\x -> fst x)) x21))))))(x22:(snd"

,Code "x20))))(fst x7))(read x23 :: ((([PFID],[PFID]),Maybe ((Integer,"

,Code "String)))))"]

,suitcase_HOPS = [Code "(([],[]),Nothing)"]

,value_HOPS =

[Code "\\x24 -> snd (x24 :: ((([PFID],[PFID]),Maybe ((Integer,String)))))"]

}

Figure A.8: Generated Haskell code for the GetFlight Agent

143

A Transformed Example Agents

A.3 Travel-Searching Agent 1

Figure A.9: Travel-Searching Agent 1 in UI-DSL

144

A.3 Travel-Searching Agent 1

Figure A.10: Travel-Searching Agent 1 in I-DSL

145

A Transformed Example Agents

Figure A.11: Travel-Searching Agent 1 as HaMAP mobile agent DAG

146

A.3 Travel-Searching Agent 1

MobileAgent_HOPS

{code_HOPS =

[Code "\\ x1 -> \\ x33 -> (\\ x30 -> (\\ x31 -> (\\ x32 -> (\\ x21 -> (\\"

,Code "x19 -> (\\ x9 -> (\\ x27 -> \\ x5 -> (getPFID) >>= (\\ x29 -> ("

,Code "\\ x25 -> (getPPFInfo) >>= (\\ x28 -> (\\ x24 -> (\\ x0 -> ("

,Code "hasPPFs (snd (x0)) ((PPFName \"getFlight\") : (("

,Code "PPFName \"getHotel\") : ([])))) >>= (\\ x23 -> (\\ x8 -> (\\"

,Code "x7 -> ("

,PPF (PPFName "getHotel") [Code "\"New York\" \"24.12.03\" \"06.01.04\""]

,Code ") >>= (\\ x18 -> ("

,PPF (PPFName "getFlight") [Code "\"Munich\" \"New York\" \"24.12.03\""]

,Code ") >>= (\\ x20 -> ("

,PPF (PPFName "getFlight") [Code "\"New York\" \"Munich\" \"06.01.04\""]

,Code ") >>= (\\ x22 -> (\\ x6 -> (\\ x3 -> (\\ x4 -> (\\ x2 ->"

,Code "sequence_ (((map)((((migrate)(x1))(Suitcase ("

,Code "show (((snd (x2) , (fst (x3) , (fst (x4) , snd (x4)"

,Code ")))) :: ((([PFID] , [PFID]) , (Maybe ((Integer ,"

,Code "String)) , (Maybe ((Integer , String)) , Maybe (("

,Code "Integer , String))))))))))(x5)))(fst (x2))))("

,Code "fst (x6)))(snd (x3)))(snd (x6)))(((if (null ("

,Code "x7)) then ((homePF (x5)) : ([])) else (x7) , snd ("

,Code "x8)) , (maybe (x9) ((\\ x11 -> \\ x10 -> (\\ x13 -> (\\ x12"

,Code "-> if (null (x10)) then (x11) else ((\\ x15 -> maybe ("

,Code "x12) (\\ x14 -> if ((fst (x13)) < (fst (x14))) then ("

,Code "x12) else (x15)) (x15))(x11)))(Just (x13)))("

,Code "head (((sortBy)(\\ x16 -> \\ x17 -> ((compare :: (("

,Code "Integer -> (Integer -> Ordering))))(fst (x16)))(fst ("

,Code "x17))))(x10))))(x9)) (x18) , (maybe (x19) ((\\"

,Code "x11 -> \\ x10 -> (\\ x13 -> (\\ x12 -> if (null (x10)) then ("

,Code "x11) else ((\\ x15 -> maybe (x12) (\\ x14 -> if ((fst ("

,Code "x13)) < (fst (x14))) then (x12) else (x15)) (x15)"

,Code ")(x11)))(Just (x13)))(head (((sortBy)(\\ x16 -> \\"

,Code "x17 -> ((compare :: ((Integer -> (Integer -> Ordering)))"

,Code ")(fst (x16)))(fst (x17))))(x10))))(x19)) ("

,Code "x20) , maybe (x21) ((\\ x11 -> \\ x10 -> (\\ x13 -> (\\ x12"

,Code "-> if (null (x10)) then (x11) else ((\\ x15 -> maybe ("

,Code "x12) (\\ x14 -> if ((fst (x13)) < (fst (x14))) then ("

,Code "x12) else (x15)) (x15))(x11)))(Just (x13)))("

,Code "head (((sortBy)(\\ x16 -> \\ x17 -> ((compare :: (("

,Code "Integer -> (Integer -> Ordering))))(fst (x16)))(fst ("

,Code "x17))))(x10))))(x21)) (x22)))))))))(fst ("

,Code "x8)))((x23 , fst (x0)))))(((x24 , x25) , x24))"

,Code ")((nub)(filter (\\ x26 -> not (elem (x26) (x25))) (("

,Code "((++))(fst (x27)))(((map)(\\x -> fst x))(x28)))"

,Code "))))((x29) : (snd (x27)))))(fst (x30)))(fst ("

,Code "x31)))(fst (x32)))(snd (x32)))(snd (x31)))("

,Code "snd (x30)))(read (x33) :: ((([PFID] , [PFID]) , ("

,Code "Maybe ((Integer , String)) , (Maybe ((Integer , String)"

,Code ") , Maybe ((Integer , String)))))))"]

,suitcase_HOPS = [Code "(([] , []) , (Nothing , (Nothing , Nothing)))"]

,value_HOPS =

[Code "\\ x34 -> (fst (snd (x34 :: ((([PFID] , [PFID]) , ("

,Code "Maybe ((Integer , String)) , (Maybe ((Integer , String)"

,Code ") , Maybe ((Integer , String)))))))) , (fst (snd ("

,Code "snd (x34 :: ((([PFID] , [PFID]) , (Maybe ((Integer ,"

,Code "String)) , (Maybe ((Integer , String)) , Maybe (("

,Code "Integer , String))))))))) , snd (snd (snd (x34 :: ("

,Code "(([PFID] , [PFID]) , (Maybe ((Integer , String)) , ("

,Code "Maybe ((Integer , String)) , Maybe ((Integer , String))"

,Code ")))))))))"]

}

Figure A.12: Generated Haskell code for the Travel-Searching Agent 1

147

A Transformed Example Agents

A.4 Travel-Searching Agent 2

Figure A.13: Travel-Searching Agent 2 in UI-DSL

148

A.4 Travel-Searching Agent 2

Figure A.14: Travel-Searching Agent 2 in I-DSL

149

A Transformed Example Agents

Figure A.15: Travel-Searching Agent 2 as HaMAP mobile agent DAG

150

A.4 Travel-Searching Agent 2

MobileAgent_HOPS

{code_HOPS =

[Code "\\ x17 -> \\ x37 -> (\\ x36 -> (\\ x23 -> (\\ x33 -> \\ x20 -> ("

,Code "getPFID) >>= (\\ x35 -> (\\ x31 -> (getPPFInfo) >>= (\\ x34"

,Code "-> (\\ x30 -> (\\ x0 -> (hasPPFs (snd (x0)) ((ALLPPF (("

,Code "PPFName \"getFlight\") : ((PPFName \"getHotel\") : ([])))"

,Code ") : ([]))) >>= (\\ x29 -> (\\ x22 -> (\\ x21 -> ("

,ALL (ALLPPF [PPFName "getFlight",PPFName "getHotel",EmptyPPF])

[Code "("

,PPF (PPFName "getHotel") [Code "\"New York\" \"24.12.03\" \"06.01.04\""]

,Code ") >>= (\\ x9 -> ("

,PPF (PPFName "getFlight") [Code "\"Munich\" \"New York\" \"24.12.03\""]

,Code ") >>= (\\ x15 -> ("

,PPF (PPFName "getFlight") [Code "\"New York\" \"Munich\" \"06.01.04\""]

,Code ") >>= (\\ x16 -> (\\ x14 -> (\\ x11 -> (\\ x10 -> (\\ x5 -> (\\"

,Code "x2 -> (\\ x1 -> return (maybe (x1) (\\ x3 -> maybe (x2) (\\"

,Code "x4 -> Just (((fst (x3)) + (fst (x4)) , (snd (x3)"

,Code ") ++ (snd (x4))))) (x2)) (x1)))(fst (x5)))("

,Code "snd (x5)))((maybe (Nothing) (\\ x6 -> if (null (x6)"

,Code ") then (Nothing) else (Just (head (((sortBy)(\\ x7 -> \\"

,Code "x8 -> ((compare :: ((Integer -> (Integer -> Ordering)))"

,Code ")(fst (x7)))(fst (x8))))(x6))))) (x9) ,"

,Code "maybe (x10) (\\ x12 -> maybe (x11) (\\ x13 -> Just ((("

,Code "fst (x12)) + (fst (x13)) , (snd (x12)) ++ (snd (x13"

,Code "))))) (x11)) (x10))))(fst (x14)))(snd (x14)"

,Code "))((maybe (Nothing) (\\ x6 -> if (null (x6)) then ("

,Code "Nothing) else (Just (head (((sortBy)(\\ x7 -> \\ x8 -> (("

,Code "compare :: ((Integer -> (Integer -> Ordering))))(fst ("

,Code "x7)))(fst (x8))))(x6))))) (x15) , maybe ("

,Code "Nothing) (\\ x6 -> if (null (x6)) then (Nothing) else ("

,Code "Just (head (((sortBy)(\\ x7 -> \\ x8 -> ((compare :: (("

,Code "Integer -> (Integer -> Ordering))))(fst (x7)))(fst ("

,Code "x8))))(x6))))) (x16))))))"]

,Code ") >>= (\\ x28 -> (\\ x19 -> (\\ x18 -> sequence_ (((map)(("

,Code "((migrate)(x17))(Suitcase (show (((snd (x18) , snd ("

,Code "x19))) :: ((([PFID] , [PFID]) , Maybe ((Integer ,"

,Code "String))))))))(x20)))(fst (x18))))(fst (x19)"

,Code "))(((if (null (x21)) then ((homePF (x20)) : ([])"

,Code ") else (x21) , snd (x22)) , maybe (x23) ((\\ x27 -> \\"

,Code "x25 -> (\\ x24 -> maybe (x24) (\\ x26 -> if ((fst (x25)"

,Code ") < (fst (x26))) then (x24) else (x27)) (x27))("

,Code "Just (x25)))(x23)) (x28)))))(fst (x22)))(("

,Code "x29 , fst (x0)))))(((x30 , x31) , x30)))((nub)("

,Code "filter (\\ x32 -> not (elem (x32) (x31))) ((((++))("

,Code "fst (x33)))(((map)(\\x -> fst x))(x34)))))))("

,Code "(x35) : (snd (x33)))))(fst (x36)))(snd (x36))"

,Code ")(read (x37) :: ((([PFID] , [PFID]) , Maybe (("

,Code "Integer , String)))))"]

,suitcase_HOPS = [Code "(([] , []) , Nothing)"]

,value_HOPS = [Code "\\ x38 -> snd (x38 :: ((([PFID] , [PFID]) ,"

,Code " Maybe ((Integer , String)))))"]}

Figure A.16: Generated Haskell code for the Travel-Searching Agent 2

151

A Transformed Example Agents

A.5 Travel-Searching Agent 3

Figure A.17: Travel-Searching Agent 3 in UI-DSL

152

A.5 Travel-Searching Agent 3

Figure A.18: Travel-Searching Agent 3 in I-DSL

153

A Transformed Example Agents

Figure A.19: Travel-Searching Agent 3 as HaMAP mobile agent DAG

154

A.5 Travel-Searching Agent 3

MobileAgent_HOPS

{code_HOPS =

[Code "\\ x18 -> \\ x38 -> (\\ x37 -> (\\ x24 -> (\\ x34 -> \\ x21 -> ("

,Code "getPFID) >>= (\\ x36 -> (\\ x32 -> (getPPFInfo) >>= (\\ x35"

,Code "-> (\\ x31 -> (\\ x0 -> (hasPPFs (snd (x0)) ((ORPPF (("

,Code "PPFName \"getAllExpenseTour\") : ([])) ((ALLPPF (("

,Code "PPFName \"getFlight\") : ((PPFName \"getHotel\") : ([])))"

,Code ") : ([]))) : ([]))) >>= (\\ x30 -> (\\ x23 -> (\\ x22 ->"

,Code "("

,OR (ORPPF [PPFName "getAllExpenseTour",EmptyPPF]

[ALLPPF [PPFName "getFlight",PPFName "getHotel",EmptyPPF],EmptyPPF])

[Code "("

,PPF (PPFName "getAllExpenseTour")

[Code "\"Munich\" \"New York\" \"24.12.03\" \"06.01.04\""]

,Code ") >>= (\\ x4 -> return (maybe (Nothing) (\\ x1 -> if (null ("

,Code "x1)) then (Nothing) else (Just (head (((sortBy)(\\ x2"

,Code "-> \\ x3 -> ((compare :: ((Integer -> (Integer -> Ordering)"

,Code ")))(fst (x2)))(fst (x3))))(x1))))) (x4)))"]

[ALL (ALLPPF [PPFName "getFlight",PPFName "getHotel",EmptyPPF])

[Code "("

,PPF (PPFName "getHotel") [Code "\"New York\" \"24.12.03\" \"06.01.04\""]

,Code ") >>= (\\ x10 -> ("

,PPF (PPFName "getFlight") [Code "\"Munich\" \"New York\" \"24.12.03\""]

,Code ") >>= (\\ x16 -> ("

,PPF (PPFName "getFlight") [Code "\"New York\" \"Munich\" \"06.01.04\""]

,Code ") >>= (\\ x17 -> (\\ x15 -> (\\ x12 -> (\\ x11 -> (\\ x9 -> (\\"

,Code "x6 -> (\\ x5 -> return (maybe (x5) (\\ x7 -> maybe (x6) (\\"

,Code "x8 -> Just (((fst (x7)) + (fst (x8)) , (snd (x7)"

,Code ") ++ (snd (x8))))) (x6)) (x5)))(fst (x9)))("

,Code "snd (x9)))((maybe (Nothing) (\\ x1 -> if (null (x1)"

,Code ") then (Nothing) else (Just (head (((sortBy)(\\ x2 -> \\"

,Code "x3 -> ((compare :: ((Integer -> (Integer -> Ordering)))"

,Code ")(fst (x2)))(fst (x3))))(x1))))) (x10) ,"

,Code "maybe (x11) (\\ x13 -> maybe (x12) (\\ x14 -> Just ((("

,Code "fst (x13)) + (fst (x14)) , (snd (x13)) ++ (snd (x14"

,Code "))))) (x12)) (x11))))(fst (x15)))(snd (x15)"

,Code "))((maybe (Nothing) (\\ x1 -> if (null (x1)) then ("

,Code "Nothing) else (Just (head (((sortBy)(\\ x2 -> \\ x3 -> (("

,Code "compare :: ((Integer -> (Integer -> Ordering))))(fst ("

,Code "x2)))(fst (x3))))(x1))))) (x16) , maybe ("

,Code "Nothing) (\\ x1 -> if (null (x1)) then (Nothing) else ("

,Code "Just (head (((sortBy)(\\ x2 -> \\ x3 -> ((compare :: (("

,Code "Integer -> (Integer -> Ordering))))(fst (x2)))(fst ("

,Code "x3))))(x1))))) (x17))))))"]]

,Code ") >>= (\\ x29 -> (\\ x20 -> (\\ x19 -> sequence_ (((map)(("

,Code "((migrate)(x18))(Suitcase (show (((snd (x19) , snd ("

,Code "x20))) :: ((([PFID] , [PFID]) , Maybe ((Integer ,"

,Code "String))))))))(x21)))(fst (x19))))(fst (x20)"

,Code "))(((if (null (x22)) then ((homePF (x21)) : ([])"

,Code ") else (x22) , snd (x23)) , maybe (x24) ((\\ x28 -> \\"

,Code "x26 -> (\\ x25 -> maybe (x25) (\\ x27 -> if ((fst (x26)"

,Code ") < (fst (x27))) then (x25) else (x28)) (x28))("

,Code "Just (x26)))(x24)) (x29)))))(fst (x23)))(("

,Code "x30 , fst (x0)))))(((x31 , x32) , x31)))((nub)("

,Code "filter (\\ x33 -> not (elem (x33) (x32))) ((((++))("

,Code "fst (x34)))(((map)(\\x -> fst x))(x35)))))))("

,Code "(x36) : (snd (x34)))))(fst (x37)))(snd (x37))"

,Code ")(read (x38) :: ((([PFID] , [PFID]) , Maybe (("

,Code "Integer , String)))))"]

,suitcase_HOPS = [Code "(([] , []) , Nothing)"]

,value_HOPS = [Code "\\ x39 -> snd (x39 :: ((([PFID] , [PFID]) , Maybe (("

,Code "Integer , String)))))"]}

Figure A.20: Generated Haskell code for the Travel-Searching Agent 3

155

A Transformed Example Agents

A.6 Travel-Searching and Booking Agent

Figure A.21: Travel-Searching and Booking Agent in UI-DSL

156

A.6 Travel-Searching and Booking Agent

Figure A.22: Travel-Searching and Booking Agent in I-DSL

157

A Transformed Example Agents

Figure A.23: Travel-Searching and Booking Agent as HaMAP mobile agent DAG

158

A.6 Travel-Searching and Booking Agent

MobileAgent_HOPS

{code_HOPS =

[Code "\\ x4 -> \\ x44 -> (\\ x43 -> (\\ x42 -> (\\ x10 -> (\\ x32 -> (\\"

,Code "x40 -> \\ x8 -> (getPFID) >>= (\\ x15 -> (\\ x38 -> ("

,Code "getPPFInfo) >>= (\\ x41 -> (\\ x37 -> (\\ x0 -> ("

,PPF (PPFName "getAllExpenseTour")

[Code "\"Munich\" \"New York\" \"24.12.03\" \"06.01.04\""]

,Code ") >>= (\\ x36 -> (\\ x16 -> (\\ x3 -> (\\ x31 -> (\\ x18 -> (\\"

,Code "x1 -> (hasPPFs (snd (x0)) ((PPFName \"getAllExpenseTour\""

,Code ") : ((PPFName \"bookJourney\") : ([])))) >>= (\\ x30 -> ("

,Code "\\ x25 -> (\\ x26 -> (\\ x24 -> (\\ x9 -> ("

,PPF (PPFName "bookJourney") [Code "(fst (fromJust (snd (x1))))"]

,Code ") >>= ((\\ x22 -> \\ x23 -> (\\ x21 -> (\\ x19 -> (\\ x17 -> (\\"

,Code "x7 -> (\\ x6 -> (replaceCF 2 ([Code (show (x3))]) (x4)"

,Code ") >>= (\\ x5 -> sequence_ (((map)((((migrate)(x5))("

,Code "Suitcase (show (((fst (x6) , fst (snd (x7)))) :: (("

,Code "(([PFID] , [PFID]) , Maybe (((Integer , String) ,"

,Code "PFID))) , (Maybe ((Maybe (Bool) , Maybe (((Integer ,"

,Code "String) , PFID)))) , Maybe (((Integer , String) , PFID"

,Code ")))))))))(x8)))(snd (x6)))))(fst (x7)))("

,Code "(((snd (x9) , maybe (x10) ((\\ x14 -> \\ x12 -> (\\ x11"

,Code "-> maybe (x11) (\\ x13 -> if ((fst (x12)) < (fst (fst ("

,Code "x13)))) then (x11) else (x14)) (x14))(Just ((x12"

,Code ", x15))))(x10)) (x16)) , fst (x9)) , ((x17 , x18"

,Code ") , fromJust (x17)))))(Just (maybe (x19) (\\ x20 ->"

,Code "if ((snd (x20)) == (x15)) then (x19) else ((snd ("

,Code "x21) , x22))) (x22))))((fst (x21) , fst (x1)))"

,Code ")((Just (False) , x23)))(snd (x1))))((if (null ("

,Code "x24)) then ((homePF (x8)) : ([])) else (x24) , snd ("

,Code "x25))))((\\ x28 -> if ((null (x26)) && (maybe (False"

,Code ") (\\ x27 -> (snd (x27)) /= (x15)) (x28))) then ("

,Code "maybe ([]) (\\ x29 -> (snd (x29)) : ([])) (x28)"

,Code ") else (x26))(maybe (x10) ((\\ x14 -> \\ x12 -> (\\ x11 ->"

,Code "maybe (x11) (\\ x13 -> if ((fst (x12)) < (fst (fst ("

,Code "x13)))) then (x11) else (x14)) (x14))(Just ((x12"

,Code ", x15))))(x10)) (x16))))(fst (x25)))((x30 ,"

,Code "fst (x0)))))((x18 , snd (x31))))(fst (x31)))("

,Code "(x3 ,"

,Replaceable 2 [Code "Nothing"]

,Code ")))(maybe (x32) ((\\ x14 -> \\ x12 -> (\\ x11 -> maybe ("

,Code "x11) (\\ x13 -> if ((fst (x12)) < (fst (fst (x13)))"

,Code ") then (x11) else (x14)) (x14))(Just ((x12 , x15))"

,Code "))(x32)) (x16)))(maybe (Nothing) (\\ x33 -> if ("

,Code "null (x33)) then (Nothing) else (Just (head (((sortBy"

,Code ")(\\ x34 -> \\ x35 -> ((compare :: ((Integer -> (Integer ->"

,Code "Ordering))))(fst (x34)))(fst (x35))))(x33)))"

,Code ")) (x36))))(((x37 , x38) , x37)))((nub)("

,Code "filter (\\ x39 -> not (elem (x39) (x38))) ((((++))("

,Code "fst (x40)))(((map)(\\x -> fst x))(x41)))))))("

,Code "(x15) : (snd (x40)))))(fst (x42)))(snd (snd ("

,Code "x43))))(snd (x42)))(fst (x43)))(read (x44) :: ("

,Code "((([PFID] , [PFID]) , Maybe (((Integer , String) ,"

,Code "PFID))) , (Maybe ((Maybe (Bool) , Maybe (((Integer ,"

,Code "String) , PFID)))) , Maybe (((Integer , String) , PFID"

,Code "))))))"]

,suitcase_HOPS =

[Code "((([] , []) , Nothing) , (Just (Nothing, Nothing) , Nothing))"]

,value_HOPS =

[Code "\\ x45 -> fromJust (fst (snd (x45 :: (((([PFID] , [PFID"

,Code "]) , Maybe (((Integer , String) , PFID))) , (Maybe (("

,Code "Maybe (Bool) , Maybe (((Integer , String) , PFID)))) ,"

,Code "Maybe (((Integer , String) , PFID))))))))"]}

Figure A.24: Generated Haskell code for the Travel-Searching and Booking Agent

159

A Transformed Example Agents

A.7 GetWeatherAndTrafficJam Agent

Figure A.25: GetWeatherAndTrafficJam Agent in UI-DSL

160

A.7 GetWeatherAndTrafficJam Agent

Figure A.26: GetWeatherAndTrafficJam Agent in I-DSL

161

A Transformed Example Agents

Figure A.27: GetWeatherAndTrafficJam Agent as HaMAP mobile agent DAG

162

A.7 GetWeatherAndTrafficJam Agent

MobileAgent_HOPS

{code_HOPS =

[Code "\\ x7 -> (\\ x8 -> \\ x30 -> (\\ x27 -> \\ x19 -> ("

,Replaceable 0 [PPF (PPFName "getTrafficJamMessagesBetween")

[Code "\"Munich\" \"Berlin\""]]

,Code ") >>= (\\ x12 -> (\\ x11 -> ("

,Replaceable 1 [PPF (PPFName "getWeatherIn") [Code "\"Berlin\""]]

,Code ") >>= (\\ x6 -> (\\ x4 -> (\\ x21 -> (getPFID) >>= (\\ x29 ->"

,Code "(\\ x25 -> (getPPFInfo) >>= (\\ x28 -> (\\ x24 -> (\\ x2 -> ("

,Code "hasPPFs (snd (x2)) ((ReplaceablePPF 1 (("

,Code "PPFName \"getWeatherIn\") : ([]))) : ((ReplaceablePPF 0 (("

,Code "PPFName \"getTrafficJamMessagesBetween\") : ([]))) : ([]))"

,Code ")) >>= (\\ x23 -> (\\ x22 -> (\\ x20 -> (\\ x18 -> (\\ x17 -> ("

,Replaceable 3 [Code "if (x4) then ((replaceCF 1 ("

,CFList

[Replacement [Code "(\\ x5 -> return (x5))"]

,Code " ++ [Code \"(\" ,Code (show (x6)) ,Code \")\"]"]

,Code ") (x7)) >>= (\\ x9 -> replaceCF 3 ("

,Replacement [Code "x8"]

,Code ") (x9))) else (x8)"]

,Code ") >>= (\\ x13 -> (\\ x14 -> ("

,Replaceable 10 [Code "if (x11) then ((replaceCF 0 ("

,CFList

[Replacement [Code "(\\ x5 -> return (x5))"]

,Code " ++ [Code \"(\" ,Code (show (x12)) ,Code \")\"]"]

,Code ") (x13)) >>= (\\ x15 -> replaceCF 10 ("

,Replacement [Code "x14"]

,Code ") (x15))) else (x14)"]

,Code ") >>= (\\ x16 -> sequence_ (((map)((((migrate)(x16)"

,Code ")(Suitcase (show (((snd (x17) , (fst (x18) , snd (x18"

,Code ")))) :: ((([PFID] , [PFID]) , (Maybe (String) ,"

,Code "Maybe (String))))))))(x19)))(fst (x17)))))("

,Code "return (x13))))(fst (x20)))(snd (x20)))(((if ("

,Code "(fst (x21)) && (snd (x21))) then ((homePF (x19)"

,Code ") : ([])) else (fst (x22)) , snd (x22)) , (x6 , x12)"

,Code ")))((x23 , fst (x2)))))(((x24 , x25) , x24)))("

,Code "(nub)(filter (\\ x26 -> not (elem (x26) (x25))) ((("

,Code "(++))(fst (x27)))(((map)(\\x -> fst x))(x28))))"

,Code ")))((x29) : (snd (x27)))))((x4 , x11)))("

,Code "isJust (x6))))(isJust (x12))))(fst (read (x30"

,Code ") :: ((([PFID] , [PFID]) , (Maybe (String) , Maybe ("

,Code "String)))))))(return (x7))"]

,suitcase_HOPS = [Code "(([] , []) , (Nothing , Nothing))"]

,value_HOPS =

[Code "\\ x31 -> (fst (snd (x31 :: ((([PFID] , [PFID]) , ("

,Code "Maybe (String) , Maybe (String)))))) , snd (snd (x31"

,Code ":: ((([PFID] , [PFID]) , (Maybe (String) , Maybe ("

,Code "String)))))))"]}

Figure A.28: Generated Haskell code for the GetWeatherAndTrafficJam Agent

163

A Transformed Example Agents

164

B Z-Notation

In the formalisation presented in Chapter 2, parts of the Z-notation (Spivey, 1992) is

used. The descriptive notion of a set in Z is called set comprehension and uses the

pattern “{signature | predicate • term}”, for example {n : N | n < 4•n2} = {0, 1, 4, 9}.

For a constantly true predicate it is also possible to write “{signature • term}” as in

{x : B • (x , x)} = {(True, True), (False, False)}. If the term is just a variable or a

tuple of the variables introduced by signature it is also possible to write “{signature |

predicate}”, e.g. {x , y : B | x 6= y} = {(True, False), (False, True)}. Quantification

uses the same pattern, for example ∀ x : N • x > 3. The powerset of a set A is written

PA. The set of relations between two sets A and B is written A ↔ B . Partial functions

from A to B are written A 7→ B ; total functions are written A → B . Application of

a function f : A 7→ B to an argument x : A is written f .x . The domain of a relation

R : A ↔ B is dom .R := {(x , y) : R•x}, the range is ran .R := {(x , y) : R•y}. The set

of finite sequences of elements of a set A is written A∗. The sequences are considered

to be partial functions of type N 7→ A with contiguous domain starting with zero. The

length of a sequence can be calculated by the function function len : A∗ → N. The

(i + 1)-th element of a sequence l is denoted by l .i .

The identity relation IA : A ↔ A on a set A is usually written I . For two sets A and

B the universal relation is >>A,B := A×B and the empty relation is ⊥⊥A,B := ∅, which

are also usually written >> and ⊥⊥. For two relations R, S : A ↔ B , their union is R∪S

and their intersection is R ∩ S . The inclusion is written R ⊆ S . The complement of

R is R. The converse of R is R` : B ↔ A, defined by R` := {(x , y) : R • (y , x)}. The

composition of two relations R : A ↔ B and S : B ↔ C is denoted by R o

9 S : A ↔ C

and defined by R o
9 S := {(x , y) : R; (u, z) : S | y = u • (x , z)}. For a homogeneous

relation R : A ↔ A the transitive closure is R+ and the reflexive transitive closure

is R∗. For a relation R : A ↔ B the domain restriction on a set C ⊆ A is defined

by C C R := {(a, b) : R | a ∈ C}, the range restriction on a set D ⊆ B is defined

by R B D := {(a, b) : R | b ∈ D}. When a relation R : A ↔ A is considered as a

graph, a node y : A is reachable from another node x : A if and only if (x , y) ∈ R∗. If

165

B Z-Notation

R+ ⊆ I the relation is called acyclic. A node b dominates a node a if for every node

x and every path from x to a either b lies on that path or x is reachable from b. If a

is dominated by b, a is reachable from b. A node r is a source if r 6∈ ran .R. If r the

only source r is called root.

166

Bibliography

Abadi, M. and Gordon, A. D. (1998). A Calculus for Cryptographic Protocols: The

Spy Calculus. Research Report 149, Digital Systems Research Center, Palo Alto,

CA, USA.

Asperti, A. and Longo, G. (1991). Categories, types, and structures: An introduction

to category theory for the working computer scientist. MIT Press.

Barendregt, H. P. (1992). Lambda calculi with types. In Abramsky, S., Gabbay, D. M.,

and Maibaum, T., editors, Handbook of Logic in Computer Science, volume 2, pages

117–309. Oxford Univertity Press.

Barrett, D. J. and Silverman, R. (2001). SSH, The Secure Shell: The Definitive Guide.

O’Reilly.

Baumann, J. (2000). Mobile Agents: Control Algorithms, volume 1658 of Lect. Notes

in Comp. Sci. Springer-Verlag.

Bayer, A., Grobauer, B., Kahl, W., Kempf, P., Schmalhofer, F., Schmidt, G., and Win-

ter, M. (1996). The Higher Object Programming System HOPS. Technical report,

Inst. für Informatik der Univ. der Bundeswehr München. Internal Report. 206 p.

Bettini, L. and Nicola, R. D. (2001). Translating Strong Mobility into Weak Mobility.

In Mobile Agents, pages 182–197.

Birrell, A. D. and Nelson, B. J. (1983). Implementing remote procedure calls. In

Proceedings of the ACM Symposium on Operating System Principles, page 3, Bretton

Woods, NH. Association for Computing Machinery.

Boquist, U. (1999). Code Optimisation Techniques for Lazy Functional Languages.

PhD thesis, Chalmers University of Technology, Gothenburg.

167

Bibliography

Brandt, R. and Reiser, H. (2001). Dynamic Adaption of Mobile Agents in Heterogenous

Environments. In (Picco, 2001), pages 70–87. 5th International Conference, MA 2001

Atlanta, GA, USA.

Chess, D., Harrison, C., and Kershenbaum, A. (1994). Mobile Agents: Are They a

Good Idea? Technical Report RC 19887 (December 21, 1994 - Declassified March

16, 1995), Yorktown Heights, New York.

Ciancarini, P. and Wooldridge, M. J., editors (2000). Agent-Oriented Software Engi-

neering, volume 1957 of Lect. Notes in Comp. Sci. Springer-Verlag. First Interna-

tional Workshop, AOSE 2000, Limerick, Ireland.

Collberg, C., Thomborson, C., and Low, D. (1997). A Taxonomy of Obfuscating

Transformations. Technical Report 148.

Crocker, D. (1982). RFC 822: Standard for ARPA Internet Text Messages.

Dam, M., editor (1996). Analysis and Verification of Multiple-Agent Languages, vol-

ume 1192 of Lect. Notes in Comp. Sci. Springer-Verlag. 5th LOMAPS Workshop,

Selected Papers, Stockholm, Sweden.

Derichsweiler, F. (2002). Strategiegesteuerte Transformation von Termgraphen. Der

Andere Verlag, Osnabrück. ISBN 3-89959-026-0; also doctoral dissertation at

Fakultät für Informatik, Universität der Bundeswehr München.

Ehrig, H., Engels, G., Kreowski, H.-J., and Rozenberg, G., editors (1999). Handbook of

Graph Grammars and Computing by Graph Transformation, Vol. 2: Applications,

Languages and Tools. World Scientific, Singapore.

Faxén, K.-F. (1997). Analysing, Transforming and Compiling Lazy Functional Pro-

grams. Phd thesis, Royal Institute of Technology, Department of Teleinformatics,

Stockholm.

Feng, X., Cao, J., Lü, J., and Chan, H. (2001). An Efficient Mailbox-Based Algorithm

for Message Delivery in Mobile Agent Systems. In (Picco, 2001), pages 135–151. 5th

International Conference, MA 2001 Atlanta, GA, USA.

Fritzinger, J. S. and Mueller, M. (1996). Java Security.

Gaspari, M. and Zavattaro, G. (1999). An algebra of actors. In Proc. 3nd IFIP Conf.

on Formal Methods for Open Object-Based Distributed Systems (FMOODS), pages

3–18. Kluwer Academic Publishers.

168

Bibliography

Gordon, A. D. (2000). Notes on Nominal Calculi for Security and Mobility. In Focardi,

R. and Gorrieri, R., editors, Foundations of Security Analysis and Design, volume

2171 of Lect. Notes in Comp. Sci. Springer-Verlag. FOSAD 2000, Bertinoro, Italy.

Gray, R. (1997). Agent Tcl: A flexible and secure mobile-agent system. PhD thesis,

Dept. of Computer Science, Dartmouth College. Available as Dartmouth Computer

Science Technical Report TR98-327.

Gray, R. S., Kotz, D., Cybenko, G., and Rus, D. (1998). D’Agents: Security in a

multiple-language, mobile-agent system. Lect. Notes in Comp. Sci., 1419:154–187.

Gray, R. S., Kotz, D., Cybenko, G., and Rus, D. (2000). Mobile Agents: Motivations

and State-of-the-Art Systems. Technical Report TR2000-365, Dartmouth College,

Computer Science, Hanover, NH.

Gray, R. S., Kotz, D., Peterson, R. A., Gerken, P., Hofmann, M., Chacon, D., Hill, G.,

and Suri, N. (2001). Mobile-Agent versus Client/Server Performance: Scalability in

an Information-Retrieval Task. Technical Report TR2001-386, Dartmouth College,

Computer Science, Hanover, NH.

Haller, K. and Schuldt, H. (2001). Using Predicates for Specifying Targets of Migration

and Messages in a Peer-to-Peer Mobile Agent environment. In (Picco, 2001), pages

152–168. 5th International Conference, MA 2001 Atlanta, GA, USA.

Hayzelden, A. L. and Bigham, J., editors (1999). Software Agents for Future Commu-

nication Systems. Springer-Verlag.

Horlait, E., editor (2000). Mobile Agents for Telecommunication Applications, volume

1931 of Lect. Notes in Comp. Sci. Springer-Verlag. Second International Workshop,

MATA 2000, Paris, France.

Huch, F. and Norbisrath, U. (2000). Distributed Programming in Haskell with Ports.

Lect. Notes in Comp. Sci., 2011:107–121.

Jeffrey, A. (1999). A distributed object calculus. Technical report, DePaul University,

Chicago, USA.

Johansen, D., van Renesse, R., and Schneider, F. B. (1996). Supporting Broad Internet

Access to TACOMA. In Proceedings of the 7th SIGOPS European Workshop, pages

55–58, Connemara, Ireland.

169

Bibliography

Kahl, W. (1996). Algebraische Termgraphersetzung mit gebundenen Variablen. Reihe

Informatik. Herbert Utz Verlag Wissenschaft, München. ISBN 3-931327-60-4;

also doctoral dissertation at Fakultät für Informatik, Universität der Bundeswehr

München.

Kahl, W. (1998). Internally typed second-order term graphs. In Hromkovič, J. and

Sýkora, O., editors, Graph-Theoretic Concepts in Computer Science, 24th Interna-

tional Workshop, WG ’98, Smolenice Castle, Slovak Republic, June 1998, Proceed-

ings, volume 1517 of Lect. Notes in Comp. Sci., pages 149–163. Springer-Verlag.

Kahl, W. (1999). The term graph programming system HOPS. In Berghammer, R.

and Lakhnech, Y., editors, Tool Support for System Specification, Development and

Verification, Advances in Computing Science, pages 136–149, Wien. Springer-Verlag.

ISBN: 3-211-83282-3.

Kahl, W. and Derichsweiler, F. (2001). Declarative Term Graph Attribution for Pro-

gram Generation. J. UCS, 7(1):54–70.

Karjoth, G., Lange, D., and Oshima, M. (1997). A security model for aglets. IEEE

Internet Computing, 1(4):68–77.

Kelsey, R. and Hudak, P. (1989). Realistic compilation by program transformation —

detailed summary. Pages 281–292.

Klop, J. W. (1980). Combinatory reduction systems. Mathematical Centre Tracts 127,

Centre for Mathematics and Computer Science, Amsterdam. PhD thesis.

Klusch, M., editor (1999). Intelligent Information Agents: Agent-Based Information

Discovery and Management on the Internet. Springer-Verlag.

Knabe, F. C. (1995). Language Support for Mobile Agents. Phd thesis, School of

Computer Science, Carnegie Mellon University, Pittsburgh.

Kotz, D. and Gray, R. S. (1999). Mobile agents and the future of the internet. Operating

Systems Review, 33(3):7–13.

Kotz, D., Gray, R. S., and Rus, D. (2002). Future Directions for Mobile-Agent

Research. Technical Report TR2002-415, Dartmouth College, Computer Science,

Hanover, NH.

170

Bibliography

Kotz, D. and Mattern, F., editors (2000). Agent Systems, Mobile Agents, and Appli-

cations, volume 1882 of Lect. Notes in Comp. Sci. Springer-Verlag. Second Inter-

national Symposium on Agent Systems and Applications and Fourth International

Symposium on Mobile Agants, ASA/MA 2000, Zurich, Switzerland.

Lange, D. B. and Oshima, M. (1999). Seven good reasons for mobile agents. Commun.

ACM, 42(3):88–89.

Launchbury, J. and Jones, S. L. P. (1994). Lazy functional state threads. In SIGPLAN

Conference on Programming Language Design and Implementation, pages 24–35.

Leijen, D. (2000). Parsec, a fast combinator parser.

Lucco, S., Sharp, O., and Wahbe, R. (1995). Omniware: A universal substrate for web

programming. In Fourth International World Wide Web Conference.

Milner, R., Parrow, J., and Walker, D. (1992). A calculus of mobile processes, part

I/II. J. Inform. Comput., 100:1–77.

Milojicic, D. S., Guday, S., and Wheeler, R. (1997). Old Wine in New Bottles, Applying

OS Process Migration Technology to Mobile Agents. In Proceedings of the 3rd

Workshop on Mobile Object Systems, 11th European Conference on Object-Oriented

Programming, Jyväskylä, Finland.

Morbach, H.-P. (2001). Sichere Agenten und Agentenplattform in Haskell. Studienar-

beit, Fakultät für Informatik, Universität der Bundeswehr München.

Necula, G. C. and Lee, P. (1997). Proof-carrying code. In Proceedings of the 24th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Langauges (POPL

’97), pages 106–119, Paris.

Partsch, H. A. (1990). Specification and Transformation of Programs. A Formal Ap-

proach to Software Development. Springer-Verlag.

Peine, H. and Stolpmann, T. (1997). The architecture of the Ara platform for mo-

bile agents. In Popescu-Zeletin, R. and Rothermel, K., editors, First International

Workshop on Mobile Agents MA’97, volume 1219 of Lecture Notes in Computer

Science, pages 50–61, Berlin, Germany. Springer Verlag.

Peyton Jones, S. L. (1993). The Glasgow Haskell compiler: A technical overview.

171

Bibliography

Peyton Jones, S. L. et al. (2002). Haskell 98 language and libraries. See also

http://haskell.org/.

Picco, G. P., editor (2001). Mobile Agents, volume 2240 of Lect. Notes in Comp. Sci.

Springer-Verlag. 5th International Conference, MA 2001 Atlanta, GA, USA.

Pierre, S. and Glitho, R., editors (2001). Mobile Agents for Telecommunication Appli-

cations, volume 2164 of Lect. Notes in Comp. Sci. Springer-Verlag. Third Interna-

tional Workshop, MATA 2001, Montreal, Canada.

Posegga, J. and Karjoth, G. (2000). Mobile Agents and Telcos Nightmares. In Annales

des Telecommunications, volume 55, pages 388–400.

Poslad, S., Buckle, P., and Hadingham, R. (2000). The FIPA-OS Agent Platform:

Open Source for Open Standards. See also http://fipa-os.sourceforge.net/.

Postel, J. B. (1982). RFC 821: Simple Mail Transfer Protocol. Network Working

Group.

Robinson, D. and Coar, K. (2003). Internet Draft: The Common Gateway Interface

(CGI) Version 1.1.

Rozenberg, G., editor (1997). Handbook of Graph Grammars and Computing by Graph

Transformation, Vol. 1: Foundations. World Scientific, Singapore.

Ryan, P. Y. A. (2000). Mathematical Models of Computer Security. In Focardi, R.

and Gorrieri, R., editors, Foundations of Security Analysis and Design, volume 2171

of Lect. Notes in Comp. Sci. Springer-Verlag. FOSAD 2000, Bertinoro, Italy.

Sangiorgi, D. (1992). Expressing Mobility in Process Algebras: First-Order and Higher-

Order Paradigms. PhD thesis CST–99–93, Department of Computer Science, Uni-

versity of Edinburgh.

Sanneck, H., Berger, M., and Bauer, B. (2002). Application of agent technology to

next generation wireless/mobile networks.

Serugendo, G. D. M., Muhugusa, M., and Tschudin, C. (1998). A survey of theories

for mobile agents. World Wide Web Journal, special issue on Distributed World

Wide Web Processing: Applications and Techniques of Web Agents.

172

Bibliography

Sheard, T. and Peyton Jones, S. (2002). Template metaprogramming for Haskell. In

Chakravarty, M. M. T., editor, ACM SIGPLAN Haskell Workshop 02, pages 1–16.

ACM Press.

Spivey, J. M. (1992). The Z Notation: A Reference Manual. Prentice Hall International

Series in Computer Science, 2nd edition. (1st edition, 1989).

Swierstra, S. D. and Duponcheel, L. (1996). Deterministic, error-correcting combinator

parsers. In Launchbury, J., Meijer, E., and Sheard, T., editors, Second International

Summer School on Advanced Functional Programming, volume 1126 of Lect. Notes

in Comp. Sci., pages 184–207.

Syverson, P. and Cervesato, I. (2000). The Logic of Authentication Protocols. In

Focardi, R. and Gorrieri, R., editors, Foundations of Security Analysis and Design,

volume 2171 of Lect. Notes in Comp. Sci. Springer-Verlag. FOSAD 2000, Bertinoro,

Italy.

Taha, W., editor (2001). Semantics, Applications, and Implementation of Program

Generation, volume 2196 of Lect. Notes in Comp. Sci. Springer-Verlag. Second

International Workshop, SAIG 2001, Florence, Italy.

Thati, P., Chang, P.-H., and Agha, G. (2001). Crawlets: Agents for High Performance

Web Search Engines. In (Picco, 2001), pages 119–134. 5th International Conference,

MA 2001 Atlanta, GA, USA.

Thomsen, B., Leth, L., Prasad, S., Kuo, T.-M., Kramer, A., Knabe, F., and Giacalone,

A. (1993). Facile Antigua release programming guide. Technical Report ECRC-93-

20, European Computer-Industry Research Centre, Munich, Germany.

Thomsen, L. L. and Thomsen, B. (1997). Mobile agents – the new paradigm in com-

puting. ICL Technical Journal, (12):14–40.

Tripathi, A., Karnik, N. M., Vora, M., Singh, R. D., Ahmed, T., Eberhard, J., and

Prakash, A. (1999). Development of Mobile Agent Applications with Ajanta. Tech-

nical report, Department of Computer Science, University of Minnesota. Available

at http://www.cs.umn.edu/Ajanta.

Tripathi, A. R., Karnik, N. M., Ahmed, T., Singh, R. D., Prakash, A., Kakani, V.,

Vora, M. K., and Pathak, M. (2002). Design of the Ajanta System for Mobile Agent

Programming. Journal of Systems and Software, 62(2):123–140.

173

Bibliography

Venners, B. (1997). Solve real problems with aglets, a type of mobile agent.

Wallace, M. (1995). Functional Programming and Embedded Systems. PhD thesis,

Dept. Of Computer Science, University of York, UK.

Wallace, M. and Runciman, C. (1994). Type-checked message-passing between func-

tional processes. In Hammond, T. and Sansom, editors, GLA, pages 245–254.

Springer-Verlag.

White, J. (1994). Mobile agents white paper.

Wooldridge, M. and Jennings, N. R. (1994). Intelligent agents: Theory and practice.

Knowledge Engineering Review, 10(2).

Zhong, Q. and Edwards, N. (1998). Security in the large: Is java’s sandbox scalable.

Technical report, HP Laboratories Bristol.

Zierer, H., Schmidt, G., and Berghammer, R. (1986). An interactive graphical ma-

nipulation system for higher objects based on relational algebra. In Tinhofer, G.

and Schmidt, G., editors, WG ’86, volume 246 of Lect. Notes in Comp. Sci., pages

68–81, Bernried, Starnberger See. Springer.

174

Glossary

BVARo Bindable Variable on Object Layer

DAG Directed Acyclic Graph

DSL Domain-Specific Language

HaMAP Haskell Mobile Agent Platform

HOPS Higher Object Programming System

I-DSL Internal Domain-Specific Language

MVARo Metavariable on Object Layer

MVARt Metavariable on Type Layer

PPF Possibly-Provided Function

SFA Stateful Agent

SLA Stateless Agent

UI-DSL User Interface Domain-Specific Language

175

Glossary

176

Index

ALLPPF, 43

ORPPF, 43

CodeFragment, 75

MetaData, 74

MobileAgent, 74

OldValueMarker, 44

PPFName, 75

Replacement, 46

Replace, 45

Suitcase, 74

ValueMarker, 44

Agent, 28

–π, 38

–ρ, 38

–Abstraction, 39

–Application, 39

–Combinator, 27

–Combinator, Basic, 38

–Combinator, Meta, 42

–Pair, 38

Internal–, 49

Mobile–, 28, 40

Mobile–, Internal, 52

Platform–, 28

Primitive–, 26, 35

Stateful–, 26, 35

Stateless–, 26, 36

Value of the–, 28

Value–, 28

Brick, 12

Code Output, 17

Constant Constructor, 9

Domain-Specific Language, 12

Encapsulation, 10

Function

Arity–, 9

Binding–, 9

Platform–, 26

Possibly-Provided–, 26, 37

Successor–, 9

Interval

Image–, 11

Inner Nodes, 11

Lower Border, 11

Top Node, 11

Layer

Object–, 10

Type–, 10

177

Index

Matching, 14

Maximal-Identification, 15

Meta Data, 38

Node, 11

–Label, 9

–Labelling Function, 9

–Set, 9

Inner–, 11

Top–, 11

Object Layer, 10

Platform

Agent–, 26

Home–, 26

Replacement, 46

Strategy

Cleanup, 70

CodeTransformation, 105

DistinguishPPFName, 110

FlattenBind, 103

HaMAP Sharing, 109

MetaAgent, 53

ppfname, 54

ReplaceAgentCombinators, 97

ReverseSharing, 109

Sharing, 58

Suitcase Handler, 65

UseMetaData, 102

VinSC, 59

VinSC-post, 59

VinSC-pre, 59

Sub-DAG, 10

Induced–, 10

Suitcase

–Handler, 51

Global–, 28

Initial–, 35

Local–, 26, 35

Term Graph, 9

–Alphabet, 9

–Language, 12

–Pattern, 17

–Transformation, 13

Well-Typed–, 12

Term Graph Homomorphism, 11

Transformation

–Strategy, 16

Type

–Part, 9, 10

Principal–, 13

Typing Element, 11

Variable

–Identity, 9

Bindable–, 9

Free–, 10

Meta–, 9

178

	Introduction
	Higher Object Programming System HOPS
	Term Graphs
	Homomorphy
	Typing
	Term Graph Transformation
	Transformation Strategies and Term Graph Patterns
	Code Output

	Mobile Agents
	Alternatives to Mobile Agents
	Properties of Mobile Agents
	Applications for Mobile Agents
	Standardisation
	Mobile Agent Languages

	Design Overview
	Definitions
	Objectives
	Realisation

	User Interface Domain-Specific Language (UI-DSL)
	Primitive Agents
	Stateful Agent
	Stateless Agent

	Possibly-Provided Functions
	Meta Data
	Basic Agent Combinators
	Agent Pairs
	Agent Functions

	Mobile Agents
	Meta Agent Combinators

	Internal Domain-Specific Language (I-DSL)
	Internal Agents
	Possibly-Provided Functions and Meta Agent Combinators
	Suitcase Handler
	Internal Mobile Agent

	Transforming UI-DSL to I-DSL
	Meta Agent Combinators
	Sharing
	Value in Suitcase
	Suitcase Handler
	Cleanup

	Haskell Mobile Agent Platform (HaMAP)
	Haskell Prerequisites
	Design Overview
	Haskell Mobile Agent
	Agent Monad
	Mobile Agent Platform

	Implementation of Mobile Agent Platforms
	Agent Platform
	Home Platform
	Proxy Platform

	Migration and Inter-Platform Communication
	Haskell Mobile Agent Platform Protocol
	Electronic Mail
	Common Gateway Interface

	Transforming I-DSL to HaMAP-Code
	Replace Agent Combinators
	Meta Data
	Monad Laws
	Code Transformation
	HaMAP Sharing
	Code Output

	Example Agents
	GetListOfPossiblyProvidedFunctions Agent
	GetFlight Agent
	Travel-Searching Agent 1
	Travel-Searching Agent 2
	Travel-Searching Agent 3
	Travel-Searching and Booking Agent
	GetWeatherAndTrafficJam Agent

	Conclusions and Future Work
	Transformed Example Agents
	GetListOfPossiblyProvidedFunctions Agent
	GetFlight Agent
	Travel-Searching Agent 1
	Travel-Searching Agent 2
	Travel-Searching Agent 3
	Travel-Searching and Booking Agent
	GetWeatherAndTrafficJam Agent

	Z-Notation
	Bibliography
	Glossary
	Index

