
Approximate Time-Parallel
Simulation
Tobias Kiesling

It is a good morning exercise for a research
scientist to discard a pet hypothesis every day
before breakfast. It keeps him young.

Konrad Lorenz (1903 - 1989)

APPROXIMATE TIME-PARALLEL
SIMULATION

submitted by

Tobias Kiesling

DISSERTATION

for the achievement of the academic degree
doctor rerum naturalium (Dr. rer. nat.)

at the

Fakultät für Informatik
Universität der Bundeswehr München

Supervisors:

Prof. Dr. Axel Lehmann
Universität der Bundeswehr München

Neubiberg, Germany

Prof. Richard M. Fujimoto
Georgia Institute of Technology

Atlanta, GA, USA

Neubiberg, December, 2005

ii

Acknowledgments

Many persons directly or indirectly contributed to this thesis. I feel especi-
ally grateful for the general support of my family, most of all my beloved
wife Manuela. The main person, however, who enabled this thesis was Prof.
Axel Lehmann. He always supported my work and allowed me great latitu-
de, which is a primary requirement to conduct original research. Furthermo-
re, I am honored and thankful that Prof. Richard Fujimoto, a known expert
in the field of parallel and distributed simulation, agreed to act as second su-
pervisor of this thesis. Several colleagues deserve a special mention as well.
Siegfried Pohl inspired the first ideas about approximate time-parallel si-
mulation. Thomas Krieger helped with the derivation of the computational
overhead of time-parallel queuing simulation presented in Section 7.3. Last
but not least, I would like to give special thanks to Johannes Lüthi, who sup-
ported the work on time-parallel traffic simulation presented in Chapter 9,
but was also constantly willing to discuss various aspects of this thesis.

iii

iv

Abstract

In classical parallel discrete-event simulation, the simulation state space
is decomposed into a number of sub-spaces. The responsibility for the si-
mulation of each sub-space is assigned to a separate parallel process and
simulation is performed concurrently by the parallel processes. This is al-
so referred to as spatial parallelization. To allow for an efficient parallel
simulation, a suitable decomposition has to be found, where parallel pro-
cesses are largely independent of one another. This is not always possible,
as the spatial decomposability of a model might be limited, depending on
the specificities of the model state space.

Time-parallel simulation is another approach, where each of the parallel
processes is responsible for the simulation of the whole state space, but
only for a part of the overall simulation time interval (also referred to as
temporal parallelization). The simulated time is decomposed into a number
of time slices and the calculations corresponding to each slice are assigned
to a separate parallel process. The central problem of this approach are the
initial states of the parallel simulations, as these are unknown prior to the
simulation execution. The advantages of time-parallel simulation are the
achievable parallelism and a high degree of independence between parallel
processes.

Most of the existing approaches for parallel simulation only consider ac-
curate parallelization methods, i.e. methods ensuring identical results of the
parallel simulation and a corresponding sequential simulation. However, in
many cases, no satisfying degree of parallelism can be achieved with accu-
rate parallelization approaches, due to interdependencies between parallel
processes. As an alternative, approximate parallel simulation methods are
constructed to tolerate a deviation of parallel simulation results from tho-
se of a corresponding sequential simulation, giving the opportunity for an
efficient parallel simulation. Without a fundamental analysis of the error
introduced with the approximation, simulation results might be seriously
compromised.

v

In this thesis, the applicability of approximate methods to the approach
of time-parallel simulation is examined. A formal model of time-parallel
simulation is introduced and used as a basis for the definition of the ap-
proximate parallel simulation method. Furthermore, the approximate time-
parallel simulation approach is enhanced to a new parallel simulation ap-
proach. This progressive time-parallel simulation is intended to provide im-
precise simulation results quickly, improving these results progressively in
the continued simulation execution. For a thorough examination of the pro-
posed approaches, three case studies are performed: queuing systems, simu-
lation of caching in computer systems, and road traffic simulation. Theore-
tical considerations indicate the feasibility of the approximate time-parallel
simulation methods, as do experiments with prototypical implementations
of approximate simulators.

vi

Zusammenfassung

In der klassischen parallelen Ereignis-basierten Simulation wird der Zu-
standsraum eines Simulationsmodells in Teilräume zerlegt. Bei der Simu-
lationsausführung werden dann die Änderungen der jeweiligen Zustands-
variablen nebenläufig berechnet (räumliche Parallelisierung). Hier ist es
wichtig, eine Zerlegung des Zustandsraumes zu finden, so dass die par-
allelen Prozesse möglichst unabhängig ausgeführt werden können. Dies ist
nicht immer einfach zu erreichen, da die räumliche Zerlegbarkeit eines Mo-
dells in Abhängigkeit von der Beschaffenheit des Zustandsraumes oft nur
eingeschränkt gegeben ist.

Ein anderer Ansatz ist die Zeit-parallele Simulation, bei der jeder paral-
lele Prozess für die Berechnung der Variablen des gesamten Zustandsrau-
mes verantwortlich ist, aber nur für einen Teil der gesamten Simulationszeit
(zeitliche Parallelisierung). Die zu simulierende Zeit wird in Zeitscheiben
aufgeteilt, und die Aufgabe der Berechnung jeder einzelnen Scheibe einem
separaten Prozess zugewiesen. Das zentrale Problem dieses Ansatzes ist die
Tatsache, dass die Zustände am Beginn der Zeitscheiben im Allgemeinen
unbekannt sind. Vorteile der zeitlichen Parallelisierung sind der nahezu un-
begrenzte Parallelitätsgrad und eine weitgehende Unabhängigkeit zwischen
den parallelen Prozessen.

Der größte Teil der Ansätze zur parallelen Simulation beschäftigt sich
mit exakten Parallelisierungsverfahren, das sind solche, die im Vergleich
zur zugehörigen sequentiellen Simulation identische Lösungen liefern. In
vielen Fällen kann durch eine exakte Lösung des Parallelisierungsproblems
auf Grund von Abhängigkeiten zwischen logischen Prozessen jedoch kein
befriedigender Parallelitätsgrad mehr erreicht werden. Falls man jedoch
von der Forderung einer exakten Lösung abrückt, ist es durchaus möglich,
erhebliche Leistungssteigerungen zu erzielen. Beim Einsatz approximati-
ver Verfahren muss beachtet werden, dass Simulationsergebnisse nicht we-
sentlich verfälscht oder sogar unbrauchbar werden. Hierzu sollte der ein-
geführte Fehler untersucht und das verwendete Verfahren gegebenfalls mo-

vii

difiziert werden, mit dem Ziel, eine akzeptable Ungenauigkeit zu erreichen.
In dieser Dissertation wird die Anwendbarkeit approximativer Verfah-

ren in der Zeit-parallelen Simulation näher untersucht. Hierzu wird ein
formales Modell der Zeit-parallelen Simulation vorgestellt und um appro-
ximative Anteile erweitert. Ferner wird die approximative Zeit-parallele
Simulation zu einem neuen Ansatz weiterentwickelt. Bei dieser progres-
siven Zeit-parallelen Simulation werden ungenaue Simulationergebnisse
möglichst bald geliefert und diese im weiteren Simulationsverlauf sukzes-
sive verbessert. Die vorgestellten Ansätze werden an Hand dreier Anwen-
dungsfälle aus dem Bereich der Warteschlangensysteme, der Simulation
von Caching-Verfahren und der Verkehrssimulation näher untersucht. Theo-
retische Untersuchungen der Anwendung der approximativen Methoden
deuten auf die Umsetzbarkeit der vorgestellten Ansätze hin, genauso wie
Experimente mit prototypischen Implementierungen.

viii

Contents

I. Background 1

1. Introduction 3
1.1. Motivation . 3
1.2. Contributions . 7
1.3. Thesis Overview . 8

2. Preliminaries 11
2.1. Discrete-Event Simulation 12
2.2. Parallel Discrete-Event Simulation 13

2.2.1. Conservative Synchronization 15
2.2.2. Optimistic Synchronization 17

2.3. Time-Parallel Simulation 20

3. Thesis Context 23
3.1. Classification of the Approach 23

3.1.1. Bias Independent of Parallelization 25
3.1.2. Bias due to Technical Conditions in Parallel Simu-

lation . 27
3.1.3. Bias in Order to Achieve Higher Efficiency 28

3.2. Directly Related Work 29
3.2.1. Temporal Uncertainty 29
3.2.2. Spatial Uncertainty 30
3.2.3. Relaxed Ordering Mechanisms 31
3.2.4. Approximation in Time-Parallel Simulation 32

ix

Contents

II. Approximate Time-Parallel Simulation 35

4. Formal Model of Time-Parallel Simulation 37
4.1. Basic Principles . 38
4.2. Iterative Fix-up Computations 39
4.3. Continuous Fix-Up Computations 42

5. Approximate State Matching 47
5.1. Basic Approach . 47
5.2. Error Characterization 49
5.3. Error Control . 53

6. Progressive Time-Parallel Simulation 57
6.1. Basic Idea . 58
6.2. Simulation Progress . 59
6.3. Simulation Results . 61

III. Case Studies 65

7. Queuing Systems 67
7.1. Foundations . 68
7.2. Time-Parallel Queuing Simulation 71
7.3. Computational Overhead 74

7.3.1. Facts on M/M/1 Queues 74
7.3.2. Expectation of the Computational Overhead 75

7.4. Approximate State Matching 77
7.5. Progressive Queuing Simulation 77

7.5.1. Theory . 77
7.5.2. Experiments . 82

7.6. Summary . 84

8. Cache Simulation 87
8.1. Least-recently-used caching 88
8.2. Simple parallel cache simulation 89
8.3. Parallel full LRU stack simulation 91
8.4. Approximate Cache Simulation 93

x

Contents

8.4.1. Simple cache simulation 94
8.4.2. Full LRU stack simulation 95

8.5. Simulation Results and Termination Detection 98
8.6. Experiments . 101
8.7. Summary . 106

9. Traffic Simulation 111
9.1. The Nagel/Schreckenberg Model 112
9.2. Time-Parallel Traffic Simulation 114

9.2.1. State Deviation Measures 117
9.3. Feasibility Study . 119

9.3.1. Microscopic State Matching 120
9.3.2. Aggregated Deviation Measures 123
9.3.3. Travel Time Deviations 125

9.4. Summary . 126

IV. Conclusions 129

Bibliography 134

xi

Contents

xii

List of Figures

2.1. Time-advancement schemes in discrete-event simulation . 13
2.2. Structure of a conservative parallel simulation 16
2.3. Straggler message arriving at a local process 17
2.4. Decomposition of simulation models 19
2.5. Incorrect state changes in a time-parallel simulation 21
2.6. Performing fix-up computations 22

3.1. Distributed Simulation Development 24
3.2. Directly related work . 34

4.1. Parallel queueing simulation 39
4.2. Parallel simulation with guessed initial states 40
4.3. Time-parallel simulation with fix-up computations 42
4.4. Overlapping time intervals 43

5.1. Deviation of states δk with iterative fix-up 48
5.2. Deviation of states δk with continuous fix-up 49
5.3. Overall error compared to local error 51
5.4. Relationship of errors in the best case 52
5.5. Relationship of errors in the worst case 53
5.6. Error control . 54

6.1. Progressive simulation at time t 60
6.2. Accuracy at time t . 64

7.1. Accuracy function α with λ−µ = 0.001 and varying λ uti-
lizing 4 processes . 82

7.2. Accuracy function α with λ = 0.3 and varying µ utilizing 4
processes . 83

7.3. Accuracy function α with λ = 0.3, µ = 0.301, utilizing a
varying number of processes 84

xiii

List of Figures

8.1. LRU stack processing in Example 8.1.1 88
8.2. Stack distances after processing in Example 8.1.1 89
8.3. Tables in Example 8.4.2 after first iteration 96
8.4. Tables in Example 8.4.2 after second iteration 96
8.5. Success functions of traces 102
8.6. Speedups for trace 001 103
8.7. Speedups for trace 023 104
8.8. Speedups for trace 085 105
8.9. Speedups for trace 090 106
8.10. Speedups for trace 097 107
8.11. Result interval sizes for trace 001 (in ‰ of the hit rate) . . 108
8.12. Result interval sizes for trace 085 (in ‰ of the hit rate) . . 109

9.1. Example of vehicle movement 113
9.2. Trace of simulation starting at time 0 116
9.3. Trace of simulation starting at time 200 117
9.4. Microscopic state deviation over time 120
9.5. Deviation distribution over time (ρ = 0.06) 121
9.6. Deviation distribution over time (ρ = 0.07) 122
9.7. Microscopic state vs. local density (ρ = 0.06) 123
9.8. Local density deviation over time 124
9.9. Correlation of microscopic state and local density 125
9.10. Average error due to approximate state matching 126
9.11. Evolution of error distributions 127

xiv

Part I.

Background

1

1. Introduction

1.1. Motivation

In various fields of science, modeling is an essential technique to cope with
the complexity of the real world. This spans applications as diverse as
meteorological models used for weather prediction, product models used
in software development projects, or performance models used in perfor-
mance engineering of computer and communication systems. In each of
these examples, the model is “a representation of an object, system, or idea
in some form other than that of the entity itself” [93]. In most of the cases,
a model is an abstraction of either an existing part of the physical world or
of a system yet to be developed. Both of these possibilities are typically
subsumed under the terms real system [93] or source system [109]. The
nature of the abstraction when building a model highly depends on its in-
tended purpose, which is the driving motivation for the development of the
model. E.g., the intended purpose of a weather model is most probably an
accurate prediction of the weather of the following days, but other intended
purposes are possible. Due to a variety of different intended purposes, an
arbitrary number of different models can be created for a single real system
in most of the cases.

Many different kinds of models exist, leading to a variety of model cate-
gorizations. First of all, models are classified by the way they are used. An
illustrative model is intended to illustrate the properties of the real system,
as an aid to thought or an aid to communication [23]. One example of this
category is a product model in a software development project, where stan-
dard methods like the Unified Modeling Language (UML) [37] are used
to specify models. An analytical model is a mathematical representation
of the real system, where analytical solution techniques [38] can be used
to calculate properties of the modeled system. To be able to provide these
solutions, the model must be described with formal methods, e.g. differ-

3

1. Introduction

ential equations. A simulation model is a special kind of model intended
for the execution on a computer system. A computer simulation is utilized
to perform simulation experiments, i.e. executions of the simulation model
with a given set of input parameters. The advantage of computer simula-
tion, in contrast to analytical model evaluation, is its general applicability
to models of varying complexity and size.

Simulation models must properly represent temporal aspects of the sys-
tem [30]. The real time in the system is represented by the simulation time
in the model. A third notion of time is the wallclock time passing during the
execution of the simulation model as a computer program. Further classifi-
cation of simulation models is based on the relationship between simulation
time and wallclock time. In a real-time simulation, the passing of simula-
tion time is directly proportional to the passing of wallclock time. This type
of simulation is typically used in simulation models with continuous user
interaction, intended for training or entertainment. If there is no direct re-
lationship between simulation time and wallclock time, the model is called
an as-fast-as-possible simulation. This is also commonly called an analytic
simulation [30]. However, in order to avoid confusion with the notion of
analytic modeling, the term is avoided in this thesis. This type of simula-
tion is typically used for the quantitative analysis of complex systems, with
no or only marginal user interaction.

As stated by its name, as-fast-as-possible simulation is intended to run
as fast as is possible to achieve. If there is no explicit limit on the amount
of available processing time, in many cases the simulation will be imple-
mented as a sequential simulation for a single-processor machine. How-
ever, with large or complex models, processing times might increase be-
yond an acceptable or economically feasible limit. One technique to in-
crease the performance of an existing model is the parallelization of the
model, leading to a parallel or distributed simulation. In this case, parallel
simulation is used as a technique to increase the performance of a model as
much as possible. In the context of this thesis, the terms parallel simulation
and distributed simulation are used interchangeably, although distinctions
between those terms exist in the literature. There are a number of introduc-
tory texts for parallel and distributed simulation [25, 27, 74].

There are a number of different approaches to the parallelization of a
given simulation model (see Section 2.2). A commonality of all approaches
is the decomposition of the overall simulation task into a number of sub-

4

1.1. Motivation

tasks executed concurrently on parallel processing nodes.The concurrent
execution of a simulation introduces an overhead in comparison to its se-
quential simulation. The total amount of overhead can be divided into three
categories [51]. Communication overhead is the cost of having multiple
parallel processes, which have to communicate to achieve a common goal.
Synchronization overhead results from idle processes, having to wait for
the progress of other processes before being able to continue. Computa-
tional overhead results from redundant computations, which might occur if
the decomposition leads to an overlapping of concurrent simulation tasks.
The performance and efficiency, and thus the feasibility, of a parallel simu-
lation model depends on the amount of overhead that is introduced with the
parallelization.

There are several factors influencing the amount of each type of over-
head in a parallel simulation. A large influence is due to the execution en-
vironment, e.g. a shared-memory multi-processor machine vs. a distributed
cluster of workstations connected via Ethernet. Another factor is the type
and quality of the parallel implementation. However, this thesis is mostly
concerned with the overhead induced by the nature of the model in com-
bination with the parallelization approach. It is commonly accepted in the
literature, that the parallelization of a simulation model is a non-trivial task,
especially because there are a number of different strategies, none of which
can be identified as the single most successful approach. Prior to the de-
velopment of a parallel model, a careful analysis of the sequential model
is necessary to identify suitable decompositions of the overall simulation
task.

Classical parallelization approaches (see Section 2.2) are conservative in
the sense that they do not change the behavior of the original simulation
model. The goal of these approaches is to produce exactly the same results
as a corresponding sequential simulation. This has the advantage that once
the validity of a simulation model has been established, no further valida-
tion activities of parallelizations of this model are necessary. Unfortunately,
with these correct methods, a satisfying decomposition of the simulation
task sometimes is hard to be found [88, 100]. Therefore, alternative par-
allelization approaches tolerate deviations of the results of executions of
the parallel simulation from that of a corresponding sequential simulation.
The viability of these approximate parallelization approaches is confirmed
by the observation that even a sequential simulation model is an abstrac-

5

1. Introduction

tion of the real system, more or less deviating from the real system in its
behavior. In many cases, there are uncertainties in the model, where the
modeler was not able to precisely capture certain aspects of the real sys-
tem. These uncertainties can be exploited to improve the performance of
the simulation system [29, 86]. When applying approximate parallelization
methods, the need for validation of the parallel simulation is introduced, as
the parallelization influences the behavior of the resulting model.

If utilized correctly, approximate parallel simulation can be a valuable
method for the performance increase of simulation models, especially for
types of models, where correct parallelization methods are not viable. In
principle, for every simulation parallelization approach, approximate vari-
ants can be defined, all with their strengths and weaknesses. Compared to
the large amount of work on correct parallelization of simulation models,
little research has been performed towards a theory of approximate par-
allel simulation (see Chapter 3 for a presentation of existing work in this
direction). The main part of this thesis is aimed at a contribution to this
area of research by the introduction of the novel approach of time-parallel
simulation with approximate state matching.

When utilized in real-time environments, approximate parallel simula-
tion approaches can be compared to similar methods of other research ar-
eas. E.g., in hard real-time systems, the technique of imprecise computa-
tions [59] has been developed. An imprecise computation is allowed to
give imprecise (approximate) results if the precise (correct) results cannot
be provided in time. Progressive processing is an extension of imprecise
computations, where computations are continued after the initial determi-
nation of approximate results to improve these results progressively. One
of the more prominent applications of this technique is progressive image
rendering [10, 19, 44], where an imprecise (e.g. blurred) or incomplete rep-
resentation of the image is provided to the user after a short answer time,
after which the quality of the image is progressively improved until the best
representation of the image has been produced or the user cancels the image
rendering process.

Progressive parallel simulation is a novel concept, extending the idea of
progressive processing to the area of parallel simulation. It can be utilized
effectively in contexts where quick results are desirable, regardless of their
precision, but more precise results might be needed later. A second contri-
bution of this thesis is the definition of progressive time-parallel simulation,

6

1.2. Contributions

which is the corresponding extension of the approximate time-parallel sim-
ulation approach.

1.2. Contributions

As mentioned above, there are two main contributions of this thesis to the
research in the area of parallel and distributed simulation. The first one is
the novel concept of time-parallel simulation with approximate state match-
ing. Although there has been some work on similar techniques utilizing
time-parallel simulation (see Section 3.2.4), none of these is as generally
applicable as the method proposed here. The salient features of approxi-
mate state matching in time-parallel simulation are the fine granularity of
the error control and the applicability to models of various types. An impor-
tant aspect of approximate parallel simulation is the error that is introduced
with the approximation. The characteristics of such an error and possible
ways for an error control are discussed in more detail in this thesis.

The second main contribution is the application of progressive process-
ing, developed in other fields of research, to the area of parallel simulation.
The technique of progressive time-parallel simulation is proposed and the
development of the error over the execution time is discussed in detail.

An important property in the research area of modeling and simulation
is the diversity of possible simulation models. Even if only a certain class
of simulation models (e.g., discrete-event simulations, see Section 2.1) is
considered, the specificities of two different models can be substantially
different. This is a significant impediment to the development of general
theories in this area of research. If a general theory for a class of mod-
els has to be developed, its substance and assertions often have to remain
unsatisfyingly vague. A possible way to cope with this problem is to pro-
vide more details in conjunction with one or more examples. To generalize
about the consequences of applying a parallel simulation approach, a single
example is not sufficient.

In this thesis, three models from different problem domains have been
chosen as proof-of-concept of the techniques of approximate state matching
and progressive time-parallel simulation: queuing system simulation, simu-
lation of caching in computer systems, and road traffic simulation. Queuing
system simulation [2, 48] is an important performance modeling technique

7

1. Introduction

in various application areas, e.g. performance evaluation of computer and
communication systems [38]. The mathematical nature of queuing systems
allows for an analytical examination of the consequences of parallel sim-
ulation. Simulation of cache replacement policies [95] is used to evaluate
the impact of a specific cache implementation in a computer system. Trace-
driven cache simulation is characterized by very long run times, leading to a
general suitability of time-parallel simulation [40]. Road traffic simulation
[42] is utilized in the area of transportation research for performing analysis
of traffic situations and forecasts of traffic congestions. The model chosen
in this thesis [69] is an example of a simulation with a high-dimensional
state space, where classical time-parallel simulation is no suitable paral-
lelization approach.

1.3. Thesis Overview

The thesis is arranged in four parts. The rest of the introductory Part I
consists of a presentation of the preliminaries for this thesis in Chapter 2
and a discussion of the context of this thesis in Chapter 3. The main parts
of the thesis are Part II, where the concepts of approximate state matching
and progressive time-parallel simulation are introduced, and Part III, which
presents the three case studies. Part IV concludes this thesis.

Chapter 2 comprises a short introduction to discrete-event simulation and
a discussion of the most prominent parallel simulation approaches: con-
servative and optimistic synchronization and time-parallel simulation. Al-
though most of this thesis is not concerned with conservative and optimistic
parallel simulation techniques, a basic knowledge of these methods is nec-
essary for the understanding of Chapter 3, which gives an overview of the
research context of this thesis and the related work in the area of approxi-
mate parallel simulation techniques.

Chapter 4 presents a formal model of time-parallel simulation, which is
the basis of the definitions of approximate and progressive time-parallel
simulation. In Chapter 5, the technique of approximate state matching in
time-parallel simulation is introduced.

The case studies of Part III are presented in Chapters 7, 8, and 9, con-
sisting of the exemplary applications of approximate state matching and
progressive time-parallel simulation to queuing systems, cache simulation,

8

1.3. Thesis Overview

and road traffic simulation.
The thesis is concluded with a summary and review of the work, as well

as an indication of future work in Part IV.

9

1. Introduction

10

2. Preliminaries

In the field of modeling and simulation, two kinds of simulation models
exist. A real-time simulation model, with a high degree of user interac-
tion, is designed to create a realistic or entertaining representation of reality.
Typical applications include training simulation exercises or virtual reality
computer games. As humans are actively involved with such a system, the
simulation must be executed in real time. In contrast, an as-fast-as-possible
simulation is utilized for an analysis of the modeled system. In the lat-
ter case, there is usually no human interaction, hence real-time support is
not required. As the name of this type of simulation implies, as-fast-as-
possible simulations are executed as fast as is possible to achieve, i.e. there
are no run-time constraints. Nevertheless, for economical or usability rea-
sons, execution times of simulation models should be as short as achievable.
In order to decrease the runtime of such a simulation, parallel simulation
methods can be applied. As this thesis is concerned with parallelization of
as-fast-as-possible simulation models, real-time simulation is not consid-
ered any further. Note however, that the concepts developed in this thesis
could also be applied to the area of real-time simulation.

Moreover, as-fast-as-possible simulation models can be classified by the
technique that is utilized for the description of model dynamics. An impor-
tant technique for model specification is in the form of differential equa-
tions. Typically, equations describe a continuous change of the system over
simulation time. This is used most often by physicists and engineers to
model phenomena of physical systems. Another approach is discrete-event
simulation, where the state of the model changes on the occurrence of an
event, i.e. at discrete points in time. The latter has been used in many kinds
of models, e.g. for performance evaluation of computer and communica-
tion systems, manufacturing models, or road traffic simulation. Continu-
ous simulation with the use of differential equations is a separate field of
research closely related with numerical methods for the solution of differ-
ential equations. In this thesis, only discrete-event simulation systems are

11

2. Preliminaries

considered.

2.1. Discrete-Event Simulation

This section gives only a short overview of discrete-event simulation. For
more information, the reader is referred to one of the various textbooks on
this topic [6, 26, 53].

Like every model, a discrete-event simulation model is required to rep-
resent the development of the state of the real system over time. As such,
there are three central aspects of a discrete-event simulation:

� At any time, the simulation is in one of a number of possible states.
The set of all valid states of a model is called the model state space.

� A simulation model is of a dynamic nature. Therefore, it has to rep-
resent the changing of state over time.

� The passing of time has to be recorded in the simulation.
As mentioned in Section 1.1, different notions of time exist. Wallclock

time denotes the time that passes during the execution of the simulation
program. The simulation time is an abstraction used in the simulation to
represent the time in the real system. In this thesis, to emphasize on the dif-
ference of wallclock time and simulation time, different symbols for vari-
ables of the corresponding types are used. An instant in wallclock time is
denoted by a small case latin letter t, while an instant in simulation time
is denoted by the small greek letter τ (both possibly with sub- and super-
scripts).

The state of a simulation is composed of a number of atomic state vari-
ables, typically real-valued. As explained above, in a discrete event simu-
lation, the state of the system changes only on the occurrence of an event.
Therefore, it is possible to use a rule-based specification of model dynam-
ics: On the occurrence of an event, the next state of the simulation is de-
termined by the type of event that occurred and the previous state of the
simulation. Every event causes an action that consists of two parts: the
modification of the simulation state and the scheduling of new events. Ad-
ditionally, the process advances to the time of the event being processed,
i.e. the simulation time of the process is set the event time. An event can
be scheduled for an occurrence at any time after the current simulation

12

2.2. Parallel Discrete-Event Simulation

Figure 2.1. Time-advancement schemes in discrete-event simulation [30]
S

ta
te

va
ria

bl
es

Simulation time

(a) Time-stepped execution
S

ta
te

va
ria

bl
es

Simulation time

(b) Event-driven execution

time. Therefore, at any time of the simulation execution, there are one
or more scheduled events, not yet processed (i.e., scheduled for a future
time). These are stored in a data structure called the future event list.

Two different approaches for advancing the simulation time in a discrete-
event simulation execution exist. In a time-stepped execution, the simula-
tion is advanced a number of equal-sized time steps. At every time step,
a new state is calculated based on the current value of the state variables.
However, it is not necessary, that there are state changes during a time step
at all. If this occurs frequently during a simulation execution, processing
cycles are wasted with unnecessary state calculations. If the times where
state changes can occur are known in advance, the unnecessary calculations
can be eliminated by skipping those time steps where no state change oc-
curs. This is done in an event-driven execution, where time is advanced to
the next event in the future event list. Figure 2.1 illustrates time-stepped
and event-driven execution schemes. Vertical bars are used to represent
recalculations of state variables.

2.2. Parallel Discrete-Event Simulation

To decrease run times of discrete-event simulation systems, the simulation
task can be decomposed into multiple subtasks to be simulated concurrently
on parallel processing nodes. If, for statistical reasons, multiple replications

13

2. Preliminaries

of an experiment with a simulation model are to be performed, these can
be executed in parallel [33]. However, depending on the parameters of the
simulation experiment, a direct parallelization of the simulation model can
be more efficient [39], especially if there are runtime constraints for the
simulation execution.

A common approach to the parallelization of a simulation model is by
state decomposition, i.e. a grouping of state variables into subsets of the
overall set. Each of these identified subsets is assigned to a processing
node for parallel simulation. Most often, the parallel simulation processes
are mutually dependent. In the case of discrete-event simulation, this is
expressed by an exchange of messages between parallel processes, indicat-
ing the scheduling of one or more events for the receiving process. The
efficiency of the parallel simulation decreases with an increasing message
volume. Therefore, the amount of inter-process communication should be
minimized by a proper state decomposition. In many cases, this can be
achieved by taking the inherent parallelism of the real system to be mod-
eled into account. In the real system, physical processes can be identified
and these are transformed into logical processes in the parallel simulation
model [30].

In the classical parallel discrete-event simulation theory, a central re-
quirement is the correctness of the parallel simulation in comparison to
a corresponding sequential simulation. The parallel simulation is said to
be correct, if it is guaranteed to produce the same results as the sequential
simulation. This is achieved by ensuring identical sequences of events in
the parallel and sequential models. The following local causality constraint
guarantees correctness of the parallel simulation.

Definition 2.2.1 (local causality constraint [27]). A discrete-event simula-
tion, consisting of logical processes (LPs) that interact exclusively by ex-
changing time stamped messages obeys the local causality constraint if and
only if each LP processes events in nondecreasing time stamp order.

Therefore, an important property of parallel simulation of discrete-event
models is the introduction of a local simulation time for each logical pro-
cess. In order to maximize the degree of parallelism of the simulation
system, no strict synchronization of the local clocks of the processes is
required. Completely independent time advancement of logical processes

14

2.2. Parallel Discrete-Event Simulation

is desirable, but in general not achievable due to the local causality con-
straint. Two different types of approaches for the synchronization of logi-
cal processes exist: Conservative synchronization avoids the occurrence of
causality errors by determining if the processing of an event is safe, i.e. it
is not possible that an event with a smaller time stamp appears at a later
time. Optimistic synchronization, in contrast, always allows the processing
of an event, but if a message arrives later that violates the local causality
constraint, that causality error is recovered by resetting the simulation to a
state before the occurrence of the error.

2.2.1. Conservative Synchronization

The goal of conservative synchronization algorithms is the prevention of
causality errors by determining safe events. In the basic approach, this is
achieved with a set of event input queues at each logical process. Each of
these sets consists of an input queue for every other logical process sending
messages to the local process. This is depicted in Figure 2.2, where every
one of three LPs communicates with the other two. To advance the local
time of a logical process, the event with the smallest time stamp is chosen
from all of the event queues. The event is processed, possibly causing a
new event to be sent to another process. As it is required that time stamps
of new events are strictly greater than the local time of the issuing process,
compliance to the local causality constraint is guaranteed for every logical
process.

Time advancement is only possible if every one of the event queues of a
logical process contains at least one event. If any queue is empty, the event
with the smallest time stamp cannot be determined, as an event with an ar-
bitrary time stamp might appear later at the empty queue. In this case, no
safe event can be determined and the process blocks until an event arrives
at the empty queue. This introduces the possibility of a deadlock, which oc-
curs if all processes are blocked, waiting for an event to arrive from another
process.

There are two ways to cope with deadlocks: deadlock avoidance and
deadlock detection and recovery. For the latter, a central controller process
is introduced, which is responsible for the deadlock detection. A moder-
ately complex detection algorithm is presented in [22]. If a deadlock has

15

2. Preliminaries

Figure 2.2. Structure of a conservative parallel simulation

LP3

LP2

LP3

LP1

LP3

LP1

LP2

LP2

LP1

been detected, it can be broken by determining the event with the smallest
time stamp of all events in the simulation, which is always safe to be pro-
cessed. This can be done easily by collecting the events with the smallest
time stamps from all logical processes. The parallel simulation approach
with deadlock detection and recovery can be found in [16].

Another approach, which is of more relevance in parallel discrete-event
simulation is the null-message approach due to Chandy and Misra [15] and
Bryant [12]. If a process is blocked, instead of waiting until the missing
event arrives with a message, a null message with a lower bound on the time
stamp of future messages of that process is sent. The lower bound on the
time stamp (LBTS) is equivalent to the local time of the logical process plus
the lookahead, i.e. a minimum amount of time that a message is scheduled
in the future. The amount of lookahead for each process is model specific,
e.g. it might be derivable from physical limitations of the real system. A
null message can be interpreted as a normal event with the exception that it
does not lead to state changes or scheduling of new events. As soon as a null
message arrives at an empty event queue and there is no other empty queue
at the same logical process, it can be processed, causing the simulation time
of the process to advance.

The Chandy/Misra/Bryant approach is a distributed algorithm that is easy

16

2.2. Parallel Discrete-Event Simulation

Figure 2.3. Straggler message arriving at a local process

processed event

unprocessed event

13
Time
Local

28

9

21 13 8

Logical Process

Event Queue

to implement. However, although it ensures that no deadlocks can occur,
the performance of the algorithm highly depends on the amount of looka-
head in the model. With poor lookahead, it might take a long time to break
an existing deadlock, as only small time advances can occur. Even if there
is a modest amount of lookahead in the model, the lookahead is not always
easy to identify.

2.2.2. Optimistic Synchronization

Conservative simulation approaches guarantee the satisfaction of the local
causality constraint by processing only safe events. Optimistic methods, in
contrast, allow the processing of any event, regardless of the value of its
time stamp. Therefore, straggler messages may occur, i.e. messages with a
time stamp ts smaller than the local time tl of the process (in Figure 2.3, this
is illustrated with ts = 9 and tl = 13). As this violates the local causality con-
straint, a rollback to ts is required. A rollback is intended to reset the state
of the logical process to the correct value at time ts. Each of the messages
sent by the process after time ts might be invalid, as the process could enter
a completely different simulation state after processing the straggler mes-
sage. Therefore, all of these messages have to be retracted. The most well-
known optimistic algorithm is Jefferson’s Time Warp method [45], which
provides details about the mechanisms of rollback, state saving, message
retraction, and global virtual time.

17

2. Preliminaries

To be able to reset the state of the simulation system in case of a rollback,
state saving has to be performed. There exist two widely used techniques to
accomplish state saving in Time Warp. With copy state saving, the whole
state of a logical process is saved and stored for later rollbacks. This has
the advantage that rollbacks are easy and efficient to perform, but the cost
in terms of memory consumption and processing time for state savings is
high. In incremental state saving, a log is kept, recording changes for each
event being processed. In the case of a rollback, the log entries of events
being rolled back are scanned in order of decreasing time stamps, undoing
the state changes associated with each event. In this case, the cost of state
saving is decreased, but the cost of rollbacks is increased. Which of the
two methods to choose depends on the frequency of rollbacks and the size
of states to be saved, including the size of events themselves. If rollbacks
are likely to occur, copy state saving might be more efficient. Otherwise,
incremental state saving is the more viable alternative.

Message retraction is needed to ensure the consistency of the parallel
simulation system. In the case of a rollback, all messages caused by events
occurring after the rollback time are to be retracted. This is a complex op-
eration, as the messages themselves might have caused other messages to
be sent, which have to be retracted as well. In Time Warp, the concept of
anti-messages is used for the implementation of message retraction. For
every message to be retracted, a corresponding anti-message is sent to the
original receiver. If the original message has not yet been processed by the
receiver (i.e. it is waiting in the receiver’s event queue), anti-message and
original message annihilate each other. If the original message already has
been processed, a rollback to the time of the original event is performed,
which is equivalent to a rollback due to a straggler message. In the case of
unreliable communication links, it might be the case that an anti-message
arrives at the receiver prior to the original message, e.g. if the original mes-
sage was delayed during the transmission. In this case, the anti-message is
inserted into the event queue and annihilates the original message as soon
as the latter one arrives. In contrast to normal messages, however, anti-
messages are never processed.

To be able to send anti-messages in case of a rollback, a record of mes-
sages with receiver and time stamp has to be stored for every message that
is sent by a logical process. Together with the need for frequent state sav-
ings, this incurs a high memory overhead of the parallel algorithm. Another

18

2.2. Parallel Discrete-Event Simulation

Figure 2.4. Decomposition of simulation models [30]

Simulation time

S
ta

te
va

ria
bl

es

LP3

LP2

LP1

(a) Spatial model decomposition
Simulation time

S
ta

te
va

ria
bl

es

LP1 LP2 LP3

(b) Temporal model decomposition

problem of the Time Warp mechanism as presented above, is the inability
to produce reliable output during the simulation execution, as every event
that is processed might be retracted later. To solve these issues, the concept
of global virtual time is used.

Definition 2.2.2 (Global virtual time [30]). Global virtual time at wallclock
time T (GV TT) during the execution of a Time Warp Simulation is defined
as the minimum time stamp among all unprocessed and partially processed
messages and anti-messages in the system at wallclock time T .

As GV TT is the lower bound of all the time stamps of messages in the
system, it is not possible that a straggler message or anti-message with a
time stamp smaller than GV TT arrives at wallclock time T . Rollback to
a time before GV TT will not be necessary in any of the logical processes.
Therefore, state savings and event records can be discarded for all simu-
lation times smaller than GV TT . Furthermore, simulation output can be
generated for the same time period.

Asynchronous computation of the global virtual time is a non-trivial task,
especially due to the problem of transient messages, which might be in the
system at the time of GVT computation. Examples for efficient algorithms
for GVT computation can be found in [62, 92].

19

2. Preliminaries

2.3. Time-Parallel Simulation

In the parallel-discrete event simulation approaches discussed above, the set
of state variables of a simulation model is decomposed into subsets. Each
of these is assigned to a logical process managing the corresponding part
of the global state. These logical processes are then executed concurrently
on parallel processing nodes. An illustration of this approach is depicted in
Figure 2.4(a). Drawbacks are the introduction of an overhead for the syn-
chronization between logical processes and the possibly limited amount of
achievable parallelism, which is restricted by the number of state variables
and the decomposability of states in the model. Time-parallel simulation
takes a different approach by decomposing the time axis and performing
simulations of resulting time intervals in parallel (see Figure 2.4(b)). After-
wards, the results of all intervals are combined to create the overall simula-
tion result. This has the potential for massive parallelism, as the maximum
number of logical processes is determined by the number of possible time
intervals, which is only restricted by the granularity of the time represen-
tation in the simulation implementation. The method is first attributed to
Chandy and Sherman [14], which propose a combined spatial/temporal de-
composition of the simulation task, i.e. a combination of classical parallel
simulation techniques with time-parallel simulation.

Without further mechanisms, the final and initial states of adjacent time
intervals do not necessarily coincide at interval boundaries, possibly re-
sulting in incorrect state changes (this situation is depicted in Figure 2.5).
Several solutions of this state-matching problem [30] have been proposed.
Lin and Lazowska [58] introduce the notion of regeneration points, which
are states that keep reoccurring throughout a simulation execution. If such
a state can be identified a priori, a number of simulations can be executed
concurrently, starting from the regeneration point and continuing until the
regeneration point is reached again. Afterwards, the traces of the parallel
simulations are concatenated to a correct trace of the simulation over the
whole time period. The drawback of this approach is the difficulty to iden-
tify regeneration points, especially for models with complex states. Nev-
ertheless, this approach was used successfully for the simulation of ATM
multiplexers [3, 4] and cascaded statistical multiplexers [76].

Another solution is to use fix-up computations [40], where prior to the
simulation, the states at interval boundaries are guessed and a first simula-

20

2.3. Time-Parallel Simulation

Figure 2.5. Incorrect state changes in a time-parallel simulation
T3 T4

S
ta

te

t1 t2 t3 t

T1

k

Time

T2

tion phase is performed starting with the guessed states as initial states of
the concurrent simulation executions. Without a perfect guessing scheme,
this frequently results in incorrect state changes at interval boundaries. Fix-
up computations are re-executions of the simulations of those time intervals
that started from incorrect initial states (see Figure 2.6 for an illustration).
Depending on the knowledge gained in a simulation phase, only a partial re-
simulation might be necessary, but in the worst case, a fix-up computation
consists of the re-simulation of a complete time interval. Without a good
guessing strategy or efficient fix-up computations, this approach leads to
a significant amount of computational overhead. The method of temporal
parallelization with fix-up computations has been applied successfully to
the simulation of caching in computer systems [40, 75] and the simulation
of Ethernet [107], among others.

A completely different approach to time-parallel simulation utilizes par-
allel prefix computations [52] to solve recurrence equations describing the
dynamics of a simulation model. This method is best understood in the
context of an example. Consider a single-server queuing system with an
arbitrary statistical distribution of job interarrival and service times. Inter-
arrival and service times are presampled and stored in an input trace. Now,

21

2. Preliminaries

Figure 2.6. Performing fix-up computations
T2 T3 T4

S
ta

te

Timett3t2t1

k

T1

the job arrival instants can be defined as a recursive function of interar-
rival times. E.g., if job i− 1 arrived at time Ai−1 and ri is the interarrival
time between jobs i− 1 and i, the arrival time of job i can be calculated
by Ai = Ai−1 + ri. By repeatedly solving the recurrence, we arrive at the
formula Ai = r1 + r2 + . . .+ ri. This can be solved efficiently in parallel by
utilizing parallel prefix computations [34, 50]. E.g. the sum r1 + r2 can be
computed on one processing node, while r3 + r4 is computed on another
node, combining the results after both computations have been finished (as
can be seen, parallel prefix can only be used on computations with associa-
tive operators). In the queuing example above, the departure times of jobs
can be described as recurrence equations as well, and solved by parallel
prefix computations. The method of parallel simulation of G/G/1 queues
has been described by Greenberg et al. [35, 36], also discussing possibil-
ities to apply this method to the simulation of more complex topologies
of queuing networks. This technique fits into the category of time-parallel
simulation, as the statistics of jobs arriving at different simulation time in-
stants are computed concurrently.

22

3. Thesis Context

This thesis is concerned with the presentation of new approximate meth-
ods to increase the performance of parallel as-fast-as-possible simulation
models. These methods introduce an error in the simulation results, i.e., the
results of the approximate parallel simulations deviate from those of a cor-
responding sequential simulation. In the field of parallel and distributed
simulation, there are a variety of other techniques directly or indirectly
comparable to approximate state matching. In the first part of this chap-
ter (Section 3.1), a broader survey of related techniques is given, in order to
classify the approach introduced in this thesis in the context of parallel and
distributed simulation. In the second part (Section 3.2), detailed discussions
of the more directly related work are presented.

3.1. Classification of the Approach

Traditional synchronization methods for parallel simulation of discrete-
event models were devised to ensure correctness of the parallel simulation,
i.e., to produce results identical to those of a corresponding sequential simu-
lation. Proofs of this property have been provided for conservative [65] and
optimistic [55] synchronization, as well as time-parallel simulation meth-
ods [40, 58]. However, the utilized parallelization methods often restrict
the degree of parallelism of simulation systems [88, 100]. Therefore, vari-
ants of these methods have been developed, where the correctness property
does not hold [61, 87, 101] (cf. the related discussion in Section 1.1).

Figure 3.1 depicts an abstract view on the development process of a par-
allel or distributed simulation. Starting from a problem in the real world,
a model of the real system is created. It is supposed here, that the initial
model is of a sequential nature, i.e. no special precautions for the paral-
lelization of the model have been taken. The abstraction involved in the
modeling step leads to a discrepancy between the behavior of the real sys-

23

3. Thesis Context

Figure 3.1. Distributed Simulation Development

(Validation)

Real
System

Sequential
Model

Distributed
Model

Bias Bias

Modeling Distribution

Validation Validation

tem and the behavior specified in the model. This discrepancy can be in-
terpreted as a bias of the model with respect to the real system (the term
bias is used in a non-statistical sense here). The model is considered cred-
ible if the bias is negligible according to the problem definition. To ensure
this credibility, validation of the model against the real system is performed
according to pre-defined criteria.

To create a parallel or distributed simulation, the sequential model is en-
hanced with details about the parallelization. As discussed above, this intro-
duces another level of bias, which is caused by the utilized parallelization
method. For a study of the bias introduced in the process of creating a par-
allel or distributed model, different aspects of interest, as well as different
reference systems, may be considered. For example, the following aspects
in a (distributed) simulation may be of interest:

� the trajectory of the state vector in the state space,

� an aggregated performance measure (e.g. the average utilization of a
server in a queuing network model),

� events occurring in an event-driven simulation,

� the exact ordering of events in a discrete-event simulation, and

� the state of the simulation system at an arbitrary point in wall clock
time during the simulation run.

A reference system is a basis against which to determine the bias in a sim-
ulation model. Typical reference systems are:

� the real/physical system (validation of simulation models),

24

3.1. Classification of the Approach

� the formal and/or conceptual model the executable model is based on
(verification of simulation models),

� another simulation run with the same simulator (repeatability of sim-
ulation experiments),

� a sequential version of a parallel or distributed simulation system
(synchronization and coordination in parallel and distributed sim-
ulation), and

� an idealized parallel simulation system, e.g. parallel simulation using
a reliable communication system without latencies.

There are various sources for bias in the above sense. In the sequel, rea-
sons for uncertainties and incorrectness are classified in three categories:

1) bias that is caused independently from parallelization or distribution
of the simulation model,

2) bias in parallel and distributed simulation that is caused by the tech-
nical framework applied in parallel and distributed simulation, and

3) bias that is deliberately accepted by the modeler (simulation devel-
oper, resp.) in a controlled fashion in order to increase the perfor-
mance or fault tolerance of a parallel or distributed simulation run.

3.1.1. Bias Independent of Parallelization

Even in sequential simulation on a single processor machine, aspects of
vagueness, inexactness, and uncertainty may occur. In order to obtain a
clearer understanding of the effects of parallel and distributed simulation,
aspects that occur independently of parallel or distributed simulation are
discussed briefly.

Abstraction and Simplification When constructing a simulation model,
the required abstractions and simplifications always cause a divergence of
the model behavior from the behavior of the real system. Controlling this
type of inexactness in a systematic way is dealt with by model validation
[5, 11]. The degree of inexactness tolerated here is implicitly or explicitly

25

3. Thesis Context

defined via the primary objective of the simulation model. Incorrect be-
havior and associated inexactness of a simulation model as opposed to the
corresponding formal or conceptual model may also be caused by incor-
rect translation and implementation. Such aspects should be dealt with by
methods of model verification [5].

Stochastic Simulation Using random variables is a popular instrument
to represent details of the real system that are not available to the modeler
or that are too fine grained for the intended purpose of the simulation model.
Consequently, in stochastic simulation, uncertainty and vagueness occur at
least twofold: Firstly, repeated simulation runs differ in their behavior due
to the introduced randomness. Secondly, the behavior of the model clearly
differs from the behavior of the real system, since in the real system many
aspects modeled via random variables are in fact deterministic. Since ran-
dom behavior in simulation models is actually realized via pseudo random
sequences (which causes an additional difference between the formal and
the executable model), uncertainty in the first sense may be eliminated by
controlling the seeds of the pseudo random number generators. This way,
also (pseudo) stochastic simulation experiments can be made repeatable.
Uncertainties in the second sense are an integral property of stochastic sim-
ulation. They can be dealt with by appropriate statistical methods (such as
confidence intervals or the computation of higher moments of simulation
results) if the intended purpose of the simulation model is system analysis.
If the intended purpose is training and education, the trainee and trainer
should be aware of random aspects of the model.

Discretization and Rounding Errors Usually, for the representation of
continuous aspects of system behavior, sets of differential equations are
used. Since such mathematical representations often do not allow for a
closed form solution, numerical methods are applied that typically rely on
the discretization of continuous model aspects. This usually implies a dif-
ference between numerically computed model solutions and the theoretical
exact solutions of the formal model. However, many methods of computa-
tional mathematics provide an estimation or bound for the error introduced
by discretization. Moreover, discretization errors may be controlled by us-
ing techniques of adaptive step-length control. Also, rounding errors intro-

26

3.1. Classification of the Approach

duced by the application of numerical methods may be controlled by using
appropriate mathematical tools (e.g. interval arithmetic [66, 71]).

3.1.2. Bias due to Technical Conditions in Parallel
Simulation

Parallel and distributed simulation is based on the principle of simulating
partitions of a simulation model on a number of processing nodes. Depend-
ing on the type of synchronization method, the most relevant aspects of
the technical framework for parallel and distributed simulation with respect
to bias and uncertainty are communication latencies, differing hardware
clocks and the necessity to order simultaneous events.

Communication Latencies Communication between processors or com-
puting nodes is an integral part of parallel and distributed simulation. De-
pending on the time management of the distributed simulation model, com-
munication latencies can be a source of additional uncertainties and in-
exactness. In real-time simulation (e.g. Distributed Interactive Simulation
[21, 77]), communication latencies cause a delayed arrival and thus a de-
layed consideration of messages. This yields inexact behavior in at least
two respects: Firstly, such delays cause a difference of the simulation be-
havior from the formal model and a corresponding sequential implementa-
tion. This can lead to time anomalies and causality violations. Secondly,
communication latencies contribute to differences between repeated sim-
ulation runs, as many communication systems involve non-deterministic
behavior (e.g., Ethernet-based local area networks or the Internet).

Synchronization of Hardware Clocks Even without the consideration
of communication latencies, distributed real-time simulation assumes syn-
chronized hardware clocks in order to obtain correct behavior. However,
exact synchronization of hardware clocks cannot be guaranteed. This may
contribute to various uncertainty aspects: a divergence from the formal
model and from a sequential implementation as well as non-repeatability
of simulation runs.

The mechanisms for time-coordinated as-fast-as-possible simulations,
presented in Section 2.2, guarantee that parallel simulation produces the

27

3. Thesis Context

same event sequences as sequential simulation. Furthermore, repeatabil-
ity is guaranteed despite the presence of non-deterministic communication
latencies. Thus, those two types of uncertainties do not appear in time-
coordinated simulation, but were presented here for reasons of complete-
ness.

Simultaneous Events To obtain repeatable simulation runs, special care
has to be taken on simultaneous events (i.e., events with identical simu-
lation time stamps) even in sequential simulation. Repeatable ordering of
simultaneous events is an even more critical challenge in parallel and dis-
tributed simulation. If no measures are taken in order to guarantee a re-
peatable ordering of simultaneous events, uncontrollable factors such as
different event rates or different communication latencies in repeated sim-
ulation runs can cause a different ordering of simultaneous events. Various
approaches can be used in order to enable repeatability of distributed simu-
lations also in the presence of simultaneous events. These techniques work
by ensuring uniqueness of otherwise identical time stamps. Among other
approaches, this can be achieved by assigning additional information with
each time stamp that allows the consideration of causal interdependencies.
Similar results can be obtained by associating different priorities to events
with equal time stamps. In [30], a combination of using an age field, prior-
ity, node-ID and a sequence number is suggested. An overview of different
event ordering schemes can also be found in [90].

3.1.3. Bias in Order to Achieve Higher Efficiency

A third category of bias in parallel and distributed simulation considers
the deliberate acceptance of bias in order to increase the efficiency or the
reliability of a simulation model. Here, bias is used as a means to improve
the quality of a simulation in terms of runtime or reliability. However, this is
done at the cost of a potential error in the simulation results. The method of
approximate time-parallel simulation introduced in this thesis fits into this
category, therefore this method is discussed intensively in the next section.

28

3.2. Directly Related Work

3.2. Directly Related Work

There is a moderate amount of existing work deliberately accepting bias,
mainly to increase the efficiency of conservative or optimistic parallel sim-
ulation approaches. As these constitute the work directly related to this
thesis, a separate section is dedicated to their discussion. Section 3.2.4
summarizes the most closely related work, i.e. the application of approxi-
mate methods in time-parallel simulation.

3.2.1. Temporal Uncertainty

With many models, sufficiently high lookahead values are hard to deter-
mine, preventing high efficiency in conservative parallel simulation. In
previous work, future lists have been proposed to increase lookahead ca-
pabilities [72].

In [61], within the context of a hybrid optimistic/conservative synchro-
nization scheme, the conservative blocking behavior is relaxed by introduc-
ing a tolerance ε. Consider a synchronization point at simulation time t0.
Then, the tolerant synchronization approach allows simulation until time
t0 + ε. Events with a time stamp t0 + x < t0 + ε are scheduled at simula-
tion time t0. This introduces a controllable error ε in the exact time stamps
of simulated events that allows to increase the efficiency of the simulation
execution significantly. The authors argue that the introduced error corre-
sponds to factors that are unknown in the real system. Furthermore, it is
reported that the effect of the time stamp errors on the error of the over-
all simulation result is usually smaller than the confidence interval of the
result.

Fujimoto addresses a similar yet different solution to the low/zero-look-
ahead-problem: In [29], a partial order called approximate time order is
introduced: in approximate time order, intervals are used to capture tem-
poral uncertainty of the simulated real system. It is argued that temporal
uncertainty can be found in basically every model because simulation is al-
ways only an approximation of the real world. Given two time intervals,
an is-before relation holds if the intervals do not overlap. For overlapping
intervals no ordering relationship exists between the two events. This re-
laxed order for overlapping time intervals is exploited in order to increase
efficiency in conservative simulation. However, causal interdependence be-

29

3. Thesis Context

tween events may be lost with that approach. Thus, another partial order is
defined that considers causality as well: approximate time causal order. In
experiments based on the PHOLD algorithm [28], it is shown that signifi-
cant speedup can be achieved by using time intervals and approximate time
or approximate time causal order with moderate effects on the accuracy of
the simulation results.

A disadvantage of the approach proposed in [29] is the fact that in order
to use the proposed algorithms for the Runtime Infrastructure (RTI) in the
High Level Architecture (HLA) [79, 78, 80], message delivery mechanisms
and the HLA interface specification would have to be modified [60]. To
achieve compliance with the HLA specification, Loper and Fujimoto pro-
pose to use a combination of time intervals and pre-sampling of a precise
time stamp within time intervals according to some specified probability
distribution [60]. The effect of this algorithm is an increase of lookahead
values that can directly be used in HLA-based simulation.

An application of the concept of temporal uncertainty in parallel discrete-
event simulation to optimistic synchronization via Time Warp is reported by
Beraldi and Nigro [8, 9]. Similar to temporal uncertainty in conservative
simulation as presented in [29], Beraldi and Nigro introduce a formal event
model for optimistic synchronization, where events are assigned time in-
tervals, rather than time instants. Experiments with this approach indicate
a considerable speedup without compromising the accuracy of the simula-
tion.

3.2.2. Spatial Uncertainty

In analogy to temporal uncertainty, Quaglia [86] argues that in many real
systems also spatial uncertainty exists. In parallel and distributed simu-
lation, usually a uniquely specified logical process is responsible for the
simulation of a given event. Quaglia proposes to exploit spatial uncertainty
in the model in order to relax this mapping by associating a set of logical
processes to every event. The event can be passed to any of the logical
processes in this set. This freedom is subsequently exploited as follows: In
optimistic simulation, an event that would cause a rollback at the receiver
logical process may be passed on to other logical processes in the set associ-
ated to the event. This way, the number of rollbacks can be reduced and the

30

3.2. Directly Related Work

efficiency of the optimistic simulation run is increased. Similarly, spatial
uncertainty can be used to increase lookahead in conservative simulation.
In [86], this technique is applied to the simulation of mobile communica-
tion systems and a moderate bias of the simulation results is reported.

3.2.3. Relaxed Ordering Mechanisms

Most synchronization schemes for time coordinated distributed simulation
rely on using time stamps for events and apply a time stamp ordered event
simulation and/or message delivery. However, strict time stamp ordering
often decreases the efficiency of distributed simulation systems, sometimes
to a level that real-time requirements are no longer met. On the other hand,
pure time-stamp ordering is sometimes overpessimistic, because not every
message that is delivered out of order necessarily produces a causality vi-
olation. There exists a couple of approaches to overcome this problem by
relaxation of the strict time stamp ordering.

The most radical concept is that of unsynchronized parallel discrete-
event simulation [87, 97]. In that work, the effect of dispensing with syn-
chronization in time-warp-based simulation of queueing models is studied.
For this special case, significant efficiency improvements were reported in
terms of both processor time and memory usage, with surprisingly little ef-
fect in the overall simulation results. However, the general applicability of
such a radical approach seems questionable.

A concept originally developed in the context of multimedia systems
with real-time requirements is the notion of delta causality [1, 108]. In
delta causality, an expiration time is associated with every time-stamped
message. Messages that are received before the expiration time is elapsed
are delivered and processed in time-stamp order. Messages that are deliv-
ered after expiration, may be processed out of order, eventually causing
causality violations.

Time management in the high level architecture (HLA) is based on two
options for message delivery: receive order and time-stamp order. In [54],
the notion of causal order in the context of HLA time management is in-
troduced. Causal order focuses on the most important aspect of time-stamp
order, namely preservation of causality. However, the costly ordering of all
time-stamp-order messages is reduced such that only messages with causal

31

3. Thesis Context

dependencies are ordered. One major challenge in causal ordering is to
provide less costly meta information about causality constraints than event
time stamps. In [110], the authors propose an enhanced version of causal
ordering, namely critical causal order, being an additional relaxation of
causal order. With the critical causal order mechanism, it is possible to pre-
serve causality even with a relatively large number of federates, while still
preserving important real-time properties of the simulation system.

Another alternative event ordering mechanism is presented by Quaglia
and Baldoni [85]. The authors introduce the notion of weak causality that
models the intra-object parallelism in parallel discrete-event simulation sys-
tems. A correct simulation run is defined as a run where events are executed
at each object according to their time stamp. The weak causality relation
is applied to optimistic synchronization by the way of a synchronization
protocol that reduces the number and extent of rollbacks.

3.2.4. Approximation in Time-Parallel Simulation

The concept of approximate time-parallel simulation introduced in this the-
sis considers an approximate solution to the state-matching problem (see
Section 2.3). Instead of an exact match of the states of two different pro-
cesses at the time interval boundaries, a deviation of states is tolerated ac-
cording to a pre-defined threshold. This introduces a bias in the parallel
simulation in the form of an error in the simulation results. Details about
this method are presented in Part II.

There has been few work on the utilization of approximate methods in
time-parallel simulation. The only existing approaches in this respect are
specially designed for queuing system simulation. Efficient correct parallel
simulation methods have been devised for various types of queuing sys-
tems and networks: certain types of networks of G/G/1 queues [35, 36],
arbitrary networks of lossy markovian queues [3, 4], and certain types of
G/G/1 queuing networks with loss or communication blocking [17]. In or-
der to extend the efficient approach of Greenberg et al. [35, 36] to the sim-
ulation of G/G/1/K queues, Wang and Abrams [103] use an approximate
algorithm. Another approach to approximate simulation of lossy G/G/1/K
queues is presented by Lin [57].

In another work on the simulation of G/G/1/K and G/D/1/K queues,

32

3.2. Directly Related Work

Wang and Abrams [101] introduce the notion of partial state matching in
time-parallel simulation, which is similar to the approximate state match-
ing approach introduced in Chapter 5. In most cases, a simulation state
z is composed of several sub-states. Two states z = (z1,z2,z3) and z′ =
(z′1,z

′
2,z

′
3) match partially, if all sub-states in a predefined subset of the set

of sub-states match, e.g. z1 = z′1. However, a deviation of the sub-states
z1 and z′1 is not allowed. With a proper definition of the deviation mea-
sure (see Section 5.1), approximate state matching can be used to perform
partial state matching as well.

The original design of partial state matching was in the context of queu-
ing simulation, but the authors mention the possibility of applying the tech-
nique to other kinds of models [102], without providing detailed informa-
tion. For reasons explained above, approximate state matching is a more
general concept that allows a more fine-grained definition of error control.
Therefore, it is supposed to be applicable to a wider range of models.

The directly related work, which has been discussed in this section, is
summarized in Figure 3.2.

33

3. Thesis Context

Fi
gu

re
3.

2.
D

ir
ec

tly
re

la
te

d
w

or
k

[5
7,

10
1,

10
3]

S
pa

tia
lP

ar
al

le
liz

at
io

n

R
el

ax
ed

O
rd

er
in

g
[8

5,
87

,9
7]

C
on

se
rv

at
iv

e

S
yn

ch
ro

ni
za

tio
n

U
nc

er
ta

in
ty

Te
m

po
ra

l

[2
9,

60
,6

1]

D
is

tr
ib

ut
ed

S
im

ul
at

io
n

C
au

sa
l

O
rd

er
in

g
[5

4,
11

0]

O
pt

im
is

tic

[8
6]

S
pa

tia
l

U
nc

er
ta

in
ty

S
yn

ch
ro

ni
za

tio
n

Te
m

po
ra

l
U

nc
er

ta
in

ty
[8

,9
]

Te
m

po
ra

lP
ar

al
le

liz
at

io
n

P
ar

tia
lS

ta
te

M
at

ch
in

g
[1

01
,1

02
]

P
ar

al
le

la
nd

S
im

ul
at

io
n

of
Q

ue
ui

ng
S

ys
te

m
s

34

Part II.

Approximate Time-Parallel
Simulation

35

4. Formal Model of Time-Parallel
Simulation

A discrete event simulation consists of a set of state variables that constitute
the overall state of the simulation at any time during the simulation execu-
tion. The dynamic behavior is defined as state changes triggered by events
occurring at specific points in simulated time.

To parallelize a simulation model, the task of computing state changes
over time has to be decomposed into subtasks to be assigned to a number
of logical processes for concurrent simulation. In classical parallel discrete
event simulation, the set of state variables is decomposed (spatial decom-
position) and each of the resulting subsets is assigned to a logical process,
which is responsible for the calculation of states in the state space spanned
by the assigned variables (see Section 2.2). E.g., a road network of a traffic
simulation might be decomposed into several smaller networks simulated
by logical processes concurrently.

In most cases, the subtasks created through spatial decomposition are not
independent of one another. In order to achieve a causally correct behav-
ior of the overall simulation, logical processes have to communicate. As
the communication and synchronization overhead of mutually dependent
processes might seriously decrease potential speedups, the efficiency of the
parallelization highly depends on the level of independence of logical pro-
cesses. Hence, the amount of achievable parallelism is largely determined
by the decomposability of the state space.

Another possibility of discrete-event-simulation parallelization is the de-
composition of the simulated time into intervals (temporal decomposition).
For each of these intervals, the responsibility to compute the state changes
at the corresponding times is assigned to a separate logical process (see
Section 2.3). As a prerequisite to the introduction of approximate state
matching in Chapter 5 and progressive time-parallel simulation in Chap-
ter 6, a formal model of time-parallel simulation is presented here.

37

4. Formal Model of Time-Parallel Simulation

4.1. Basic Principles

To formalize the approach of time-parallel simulation, let T = [0,τ] be the
interval of the whole simulation time. T is decomposed into the time inter-
vals

T1 = [τ1,τ2],
T2 = [τ2,τ3],

...
Tm = [τm,τm+1],

with τ1 = 0 and τ2, . . . ,τm ∈ (0,τ) and τm+1 = t, such that every point in the
simulated time is contained in some interval and the intervals overlap only
at interval boundaries τ2, . . . ,τm.

Example 4.1.1. Consider the model of a G/G/1 queue, where a stream of
incoming jobs is served by a single service station. If the server is busy
upon a job arrival, the job is put into a queue, where it has to wait for ser-
vice. Times between arrivals of subsequent jobs have an arbitrary statistical
distribution, as well as the service times. In the simplest case, the state of
the system only consists of the current number of jobs in the system (i.e.
the number of jobs in the queue plus the one job currently being served,
if there is any). Further, the simulation is supposed to be deterministic,
i.e. arrival and departure instants are predetermined and used as input of
the simulation. A simulation execution of the sequential model consists of
a calculation of the state trajectory over the simulated time. In this case,
a spatial decomposition of the simulation model is not possible, as a one
dimensional state cannot be decomposed further. However, if a very long
runtime of the simulation is required, it might be reasonable to apply tem-
poral decomposition here. Figure 4.1 shows the space-time diagram of a
G/G/1 simulation, where the simulation time has been partitioned into four
time intervals T1, . . . ,T4. Ideally, the state trajectory calculated by the par-
allel simulation should be identical to that of the sequential simulation.

Temporal decomposition of a simulation task has the advantage that it
is easy to perform and that computations of state changes of different time
intervals are independent of each other, with the exception of the states at
intermediate interval boundaries τ2, . . . ,τm. Unfortunately, the initial states

38

4.2. Iterative Fix-up Computations

Figure 4.1. Parallel queueing simulation
T1 T2 T3 T4

S
ta

te

Time
τ5(= τ)τ4τ3τ2τ1(= 0)

at these times are not known prior to the simulation execution, although
they are needed to start execution. This property of time-parallel simulation
is known as the state-matching problem [30].

In order to apply temporal parallelization to a simulation model, the state-
matching problem has to be solved efficiently. Several approaches for the
solution of the problem have been proposed, as introduced in Section 2.3.
In this thesis, time-parallel simulation is mainly considered in the context
of fix-up computations.

4.2. Iterative Fix-up Computations

For a concurrent simulation of time intervals, the computation of every in-
terval Tk has to start with some initial state zk. At the beginning of the
simulation, only the initial state z1 of T1 at time τ1 is known. With fix-
up computations, the initial state zk at time τk of every interval Tk, with
k ∈ {2, . . .m}, has to be guessed. After the simulation of an interval Tk has
been completed, the final state Zk of Tk is known.

Example 4.2.1. Continuing Example 4.1.1, to enable parallel simulation of
time intervals, the number of jobs at interval boundaries τ2, . . . ,τ4 have to
be guessed. Without further information about the model, an arbitrary value

39

4. Formal Model of Time-Parallel Simulation

Figure 4.2. Parallel simulation with guessed initial states

τ5(= τ)

S
ta

te

τ3τ2 τ4

z1

z2

Z1

z3

Z2
Z3

z4

Time
Z4

T1 T2 T3 T4

τ1(= 0)

must be used as initial state of an interval. Figure 4.2 shows the state tra-
jectories, which might result from a parallel simulation with random initial
values. In this case, the overall trajectory of states differs significantly from
that of the sequential simulation, also exhibiting incorrect state changes at
interval boundaries τ2, . . . ,τ4.

As illustrated in Example 4.2.1, there is no guarantee that the final and
initial states of adjacent intervals match, i.e., it is possible that Zk−1 6= zk at
time τk. This situation can be interpreted as an incorrect state change, not
accounted for by the model. Therefore, after a first simulation phase with
guessed initial states, fix-up computations are performed to amend these
incorrect state changes for all intervals Tk, where Zk−1 6= zk.

In the simplest case, a fix-up computation is just a re-execution of the
simulation of a particular time interval Tk with a new initial state z′k iden-
tical to the final state of the preceding interval Zk−1. Here, even if fix-up
computations have only got to be performed for a small number of intervals,
there is a significant amount of computational overhead. It is desirable that
only a part of the computations of a time interval have to be repeated. The
parallel cache simulation approach presented in Chapter 8 is an example
where only small fractions of time intervals have to be re-simulated during
fix-up computation phases.

Example 4.2.2. With the parallel simulation trajectory shown in Figure 4.2,

40

4.2. Iterative Fix-up Computations

fix-up computations have to be performed to achieve correct simulation
results identical to that of the corresponding sequential simulation. Using
the simple fix-up computations presented above is possible, although not
reasonable. A more efficient method might compute correct simulation
results without performing complete re-simulations.

In general, a single fix-up computation phase might not be sufficient to
achieve a completely correct simulation, as final states of intervals might
change due to a fix-up computation, which would result again in incorrect
state changes at interval boundaries. An additional fix-up phase is required,
probably leading to yet another fix-up phase. In the worst case, the paral-
lel simulation has a performance comparable to that of the corresponding
sequential simulation, with a much higher work done. In fact, the determin-
istic parallel model of Example 4.2.2 exhibits this behavior if simple fix-up
computations are used.

The time-parallel simulation approach presented above can be used both
for stochastic and deterministic simulation models. However, when applied
to stochastic models with non-repeatable simulation executions, that paral-
lelization approach is unstable in the sense that the amount of fix-up com-
putations depends highly on the random numbers drawn in the execution.
Even worse, in models with large state spaces and high variability in simu-
lation states, it might be unlikely that the exact same state appears multiple
times during the simulation execution. In these cases, exact state matching
is not supposed to occur often, leading to an unsuitability of time-parallel
simulation. To cope with these problems, the behavior of the simulation
entities must be modified to conform to a strict repeatability. Hence, spe-
cial care has to be taken for stochastic aspects of the model. Fortunately,
repeatability can be achieved easily by pre-computation of random number
sequences used in the model, although this introduces a high memory over-
head for the storage of random numbers. As a cost efficient alternative, it is
sufficient to preselect/precompute the seeds for random number streams for
every time interval. This allows to use the same random number sequences
for original simulations and fix-up computations. In the rest of this thesis,
it is supposed that the supported models exhibit a repeatable nature.

41

4. Formal Model of Time-Parallel Simulation

Figure 4.3. Time-parallel simulation with fix-up computations

τ5(= τ′5)τ4 τ′3τ′2τ1(= τ′1) τ2 τ′4

Time

T ′
1 T ′

2 T ′
4T ′

3

S
ta

te

τ3

4.3. Continuous Fix-Up Computations

The original presentation of fix-up computations in time-parallel simula-
tion [40] used an iterative view, as presented above. In general, following
this approach is expected to result in a poor performance, especially if the
workload of parallel processes vary greatly in terms of processing time.
Here, the synchronization overhead can be decreased by breaking up the
strictly iterative approach. However, this indicates that a more suitable ap-
proach to model fix-up computations can be found. An alternative view
of fix-up computations in time-parallel simulation regards fix-up compu-
tations as continuous operations, which do not have to be split in phases.
This also has the advantage, that a time-parallel simulation algorithm with
continuous fix-up computations can be easily enhanced to provide results
progressively (see Chapter 6 for more details).

In the continuous view, Fix-up computations for an interval Tk+1 are just
a continuation of the simulation of the preceding interval Tk by process pk
until a time τ′k, where the state of the initial simulation period performed
by process pk+1 matches the corresponding state calculated during the fix-
up computations by process pk. Figure 4.3 illustrates the concept of fix-
up computations. As can be seen in the figure, the correct sequence of
states results from a concatenation of the sequences of states of intervals

42

4.3. Continuous Fix-Up Computations

Figure 4.4. Overlapping time intervals

τ1(= τ′1) τ′3τ′2 τ4τ2 τ′4 τ5(= τ′5)

p4

T ′
1

T ′
2

T ′
4

τ3

Time

T ′
3

p1

p2

p3

T ′k = (τ′k,τ
′
k+1] calculated by process pk for all k ∈ {1, . . . ,m}.

Figure 4.3 also shows the case, where state matching does not occur dur-
ing the fix-up computations of process p2 for interval T3 = [τ3,τ4]. In that
case, process p2 continues fix-up computations beyond τ4. State matching
is now attempted against the sequence of states calculated by process p3
for interval T4. The fix-up computations of process p1 now overlap with the
initial simulation period of p2 in the interval [τ2,τ

′
2].

Overlapping of simulation intervals is illustrated in Figure 4.4: every
process computes a time interval that overlaps with the time interval of the
successor. The overlap has to extend to a simulation time for which the
originally computed state equals that computed by the processor produc-
ing the simulation time overlap. To be more specific, the fix-up period of
process pk is the time interval [τk+1,τ

′
k+1]. Now every process pk is respon-

sible for calculating the simulation results of the time interval [τ′k,τ
′
k+1],

hence the fix-up period of pk can also be interpreted as a warm-up period
of process pk+1. In order to produce simulation results identical to that of a
sequential simulation, the times τ′i+1 have to be chosen such that the simu-
lation states of each pair (pk, pk+1) of adjacent processes match at τ′k+1. In
the worst case, this may lead to a situation where process p1 has to compute
the evolution of state variables for the whole simulation time. In this case,
time-parallel simulation degrades to sequential simulation.

An important characteristic of time-parallel simulation is the amount of
computational overhead introduced with fix-up computations. Employing
the continuous view, this amount can be expressed relative to the time in-
terval boundaries. It depends on the state calculations done by the corre-

43

4. Formal Model of Time-Parallel Simulation

sponding processes. Hence, the length of interval T ′k handled by a process
pk, is not known a priori and does not necessarily have the same length
as other intervals. The computational overhead of the parallel simulation
is given by the lengths of fix-up periods of processes. The computational
overhead O due to fix-up computations can be measured as the sum of the
lengths of fix-up periods and expressed relative to the length τ of the whole
simulation:

O :=
1
τ

m

∑
k=2

(τ′k− τk) . (4.1)

For equidistant process start times τk, i.e. τk = (k−1) τ

m , (4.1) can be sim-
plified to

O =
1
τ

m

∑
k=2

(
τ
′
k− (k−1)

τ

m

)
=

1
τ

m

∑
k=2

τ
′
k−

m−1
2

. (4.2)

The worst case for the overhead is that all processes perform fix-up com-
putations until the end of the simulation time, i.e. ∀k ∈ {2, . . . ,m} : τ′k = τ.
The overhead Õ this case can be calculated from (4.2):

Õ :=
1
τ

m

∑
k=2

τ− m−1
2

=
m−1

2
. (4.3)

As an example, consider a simulation with τ = 100 and four parallel pro-
cesses (m = 4). In the worst case, Õ = 1.5, i.e. the computational overhead
for the parallel calculation is 1.5 times the length of the overall simula-
tion interval. The total work done is 2.5 times the work in the sequential
case. To determine the overall efficiency of the parallel algorithm, addi-
tional knowledge about the communication and synchronization overheads
would be necessary.

Besides the overhead O due to fix-up computations, the overall compu-
tational overhead of time-parallel simulation consists mainly of the cost of
state match detection. However, the efficient implementation of the latter
depends on the specificities of the corresponding model. Furthermore, the
efficiency of the parallel simulation also depends on the synchronization
and communication overheads. Unfortunately, no general assertions can
be made regarding these two types of overhead, as they are highly model
and implementations specific. Hence, for discussions of the efficiency of

44

4.3. Continuous Fix-Up Computations

time-parallel simulation, computational overhead remains one of the most
important aspects.

A direct consequence of the observations above is that the efficiency of
a time-parallel simulation model can be pre-estimated by simulating the
fix-up computations to measure the presumable state match times. Simula-
tion can be performed easily by the execution of two overlapping sequential
simulations working on the same stream of random numbers, but starting at
different locations of the random number stream. This approach was used
in this thesis to analyze the feasibility of time-parallel road traffic simula-
tion in Chapter 9.

45

4. Formal Model of Time-Parallel Simulation

46

5. Approximate State Matching

The state-matching problem renders time-parallel simulation for many mod-
els useless, especially for classes of models with complex states and/or
large state spaces. However, in cases where final and initial states of adja-
cent time intervals deviate only by a marginal amount, it might be feasible
to accept the corresponding simulation run, although imprecise simulation
results are produced.

This concept of approximate state matching can be interpreted as a tol-
eration of incorrect state changes at interval boundaries. The obvious ad-
vantage is the considerable gain in speedup due to a lower computation and
synchronization overhead. In the case of toleration of arbitrary state devi-
ations, the parallel model is supposed to scale linearly with the number of
processing nodes, as the overhead of the parallelization is minimized.

However, the increase in performance gained with approximate state
matching comes at the cost of an error that is introduced in the simulation
results. If no further actions are taken, the error might seriously invalidate
results without any knowledge about the level of the introduced error. In or-
der to evaluate the impact of approximate state matching for a given model,
a measure for the error has to be established. Subsequently, this measure
can be used to estimate the amount of error in the simulation results in order
to evaluate the quality of the parallel simulation, or even to implement an
error control mechanism that limits the level of approximation to achieve
more accurate results.

5.1. Basic Approach

When considering iterative fix-up computations, as presented in Section 4.2,
approximate state matching is a straightforward method. Instead of trying
to find exact state matches at interval boundaries, approximate state match-
ing tolerates a deviation of the corresponding states of two adjacent time

47

5. Approximate State Matching

Figure 5.1. Deviation of states δk with iterative fix-up

τ5(= τ)

S
ta

te

τ3τ2

Time

T1 T2 T3 T4

τ1(= 0) τ4

δ2

δ3

δ4

intervals. The amount of deviation at an interval boundary τk is measured
with the deviation of states δk. This is illustrated in Figure 5.1.

The deviation of states δk at a boundary τk measures the distance be-
tween the final state Zk−1 of a simulation iteration of interval Tk−1 and the
initial state zk of the same simulation iteration of interval Tk. Hence, this is
a local measure, conveying only limited information of the overall accuracy
of the simulation execution. However, during a typical time-parallel sim-
ulation run, no further information is available. When using approximate
state matching, a proper definition of δk has to comply with several require-
ments. This is discussed extensively in Section 5.2. Furthermore, instead
of tolerating any amount of deviation at interval boundaries, error control
can be applied with a threshold that specifies the maximum amount of state
deviations at boundaries (see Section 5.3).

The utilization of approximate state matching with continuous fix-up
computations is slightly different, as processes are not constrained to ex-
ecute only inside their assigned time intervals. Here, approximate state
matching is applied by having a process pk execute fix-up computations
until a time τ′k, where an acceptable level of the deviation of the states of
processes pk and pk−1 at τ′k has been reached. This is approach is illus-

48

5.2. Error Characterization

Figure 5.2. Deviation of states δk with continuous fix-up

δ2

τ3 τ5τ2 τ4

δ3

τ1

δ4

τ′3 τ′4τ′2

S
ta

te
T1(t) T3(t)

Time

T2(t) T4(t)

trated in Figure 5.2. Which amount of state deviation is acceptable is again
a matter of error control discussed in Section 5.3.

5.2. Error Characterization

In the basic model of approximate state matching introduced above, δk is a
distance measure between the final state Zk−1 of interval Tk−1 and the initial
state zk of the directly following interval Tk. The toleration of incorrect state
changes at a number of interval boundaries induces an overall error E in
the simulation results.

Depending on the type of model used, the nature of the error E might
differ significantly. In stochastic models, where simulation results are used
as statistical estimators of random variables, approximate state matching
might lead to a bias and increase the variance of estimators. An appropriate
error measure must be defined so as to reflect these two properties.

Example 5.2.1. Consider a queuing system where the average number of
jobs in the system is to be calculated. When performing multiple replica-
tions of the simulation execution, the mean J can be determined together
with its empirical variance s2

J . To measure the error of a corresponding ap-

49

5. Approximate State Matching

proximate parallel simulation, the deviation between the average number
of jobs of the sequential simulation Jseq and the parallel simulation Jpar is
considered, as well as the increase of the variance s2

Jpar
− s2

Jseq
.

If repeatability of simulation executions has been ensured via pre-samp-
ling of random variables (see Section 4.2), results are calculated determinis-
tically for a given set of random numbers. Using approximate state match-
ing with repeatable simulations, the error E in simulation results is repro-
ducible. Nevertheless, using different sets of random numbers in separated
experiments, the error E is itself an estimator of the true value inherent in
the model that might not satisfy the desired statistical properties of being
unbiased and consistent.

Another possibility are deterministic simulation models not exhibiting
any stochastic properties (e.g. trace-driven cache simulation – see Chap-
ter 8). In that case, results can not be interpreted as statistical estimators
and approximate state matching simply leads to a deviation of approximate
and exact results.

The overall error E is a result of the toleration of incorrect state changes
at interval boundaries. With a proper definition of the deviation measure
δ, every deviation of states δk at boundary τk contributes individually to
the overall error E. The local error ek due to an incorrect state change at
boundary τk records the direct impact of the toleration of δk to that part of
the overall result calculated by pk. As thus, it relates the execution per-
formed by pk starting from an incorrect initial state at time τk with the exe-
cution that would be performed by the preceding process pk−1, rather than
the correct execution! In stochastic simulation models, the state deviations
δk and the individual errors ek are random variables, as they are determined
by a simulation execution, which is of a stochastic nature. The following
example is supposed to illustrate the relationship between overall error E
and local errors ek.

Example 5.2.2. Consider the queuing system model from Example 5.2.1,
where the average number of jobs in the system is to be determined. For
reasons of conciseness, the contribution of approximate state matching to
the variance of the estimator is ignored, considering only the difference in
the mean J of parallel and sequential simulations as overall error E. Fig-
ure 5.3 shows an extract of a sample approximate time-parallel simulation
execution, concentrating on the simulation of a time interval Tk. The errors

50

5.2. Error Characterization

Figure 5.3. Overall error compared to local error

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���
���
���

���
���
���
���
���
���

���
���
���

τk τk+1

pk−1

pk

correct

Time

S
ta

te

local error ek

overall error E

E and ek are illustrated here as the area between the respective trajectories,
which can be used to calculate the difference in J.

As discussed above, a local error ek does not directly reflect the part of
the overall error that is caused by a deviation of states at τk. The definition
of ek is useful to evaluate the impact of state deviations on E, as it can be
much more easily calculated and/or measured in experiments. However, for
a proper analysis of the overall error by way of examining the local errors,
there has to be a strong correlation between both types of error. Depending
on the nature of the simulation model, different types of relationships be-
tween local and overall error exist. At best, the effect of the toleration of an
incorrect state change in a time interval Tk is local to Tk, i.e. the simulation
inside Tk is robust to the incorrect state change in the sense that the final
state Zk of Tk does not depend on the initial state zk. In this case, it should

51

5. Approximate State Matching

Figure 5.4. Relationship of errors in the best case

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���

���
���
������
���
���

���
���
���

local errors e2, . . . ,e4

correct

approximate

overall error E

τ2 τ3 τ4 τ5

Time

S
ta

te

0

hold that

E =
m

∑
k=2

wkek,

which is a weighted sum of the local errors with some weights w2, . . . ,wm.
Figure 5.4 illustrates this case (note the coincidence of local errors and
overall error).

The worst case for the overall error E occurs if each of the errors ek
due to incorrect state changes propagates through the rest of the simulation.
Utilizing the local errors to analyze the accuracy of the simulation leads
to a serious underestimation of the overall error E in this case. Figure 5.5
illustrates this case.

Error measures for the local errors ek and the overall error E can be used
to evaluate the quality of an approximate simulation model relative to the
corresponding sequential model. Evaluation can be twofold: experimental
or analytical. In an experimental evaluation, the error E is measured by
comparing simulation results of repeated experiments with the parallel and
sequential models. This method is straightforward and easily usable, but

52

5.3. Error Control

Figure 5.5. Relationship of errors in the worst case

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

���
���
���

���
���
���

���
���
���

���
���
���

p4

p2

correct/p1 overall error E

local errors e2, . . . ,e4
p3

Time

S
ta

te

0 τ2 τ3 τ4 τ5

has the disadvantage that the approximate model can only be evaluated for
the specific parameters used in the experiments. Extrapolating results to
predict the quality of the approximation for other parameter combinations
is dangerous. With analytical evaluation, in contrast, the quality of the ap-
proximate model can be examined for all possible parameter combinations.
In the best case, the error can be calculated directly. Unfortunately, even for
simple simulation models, like single server queueing systems, this proves
to be hard.

5.3. Error Control

If a deviation of states δk at interval boundary τk can be measured during
a simulation execution, it can be used to implement an error control in the
approximate simulation. This is done with a tolerance ∆, where a simu-
lation execution of an interval Tk is accepted if δk ≤ ∆. If δk > ∆, fix-up
computations have to be performed as in the basic time-parallel simulation
approach.

53

5. Approximate State Matching

Figure 5.6. Error control

Tk−1S
ta

te

δk

Timeτk

zk

Zk−1

Tk

∆

In Figure 5.6, the scenario is explained in detail: a simulation execution
of time interval Tk started with an initial state zk. When the simulation
of the previous interval Tk−1 completes, it is found that zk is an incorrect
state, since it does not exactly match the final state Zk−1 of the simulation
of Tk−1. Nevertheless, the simulation of Tk is accepted, as the deviation at
time τk, which is simply defined as the distance between states Zk−1 and zk,
is smaller than the predefined tolerance ∆.

If the state deviations δk are to be used for control of the introduced error,
it is important that a strong relationship between δk and the corresponding
error ek exists. With a definition of δk where δk and ek are not or only
weakly related, serious errors might occur due to incorrect state changes
that are accepted because of a small deviation δk. Due to δk and ek being
random variables in most cases (see Section 5.2), the relationship between
them can be expressed as a correlation (or covariance, if the probability
distributions of δk and ek are known). A weak correlation indicates that
δk is no reasonable measure for error control in the corresponding parallel
simulation. In some specific cases, like in cache simulation presented in
Chapter 8, bounds on the error ek can be calculated from the state deviation
δk. This represents a strong relationship between both measures as well,
even if correlation between them might be low. In any case, for a reason-
able implementation of error control, the relationship of state deviations to

54

5.3. Error Control

introduced errors has to be analyzed.
Note that, although most of the content of this section has been explained

with iterative fix-up computations in mind, all of the discussions apply
equally to continuous fix-up computations. In fact, continuous fix-up is
not a new concept, but rather a different view on the method of fix-up com-
putations. The difference is mainly located in an alternative assignment of
the responsibility for performing fix-up computations. With iterative fix-
up computations, a process pk is responsible for the fix-up computations
of its originally assigned time interval Tk. With continuous fix-up, this re-
sponsibility is pushed to the preceding process pk. Although continuous
fix-up computations are a redundant view on the same method, it is still
worthwhile to have that view in mind, as it delivers additional understand-
ing of the method of fix-up computations and prepares the introduction of
progressive time-parallel simulation in Chapter 6.

55

5. Approximate State Matching

56

6. Progressive Time-Parallel
Simulation

Parallel simulation techniques are utilized to increase the performance of
complex large-scale simulation models. Classical parallel simulation meth-
ods, as presented in Section 2.2, preserve causal relationships between
events, leading to simulation results identical to those of a correspond-
ing sequential model. However, depending on the nature of the underly-
ing model, the parallelism achievable with these approaches is limited in
many cases. Therefore, several alternative approaches have been developed
that increase the achievable parallelism at the cost of a loss of accuracy in
the simulation results (see Section 3.2). The novel concept of progressive
time-parallel simulation introduced here is a combination of precise and
imprecise approaches. The basic idea is to produce approximate simulation
results as early as possible and correct them progressively afterwards until
correct simulation results have been calculated. The simulation user can
cancel this process at any time. This is especially interesting in systems
with real-time constraints.

The methods developed in the field of parallel simulation can be com-
pared to approaches from other fields of research. In hard real-time sys-
tems, the technique of imprecise computations [59] has been developed.
An imprecise computation is allowed to give imprecise (approximate) re-
sults if the precise (correct) results cannot be provided in time. This is
comparable to the approximate parallel simulation techniques discussed in
Section 3.2.

The concept of progressive processing is very similar to imprecise com-
putations, with the exception that computations are continued after the ini-
tial determination of approximate results to improve results progressively.
One of the more prominent applications of this technique is progressive im-
age rendering [10, 19, 44], where an imprecise (e.g. blurred) or incomplete
representation of the image is provided to the user after a short answer time.

57

6. Progressive Time-Parallel Simulation

After that time, the quality of the image is progressively improved until
the best representation of the image has been produced or the user cancels
the image rendering process. This is of renewed importance with the ad-
vent of the World Wide Web (e.g. progressive rendering of Scalable Vector
Graphics files with SVG 1.2 [43]). Other applications include progressive
information retrieval [111], progressive data stream processing [82], and
progressive DBMS-based decision support [94].

Progressive processing can be utilized effectively in contexts where quick
results are desirable, regardless of their precision, but more precise results
might be needed later. In the field of computer simulation, an application
of progressive rendering techniques to virtual environments (e.g. [106]) im-
mediately comes to mind. However, other applications are conceivable in
conjunction with as-fast-as-possible simulation, e.g. simulation-based mili-
tary decision support, simulation-based traffic control, or simulation-based
scheduling and control of manufacturing systems.

Progressive simulation can be used in conjunction with parallel and dis-
tributed simulation methods to provide approximate simulation results in a
very short time. This is especially useful if the efficient application of tra-
ditional parallel simulation methods is hard or even impossible to achieve.

6.1. Basic Idea

In the basic time-parallel approach presented in Chapter 4, simulation re-
sults are available only after fix-up computations of all parallel processes
are complete. The other alternative is to produce results as early as possi-
ble, viz. directly after the initial simulation phase is completed. As already
discussed above, simulation results might be incorrect at that time, but in
many cases they might still serve as valuable indications on the correct
results. Further, instead of terminating the simulation at that time (hav-
ing calculated approximate results), fix-up computations can be performed,
while providing increasingly accurate simulation results to the user in the
further simulation progress. The accuracy of results should improve con-
tinually with runtime, reaching correct results upon completion of fix-up
computations.

58

6.2. Simulation Progress

6.2. Simulation Progress

To capture the dynamic nature of such a system, a family of progress func-
tions is introduced, indicating the local simulation time of a process at a
point in wallclock time.

Definition 6.2.1 (Progress functions). Let τ0(t) := 0 and τm+1(t) = τ. Fur-
thermore, for all k ∈ {1, . . . ,m}, let τk : R+

0 → [0,τ] be a family of mono-
tonic increasing functions with limt→∞ τk(t) = τ and τk−1(t) ≤ τk(t). τk is
the simulation progress function of pk, where the local simulation time of
process pk at wallclock time t is given by τk(t).

For every process pk, it is required that the corresponding progress func-
tion is monotonically increasing. Otherwise, processes might roll back their
local time, which is not considered here. Further, it is assumed that pro-
cesses make progress, eventually reaching the end of the simulation period
and overtaking of processes is not allowed. The latter assumption is not
necessary in all cases, but is provided here to simplify the following defini-
tions.

The processing of a progressive time-parallel simulation system can be
divided in two phases. The initial simulation phase of a process pk lasts
until it has progressed to the start time of its following process, i.e. τk(t) =
τk+1(0). After that time instant, the process is in its fix-up computation
phase. At wallclock time t, a process pk has calculated the sequence of
states of interval [τk(0),τk(t)]. At any time during the fix-up computation
phase of a process, this interval can be divided in two different parts: one for
which fix-up computations have already been performed by the preceding
process, and the second part, where this is not the case and thus results have
to be provided for this interval by the process.

Definition 6.2.2 (Fix-up and results regions). For every k ∈ {1, . . . ,m−1},

Fk(t) := [τk+1(0),τk(t)]

is the fix-up region of pk and for every k ∈ {1, . . . ,m}, the results region of
pk is defined as

Tk(t) := (τk−1(t),τk(t)].

59

6. Progressive Time-Parallel Simulation

Figure 6.1. Progressive simulation at time t

τ1(0) τ4(0) τ3(t)τ2(t)τ2(0) τ1(t) τ3(0) τ4(t)

F1(t) F2(t) F3(t)
S

ta
te

T1(t) T2(t) T4(t)T3(t)

Sim. Time

The results region of a process has a direct impact on the results gener-
ated by that process: Results and statistics are adapted to reflect only the
computations performed inside the results region of the process (see Sec-
tion 6.3). A snapshot of an example simulation system at wallclock time t
is given in Figure 6.1.

In analogy to the overhead in basic time-parallel simulation given in
Equations (4.1) to (4.3) in Section 4.3, the computational overhead in a
progressive time-parallel simulation system at wallclock time t can be de-
fined as the sum of lengths of fix-up phases:

O(t) :=
1
τ

m−1

∑
k=1

(τk(t)− τk+1(0)) . (6.1)

If we suppose equidistant start times of processes, i.e. τk(0) = (k−1) τ

m:

O(t) =
1
τ

m−1

∑
k=1

(
τk(t)−

kτ

m

)
=

1
τ

m−1

∑
k=1

τk(t)−
m−1

2
. (6.2)

It is possible to measure the maximum amount of overhead Õ by determin-

60

6.3. Simulation Results

ing the limit of O(t) for t → ∞:

Õ := lim
t→∞

O(t) =
1
τ

m−1

∑
k=1

lim
t→∞

τk(t)−
m−1

2
. (6.3)

This can be simplified to

Õ =
1
τ

m−1

∑
k=1

τ− m−1
2

=
m−1

2
, (6.4)

which is the same result as for the worst-case overhead Õ for the basic
time-parallel simulation given in (4.3).

6.3. Simulation Results

The notions of initial simulation phase and fix-up computation phase of a
process pk were introduced above. Now, similar terms are defined for the
overall simulation. The overall simulation system is in the initial simulation
phase if at least one of the processes is in the initial simulation phase, and
in the fix-up computation phase afterwards. The identifier t0 will be used in
the rest of the chapter to denote the time instant where the system finishes
the initial simulation phase.

Definition 6.3.1 (Start of fix-up computation phase). The fix-up computa-
tion phase of a progressive time-parallel simulation systems starts at time

t0 := min{t ≥ 0|∀k ∈ {1, . . . ,m} : τk(t) > τk+1(0)} .

Simulation results are not available during the initial simulation, as only
a part of the whole simulation interval has been processed. At any time t
after t0, preliminary simulation results are available by combining the local
results computed by each process pk in the time-interval Tk(t). Let R = Rn,
with an arbitrary n∈N, denote the result space of the simulation (in general,
the results of a simulation can be of an arbitrary type. However, in most
practical cases, atomic results can be mapped to real numbers, so using Rn

for the result space should be sufficient). Then the results calculated by the
processes p1, . . . , pm are represented by the a number of result functions.

61

6. Progressive Time-Parallel Simulation

Definition 6.3.2 (result functions). For all k ∈ {1, . . . ,m}, let Rk : [t0,∞)→
R be the local result function of process pk, where Rk(t) is the result com-
puted by pk for interval Tk(t) at wallclock time t.
Furthermore, let R̂ : [t0,∞)→ R be the global result function which is an
arbitrary combination of the Rk for all k ∈ {1, . . . ,m}. A requirement on R̂
is: If Tk(t) = /0, i.e. τk−1(t) = τk(t), then Rk(t) should have no impact at all
on R̂(t).

The preliminary simulation results computed at time t are given by the
global result function. The only requirement on the global result function
is, that the local result of a process pk should have no impact at all on the
global result if the results region of pk is empty, i.e. no results should be
produced by the process. This also implies, that

lim
t→∞

R̂(t) = lim
t→∞

R1(t) , (6.5)

i.e. if the parallel simulation is run for a sufficiently long time, the global
result is completely determined by the first parallel process p1.

The global result function R̂ is an estimation of the correct result R that
would be provided by an equivalent sequential or basic time-parallel simu-
lation execution. Guessing of initial states at time interval boundaries be-
fore start of the simulation is not performed for the first process p1, because
the same initial state can be used as for a sequential simulation. Therefore,
the results calculated by process p1 for its time interval T1(t) are always
identical to those of a sequential simulation. Together with the assumption
limt→∞ τk(t) = τ, it holds that

R = lim
t→∞

R1(t). (6.6)

These observations lead to the following important theorem, which indi-
cates that the progressive parallel simulation eventually produces correct
results.

Theorem 6.3.1. Given a progressive time-parallel simulation execution
with progress functions τ1, . . . ,τm, local result functions R1, . . . ,Rm, and
global result function R̂. Then it holds, that

lim
t→∞

R̂(t) = R .

62

6.3. Simulation Results

Proof. Follows directly from (6.5) and (6.6).

Theorem 6.3.1 settles the question, whether progressive time-parallel
simulation eventually leads to correct simulation results. In practical cases,
however, the rate of the convergence of R̂ and R, reflecting the development
of the accuracy of the simulation, is of more interest. The accuracy func-
tion α is used to relate the value of the estimated result R̂(t) at a time t with
the correct simulation result. Different possibilities for the definition of α

exist. For example α could be defined as the difference between estimated
and correct result:

α(t) := R− R̂(t) ,

or as the ratio between estimated and correct result:

α(t) :=
R̂(t)

R
.

The precise definition of α depends on the specificities of the result func-
tions in the model. More specifically, it is not defined here, whether an
increasing value of α represents an increasing or decreasing accuracy. In
most cases, the accuracy function is not available during the simulation exe-
cution, but it can be used to evaluate the feasibility of a specific progressive
simulation application. Section 7.5 contains an exemplary definition of the
accuracy function.

Another important aspect of the accuracy function is its monotonicity. In
general, it cannot be guaranteed that α is a monotonic function. However,
in such a case, the employment of progressive simulation is dangerous, as
the user might cancel a simulation execution due to a sufficient accuracy
of the results, which would be misleading if the accuracy degrades with
further simulation. Therefore, a necessary preliminary for the reasonable
application of progressive time-parallel simulation to a model is that α is
found to be a monotonic function. For example, in the specific model of
single-server queuing systems, this property is shown in Chapter 7.

Figure 6.2 illustrates the concepts of local results and accuracy. The
figure shows a snapshot of a progressive time-parallel simulation system
at wallclock time t. It is supposed, that the goal of the simulation is to
determine the area below the trajectory. The correct result (which is not
known at time t) is the area between the solid line corresponding to R.
The local results Rk(t) at time t consist of the areas below the dashed lines

63

6. Progressive Time-Parallel Simulation

Figure 6.2. Accuracy at time t

τ1(t) τ2(t) τ3(t)
R2(t)

R3(t)

R4(t)

R1(t)

τ4(t)τ1(0)
Sim. Time

S
ta

te

T1(t) T2(t) T4(t)T3(t)

starting at the times τ1(t), . . . ,τ3(t). The accuracy of the system at time t is
illustrated here as the shaded areas between the dashed and solid lines.

64

Part III.

Case Studies

65

7. Queuing Systems

Queuing Systems are an important modeling tool due to their simple na-
ture, as well as the substantial work that has been done in the theory of
queuing phenomena. The possibility of composition of queuing systems
to arbitrarily large queuing networks significantly extends the applicabil-
ity of queuing theory. For the efficient simulation of queuing networks,
the handling of their building blocks, the atomic queuing systems, has to
be mastered. This is also true for the parallelization of queuing network
simulations.

The concepts discussed in Part II are applied to the simulation of queuing
systems here. Alternative schemes for the parallel simulation of queuing
systems and queuing networks with varying strengths and weaknesses have
been developed earlier [35, 57, 101, 103].

In order to apply approximate time-parallel simulation techniques, re-
peatability of the simulation has to be assured (see Section 4.2). Otherwise,
no guarantee regarding the progression of fix-up computations could be
given. Fortunately, repeatability of a stochastic queuing system simulation
can be achieved by sampling of random numbers prior to the simulation
execution. In practice, no presampling of random numbers might be neces-
sary, the same effect probably being achievable by the utilization of pseudo
random number generators with fixed seeds. Furthermore, it will be sup-
posed that the sequence of job arrival instants is available instead of the job
interarrival times. The determination of job arrival instants from interarrival
times is a task that can be calculated easily and efficiently [35].

The pre-computed sequences of job arrival instants and service times are
stored in an input trace, which is used to perform a repeatable trace-driven
simulation. For time-parallel simulation, the responsibility for the simu-
lation of different parts of an input trace is assigned to separate parallel
processes. However, as discussed in Section 4.3, the subtraces handled by
different processes overlap due to fix-up computations. Although decom-
position is not directly applied to the simulation time here, the resulting

67

7. Queuing Systems

parallel simulation exhibits all of the characteristics of a time-parallel sim-
ulation system.

Before introducing approximate queuing simulation, some necessary pre-
liminaries have to be provided. First, a mathematical definition of G/G/1
queuing system simulation is given. Then, basic time-parallel queuing sys-
tem simulation is presented.

7.1. Foundations

In the following, the problem of queuing simulation is reduced to the cal-
culation problem of determining the departure times of a number of jobs
with associated arrival instants and service times. Based on this sequence
of departure instants, the trajectory of the number of jobs in the system over
time can be reconstructed easily [35]. The calculation of the job departure
instants of a G/G/1 queue can be represented by a recursive function that
relates a job with its departure time [49]. The basic observation underlying
this formulation is, that the departure instant d(j) of job j is determined by
its own service time s(j) and either its arrival instant a(j) or the departure
instant of the previous job d(j− 1) (depending on which occurs later in
time):

d(j) = max(a(j),d(j−1))+ s(j) . (7.1)

This recursive formula for the calculation of departure times is easily un-
derstandable and can be implemented efficiently as a sequential computer
program. However, the goal of this chapter is to illustrate the application of
approximate time-parallel simulation to queuing systems. Therefore, (7.1)
is modified to support the parallel calculation of departure times, defined
later.

Definition 7.1.1 (departure function). Let N := {1, . . . ,n} be the set of jobs
to simulate. Let s : N → R+ be a positive function of job service times.
Let a : N → R+

0 be a strictly monotonic increasing function of job arrival
instants. The departure function di

u : {i− 1, . . . ,n} → R+
0 for u ∈ R+

0 and
i ∈ N, is defined as

di
u(j) :=

{
u , if j = i−1
max(a(j),di

u(j−1))+ s(j), otherwise .

68

7.1. Foundations

The parameter i is used to restrict the domain of the function to the inter-
val {i−1, . . . ,n}, starting at job i, which is a part of the overall simulation
domain. The function is defined for job i−1, as well, but this value is only
to be used as the base case of the recursion. The parameter i is relevant
in the context of time-parallel simulation of the queuing system, where the
simulation of a parallel process is started with an initial job representing the
time interval boundary. i = 1 is used for a sequential calculation of depar-
ture times and for the first process in a time-parallel simulation execution.
The parameter u of the departure function is used to indicate an initial delay
for the queuing system. In a sequential queuing system which is typically
empty at the beginning of the observed time, u = 0. However, if there is
an initial load of the system, the queue starts with at least one existing job.
This property can be captured by introducing an initial delay with u > 0
that must pass until the first job can be served. Later, this is used to repre-
sent the performance of fix-up computations in a time-parallel simulation,
where a process starts its fix-up computation phase with a number of jobs
in its queue, which has been determined during its initial simulation phase.
As can be seen easily, di

u is a strictly monotonic increasing function.
For time-parallel queuing simulation, it is convenient to compare the cal-

culations of two adjacent processes, e.g. to decide on the termination of
fix-up computations. The following lemmas provide a foundation for the
formalization of time-parallel queuing simulation.

Lemma 7.1.1. Let i ∈ N and u,v ∈ R+
0 with u ≥ v. Then for all j ∈ {i−

1, . . . ,n}:
di

u(j)≥ di
v(j) .

Proof. Proof by induction over j with the basic case j = 0 trivially met.
Let di

u(j−1)≥ di
v(j−1) hold.

Case 1 (di
u(j−1)≤ a(j)(⇒ di

v(j−1)≤ a(j))):
di

u(j) = a(j)+ s(j) = di
v(j)⇒ di

u(j)≥ di
v(j)

Case 2 (di
u(j−1) > a(j) and di

v(j−1)≤ a(j)):
di

u(j) = di
u(j−1)+ s(j) > a(j)+ s(j) = di

v(j)
Case 3 (di

u(j−1) > a(j) and di
v(j−1) > a(j)):

di
u(j) = di

u(j−1)+ s(j)≥ di
v(j−1)+ s(j) = di

v(j)
Case 4 (di

u(j−1)≤ a(j) and di
v(j−1) > a(j)):

Cannot occur due to di
u(j−1)≥ di

v(j−1).

69

7. Queuing Systems

Lemma 7.1.1 indicates that for two simulation executions starting with
different initial delays, the departure times of all jobs of the simulation with
the lower initial delay are always dominated by the departure times of jobs
in the second execution. However, it is still unknown how departure func-
tions with different parameters i can be compared. The following lemma
shows how this can be done.

Lemma 7.1.2. Let i, i′ ∈ N0 with i ≤ i′ and u ∈ R+
0 . Let u′ := di

u(i
′− 1).

Then the following equality holds for all j ∈ {i′−1, . . . ,n}:

di
u(j) = di′

u′(j) .

Proof. Proof by induction over j with the base case j = i′− 1 met due to
Definition 7.1.1. Suppose, that for any j ∈ Ni′, di

u(j) = di′
u′(j) holds.

Then di
u(j+1) = max(a(j+1),di

u(j))+s(j+1) = max(a(j+1),di′
u′(j))+

s(j +1) = di′
u′(j +1).

Lemma 7.1.2 shows, that a departure function di
u is equivalent to a func-

tion di′
u′ with another parameter i′ > i for all j≥ i′−1. This can be achieved

by a simple adjustment of the initial delay u. Hence, if two departure func-
tions with differing parameters i and i′ are to be compared, the function
with the smaller parameter can be adjusted properly.

Now, a strong relationship between simulation executions with the same
parameter i has been established and it has been shown how departure func-
tions with different parameter i can be compared. The purpose of the next
section is to show how state match detection in time-parallel queuing sim-
ulation can be performed: State matching occurs if the states of adjacent
simulations are identical. In fact, it is shown in Section 7.2, that matching
between the states calculated by two processes pk and pk+1 occurs exactly
when the queuing system gets empty the first time during the fix-up com-
putations of pk. In the case of calculation of departure times, as presented
in Definition 7.1.1, the property of an empty queue is represented by the
expression di

u(j−1)≤ a(j), in which case the service of job j is not influ-
enced at all by the history of the queuing system, as job j−1 departs from
the system before job j arrives. The following lemma is an important step
to the property of match detection discussed above. It gives a characteriza-
tion of the state match time for two simulations with differing initial delays,
but the same domain.

70

7.2. Time-Parallel Queuing Simulation

Lemma 7.1.3. Let i∈N0 and u,v∈R+
0 with u≥ v. Then ∀ j∈{i−1, . . . ,n},

the following two statements are equivalent:

(i) di
u(j) = di

v(j)
(ii) di

u(j−1) = di
v(j−1)∨di

u(j−1)≤ a(j) .

Proof. Let i ∈ N be an arbitrary natural number. Furthermore, choose an
arbitrary j ∈ {i−1, . . . ,n}.
Case 1 (di

u(j−1)≤ a(j) and di
v(j−1)≤ a(j)):

di
u(j) = max(a(j),di

u(j−1))+ s(j) = a(j)+ s(j)
= max(a(j),di

v(j−1))+ s(j) = di
v(j)

⇒ (i) always holds.
(ii) trivially holds due to di

u(j−1)≤ a(j).
Case 2 (di

u(j−1) > a(j) and di
v(j−1)≤ a(j)):

di
u(j) = max(a(j),di

u(j−1))+ s(j) = di
u(j−1)+ s(j)

> a(j)+ s(j) = max(a(j),di
v(j−1))+ s(j) = di

v(j)
⇒ (i) never holds.
(ii) never holds due to di

u(j−1) > a(j)≥ di
v(j−1).

Case 3 (di
u(j−1) > a(j) and di

v(j−1) > a(j)):
(i) is reduced to di

u(j−1) = di
v(j−1).

di
u(j) = max(a(j),di

u(j−1))+ s(j) = di
u(j−1)+ s(j)

di
v(j) = max(a(j),di

v(j−1))+ s(j) = di
v(j−1)+ s(j)

Thus, it holds that di
u(j) = di

v(j)⇔ di
u(j−1) = di

v(j−1),
which settles Case 3.

Case 4 (di
u(j−1)≤ a(j) and di

v(j−1) > a(j)):
Cannot occur due to Lemma 7.1.1.

7.2. Time-Parallel Queuing Simulation

With the foundations defined in the previous section, it is now possible to
define time-parallel queuing system simulation.

Definition 7.2.1. Let N := {1, . . . ,n} be a set of jobs with corresponding
arrival instants a : N→R+

0 and service times s : N→R+. The responsibility
for the calculation of departure times of jobs is assigned to m processes
p1, . . . , pm, assigning start job jk ∈ {1, . . . ,n} to every process pk (j1 = 1 <

71

7. Queuing Systems

j2 < .. . < jm ≤ n). Furthermore, each logical process pk is assigned a
simulation interval Nk := { jk−1, . . . ,n} and an initial delay uk := a(jk)

The initial delay uk of pk is set to the arrival instant of jk, the first job
processed by pk. This value of the initial delay represents an empty queue
at the beginning of the simulation of each simulation interval, as the depar-
ture time of the first job jk is in any case a(jk)+ s(jk) and the job is not
influenced by any of the preceding jobs in the system.

Before going on, the following lemma is defined to simplify the proofs
of Lemma 7.2.2 and Theorem 7.2.1.

Lemma 7.2.1. Let k, l ∈ {1, . . . ,m} with k < l and z := d jk
uk(jl − 1). Then

the following implication holds for all j ∈ { jl, . . . ,n}:

z≤ ul ⇒ d jk
uk

(j) = d jl
ul
(j) .

Proof. First of all, note that k < l directly leads to jk < jl due to defi-
nition, which is silently exploited in all of the following proofs. Due to
definition, it holds that ul = a(jl) and d jl

z (jl−1) = z. Hence, d jl
z (jl−1)≤

a(jl). Therefore, d jl
z (jl) = a(jl)+ s(jl) = d jl

ul(jl). Repeated application of
Lemma 7.1.3 leads to d jl

z (j) = d jl
ul(j) for all j ∈ { jl, . . . ,n}. An application

of Lemma 7.1.2 settles the proof.

The value a(jl) of the initial delay ul of a process pl is reasonable, as it
leads to the domination of d jl

ul by d jk
uk for every k < l. This property is shown

in the following lemma and can be exploited later for the determination of
the match detection criterion.

Lemma 7.2.2. Let k, l ∈ {1, . . . ,m} with k < l. Then the following inequal-
ity holds for all j ∈ Nl:

d jk
uk

(j)≥ d jl
ul
(j) .

Proof. Let z := d jk
uk(jl−1). There are two cases for the value of z:

Case 1 (z > ul):
Then, due to Lemma 7.1.1, d jl

z (j) ≥ d jl
ul(j) for all j ∈ Nl. With

an application of Lemma 7.1.2, this translates directly to d jk
uk(j) ≥

d jl
ul(j) for all j ∈ Nl.

Case 2 (z≤ ul):
Follows directly from Lemma 7.2.1.

72

7.2. Time-Parallel Queuing Simulation

Every one of the functions d jk
uk has a domain that extends up to the last job

n. It is not possible to reduce the domain further, as for any process pk, fix-
up computations might be necessary up to n. However, it is not necessary
for every process pk to perform fix-up computations up to job n, but only
until a job arrives after the previous job departed, i.e. until the process has
an empty queue. This is formalized in the following theorem.

Theorem 7.2.1. Let k, l ∈ {1, . . . ,m} with k < l. Then for all j ∈ { jl, . . . ,n},
the following two statements are equivalent:

(i) d jk
uk

(j) = d jl
ul
(j)

(ii) d jk
uk

(j−1) = d jl
ul
(j−1)∨d jk

uk
(j−1)≤ a(j) .

Proof. Choose an arbitrary j ∈ { jl, . . . ,n}. Let z := d jk
uk(jl −1). There are

two cases for z:
Case1 (z > ul):

Due to Lemma 7.1.3, d jl
z (j) = d jl

ul(j) is equivalent to (d jl
z (j−1) =

d jl
ul(j− 1))∨ (d jl

z (j− 1) ≤ a(j)). An application of Lemma 7.1.2
settles the proof of this case.

Case2 (z≤ ul):
(i) holds due to Lemma 7.2.1. If j > jl, (ii) holds due to
Lemma 7.2.1. Hence, let j = jl. Due to z ≤ ul, d jl

z (jl − 1) ≤ ul =
a(jl). Thus, (ii) holds because of Lemma 7.1.2.

Theorem 7.2.1 has three implications:
� Once the departure times of a job match between initial simulation

and corresponding fix-up computation, the departure times of all fol-
lowing jobs match as well.

� During fix-up computations, if a job i arrives after or at the time when
the previous job departs, the departure times of i match between ini-
tial simulation and corresponding fix-up computation.

� State matching cannot occur before in the fix-up computations a job
arrives at or after the time when the previous job departs.

73

7. Queuing Systems

7.3. Computational Overhead

The previous section introduced an alternative parallel processing scheme
for queuing system models. An important property of that approach is the
simple state match criterion, which allows for an efficient state match de-
tection. However, as discussed in Section 4.3, another large part of the
overall overhead of a time-parallel simulation execution is determined by
the amount of fix-up computations that have to be performed. These in turn
depend on the times of state match occurrences in the time intervals. The
aim of this section is to exemplarily investigate the computational overhead
O of queuing system simulation. This is done by an examination of the
expectation of (the random variable) O in case of an M/M/1 queue with
parameters λ and µ representing arrival and service rates and under the re-
striction λ < µ.

7.3.1. Facts on M/M/1 Queues

In this section we review some formulas concerning M/M/1 queues, which
are needed in the considerations of Section 7.3.2.

Let N(t) be the random number of customers in an M/M/1 queuing
system at time t. We consider for all i = 1,2, . . . the busy period initiated
by i customers at time t = 0 (cf. [84])

T (i) := inf{t ≥ 0 : N(t) = 0 and N(0) = i}

and define T (0) := 0. We obtain for the expectation of T (i) in case of λ < µ
[91]

ET (i) =
i

µ−λ
, i = 0,1, (7.2)

To calculate the computational overhead of the parallel simulation, we
need a further definition. For i = 0,1,2, . . . and given τ2, . . . ,τm, let

Tk(i) := inf{t ≥ τk : N(t) = 0 and N(τk) = i} , k = 2, . . . ,m

be the busy time initiated by i customers at time τk. Since {N(t) : t ∈ R+
0 }

is a continuous time Markov chain [84], it follows that T (i) and Tk(i) (k =

74

7.3. Computational Overhead

2, . . . ,m) have the same distribution. Therefore we obtain with (7.2) in case
of λ < µ for the expectation of Tk(i)

ETk(i) = τk +ET (i) = τk +
i

µ−λ
, k = 2, . . . ,m . (7.3)

In case of λ < µ we know, that for all i, j ∈ {0,1, . . .}

Pi j(t) := P(N(t) = j|N(0) = i)→ π j :=
(

1− λ

µ

) (
λ

µ

) j

for t → ∞ (cf. [84]). We now suppose that t0 is sufficiently large to allow
the assumption, that the system is encountered in steady state. Referring to
this time point t0, we obtain with (7.3) for the expectation of the busy time
T (s)

k in steady state

ET (s)
k =

∞

∑
j=0

π j ETk(j) = τk +
λ

(µ−λ)2 , k = 2, . . . ,m . (7.4)

7.3.2. Expectation of the Computational Overhead

In Section 4.3, the computational overhead O for the parallel simulation of
general systems is introduced. Now, more specialized considerations are
provided by an examination of the computational overhead O(s)

M/M/1 of an
M/M/1 queue in steady state.

Let τk (k = 2, . . . ,m) be given. Then [N(τk)|N(0) = i] is the random
number of customers in the system at time τk if the system had started with
i customers at time τ1(= 0). Therefore, T ([N(τk)|N(0) = i]) is the random
variable representing the first occurrence of state 0 after time τk under the
condition N(0) = i. Using the total law of expectation (see [89]) we obtain
with (7.3) for k = 2, . . . ,m

ET ([N(τk)|N(0) = i]) =
∞

∑
j=0

ETk(j)Pi j(τk)

=
∞

∑
j=0

(τk +ET (j))Pi j(τk)

= τk +
∞

∑
j=0

ET (j)Pi j(τk) . (7.5)

75

7. Queuing Systems

Together with (4.1), the definition of T ([N(τk)|N(0) = i]) leads to

OM/M/1(i) =
1
τ

m

∑
k=2

(T ([N(τk)|N(0) = i])− τk)

for all i = 0,1, . . . and finally with (7.5) to

EOM/M/1(i) =
1
τ

m

∑
k=2

(ET ([N(τk)|N(0) = i])− τk)

=
1
τ

m

∑
k=2

∞

∑
j=0

ET (j)Pi j(τk) .

Note that EOM/M/1(i) does not depend on the time interval boundaries τk
with the exception of the transition probabilities Pi j(τk).

If we assume that τ2 is sufficiently large to allow for Pi j(τ2) ≈ π j then
this relation holds also for every τk (k = 3, . . . ,m). With (7.4) we get for the
expectation of the computational overhead in steady state O(s)

M/M/1

EO(s)
M/M/1 =

1
τ

m

∑
k=2

(
ET (s)

k − τk

)
=

1
τ

m

∑
k=2

(
τk +

λ

(µ−λ)2 − τk

)
=

m−1
τ

λ

(µ−λ)2 . (7.6)

The most important observation regarding the expected overhead is a strong
dependency on the distance between the arrival rate λ and the service rate
µ. The expected overhead tends to grow quadratically with a decreasing
distance. Furthermore, increasing λ and µ while keeping a fixed distance
between both of the parameters also increases the expected overhead. Fi-
nally, as could have been guessed, the overhead tends to grow linearly in
the number m of time intervals. These observations can be used to evalu-
ate the intended application of the parallel simulation approach to a given
queuing system model.

Note that in order to provide a confidence interval for the overhead, the
calculation of the variance of O is necessary. Unfortunately, this calculation
is a complex task which cannot be solved easily.

76

7.4. Approximate State Matching

7.4. Approximate State Matching

As stated in Theorem 7.2.1, state match detection in time-parallel queu-
ing simulation can be performed efficiently. Nevertheless, computational
overhead is introduced with fix-up computations. A measure for the com-
putational overhead in time-parallel queuing simulation is given in (7.6).
Depending on the parameters λ and µ, the computational overhead due to
fix-up computations might grow to an unacceptable level, inhibiting a rea-
sonable speedup of the parallel simulation. In these cases, the technique
of approximate state matching introduced in Chapter 5 can be applied to
reduce the amount of fix-up computations.

This is done using a simple definition of the state deviation measure δ

that only consists of the current number of jobs in the system. Thus, with
a threshold ∆, a fix-up computation can be stopped if the number of jobs in
the system reaches ∆. It is suspected, that the error in the simulation results
is closely related to this definition of the deviation measure for most result
statistics being calculated in a queuing system simulation.

7.5. Progressive Queuing Simulation

Rather than elaborating on the characteristics of approximate state match-
ing in time-parallel queuing simulation discussed in the previous section,
this thesis continues with a more thorough examination of the application
of the progressive simulation technique introduced in Chapter 6 to queuing
system simulation.

7.5.1. Theory

Time-parallel queuing simulation, as discussed in Section 7.2, is extended
to provide simulation results at any wallclock time instant. To be able to
do this, it is necessary to relate a wallclock time instant with the simulation
progress of parallel processes. This is done in the following by introducing
a family of simulation progress functions.

Definition 7.5.1 (progress function). Let τ0(t) := 0 and τm+1(t) := n for all
t > 0. For all k ∈ {1, . . . ,m} let the simulation progress function τk : R+

0 →

77

7. Queuing Systems

Nk with τk(0) = jk be a monotonic increasing function being complete (i.e.
taking all values in Nk) and converging to n, i.e. limt→∞ τk(t) = n. Further
it is required that ∀k ∈ {1, . . . ,m} : τk−1(t)≤ τk(t).

The simulation progress function τk returns the next job which is to be
processed by pk after wallclock time t. There are three requirements on the
progress functions: (i) No jobs are skipped during the simulation, i.e. ev-
ery value in Nk is taken by τk. (ii) Simulations realize progress, eventually
calculating the departure time of the last job, which is expressed by the con-
vergence to n. (iii) No passing of processes is allowed, which is expressed
by the last sentence in Definition 7.5.1.

In Section 6.3, the result functions of a progressive time-parallel simula-
tion were defined with a domain starting at a time t0, after which estimations
on the correct simulation results can be provided. With time-parallel queu-
ing simulation defined above, it is possible to return result estimators even
before every job has been processed once. Thus, the following definitions
of the result functions have a domain starting at time 0. Initial simulation
results are refined progressively with growing accuracy until fix-up compu-
tations are finished and correct results are known. In queuing system sim-
ulation, the result and accuracy functions depend on the simulation goals,
i.e. the result statistics to evaluate. In the following, it is supposed that the
average job system time (i.e. the average time a job spends in the system)
is to be determined. Many of the other statistics of interest in queuing sim-
ulation can be derived from this measure. Furthermore, in order to simplify
the following definitions, only the calculation of the total system time (i.e.
the total time all jobs spend in the system) is considered.

Definition 7.5.2 (result functions). Let τ′k(t) := max(τk(0),τk−1(t)). The
local cumulated system time function Rk : R+

0 →R+
0 of process k, the global

cumulated system time function R̂ : R+
0 → R+

0 , and the total system time of

78

7.5. Progressive Queuing Simulation

jobs R ∈ R+
0 are defined as

Rk(t) :=
τk(t)−1

∑
j=τ′k(t)

d jk
uk

(j)−a(j) ,

R̂(t) :=
m

∑
k=1

Rk(t) , and

R := lim
t→∞

R1(t) =
n

∑
j=1

d j1
u1

(j)−a(j) .

R̂(t) is an estimation, available at wallclock time t, of the total system
time R, which is defined as the cumulated system time which would be
calculated by the first process. Some further remarks on Definition 7.5.2:

� After time t0, as defined in Definition 6.3.1, τ′k(t) denotes the next
job that is to be processed by pk−1 at time t, which is identical to the
first job in the results interval of pk at time t. To be able to calculate
results before t0, the result function is adapted not to consider jobs
that have not been processed yet. This is achieved by choosing the
maximum of τk(0) and τk−1(t) for the sum in the definition of Rk(t).

� A sequential queuing simulation calculates departure times of all jobs
j ∈ {1, . . . ,n}, which is exactly what is done by p1 if its fix-up com-
putations extend up to the last job n. Hence, simulation results calcu-
lated by the first process p1 are assumed to be the correct results (cf.
the related discussion in Section 6.3).

As mentioned above, the objective of the simulation is supposed to be the
determination of the total system time R of all jobs. To distinguish between
estimated result and correct result, the estimation on the total system time
of jobs R̂(t) calculated by processes at wallclock time t is called the global
cumulated system time. The global cumulated system time is composed
of the local cumulated system times calculated by the parallel processes,
where exactly one of the processes is responsible for the calculation of the
system time of every job.

The following lemma establishes some properties of the global cumu-
lated system time, which are used later in this section.

Lemma 7.5.1. In the progressive queuing system simulation defined above,
it holds that R̂(0) = 0, limt→∞R̂(t) = R, and 0≤ R̂(t)≤ R for all t ≥ 0.

79

7. Queuing Systems

Proof. Due to Definitions 7.2.1 and 7.5.1, τk(0)≥ τk−1(0). Hence,

R̂(0) =
m

∑
k=1

τk(0)−1

∑
j=τk(0)

(d jk
uk

(j)−a(j)) = 0 .

By definition, limt→∞ τk(t) = n, whereby follows for all k ∈ {2, . . . ,m},

lim
t→∞

τ
′
k(t) = max(τk(0), lim

t→∞
τk−1(t)) = max(τk(0),n) = n

and thus limt→∞ Rk(t) = 0. This reduces R̂(t) to R1(t) as t tends to infinity.
Hence, limt→∞ R̂(t) = R.

Due to Definition 7.1.1, it holds that d jk
uk(j)≥ a(j) for all k ∈ {1, . . . ,m}

and all j ∈ { jk, . . . ,n}. Therefore, for t ≥ 0, Rk(t) ≥ 0 and furthermore
R̂(t)≥ 0.

For the proof of R̂(t)≤ R for t ≥ 0, first note that for all k ∈ {1, . . . ,m},

Rk(t)≤
τk(t)−1

∑
j=τk(t)

(d jk
uk

(j)−a(j)) =: R′k(t) ,

as R′k(t) is basically identical to Rk(t), except that if τk−1(t) < τk(0), then
all elements between τk−1(t) and τk(0) are skipped in the sum of Rk(t).
Hence, it remains to be shown that

R̂′(t) :=
m

∑
k=1

R′k(t)≤ R .

Due to Lemma 7.2.2, d j1
u1(j)≥ d jk

uk(j) for all k ∈ {1, . . . ,m} and all j ∈Nk.
Thus, for t ≥ 0,

R′k(t)≤
τk(t)−1

∑
j=τk−1(t)

(d j1
u1

(j)−a(j))

and furthermore

R =
m

∑
k=1

τk(t)−1

∑
j=τk−1(t)

(d j1
u1

(j)−a(j))

leading to R̂′(t)≤ R and thus R̂(t)≤ R.

80

7.5. Progressive Queuing Simulation

The accuracy of the simulation system at a time t is given by the accuracy
function, which consists of the ratio between cumulated system time and
total system time.

Definition 7.5.3 (accuracy function). In the progressive queuing system
simulation defined above, the accuracy function α : R+

0 → [0,1] is defined
as

α(t) :=
R̂(t)

R
.

The accuracy function is a theoretical construct and can, in general, not
be determined during the runtime of the simulation. However, it can be used
to evaluate the behaviour of a progressive time-parallel simulation applica-
tion, which is done in the following theorem for queuing system simulation.

Theorem 7.5.1. In the progressive queuing system simulation defined above,
α(0) = 0, limt→∞ α(t) = 1, and α is monotonically increasing.

Proof. α(0) = 0 and limt→∞ α(t) = 1 follow directly from Lemma 7.5.1.
As R is constant over time, it remains to be shown, that R̂(t) is monotoni-
cally increasing.

For an arbitrary t ≥ 0, choose t ′ > t, such that for all k ∈ {1, . . . ,m}

(i) ∀t ′′ > 0 with t < t ′′ < t ′: τk(t ′′) = τk(t) and

(ii) τk(t ′) ≤ τk(t) + 1 and there exists at least one k ∈ {1, . . . ,m} with
τk(t ′) = τk(t)+1.

Such a time t ′ can be found due to the monotonicity and completeness of τk
(see Definition 7.5.1). Let G := {k ∈ {1, . . . ,m}|τk(t ′) = τk(t)+1}, G1 :=
{k ∈G|τk(t ′)≤ τk+1(0)}, and G2 := {k ∈G|τk(t ′) > τk+1(0)}. Then for all
t ′′ > 0 with t < t ′′ < t ′, R̂(t) = R̂(t ′′). Furthermore, with τ′k := τk(t ′)−1,

R̂(t) = R̂(t ′) + ∑
k∈G1

(d jk
uk

(τ′k)−a(τ′k))

+ ∑
k∈G2

((d jk
uk

(τ′k)−a(τ′k))− (d jk+1
uk+1

(τ′k)−a(τ′k))) .

Due to Definition 7.1.1, d jk
uk(τ

′
k)− a(τ′k) ≥ 0 for all k ∈ {1, . . . ,m} and due

to Lemma 7.2.2, d jk
uk(τ

′
k) ≥ d jk+1

uk+1(τ
′
k) for all k ∈ {1, . . . ,m}. Hence, R̂(t ′) ≥

R̂(t), and R̂ is monotonically increasing.

81

7. Queuing Systems

Figure 7.1. Accuracy function α with λ−µ = 0.001 and varying λ utilizing
4 processes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

A
cc

ur
ac

y

Wallclock time (s)

arrival rate

0.03
0.3

3
30

7.5.2. Experiments

To investigate the development of the accuracy of progressive queuing sys-
tem simulation over time, a prototypical progressive queuing simulator has
been implemented and a number of experiments have been performed on
an SGI Origin multiprocessor machine. As a maximum of eight processors
was available for the experiments, the number of processes was varied be-
tween one and eight. According to Section 7.3.2, it is to be expected that the
accuracy of a simulation execution tends to grow slower with an increas-
ing arrival rate λ, as well as with an increasing distance µ−λ. Therefore,
experiments were conducted with varying parameters λ and µ in order to
confirm that observation. The results of the experiments are summarized
in the following. Note that the values shown here are averages over 50
repetitions of the same experiment with different random numbers. All of
the experiments consisted of the calculation of cumulated system times for
200000 jobs.

Figure 7.1 summarizes the results of experiments with a varying arrival
rate λ while keeping a fixed distance µ−λ = 0.001 and 4 processes. The

82

7.5. Progressive Queuing Simulation

Figure 7.2. Accuracy function α with λ = 0.3 and varying µ utilizing 4
processes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

A
cc

ur
ac

y

Wallclock time (s)

service rate

0.35
0.31

0.301
0.3001

accuracy function α is plotted against wallclock time measured in seconds.
As expected, accuracy tends to grow slower with an increasing value of λ.
Note also, that the accuracy grows faster in the beginning, with the growth
slowing down afterwards. This is a desirable property with progressive
simulation, as a reasonable accuracy can be achieved after a short runtime,
although the calculation of the exact result might take much longer.

Figure 7.2 shows the results of experiments with a fixed arrival rate λ =
0.3 and varying service rate µ using 4 processes. Again, the expectation
of a slower growth of the accuracy with increased distance µ− λ is met.
Note that growth is nearly identical with the larger values of µ = 0.35 and
µ = 0.31. However, as the distance between λ and µ decreases to 0.001 and
further to 0.0001, the growth of the accuracy decreases significantly.

Figure 7.3 shows the results of experiments with fixed arrival rate λ = 0.3
and fixed service rate µ = 0.301 with 1, 2, 4, and 8 parallel processes. As ex-
pected, the accuracy tends to grow faster with a higher number of processes,
although the increase in growth lags behind the expectation. The reason for
this is the significant overhead due to the computation of simulation results,

83

7. Queuing Systems

Figure 7.3. Accuracy function α with λ = 0.3, µ = 0.301, utilizing a vary-
ing number of processes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

A
cc

ur
ac

y

Wallclock time (s)

#processes

1
2
4
8

which could be ameliorated by more infrequent result computations.

7.6. Summary

The application of approximate time-parallel simulation techniques on ex-
isting simulation models is illustrated in this chapter by the example of
queuing systems. The simple nature of basic queuing systems allows for
a concise mathematical representation of model dynamics if the stochas-
tic properties of queuing systems are removed by presampling of random
numbers. In time-parallel simulation of single-server queues, state match-
ing can be detected efficiently without state comparisons between adjacent
processes (see Theorem 7.2.1). However, depending on the arrival and ser-
vice time parameters of the model, there might be a long time until occur-
rence of state matching. Approximate state matching as well as progressive
time-parallel simulation can be used to shorten answer times of a simula-
tion execution. With progressive simulation, after providing estimations of
the correct results early on, results are subsequently refined by the use of

84

7.6. Summary

fix-up computations. Result and accuracy functions of a progressive time-
parallel queuing simulation have been defined and it has been shown that
this is indeed a feasible application of progressive techniques, as the ac-
curacy function, being normalized to the interval [0,1], is monotonically
increasing and converges to one with increasing simulation runtime (see
Theorem 7.5.1). Furthermore, experiments have been performed to deter-
mine the rate of increase of the accuracy function. As expected, the growth
of the accuracy function depends on the arrival rate λ, the distance µ−λ,
and the number of parallel processes.

85

7. Queuing Systems

86

8. Cache Simulation

Simulation of computer caches, with one of the most important replacement
policies being least recently used (LRU), has been topic of research for sev-
eral decades. This lead to the development of efficient LRU simulation al-
gorithms, where hit or miss rates are determined for given memory address
traces. Different schemes for the parallelization of these algorithms exist
for Single Instruction Multiple Data (SIMD) [75] and Multiple Instruction
Multiple Data (MIMD) machines [40] (for an explanation of the catego-
rizations of parallel computers into MIMD and SIMD machines, the reader
is referred to one of the various textbooks on computer architecture, e.g.
[20, 83]). On MIMD machines, the method of temporal parallelization is
applied, by splitting a memory address trace into several subtraces that are
used as input for parallel cache simulations. Empirical studies [73] show,
that the SIMD algorithms exhibit the best results for small cache sizes, but
that the MIMD algorithms are better in overall.

In the time-parallel approach, the cache contents at the subtrace bound-
aries are not known a priori, wherefore they have to be guessed initially and
corrected by the use of fix-up computations after a first simulation phase.
Depending on the specificities of the input trace and the size of the cache,
these fix-up computations can lead to an increase of the parallel simula-
tion runtime to that of the corresponding sequential simulation, or even
worse. Experiments with this approach [73] indicate that the speedup for
a small number of processes is excellent, but degenerates with a higher
number. Approximation can be applied here to decrease the cost of the
fix-up-computation phase or to avoid it completely.

The chapter starts with an introduction to the basic properties of LRU
cache simulation in Section 8.1, before presenting parallel simulation ap-
proaches in Section 8.2 and Section 8.3. The approximate cache simulation
algorithms are discussed in Section 8.4 and Section 8.5. Results of experi-
ments with the approximate LRU cache simulation algorithms are presented
in Section 8.6.

87

8. Cache Simulation

Figure 8.1. LRU stack processing in Example 8.1.1

Stack

aa

a a b c

a b b c d

a b c c d b

∞ ∞ ∞ 1 ∞ 3

a b c c d b

1 2 3 4 5 6

c d d

a c c d a b

c d d a b e

d b a b e c

b a b e c a

1 4 2 ∞ 5 4

b a b e c a

7 8 9 10 11 12Time

Req

Dist

8.1. Least-recently-used caching

Basic simulation of caching with the LRU policy is straightforward. A data
structure for the cache is initialized for a given cache size and an input
trace is processed, updating the LRU cache appropriately and recording the
number of hits.

This approach has the disadvantage, that for every cache size a new sim-
ulation execution is necessary. Therefore, an approach was introduced to
calculate the hit rates for any number of cache sizes in a single pass over the
input trace [63]: simulation is performed as usual, with the exception that
the cache size is supposed to be unbounded (i.e. no replacement occurs).
For every request, the position of the corresponding page in the LRU stack
is recorded as the stack distance of the request, which is the minimal size of
a cache, such that the request can be served from it. A distance table is used
to record stack distances. After processing the input trace, the entries of the
table can be cumulated, producing the success function of the simulation,
which is defined as S(c) = ∑

c
i=1 Di, where c is the cache capacity for which

to calculate the number of hits and Di is the number of occurrences of stack
distance i in the simulation of the input trace.

Example 8.1.1. The determination of stack distances for a simple input trace
is illustrated in Figure 8.1. It shows the processing of the trace of page re-
quests where in every time step the stack distance of a request is determined
from the current stack and the stack is changed afterwards (either by mov-

88

8.2. Simple parallel cache simulation

Figure 8.2. Stack distances after processing in Example 8.1.1

Dist 1 2 3 4 5 ∞

Count 2 1 1 2 1 5

ing the requested page to the top or by pushing it, if it did not yet appear).
Note, that in Figure 8.1, the LRU stack is shown as it appears after process-
ing the corresponding request. The stack distance is either the position of
the requested page in the LRU stack, or ∞ if the page is not yet present.
Figure 8.2 shows the distance table for the example input trace at the end of
processing, which is used to determine numbers of hits for specific cache
sizes. E.g. four hits are scored for a cache size of three, which is the sum of
the entries of distance three and lower.

Example 8.1.1 leads to two important observations: (i) the determination
of stack distances is a generalization of simple LRU cache simulation, as
the number of hits for a given input trace is directly related to the stack
distances of requests in the trace, and (ii) the stack distance of a request to a
specific page is the number of unique requests between the current request
and the previous occurrence of a request to the same page plus one. In
Example 8.1.1, the stack distance of the request to page b at time 6 is 3,
which is the number of unique requests (c and d) between time 6 and time
2 (the last occurrence of a request to page b) plus one.

Various ways of implementing the LRU stack have been proposed: linked
lists [63], hash tables [7], and search trees [81]. An overview of the imple-
mentations together with discussions about their strengths and weaknesses
can be found in [96].

8.2. Simple parallel cache simulation

Let T = (t1, . . . , tn) be the input trace which is a sequence of n requests. For
parallel simulation, T is split into m non-overlapping subtraces T1, . . . ,Tm.
The subtraces do not necessarily have the same length, although this might
be preferable for a balanced load distribution among processes.

In the basic time-parallel simulation approach, every subtrace is assigned
to a separate process for simulation, which is performed in several phases:

89

8. Cache Simulation

in the initial simulation phase, the input subtraces are processed once with
an empty initial cache, yielding an incorrect value of the overall number of
hits; in the fix-up computation phases, resimulation of parts of the subtraces
is performed until the correct value for the number of hits is determined. For
every pass over a subtrace, the cache contents that have been determined
by the simulation of the directly preceding subtrace in the previous pass are
used as initial cache. The length of this phase can range from a partial pass
over the subtrace to m−1 passes in the worst case.

Note, that it is sufficient to include those requests in the resimulation sub-
trace that could not be served from the cache and only up to the time where
the cache is filled for the first time. Although this leads to an incorrect or-
der of pages in the LRU stack during resimulation, the number of hits are
calculated correctly.

Example 8.2.1. Let T = (a,b,c,c,d,b,b,a,b,e,c,a) be a sequence of page
requests, which is used as the input trace of a cache simulation for a cache
size of 3. The overall trace T is split into two subtraces T1 = (a,b,c,c,d,b)
and T2 = (b,a,b,e,c,a) for parallel simulation on two processes. As T1 is
the first subtrace, resimulation is not necessary. Two hits are recorded and
the cache contents after processing are b,d,c in order of most recently to
least recently used. At the same time, simulation of T2 is performed with an
(incorrect) empty initial cache. Therefore, all misses occurring before the
cache has been filled for the first time have to be reconsidered to determine
correct simulation results. As the cache of size 3 is filled after the fourth
request in T2, the subtrace b,a,e has to be resimulated with cache contents
b,d,c.

In the original time-parallel simulation approach, resimulation is per-
formed by the same process that created the resimulation subtrace with the
final cache resulting from the simulation of the previous subtrace. There-
fore, resimulation can occur only after a simulation phase has been com-
pleted for both subtraces. This is implemented by performing simulation in
strict phases, using barrier synchronization of all processes between phases.
However, synchronization among processes can be relaxed when process-
ing is changed slightly.

Consider Example 8.2.1, where the responsibility for processing the res-
imulation subtrace of T2 can be pushed to the process that is responsible for
the simulation of T1. No transfer of cache contents is necessary here. The

90

8.3. Parallel full LRU stack simulation

process just continues simulation as if the resimulation subtrace is part of
its initial subtrace T1.

If subtraces are fed to processes through input queues, the fact that resim-
ulation is performed is transparent to the processes and synchronization can
be minimized: every process processes page requests from its input queue
until the special symbol ⊥, signifying end of the input trace, is read. In-
stead of recording page requests to be resimulated in a separate data struc-
ture, they are put directly into the input queue of the preceding process.
Synchronization is performed implicitly by the blocking of processes on
an empty input queue. A process knows that it has finished simulation if
it encounters the ⊥ symbol, passing it on to the input queue of the previ-
ous process. In this case, the last process never performs any resimulation
steps, stopping execution as soon as its initial subtrace has been completely
processed. This can easily be achieved by putting ⊥ at the end of the input
queue of the last process.

This approach is summarized in Algorithm 8.1. Parallelism is introduced
by use of the construct

for l ≤ i≤ u pardo stmt
adopted from [46], which indicates concurrent execution of statement stmt
for every i ∈ {l, . . . ,u}. Several functions are used for convenience in the
algorithm. ENQUEUE and DEQUEUE execute the corresponding operations
on the input queue of a process, PUSH places a request at the top of an LRU
stack, REPOSITION moves a request from anywhere in a given stack to the
top, and REPLACE removes the bottom request in a stack and puts a new
request on top.

8.3. Parallel full LRU stack simulation

Although mentioned in [40] that it is possible to calculate stack distances
with the basic time-parallel simulation approach, details were only pro-
vided at a later time [73].

With the simple time-parallel cache simulation structured as in Algo-
rithm 8.1, it can easily be extended to calculate the success function instead
of the number of page hits with three basic changes: every page that has
been requested at least once is present in the LRU stack used to determine
stack distances (pages are never removed); instead of the absolute num-

91

8. Cache Simulation

Algorithm 8.1 Simple time-parallel cache simulation
Input: Subtraces T1, . . . ,Tm and cache size smax. The stack Si for every sub-
trace Ti is initially empty. The input queue Qi for every process is initialized
with the input subtrace Ti. Additionally, ⊥ is put at the end of Qm. The hit
counters hi are initialized to 0.
Output: The sum of the number of hits hi of every process i.

begin
for 1≤ i≤ m pardo

req = DEQUEUE(Qi)
while req 6=⊥ do

if req ∈ Si then
REPOSITION(Si,req)
hi = hi +1

elsif |Si|< smax then
PUSH(Si,req)
if i > 1 then ENQUEUE(Qi−1,req)

else
REPLACE(Si,req)

req = DEQUEUE(Qi)
if i > 1 then ENQUEUE(Qi−1,⊥)

end

ber of page hits, stack distances have to be recorded; and for all subtraces,
except of the first, stack distances cannot be correctly determined if the cor-
responding request is not in the local LRU stack, wherefore the processing
of these requests has to be delegated to the directly preceding process.

To see why this is correct, observation (ii) from Section 8.1, relating the
stack distance to the number of different occurrences of requests between
the current request and its previous occurrence, must be considered. First,
the observation implies that in the parallel processing approach, all stack
distances whose corresponding requests are found in the LRU stack can be
determined correctly. This is due to the fact that the previous occurrence
of the current request, as well as all of the different requests in between,
have been processed. Second, all of the first occurrences of requests to
the same page cannot be determined by the current process (except of the
first), wherefore they are sent to the preceding process in correct order.

92

8.4. Approximate Cache Simulation

Intermediate requests with already determined distances can be skipped, as
for the calculation of stack distances only the first occurrence of a request
is relevant.

Example 8.3.1. Consider the sequence of page requests of Example 8.1.1,
which again is split into two subsequences T1 = (a,b,c,c,d,b) and T2 =
(b,a,b,e,c,a) to be fed to two processes, P1 and P2, for the determination
of stack distances. Recall the correct sequence of stack distances for T ,
which is (∞,∞,∞,1,∞,3,1,4,2,∞,5,4). The distances for T1 are correctly
calculated by P1. In the simulation of T2, the distances for requests 3 and
6 are determined to 2 and 4. The rest of the requests is sent to P1 for
resimulation, as P2 cannot determine the correct distances.

Algorithm 8.2 shows the parallel processing to determine the stack dis-
tances of an input trace. In addition to the functions introduced with Algo-
rithm 8.1, here the function POSITION is used, which returns the position
of a request in the given LRU stack.

8.4. Approximate Cache Simulation

As introduced above, there are two approaches for the simulation of LRU
caches. The simple approach determines the hit rate for a given trace and
cache size. The more general full-stack approach calculates the stack dis-
tances of the requests in the input trace, which can be used to implement
a success function that returns the number of hits for a given cache size.
Here, the algorithms presented above are changed to calculate intervals for
the number of hits rather than exact values. Depending on simulation needs,
these intervals can be used to get approximate results in a much shorter ex-
ecution time. The following two sections focus on two different aspects of
approximate calculation: how approximate simulation results can be deter-
mined, and which criteria can be used to decide on the appropriate time to
finish simulation execution.

Few effort is required to change Algorithm 8.1 and Algorithm 8.2 to
give approximate simulation results during any time of resimulation. How-
ever, the calculations presented here only work correctly when execution
has been stopped, either permanently (i.e. the simulation is finished), or
temporarily for the calculation of the current simulation accuracy.

93

8. Cache Simulation

Algorithm 8.2 Full LRU stack simulation
Input: Subtraces T1, . . . ,Tm. The stack Si for every subtrace Ti is initially
empty. The input queue Qi of every process is initialized with the input sub-
trace Ti. Additionally, ⊥ is put at the end of Qm. The distance tables Di are
initialized with 0 for every possible stack distance.
Output: The overall distance table Doverall, which is the sum of the dis-
tance tables Di for all processes i.

begin
for 1≤ i≤ m pardo

req = DEQUEUE(Qi)
while req 6=⊥ do

if req ∈ Si then
dist = POSITION(Si,req)
Di[dist] = Di[dist]+1
REPOSITION(Si,req)

else
PUSH(Si,req)
if i > 1 then ENQUEUE(Qi−1,req)

req = DEQUEUE(Qi)
if i > 1 then ENQUEUE(Qi−1,⊥)

end

8.4.1. Simple cache simulation

It was already mentioned in [40], that upper and lower bounds on the num-
ber of hits are calculated easily at the end of a simulation iteration, where
simulation can be stopped if bounds are tight enough. With the parallel
simulation algorithm of the previous section, approximate results can be
calculated at any time, leading to a higher flexibility for the decision on
simulation termination.

In Algorithm 8.1, upper and lower bounds for the number of hits can be
calculated without further mechanisms, if all processes stop execution at
least until the calculation of bounds is complete. The minimal number of
hits at that time hmin = ∑

m
i=1 hi (where m is the number of processes) is just

the sum of the hits recorded by all processes so far. Additionally, every
request still in the input queue of a process might be a hit, although this

94

8.4. Approximate Cache Simulation

is not known yet. Therefore, the maximal number of hits hmax = hmin +
∑

m
i=1 |Qi| is derived from the number of all requests for which the status (hit

or miss) could not yet be determined.

Example 8.4.1. The subtraces T1 = (a,b,c,c,d,b) and T2 = (b,a,b,e,c,a)
of Example 8.2.1 are simulated by two processes P1 and P2. After the re-
quests of both traces have been processed exactly once, a lower bound on
the number of cache hits of 4 can be calculated, which are two hits recorded
by P1 for requests 4 and 6 of T1 and two hits recorded by P2 for requests 3
and 6 of T2. As the status of requests 1,2,4, and 5 of T2 could not be deter-
mined yet, they are put into the input queue of P1 for resimulation, which
now has a length of 4, leading to an upper bound on the number of hits of
8.

8.4.2. Full LRU stack simulation

To devise a parallel algorithm for the full stack LRU simulation providing
approximate results at any time during simulation execution, the success
function is modified to return an interval of the number of hits for a given
cache size at any time, instead of the exact value, available only at the end of
simulation. Result intervals are specified by their lower and upper bounds
which have to be derived from the simulation state. For the identification of
lower bounds, no additional mechanism is needed, as they can be directly
calculated from the finite stack distances determined during the simulation
execution (called final stack distances hereafter).

For the determination of upper bounds, all requests which might be hits
for a given cache size must be considered, or equivalently, all requests not
determined to be sure misses. As a first approximation, in addition to the
sure hits, all requests with infinite stack distances (i.e. requests where the
correct distances are yet unknown) might be hits for any cache size (except
for the first process, where all stack distances are correctly determined, in-
cluding infinite ones). However, a more precise determination of upper
bounds of result intervals is possible using additional knowledge gained
during simulation execution. Let r be a request to a page whose stack dis-
tance cannot be determined by a process p. Then, the correct stack distance
d of r must be at least the preliminary stack distance d̃, which is the current
length of p’s LRU stack after pushing r. Recall that a request r with a stack

95

8. Cache Simulation

Figure 8.3. Tables in Example 8.4.2 after first iteration

Dist 1 2 3 4
Count 0 1 0 0

(a) Lower-bound distances

Dist 1 2 3 4
Count 3 3 2 0

(b) Upper-bound distances

Figure 8.4. Tables in Example 8.4.2 after second iteration

Dist 1 2 3 4
Count 2 1 1 1

(a) Lower-bound distances

Dist 1 2 3 4
Count 0 0 1 2

(b) Upper-bound distances

distance of d is a miss for a given cache size s if d > s. As just noted, for
any preliminary stack distance d̃ of r, d ≥ d̃ holds. Thus, if d̃ > s, also
d > s and r must be a miss for cache size s. If preliminary distances are
collected in a distance table in the same way as final distances, the same
lookup in the cumulated table can be used to determine the number of pos-
sible (but not surely determined) hits for a given cache size, and hence the
upper bound on the number of hits. This is due to the fact that only requests
with preliminary distances lesser than or equal to the cache size might be
hits, all others are known to be misses.

Stack distances are recorded in two different tables, final distances in a
lower-bound distance table and preliminary distances in an upper-bound
distance table. The enhanced algorithm processes requests similar to Al-
gorithm 8.2. If the stack distance of a request can be calculated exactly by
the process, it is recorded in the lower-bound distance table. Otherwise, the
preliminary stack distance is determined as the number of elements in the
LRU stack after pushing the current request, this distance is recorded in the
upper-bound distance table, and the request is sent to the input queue of the
preceding process for resimulation.

Example 8.4.2. Consider the subtraces T1 = (a,b,c), T2 = (c,d,b), T3 =
(b,a,b), and T4 = (e,c,a) which were created by dividing the input trace
of Example 8.1.1 into four subtraces for parallel simulation. After all re-
quests have been processed once, only the stack distance for the second b
in T3 could be determined exactly to 2, as well as the distances of ∞ for

96

8.4. Approximate Cache Simulation

all requests in T1. For the rest of the requests, preliminary stack distances
can be calculated as explained above. Figure 8.3(a) and Figure 8.3(b) show
the lower-bound and upper-bound distance tables after this first iteration.
These tables can be cumulated to give the upper and lower bounds of the
number of hits that are returned by a call to the approximate success func-
tion. E.g. for a cache size of 2, the exact number of hits must be contained
in the interval [1,6], for a cache size of 4 in the interval [1,8].

Further processing decreases the size of the returned intervals (increasing
the accuracy of results). Figure 8.4(a) and Figure 8.4(b) show lower-bound
and upper-bound distance tables after all requests to resimulate have been
processed twice. Here, for a cache size of 2, the number of hits is known
to be exactly 3, whereas for a cache size of 4, the number of hits must be
contained in the interval [5,8].

The preliminary stack distance of a request might be recorded multiple
times by different processes without further provisions. Therefore, before
updating its upper-bound distance table, a process must make sure that the
record of the corresponding previously determined preliminary distance is
removed. As the determined stack distances are reflected by the values of
simple counters, this can be achieved by decrementing the value for the
old preliminary distance in the table, ensuring consistent global values for
the preliminary distances. For requests not processed before, no change of
the upper-bound distance table is required. To implement this approach,
requests that are kept in an input queue for processing must be annotated
with their preliminary stack distance. Yet unprocessed requests are not an-
notated (or annotated with 0).

The overall approximate full LRU stack simulation approach is shown
in Algorithm 8.3. The annotation of requests is realized here by using re-
quest/distance pairs as queue entries. Therefore, the ENQUEUE function
takes a pair as second argument and the DEQUEUE function returns a pair.
As termination of the algorithm is discussed in the next section, the termi-
nation of the while loop is not explicitly specified here. It depends on the
return value of the opaque TERMINATE function, which might also need
some parameters not shown for reasons of conciseness.

97

8. Cache Simulation

Algorithm 8.3 Approximate full LRU stack simulation
Input: Subtraces T1, . . . ,Tm. The stack Si for every subtrace Ti is initially
empty. The input queue Qi of every process is initialized with the input
subtrace Ti, where every request is annotated with 0. The upper-bound
distance tables Ui and the lower-bound distance tables Li are initialized
with 0 for every possible stack distance.
Output: The overall upper-bound distance table Uoverall and lower-bound
distance table Loverall, which are the sum of the tables Ui and Li, resp., for
all processes i.

begin
for 1≤ i≤ m pardo

(req,odist) = DEQUEUE(Qi)
while ¬ TERMINATE() do

if odist > 0 then Ui[odist] = Ui[odist]−1
if req ∈ Si then

dist = POSITION(Si,req)
Li[dist] = Li[dist]+1
REPOSITION(Si,req)

else
PUSH(Si,req)
if i > 1 do

pdist = |Si|
Ui[pdist] = Ui[pdist]+1
ENQUEUE(Qi−1,(req, pdist))

(req,odist) = DEQUEUE(Qi)
end

8.5. Simulation Results and Termination
Detection

As discussed above, the approximate cache simulation algorithm provides
results in the form of a success function returning intervals instead of exact
values. An important property of the algorithm is the fact that a result inter-
val contains the correct number of hits for a given cache size. Among other
approaches, this can be exploited to provide an approximate simulation re-

98

8.5. Simulation Results and Termination Detection

sult that is chosen from the values of the result interval. Furthermore, the
accuracy of the result can be calculated from the size of the interval. For
example, if the middle value of the interval is chosen as an approximate
result, the maximum deviation of this result from the correct value is half
the length of the interval.

The basic algorithm for approximate cache simulation presented above
can be used either with approximate state matching (see Chapter 5) or to
perform a progressive simulation (see Chapter 6). For both cases, Algo-
rithm 8.3 can be used unchanged. Differences exist in the detection of
termination of the algorithm and in the calculation of simulation results.

Unfortunately, result calculation is a rather expensive operation, as it in-
cludes the collection of distance tables from all processes and the compu-
tation of prefix sums of the tables. Prefix sums can be calculated efficiently
in parallel utilizing parallel prefix operations [50, 52]. Still, this collection
and preparation of distance tables is too expensive to be performed in high
frequency during the simulation execution, limiting the usability of progres-
sive cache simulation. To perform approximate state matching, however, it
is sufficient to collect and aggregate the entries of the upper-bound distance
table. This is due to the result accuracy at a point in time only depending
on the preliminary distances, hence the size of result intervals for a given
cache size being determined from the upper-bound distance table.

Utilizing progressive cache simulation, termination detection is no is-
sue, as the termination of the simulation process directly depends on the
decisions of the user, which in turn needs measures for the current results
accuracy. The situation is different with approximate state matching where
criteria for the termination of the simulation have to be defined. There-
fore, the rest of this section is dedicated to the discussion of termination
detection in conjunction with approximate state matching.

The global calculations of result intervals presented above are correct if
processes do not continue simulation during the time of calculation. Other-
wise, hits might be lost or recorded multiple times. In cases where a global
execution strategy independent of the current accuracy of result intervals
is chosen, this does not pose any problems. For example, if runtime re-
quirements exist, the simulation can be executed for a fixed amount of time
and the accuracy of results can be determined afterwards. In this case, ap-
proximate state matching is applied without error control, i.e. the states of
adjacent simulation processes do not match exactly, the result simulation

99

8. Cache Simulation

execution is nevertheless accepted, resulting in errors which might be arbi-
trarily large. With the parallel cache simulation approach presented above,
this still is a viable alternative, as the accuracy of results is determined dur-
ing the simulation execution.

If termination of the simulation algorithm has to depend on the current
result accuracy, or if termination control should be implemented locally in
the processes, further mechanisms are needed. A straightforward approach
to determine simulation runtime by result accuracy is to halt execution of
the processes periodically in order to check the current accuracy. The whole
simulation can be finished if accuracy is satisfying, or resumed otherwise.

Although the implementation of termination control locally in the pro-
cesses is preferable, it is much harder to achieve. This is due to the implicit
synchronization of processes, which only have limited knowledge about
the status of the simulation in adjacent processes. Therefore, for a local
termination control, either additional messages have to be passed between
processes, or a controller process has to be introduced. Unfortunately, the
latter approach introduces a bottleneck in the parallel simulation, which is
supposed to limit its scalability. Hence, this is no viable option. Additional
messages to communicate about the current results accuracy might range
from flags that give the status of the preceding process (e.g. running or fin-
ished) to informations about its local result accuracy. For a very detailed
termination control, sophisticated mechanisms are needed, which might in-
corporate a high overhead that is not justified by the finer granularity of the
termination control.

Another aspect of approximate state matching in time-parallel cache sim-
ulation is the deviation measure δ to be utilized. As discussed above, the
goal of the parallel full stack LRU cache simulation is to determine the
success function of an input trace. What is calculated by the approximate
Algorithm 8.3 is a function returning upper and lower bounds on the correct
number of hits for a given cache size. A state deviation can be concisely
defined here for the return value of the approximate success function for a
given cache size. But how is the whole success function to be interpreted
as a deviation of states? One possibility is to examine the size of result
intervals for a single cache size. A reasonable value in this respect might
be the largest size that is of relevance in a simulation study, as it gives an
upper bound of the size of result intervals at a given time. Other deviation
measures are thinkable, but their feasibility depends on the objectives of the

100

8.6. Experiments

corresponding simulation study.

8.6. Experiments

This section is concerned with an examination of the viability of the ap-
proximate cache simulation approach presented above and the implications
of applying approximate state matching or progressive time-parallel simu-
lation. A prototypical implementation of Algorithm 8.2 and Algorithm 8.3
was created in C using the message passing interface MPI [64] for commu-
nication between processes. For the determination of speedups, a sequential
simulator was implemented. Only the more interesting full stack simulation
approaches were considered, using the search-tree based implementation of
the LRU stack described in [81].

Extended experiments with these prototypes were conducted on an SGI
Origin 3000 with 64 500 MHz MIPS R14000 processors, a total of 32
GB of main memory, and the IRIX 6.5 operating system. The C sources
were compiled with the MIPSpro 7.2 Compiler with switches -O3 -n32
enabled, using the MPI 1.2 implementation in the SGI Message Passing
Toolkit (MPT).

The experiments consisted of the determination of the success functions
of various input traces, taken from the NMSU TraceBase facility [98]. Ta-
ble 8.1 summarizes the properties of the traces, which are collections of
memory references from programs in the SPEC92 benchmark suite [32].
A smaller trace (001) is included with a moderate number of unique refer-
ences. The remaining traces have about the same length, but differ signif-
icantly in the number of different referenced pages. From those, the 085
trace is most complex with the highest number of unique references, lead-

Table 8.1. Properties of input traces
Trace No. of refs. No. of unique refs.
001 cexp 18,782,144 26,198
023 eqntott 100,000,000 89,857
085 gcc 100,000,000 162,997
090 hydro 10,985,664 26,521
097 nasa 7 99,731,776 30,109

101

8. Cache Simulation

Figure 8.5. Success functions of traces

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

H
it

R
at

e

Cache Size

Traces

001
023
085
090
097

ing to interesting results discussed later. Figure 8.5 shows a comparison of
the success functions determined by the sequential cache simulator. The
hit rate in the interval [0.85,1.0] is plotted against an increasing cache size.
Traces 001 and 085 exhibit a moderate locality, where a significant num-
ber of misses occurs even for cache sizes larger than 2000 entries. Trace
023 has a much higher overall locality indicated by the success function
increasing faster than the functions of the other traces. Trace 097 shows
a very special behavior, where only a limited number of different hit rates
exist.

When processing the traces, no distinction was made between data and
instruction references. A 16 byte cache line was supposed, masking off the
last four bits of every reference. Execution times of the calculations of stack
distances were recorded during the experiments of both the sequential and
parallel cache simulators. The results presented here are calculated from
the averages of ten repetitions of every experiment.

102

8.6. Experiments

Figure 8.6. Speedups for trace 001

 64

 32

 16

 8
 4
 1

 64 32 16 8 4 1

S
pe

ed
up

Number of Processes

perfect
correct

no fix-up
partial fix-up

In the following presentation of results, the speedup of the approximate
parallel simulator against the corresponding sequential simulator is dis-
cussed and the size of result intervals of the parallel simulation runs are
presented for different cache sizes in order to evaluate the deviation mea-
sure for approximate state matching.

Speedups for the various traces are shown in Figure 8.6 to Figure 8.10.
For all of the traces, speedup of the exact parallel cache simulation is ex-
cellent for small numbers of processes (≤ 16). However, with the number
of processes increasing to 32, a degradation of performance is notable with
the smaller 001 trace. With 64 processes, the degradation reaches a signif-
icant level for all of the traces. In Figure 8.6 of the 001 trace, the speedup
for 64 processes even stays on about the same level as that for 32. The
speedups of the 085 trace shown in Figure 8.8 exhibit a more interesting
pattern. Most notably, a better-than-perfect speedup is achieved for 16 and
32 processes. This is due to the smaller size of the local LRU stacks in the

103

8. Cache Simulation

Figure 8.7. Speedups for trace 023

 64

 32

 16

 8
 4
 1

 64 32 16 8 4 1

S
pe

ed
up

Number of Processes

perfect
correct

no fix-up
partial fix-up

parallel simulation, resulting in a better cache performance and hence in a
faster execution. Another observation is the bad performance of the basic
parallel simulation for the 085 trace with 4 processes. This results from the
size of the resimulation subtraces of a single process exceeding the limit
of the MPI message buffer, which leads to a much higher synchronization
overhead, as the processes have to wait until the resimulation subtraces have
been fetched by the peer before being able to continue simulation.

Additionally, Figure 8.6 to Figure 8.10 show the speedups of two differ-
ent types of experiments with the approximate parallel cache simulator: one
labeled no fix-up with no resimulation steps at all (i.e. execution is stopped
if every request from the input trace has been processed exactly once) and
one labeled partial fix-up where resimulation is performed partially (more
precisely, the amount of resimulation in every process is restricted to the
minimal number of resimulation steps necessary in any one of the parallel
processes without approximation). Both no fix-up and partial fix-up exper-

104

8.6. Experiments

Figure 8.8. Speedups for trace 085

 64

 32

 16

 8
 4
 1

 64 32 16 8 4 1

S
pe

ed
up

Number of Processes

perfect
correct

no fix-up
partial fix-up

iments notably increase scalability, as the speedups drop only marginally
for 64 processes (except for the 097 trace, where in comparison to the ex-
act version, the speedup is not increased significantly by the approximate
simulators).

As discussed above, the accuracy of results can be measured by the size
of result intervals for the different cache sizes, giving the maximum range
of possible results for the number of hits of an input trace. Most often,
instead of the absolute number of hits, a cache simulation is concerned with
the determination of the hit rate, i.e. the number of hits relative to the size
of the input trace. To calculate the accuracy when determining the hit rate
instead of the absolute number of hits, the size of result intervals is divided
by the number of requests in the input trace to get the maximum possible
deviation of the approximate hit rate for a given cache size from the correct
hit rate. Figure 8.11 to Figure 8.12 present these relative result interval
sizes in ‰ of the hit rate for the 001 and 085 traces. Accuracy is shown for

105

8. Cache Simulation

Figure 8.9. Speedups for trace 090

 64

 32

 16

 8
 4
 1

 64 32 16 8 4 1

S
pe

ed
up

Number of Processes

perfect
correct

no fix-up
partial fix-up

three different cache sizes for the experiments with no fix-up computations
and one cache size for the experiments with partial fix-up. For the smallest
cache size of 1024, the interval sizes seem to grow linearly with the number
of processes, whereas for larger caches, the growth is clearly sublinear.
Note also that the result interval sizes are generally low, lying in the range
of a few per thousand of the hit rate. The experiments with partial fix-up,
which did perform almost as well as those with no fix-up, exhibit a very
high accuracy, even for larger cache sizes.

8.7. Summary

Temporal parallelization of simulation models is a promising alternative
to the more traditional parallelization approaches. The difficulty in apply-
ing temporal parallelization to different application domains lies in an ef-

106

8.7. Summary

Figure 8.10. Speedups for trace 097

 64

 32

 16

 8
 4
 1

 64 32 16 8 4 1

S
pe

ed
up

Number of Processes

perfect
correct

no fix-up
partial fix-up

ficient solution of the state-match problem. This thesis proposes the usage
of approximate methods for time-parallel simulation in order to extend its
applicability to new classes of models, as well as a means to improve the
efficiency of existing time-parallel simulation models. The focus of this
chapter is the application of approximation for the parallel simulation of
LRU caching.

In this chapter, existing time-parallel simulation algorithms, both for sim-
ple LRU cache simulation and full LRU stack simulation, have been pre-
sented. These algorithms have then been used as the basis for approximate
simulation algorithms, where at any time during the simulation, approxi-
mate results can be calculated in the form of intervals which give the range
of possible values of results. The approximate cache simulation algorithms
can be used both with approximate state matching and progressive simula-
tion without changing the basic algorithm. Differences are in the calcula-
tion of simulation results and termination detection.

107

8. Cache Simulation

Figure 8.11. Result interval sizes for trace 001 (in ‰ of the hit rate)

 0

 2

 4

 6

 8

 10

 12

 64 32 16 8 4

R
es

ul
t i

nt
er

va
l s

iz
e

Number of Processes

experiment / cache size

no fix-up / 1024
no fix-up / 4096
no fix-up / 16384

partial fix-up / 16384

The algorithms presented in this chapter (the basic as well as the approx-
imate ones) have been prototypically implemented and experiments have
been conducted. These indicate a significant increase in the speedup of the
simulation with a reasonable accuracy of simulation results.

Previous work on the parallel simulation of LRU caching has either re-
stricted itself to the simple cache simulation approach, or exhibited a seri-
ous decrease of the speedup achieved for higher numbers of processes. In
this chapter, it is shown, how approximate methods can be used to increase
the overall speedup, allowing the parallel simulation to scale to very high
numbers of processes. Two properties of the approximation algorithms al-
low a direct control of the introduced error with approximate state matching
and are favorable for progressive simulation: accuracy of simulation results
increases monotonically with time and it can be calculated at any time of the
simulation execution. In theory, linear speedup can always be achieved by
allowing an arbitrary uncertainty. In practice, this is hard to achieve, due

108

8.7. Summary

Figure 8.12. Result interval sizes for trace 085 (in ‰ of the hit rate)

 0

 1

 2

 3

 4

 5

 6

 64 32 16 8 4

R
es

ul
t i

nt
er

va
l s

iz
e

Number of Processes

experiment / cache size

no fix-up / 1024
no fix-up / 4096

no fix-up / 16384
partial fix-up / 16384

to the synchronization required for input and collection of results. How-
ever, the experiments indicate, that even with a very small error, significant
increases in speedup are possible.

109

8. Cache Simulation

110

9. Traffic Simulation

Transportation research is concerned with the analysis of phenomena oc-
curring in real world traffic. As the amount of traveling, as well as trans-
port of goods, is increasing continuously, existing transportation resources
get more and more overloaded, resulting in congestion or breakdown of re-
sources. The situation is especially bad with road traffic, where a limited
amount of road capacity must accommodate an increasing amount of traf-
fic. Transportation research can help to understand the characteristics of
traffic and propose solutions for existing problems. To achieve these goals,
computer simulation of traffic is an important tool. A lot of work has been
invested in the past to develop simulation models appropriately represent-
ing the reality of road traffic.

There are two fundamentally different types of models in traffic sim-
ulation. Macroscopic models try to characterize traffic flow with fluid-
dynamical approaches [31, 56], giving an aggregated view of the problem.
Microscopic simulation, in contrast, represents all entities (e.g. vehicles,
traffic lights, intersections) of the simulated system as individual objects.
Besides more accurate simulation results, this has the advantage that indi-
vidual choices of travelers can be considered. A straightforward approach
is to describe the movement of vehicles by equations, directly or indirectly
derived from physical laws, e.g. [104]. In order to reduce computation time,
more recent approaches model traffic as cellular automata [105], where the
dynamical behavior of vehicles is discrete in time and space. An exam-
ple of this is the Nagel/Schreckenberg model [69], which is recognized as
simple and computationally efficient, yet exhibiting realistic behavior.

The original cellular-automaton-based model of Nagel and Schrecken-
berg was developed for single lane traffic. Afterwards it has been extended
to support multi lane [70] and urban traffic [24]. Among other applica-
tions, it has been used for traffic forecasts [18] and as the central part of the
large-scale TRANSIMS project [99].

Due to the high fidelity of the Nagel/Schreckenberg model, computa-

111

9. Traffic Simulation

tional demands of large-scale traffic simulators can be high, leading to the
need for efficient parallelization. Existing parallelizations [67, 68] use a
domain decomposition approach where a graph representing the street net-
work to be simulated is decomposed into subgraphs that are simulated con-
currently on different processing nodes. To exchange information about ve-
hicles traveling from one subgraph to another, the parallel processes operate
synchronously in the simulated time, i.e. at every wallclock time instant,
all processors execute the same simulation time step. For small numbers
of processors this poses no problem and impressive performance increases
can be achieved. However, due to the significant synchronization overhead,
these solutions do not scale well to higher numbers of processors [13], if a
fixed problem size is supposed.

For a potential improvement of the scalability of parallel traffic simula-
tions, the method of time-parallel simulation can be applied to reduce syn-
chronization between processes. However, the Nagel/Schreckenberg model
exhibits a rather complex state space with a large number of possible states.
In that case, time-parallel simulation is supposed to produce poor results, as
exact state matching is hard to perform. This problem could be weakened
by the utilization of approximate state matching or progressive time-parallel
simulation. This chapter is intended as a case study of time-parallel road
traffic simulation, trying to extend the applicability of time-parallel simula-
tion to models with large and complex state spaces.

As a preliminary, the utilized Nagel/Schreckenberg model is introduced
in Section 9.1, before the time-parallel road traffic simulation approach is
presented in Section 9.2. The feasibility of time-parallel road traffic sim-
ulation depends on the amount of computational overhead due to fix-up
computations. In Section 9.3, results of experiments evaluating the extent
of fix-up computations are provided.

9.1. The Nagel/Schreckenberg Model

Cellular Automata [105] are of an increasing significance in the field of
experimental physics. They are most often used to describe natural phe-
nomena with discrete and computationally efficient models. In a cellular
automaton, a one-, two, or multidimensional space is divided into cells of a
fixed size with a discrete state attributed to each cell. The state of an indi-

112

9.1. The Nagel/Schreckenberg Model

Figure 9.1. Example of vehicle movement

2

2 3 4 5 6 7 8 9 10 1110

3 2 3 5

2 3 4 5 6 7 8 9 10 1110

32

vidual cell changes discrete in time and depends only on the neighborhood
of the cell which is most often defined as a set of cells located nearest in the
geometrical sense.

The basic Nagel/Schreckenberg model [69] is a one-dimensional stochas-
tic cellular automaton, where a road segment is divided into cells of a fixed
size (typically 7.5m, which is enough to accommodate a single passenger
car with sufficient space before and after the car). A cell can either be empty
or occupied with a car traveling at a discrete velocity v∈ {0, . . . ,vmax}. The
behavior of a vehicle located at a cell i is specified by four simple rules
[69], which are applied in the given order to all vehicles during a time step.
The rules are applied in parallel to the vehicles, operating on the old state
of the simulation (i.e. the state of the simulation before any calculations of
the current time step have been performed).

1) Acceleration: if the velocity v of the vehicle is lower than vmax, then
it is increased by one [v→ v+1]

2) Slowing down: if there is a vehicle at site i + j (with j ≤ v), the
velocity is reduced to j−1 [v→ j−1]

3) Randomization: if v > 0, then with probability p, the velocity v of
the vehicle is decremented [v→ v−1]

4) Vehicle motion: the vehicle is advanced v cells
Figure 9.1 shows an example of vehicle motion in a short road segment

with 12 cells. The vehicles moving from left to right are depicted by num-

113

9. Traffic Simulation

bers inside the cells which also indicate their velocity. The state of the
segment is shown before (first line) and after (second line) performing the
state update of a particular time step. Note that the vehicle located in cell
9 after performing state changes chose to decrease the maximally possible
velocity of 3 due to the probabilistic rule number 3).

Although extremely simple, the Nagel/Schreckenberg model exhibits re-
alistic behavior. While at low traffic densities laminar flow of traffic can
be observed, congestion clusters are formed at higher densities. Further,
the formation of start-stop waves found in real freeway traffic is adequately
represented by the model. This is illustrated in Figure 9.2, where the oc-
cupation of a road section (x-axis from left to right) is plotted against the
simulation time (y-axis from top to bottom). A cell occupied by a vehi-
cle is plotted as a black dot, while unoccupied cells are left blank. If the
movement of a vehicle from left to right is not constricted by a congestion,
its path over the road segment can be identified as a decreasing diagonal
line. Further, congestion clusters (black areas) can be seen, where multiple
vehicles are located close together.

A necessary prerequisite for the application of time-parallel simulation is
the repeatability of simulation experiments (cf. Section 4.2). Repeatability
of the microscopic traffic simulation model introduced above can easily be
achieved by a presampling both of vehicle arrival instants and the random
numbers for the stochastic movement of vehicles.

9.2. Time-Parallel Traffic Simulation

Parallelization approaches of traffic simulations based on the cellular au-
tomaton model using spatial decomposition, reported limited scalability
with an increasing number of processors [67, 68]. In these approaches,
space parallel simulation requires communication after every single time
step. Thus, communication overhead becomes high for not tightly cou-
pled processing nodes. For a similar model, Cetin et al. derive an upper
bound on the number of processors that can be utilized efficiently, given
the latency of the underlying communications network [13]. To be more
specific, Cetin et al. report experiments using Ethernet for communication
between processes, where speedup levels out at about 32 processes. This
bound can be improved using faster means of communication, e.g. to about

114

9.2. Time-Parallel Traffic Simulation

64 processors with a Myrinet network.
As an alternative parallelization approach, temporal decomposition of

the traffic simulation model can be performed. As discussed in Section 4.1,
the simulation time is partitioned into intervals Ti = [τi,τi+1], where each
interval contains a given number of time steps of the cellular automaton.
Obviously, the processing done in each time step τ depends on the state of
the simulation after the preceding step τ−1. Thus, the only time where the
simulation state is known prior to execution is the initial state at simulation
time zero. In analogy to time-parallel cache simulation (see Section 8.2),
this problem can be approached by pretending that the road network is
completely empty at the beginning of each time slice. This will produce
incorrect simulation results which have to be corrected by the use of fix-up
computations.

It appears to be manifest that this case occurs frequently in microscopic
traffic simulation, rendering temporal parallelization useless here. For-
tunately, traffic simulation is more robust to incorrect state changes than
might be supposed. This is confirmed qualitatively in Figure 9.2 and Fig-
ure 9.3, which show the trace of vehicle movements starting at two dif-
ferent simulation times with an empty road section as initial state. When
comparing the state development of the simulation starting at a later time
(Figure 9.3) with the simulation starting at time 0 (Figure 9.2), a fast state
convergence can be noted. A quantitative analysis of the state convergence
behavior of microscopic traffic simulation is presented in Section 9.3.

An important aspect during fix-up computations of time-parallel simula-
tion is to detect when two simulation states are identical (state matching).
The original time-parallel simulation approach requires an exact match of
the associated states. In the cellular automaton traffic model, a single sim-
ulation state is typically quite large, e.g. 2000 cell states for a road with
a length of 15 km. Therefore, the comparison of two states is an expen-
sive operation, being of the same order of complexity as the simulation of
a time step. Even when only considering the computational overhead due
to state comparisons, exact state matching would cut down the amount of
potential parallelism significantly. Furthermore, for exact state matching, it
is required to store the states of a simulation execution for each time step,
extending the memory consumption by orders of magnitude. Hence, exact
state matching can not be utilized, introducing the necessity of approximate
state matching.

115

9. Traffic Simulation

Figure 9.2. Trace of simulation starting at time 0

In order to apply approximate state matching, a deviation measure has to
be defined that allows to identify similar states. The definition of similarity
of states can only be done in the context of the objectives of the simula-
tion study. Similarity of two simulation states should only be given if the
simulation results produced as a consequence of these states are sufficiently
close.

Besides the necessity of approximate state matching for efficient state
match detection, it can be applied to decrease the amount of fix-up compu-
tation. This is done exactly as discussed in Chapter 5, leading to an error
in the simulation results. Furthermore, such an approximate time-parallel
traffic simulation can be extended to provide results progressively, as intro-
duced in Chapter 6. In that case, the current accuracy of results during the

116

9.2. Time-Parallel Traffic Simulation

Figure 9.3. Trace of simulation starting at time 200

progressive simulation execution can be estimated with a deviation mea-
sure, as it would be used for approximate state matching. In both cases, the
most interesting part of the application of approximate parallel simulation
is the definition of a deviation measure properly representing a similarity of
simulation states.

9.2.1. State Deviation Measures

In order to define and study similarity of states, two different deviation mea-
sures are introduced: (a) a microscopic measure based on the comparison
of single cells and (b) a macroscopic measure based on traffic densities in
road sections. A variety of other deviation measures are possible, although

117

9. Traffic Simulation

they are not discussed here.
The microscopic deviation measure compares the cells of two states s1

and s2 in the driving direction of the model until the state of a cell in state s1
differs from that in s2. Let p be the index of the first cell from the beginning
of the road whose cell state is equal in s1 and s2, i.e. all cells before p have
a different cell state in s1 and s2. If there is no difference at all, p = N, the
number of cells in the model. The microscopic measure (ranging from 0 to
1) is defined to be

δmicro(s1,s2) = 1− p
N

.

This means that the microscopic measure corresponds to 1 minus the per-
centage of the road (starting from cell zero) where the cell states are iden-
tical. An important property of this measure is that δmicro(s1,s2) = 0 ⇔
s1 = s2. Thus, this measure can be used for exact as well as approxi-
mate state matching. However, the overhead for this measure is prohibitive
(computational and memory complexities are identical to that of exact state
matching). Hence, we only use it as a comparison basis for other aggre-
gated deviation measures.

The macroscopic deviation measure that is used in Section 9.3.2 is called
the local density deviation. It is computed as follows: the total number of
cells N is partitioned into n sections (bins) of size b = N

n . In each bin, a local
vehicle density is computed. This yields the following deviation measure:

δlocdens(s1,s2) =
1
N

n

∑
i=1
|γ(s1, i)− γ(s2, i)|

where γ(s, i) is the number of vehicles in section i of state s. Note that if
the number of bins is 1, two states are considered being equal if the number
of vehicles in the two states is equal. On the other hand, if the number of
bins equals the number of cells, two states are equal only if the occupation
status of every single cell is equal in the two states.

It is important to realize that an aggregated (macroscopic) deviation mea-
sure may identify two states as being equal (i.e., yield a deviation of 0)
even if they may not be exactly identical. Thus, using aggregated deviation
measures, approximate state matching is performed implicitly, even if no
explicit tolerance is applied. However, aggregated deviation measures are
constructed in a way that gives rise to the speculation that similarity w.r.t. an

118

9.3. Feasibility Study

aggregate measure corresponds to similarity w.r.t. the microscopic measure.
This speculation is confirmed by experiments presented in Section 9.3.2
that show a significant correlation between the two proposed measures. The
feasibility study in the following section also discusses the applicability of
the proposed deviation measures to approximate state matching along the
lines of [47].

9.3. Feasibility Study

Time-parallel traffic simulation with approximate state matching using the
state deviation measures defined above, is feasible if only a small part
of time intervals has to be re simulated during fix-up computations. The
amount of fix-up computations is determined by the time until state match-
ing occurs, which can be controlled with a tolerance in the case of ap-
proximate state matching. Here, the speed of state convergence in time-
parallel traffic simulation is examined by simulating the fix-up computa-
tions as they would be performed by a time-parallel road traffic simulator
(cf. Section 4.3). For a given time interval and trace of arriving vehicles,
two different simulation executions are performed: One execution starts
with an empty road segment, representing the determination of incorrect
results before fix-up computations would be performed in the time-parallel
simulator. The other execution starts with the correct state, where occupa-
tion of cells in the road segment has been determined by a warm-up phase.
Now the states of both simulation executions can be compared at every time
step and the convergence of states can be examined.

Note that the feasibility study documented in this section was specifically
conducted with approximate state matching in mind. However, as general
results about the convergence of simulation states are given, conclusions
can be drawn for progressive time-parallel traffic simulation, as well.

The results of experiments presented in this section were obtained with a
prototypical implementation of the Nagel/Schreckenberg model for a unidi-
rectional one-laned road segment without intersections consisting of 2000
cells. Vehicles arrive at one end of the road according to the given trace of
vehicle arrivals and are put into an input queue. If at least one cell from
the beginning of the road is empty, the first vehicle in the queue enters the
road section. This allows for multiple vehicle arrivals in the same time step

119

9. Traffic Simulation

Table 9.1. State match times of parallel simulations

ρ matching mean stdev min max
0.05 500 452.99 26.55 411 700
0.06 499 502.35 117.66 422 1340
0.07 360 752.61 385.75 435 1989
0.08 123 764.85 429.66 435 1993

and ensures correctness in the case of a congestion spreading back to the
beginning of the segment. All of the simulations were executed for 2000
time steps.

9.3.1. Microscopic State Matching

As explained in Section 9.2, there is a prohibitively large overhead in ex-
act state match detection. However, to gain insight into the state match
behavior of time-parallel traffic simulation, a look at state match times (i.e.
the times when exact state matching occurs) is worthwhile. Table 9.1 shows
the results of experiments with average traffic densities ρ ranging from 0.05

Figure 9.4. Microscopic state deviation over time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 500 1000 1500 2000

M
ic

ro
sc

op
ic

 s
ta

te
 d

ev
ia

tio
n

(m
ea

n)

Simulation time

Density
0.05
0.06
0.07
0.08

120

9.3. Feasibility Study

Figure 9.5. Deviation distribution over time (ρ = 0.06)

 0
 200

 400
 600

 800
 1000

Simulation time
 0

 0.2
 0.4

 0.6
 0.8

 1

State deviation

 0.2

 0.4

 0.6

 0.8

 1

(i.e. 5% of available cells are occupied in average) to 0.08 and 500 repeti-
tions for every density level. Note that in this model, saturation of the road
occurs with a traffic density of 0.08 [69]. With lower traffic densities, the
states of almost all of the repetitions match before the end of the observed
time interval [0,2000] (column matching) and the average time of matching
(column mean) is close to the average vehicle travel time. With increasing
traffic density, the fraction of successful state matching before the end of
simulation decreases and the average time of matching increases. Judg-
ing from Table 9.1 alone, time-parallel traffic simulation with exact state
matching seems to be reasonable for traffic densities up to some value be-
tween 0.06 and 0.07.

Especially for an application of approximate state matching, the speed
of convergence of simulation states is of importance. The convergence of
states for 500 replications of experiments is shown in Figure 9.4 to Fig-
ure 9.6, using the microscopic state deviation measure introduced in Sec-
tion 9.2.1. In Figure 9.4, the averages of all repetitions are presented for
various densities. With the smaller densities of 0.05 and 0.06, the deviation

121

9. Traffic Simulation

Figure 9.6. Deviation distribution over time (ρ = 0.07)

 0
 500

 1000
 1500

 2000

Simulation time
 0

 0.2
 0.4

 0.6
 0.8

 1

State deviation

 0.2

 0.4

 0.6

 0.8

 1

of states falls rapidly to zero, while with higher densities, only a gradual
decrease can be observed.

Figure 9.5 and Figure 9.6 show the evolution of the distribution of state
deviations (y and z axes) against simulation time (x-axis) of two selected
densities. While convergence of states is fast for all of the repetitions with
ρ = 0.06 (Figure 9.5), the situation is different with ρ = 0.07 (Figure 9.6).
With this density a large part of the repetitions exhibit rapidly converging
states. However, there is a significant number of repetitions with no conver-
gence at all (a state deviation of 1 – noticeable by the almost vertical lines
near the right back plane of the diagram).

Hence, using the microscopic state deviation measure, time-parallel traf-
fic simulation seems to be feasible only for traffic densities below 0.07.
However, better results might be obtained for specific simulation objectives
by utilizing alternative deviation measures (see Section 9.3.3).

122

9.3. Feasibility Study

Figure 9.7. Microscopic state vs. local density (ρ = 0.06)

 400

 450

 500

 550

 600

 650

 700

 750

 800

 400 450 500 550 600 650 700 750 800

Lo
ca

l d
en

si
ty

 m
at

ch
 ti

m
e

Microscopic state match time

9.3.2. Aggregated Deviation Measures

Section 9.2.1 discussed the need for aggregated deviation measures to allow
for an efficient detection of state matching and suggested one such measure.
Here, the local density deviation measure is examined experimentally in
order to validate its use in comparison to the microscopic state deviation
measure. A moderate bin size of 50 cells has been used.

Figure 9.7 shows the match times of 500 repetitions with a density of
ρ = 0.06 using the microscopic state deviation (x-axis) against the local
density deviation (y-axis). It can be noted that all data points are located on
or closely below the diagonal y = x. The situation is very similar for other
densities not illustrated here. Hence, if only the times of exact matching are
of interest, local density deviation seems to be an appropriate measure for
state match detection, although a small bias towards the beginning of the
simulation is introduced.

However, if the convergence behavior of states is of interest (e.g. if ap-
proximate state matching is to be applied), further investigation is neces-
sary. Figure 9.8 shows the evolution of the local density deviation over
simulation time (results are averages of 500 repetitions). To be able to
compare experiments with different traffic densities, the graphs have been

123

9. Traffic Simulation

Figure 9.8. Local density deviation over time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

Lo
ca

l d
en

si
ty

 d
ev

ia
tio

n
(m

ea
n)

Simulation time

Density
0.05
0.06
0.07
0.08

normalized by dividing the absolute deviation at every simulation time by
the maximum of all deviations (which is in fact always the deviation at the
beginning of the simulation). It can be noted that the curves of the lower
global densities of ρ = 0.05 and ρ = 0.06 are very similar to that of the
microscopic state deviation (Figure 9.4). With a global density of ρ = 0.07,
the local density deviation drops faster than the corresponding state devia-
tion, but still exhibits a similar shape of the curve. Only with ρ = 0.08, the
relationship between local density and microscopic state deviations seems
to be weak.

These observations are confirmed by Figure 9.9, which shows the corre-
lation between microscopic state and local density deviations of 500 rep-
etitions over simulation time (Spearman’s r [41] has been used as correla-
tion coefficient, because of its resistance to outliers occurring frequently at
later times during the simulations). Correlation is generally low before the
first vehicle has completely passed the road, but is significant afterwards.
Therefore, the local density deviation is an appropriate measure after this
event. An exception is the traffic density of ρ = 0.08, where no significant
correlation can be observed.

124

9.3. Feasibility Study

Figure 9.9. Correlation of microscopic state and local density

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
or

re
la

tio
n

of
 d

ev
ia

tio
ns

Simulation time

Density
0.05
0.06
0.07
0.08

9.3.3. Travel Time Deviations

In Section 9.3.1, time-parallel road traffic simulation was found not to be
feasible with a traffic density of 0.07 and above, which was determined
using the microscopic state deviation measure. However, in the case of
approximate state matching, it is not necessarily the case that the micro-
scopic state deviation properly reflects the error in the simulation results
introduced by the approximation. In that case, alternative deviation mea-
sures should be utilized, which may extend the applicability of time-parallel
traffic simulation.

As an example of alternative measures, this section evaluates the case,
where the simulation objective is to determine average travel times of ve-
hicles over a road segment. A direct comparison between deviations of
vehicle travel times and microscopic state deviation is hard to perform, as
the travel time of a vehicle does not depend on a single state of the simu-
lation alone, but rather on the set of all states of times where the vehicle is
located somewhere on the road segment. On the other hand, there is only a
weak dependency on the exact state of a single time step, viz. only on that
part of the road where the vehicle is located during the time step. Hence,
using microscopic state deviation is not reasonable in this case.

125

9. Traffic Simulation

Figure 9.10. Average error due to approximate state matching

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 500 1000 1500 2000

R
el

at
iv

e
tr

av
el

 ti
m

e
er

ro
r

Simulation time

Density
0.05
0.06
0.07
0.08

Figure 9.10 shows the relative errors in mean vehicle travel time (aver-
aged over 500 repetitions) that would be introduced by an approximate state
matching at a specific simulation time. The introduced error is generally
low, not exceeding 1.5% of the correct vehicle travel time even with higher
densities and it decreases monotonically with time, due to the accuracy of
the simulation increasing with a growing amount of fix-up computations.
For the smaller densities of ρ = 0.05 and ρ = 0.06, errors drop rapidly to
zero, whereas there is a significant amount of error introduced with higher
densities. However, when studying the distribution of errors over the 500
repetitions with ρ = 0.08, presented in Figure 9.11, it can easily be rec-
ognized that a large part of the average error is caused by a few outliers,
especially at later simulation times.

9.4. Summary

To date, time-parallel simulation has mainly been applied to simulation
models with rather simple complexities of simulation states. In contrast,
microscopic traffic simulation exhibits high-dimensional state spaces with
a high number of possible states, which cannot easily be predicted. How-

126

9.4. Summary

Figure 9.11. Evolution of error distributions

 0
 500

 1000
 1500

 2000

Simulation time
 0

 0.03
 0.06

 0.09
 0.12

 0.15

Relative error

 0.2

 0.4

 0.6

 0.8

 1

ever, with the approach of approximate state matching, it is possible to
apply temporal parallelization. At the beginning of time intervals, the road
is supposed to be empty, creating preliminary results after an initial sim-
ulation phase and correcting these afterwards by the use of fix-up com-
putations. The difficulty here is the efficient detection of state matching,
which is necessary to stop fix-up computations. This can be solved by using
approximate state matching with aggregated state match measures. These
measures should appropriately represent the matching of microscopic states
and be efficient to calculate.

The feasibility of approximate time-parallel road traffic simulation has
been examined with varying traffic densities for a simple road topology.
With lower densities, the states of concurrent simulations converge rapidly,
indicating a low overhead due to fix-up computations in a time-parallel sim-
ulator. With higher densities, the feasibility of time-parallel traffic simu-
lation seems to be restricted, although for specific simulation objectives,
approximate state matching can be used to achieve reasonable simulation

127

9. Traffic Simulation

results. The measure of local density deviation has been examined and
found to appropriately represent microscopic state deviations.

The experiments indicate that approximate time-parallel road traffic sim-
ulation might be reasonable with low traffic densities. However, the model
used in the feasibility study was rather simplistic, representing only a single-
laned one-directional road segment. In practice, more complex topologies
are supposed to occur, where the time-parallel simulation approach pre-
sented above is not a viable alternative. However, the goal of this chapter
was not to establish an efficient parallel simulation technique for realistic
large-scale traffic models, but rather to examine the extended applicability
of approximate time-parallel simulation. In that respect, experiments were
quite successful, as it could not be suspected that approximate time-parallel
traffic simulation is feasible at all.

The contents of this chapter mainly apply to the technique of approxi-
mate state matching defined in Chapter 5. Moreover, the results presented
here (especially those of the feasibility study) should be applicable to pro-
gressive time-parallel road traffic simulation, as well, although this remains
an open issue.

128

Part IV.

Conclusions

129

Simulation is a time-consuming technique to investigate the properties of
real-world systems. Parallel simulation approaches have been developed
to decrease runtimes of computationally intensive simulation applications.
Most of the existing approaches are precise methods, designed to guarantee
exactly the same results in parallel and sequential simulations of the same
model. Unfortunately, with precise parallelization techniques, the efficient
parallelization of simulations was found to be a hard problem for various
kinds of models. Therefore, imprecise (approximate) methods have been
devised. These are intended to increase the efficiency of precise methods
by accepting a deviation of simulation results from those of a corresponding
sequential simulation, i.e. they introduce an error in the simulation results.
Most of the approximate methods are variations of precise parallelization
methods and can be classified either as spatial or as temporal parallelization
approaches.

Spatial parallelization is performed by a decomposition of the model
state space in several sub spaces to be simulated in parallel. In most cases,
the parallel simulations are not independent of one another, hence commu-
nication and synchronization between processes is necessary. Depending
on the specificities of the model, a large amount of communication and syn-
chronization might be needed. Furthermore, the maximum amount of par-
allelism is restricted by the decomposability of the model state space, which
might be a limiting factor in many cases. Using the alternative method of
temporal parallelization, the simulation time is decomposed into a number
of sub intervals and simulations of these time slices is performed in par-
allel. This has the advantage of reduced amounts of communication and
synchronization and a high degree of potential parallelism. Unfortunately,
time-parallel simulation is difficult to be applied to a simulation model due
to the state matching problem, i.e. the problem of unknown initial states
in the parallel simulation executions. Solutions of this problem exist in
the form of regeneration points and fix-up computations, but the successful
applications of these techniques were limited to a small number of differ-
ent models. This thesis introduces novel approximate temporal paralleliza-
tion methods, being designed to improve the performance of existing time-
parallel simulation applications and to extend the class of models suitable
for time-parallel simulation.

The core of this thesis are the definitions of the techniques of approxi-
mate state matching in Chapter 5 and of progressive simulation in Chap-

131

ter 6, both being used in conjunction with time-parallel simulation with
fix-up computations.

Approximate state matching considers the toleration of incorrect state
changes at time interval boundaries to decrease the amount of fix-up com-
putations. This introduces an error in the simulation results, which might
seriously impact the validity of results. The quality of a time-parallel simu-
lation model utilizing approximate state matching can be evaluated by ana-
lyzing the error due to incorrect state changes. Furthermore, if the error can
be measured or at least estimated during the simulation execution, dynamic
error control mechanisms can be implemented.

Progressive time-parallel simulation is very similar to basic time-parallel
simulation with fix-up computations. The main difference is the contin-
uously repeated output of simulation results during fix-up computations.
Before fix-up computations are completed, simulation results are impre-
cise. Nevertheless, they might be valuable indications on the precise results
with the advantage that they are available after a much shorter answer time.
The simulation can be cancelled at any time during fix-up computations if
result accuracy is high enough. In the best case, the accuracy of simulation
results can be calculated along with the results themselves. In many cases,
however, this is not possible and estimations on the accuracy have to be
utilized. Possible application areas for this technique include simulation-
based decision support and simulation-based traffic control, among others.

The feasibility of the novel techniques of approximate state matching
and progressive time-parallel simulation has been examined in the context
of three different applications: queuing systems in Chapter 7, cache simu-
lation in Chapter 8, and road traffic simulation in Chapter 9.

The simple nature of single-server queuing systems allows for a concise
mathematical representation of model dynamics. This enables the formal
definition of basic time-parallel queuing system simulation, as well as ap-
proximate and progressive variants. In progressive queueing simulation,
accuracy grows monotonically with time, with a rate depending on the in-
put parameters of the simulation.

Simulation of caches utilizing the least recently used replacement policy
was one of the first applications of the time-parallel simulation method, ex-
hibiting a good parallel performance with simple cache simulation, where
the hit rate for a single cache size is determined in a simulation run. How-
ever, scalability was shown to be limited with the practically more relevant

132

full stack simulation approach, where the success function of an input trace
is determined during a single simulation run. Approximate time-parallel
simulation methods can be applied here to increase the scalability. Exten-
sive experiments with this approach indicate a significant increase of the
scalability, while introducing a modest amount of impreciseness in the sim-
ulation results.

While both of the other two applications mentioned above are known to
be suited for temporal parallelization, the same is not true for road traf-
fic simulation models. Especially in the cellular-automaton-based model
chosen in this thesis, simulation state spaces tend to be highly dimensional,
with state matching occurring only lately in time, or even not at all. Further-
more, in such a case, state match detection itself is an expensive operation,
both in terms of processing time and memory consumption. Especially
the latter problem can be avoided by utilizing approximate time-parallel
simulation methods, as approximate state matching allows the definition
of alternate state match criteria, which are much less expensive to be cal-
culated. Experiments indicate the feasibility of approximate time-parallel
road traffic simulation, although this depends on the average traffic density
in a simulation experiment.

This thesis is a valuable contribution to the research in the field of par-
allel and distributed simulation. It shows how the general idea of im-
precise/approximate parallelization can be used in conjunction with time-
parallel simulation to improve the performance of existing models and dis-
cusses the consequences of such an approach in terms of the accuracy of
simulation results. Furthermore, the novel approach of progressive sim-
ulation is proposed and it is shown how this approach can be achieved in
conjunction with temporal parallelization. One of the salient features of this
thesis is the extensive examination of the introduced approaches with three
different case studies, performing both analytical and empirical evaluations
of the approximate time-parallel simulation applications.

The technique of approximate state matching introduced in this thesis
uses approximation with fix-up computations to solve the state-matching
problem. However, approximate state matching could also be used with
regeneration points. In many practical cases, the identification of regenera-
tion points is a hard problem. Instead of an exact match of the current state
with the regeneration point, an approximate match can be performed by
checking whether the deviation between the current state and the identified

133

regeneration point is smaller than a given tolerance. In this case, instead
of regeneration points, regeneration areas are specified, which consist of a
set of possible states that are regarded as sufficiently close to each other to
be matched approximately. Although this approach seems to be similar to
approximate state matching with fix-up computations, there might be dif-
ferences in the nature of the error that is introduced, resulting in a need for
future research in this direction.

The novel technique of progressive simulation is intended to be a general
concept that could be exploited in various simulation applications, whether
utilizing parallel simulation methods or not. It is shown in this thesis how
progressive simulation can be implemented with time-parallel simulation.
However, it might be interesting to investigate how progressive simulation
could be achieved with spatial parallelization methods or even with sequen-
tial simulation models. This issue is open for future research.

Approximate time-parallel simulation is a class of parallelization meth-
ods which might significantly decrease parallel simulation runtimes at the
cost of an error in simulation results. Although the approximate nature of
such an approach prevents its use in contexts where a high accuracy of re-
sults is desirable, it is a valuable tool in contexts where run times are limited
or quick results are desirable.

134

Bibliography

[1] F. Adelstein and M. Singhal. Real-time causal message ordering
in multi-media systems. In Proceedings of the 15th International
Conference on Distributed Computing Systems, pages 36–43, 1995.

[2] A. O. Allen. Probability, Statistics, and Queueing Theory with Com-
puter Science Applications. Academic Press, Boston, 1990.

[3] S. Andradóttir and M. Hosseini-Nasab. Efficiency of time segmenta-
tion parallel simulation of finite markovian queueing networks. Op-
erations Research, 51(2):272–280, 2003.

[4] S. Andradóttir and T. J. Ott. Time-segmentation parallel simulation
of networks of queues with loss or communication blocking. ACM
Transactions on Modeling and Computer Simulation, 5(4):269–305,
1995.

[5] O. Balci. Verification, validation and testing. In Jerry Banks, editor,
Handbook of Simulation, pages 335–393. John Wiley & Sons, 1998.

[6] J. Banks, J. S. Carson, and B. L. Nelson. Discrete-Event System
Simulation. Prentice Hall, Upper Saddle River, NJ, 4th edition, 2004.

[7] B. T. Bennett and V. J. Kruskal. LRU stack processing. IBM Journal
of Research and Development, 19(4):353–357, 1975.

[8] R. Beraldi and L. Nigro. Exploiting temporal uncertainty in Time
Warp simulations. In Proceedings of the 4th IEEE International
Workshop on Distributed Simulation and Real-Time Applications,
pages 39–46, 2000.

[9] R. Beraldi and L. Nigro. A time warp based on temporal uncertainty.
Transactions of the Society for Modeling and Simulation, 18(2):60–
72, 2001.

135

Bibliography

[10] L. Bergman, H. Fuchs, E. Grant, and S. Spach. Image render-
ing by adaptive refinement. ACM SIGGRAPH Computer Graphics,
20(4):29–37, 1986.

[11] D. Brade. A Generalized Process for the Verification and Valida-
tion of Models and Simulation Results. PhD thesis, Universität der
Bundeswehr München, Fakultät für Informatik, 2003.

[12] R. E. Bryant. Simulation of packet communication architecture com-
puter systems. Technical report, Computer Science Laboratory, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, 1977.

[13] N. Cetin, A. Burri, and K. Nagel. A large-scale agent-based traffic
microsimulation based on queue model. In Proceedings of the 3rd
Swiss Transport Research Conference, 2003.

[14] K. Chandy and R. Sherman. Space-time and simulation. In Proceed-
ings of the SCS Multiconference on Distributed Simulation, pages
53–57, 1989.

[15] K. M. Chandy and J. Misra. Distributed simulation: A case study in
design and verification of distributed programs. IEEE Transactions
on Software Engineering, 5(5):440–452, 1978.

[16] K. M. Chandy and J. Misra. Asynchronous distributed simulation via
a sequence of parallel computations. Communications of the ACM,
24(4):198–205, 1981.

[17] L. Chen. Parallel simulation by multi-instruction, longest-path algo-
rithms. Queueing Systems, 27(1-2):37–54, 1997.

[18] R. Chrobok, J. Wahle, and M. Schreckenberg. Traffic forecast using
simulations of large scale networks. In Proceedings of the 4th In-
ternational IEEE Conference an Intelligent Transportation Systems,
pages 434–439, 2001.

[19] M. F. Cohen, S. E. Chen, J. R. Wallace, and D. P. Greenberg. A
progressive refinement approach to fast radiosity image generation.
ACM SIGGRAPH Computer Graphics, 22(4):75–84, 1988.

136

Bibliography

[20] D. E. Comer. Essentials of Computer Architecture. Pearson Educ-
tion, Upper Saddle River, NJ, 2005.

[21] DIS Steering Committee. The DIS vision, a map to the future of dis-
tributed simulation. Institute for Simulation and Training, Orlando,
FL, 1994.

[22] E. W. Dijkstra and C. S. Scholten. Termination detection for diffus-
ing computations. Information Processing Letters, 11(1):1–4, 1980.

[23] S. E. Elmaghraby. The role of modeling in I.E. design. Journal of
Industrial Engineering, XIX(6), 1968.

[24] J. Esser and M. Schreckenberg. Microscopic simulation of urban
traffic based on cellular automata. International Journal of Modern
Physics C, 8(5):1025–1036, 1997.

[25] Alois Ferscha. Parallel and distributed simulation of discrete event
systems. In Albert Y. Zomaya, editor, Handbook of Parallel and
Distributed Computing. McGraw-Hill, New York, 1995.

[26] P. A. Fishwick. Simulation Model Design and Execution: Building
Digital Worlds. McGraw-Hill, New York, 1994.

[27] R. M. Fujimoto. Parallel discrete event simulation. Communications
of the ACM, 33(10):30–53, 1990.

[28] R. M. Fujimoto. Performance of time warp under synthetic work-
loads. In Proceedings of the SCS Multiconference on Distributed
Simulation, pages 23–28, 1990.

[29] R. M. Fujimoto. Exploiting temporal uncertainty in parallel and dis-
tributed simulations. In Proceedings of the 13th Workshop on Paral-
lel and Distributed Simulation, pages 46–53, 1999.

[30] R. M. Fujimoto. Parallel and Distributed Simulation Systems. John
Wiley & Sons, New York, 2000.

[31] N. H. Gatner and N. H. M. Wilson, editors. Transportation and Traf-
fic Theory. Elsevier, New York, 1987.

137

Bibliography

[32] J. D. Gee, M. D. Hill, D. N. Pnevmatikatos, and A. J. Smith.
Cache performance of the SPEC92 benchmark suite. IEEE Micro,
13(4):17–27, 1993.

[33] P. W. Glynn and P. Heidelberger. Analysis of parallel replicated sim-
ulations under a completion time constraint. ACM Transactions on
Modeling and Computer Simulation, 1(1):3–23, 1991.

[34] A. G. Greenberg, R. E. Ladner, M. Paterson, and Z. Galil. Efficient
parallel algorithms for linear recurrence computation. Information
Processing Letters, 15(1):31–35, 1982.

[35] A. G. Greenberg, B. D. Lubachevsky, and I. Mitrani. Algorithms for
unboundedly parallel simulations. ACM Transactions on Computer
Systems, 9(3):201–221, 1991.

[36] A. G. Greenberg, B D. Lubachevsky, and I. Mitrani. Superfast paral-
lel discrete event simulations. ACM Transactions on Modeling and
Computer Simulation, 6(2):107–136, 1996.

[37] Object Management Group. Unified modeling language (uml) 2.0.
http://www.uml.org/.

[38] B. Haverkort. Performance of computer communication systems: a
model-based approach. Wiley, Chichester, 1998.

[39] P. Heidelberger. Statistical analysis of parallel simulations. In Pro-
ceedings of the 1986 Winter Simulation Conference, pages 290–295,
1986.

[40] P. Heidelberger and H. S. Stone. Parallel trace-driven cache simula-
tion by time partitioning. In Proceedings of the 1990 Winter Simula-
tion Conference, pages 734–737, 1990.

[41] G. W. Heiman. Basic Statistics for the Behavioral Sciences.
Houghton Mifflin Academic, 4th edition, 2002.

[42] D. Helbing. Verkehrsdynamik. Springer, Berlin, 1997.

138

http://www.uml.org/

Bibliography

[43] D. Jackson and C. Northway, editors. Scalable Vector Graphics
(SVG) Version 1.2. World Wide Web Consortium (W3C), April
2005. W3C Working Draft. Available at http://www.w3.org/TR/
SVG12/.

[44] A. K. Jain. Fundamentals of Digital Image Processing. Prentice-
Hall, Inc., 1989.

[45] D. R. Jefferson. Virtual time. ACM Transactions on Programming
Languages and Computer Systems, 7(3):404–425, 1985.

[46] J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley,
New York, 1992.

[47] T. Kiesling and S. Pohl. Time-parallel simulation with approximative
state matching. In Proceedings of the 18th Workshop on Parallel and
Distributed Simulation, pages 195–202, 2004.

[48] L. Kleinrock. Queueing Systems, volume 1. John Wiley & Sons,
New York, 1975.

[49] N. K. Krivulin. Recursive equations based models of queueing sys-
tems. In Proceedings of the 1994 European Simulation Symposium,
pages 252–256, 1994.

[50] C. P. Kruskal, L. Rudolph, and M. Snir. The power of parallel prefix.
IEEE Transactions on Computers, 34(10):965–968, 1985.

[51] V. Kumar, A. Grama, and A. Gupta. Introduction to Parallel Com-
puting. Pearson, Harlow, 2003.

[52] R. E. Ladner and M. J. Fischer. Parallel prefix computation. Journal
of the ACM, 27:831–838, 1980.

[53] A. M. Law and D. Kelton. Simulation Modelling and Analysis.
McGraw-Hill, New York, 3rd edition, 2000.

[54] B.-S. Lee, W. Cai, and J. Zhou. A causality based time manage-
ment mechanism for federated simulation. In Proceedings of the
15th Workshop on Parallel and Distributed Simulation, pages 83–
90, 2001.

139

http://www.w3.org/TR/SVG12/
http://www.w3.org/TR/SVG12/

Bibliography

[55] J. I. Leivent and R. J. Watro. Mathematical foundations for time
warp systems. ACM Transactions on Programming Languages and
Systems, 15(5):771–794, 1993.

[56] W. Leutzbach. Introduction to the Theory of Traffic Flow. Springer,
Berlin, 1988.

[57] Y. Lin. Parallel trace-driven simulation for packet loss in finite-
buffered voice multiplexers. Parallel Computing, 19(2):219–228,
1993.

[58] Y. Lin and E. Lazowska. A time-division algorithm for parallel sim-
ulation. ACM Transactions on Modeling and Computer Simulation,
1(1):73–83, 1991.

[59] J. W. S. Liu, K.-J. Lin, W.-K. Shih, A. C.-S. Yu, J.-Y. Chung, and
W. Zhao. Algorithms for scheduling imprecise computations. Com-
puter, 24(5):58–68, 1991.

[60] M. L. Loper and R. M. Fujimoto. Pre-sampling as an approach for
exploiting temporal uncertainty. In Proceedings of the 14th Work-
shop on Parallel and Distributed Simulation, pages 157–164, 2000.

[61] P. Martini, M. Rümekasten, and J. Tölle. Tolerant synchronization
for distributed simulations of interconnected computer networks. In
Proceedings of the 11th Workshop on Parallel and Distributed Sim-
ulation, pages 138–141, 1997.

[62] F. Mattern. Efficient algorithms for distributed snapshots and global
virtual time approximation. Journal of Parallel and Distributed
Computing, 18(4):423–434, 1993.

[63] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. IBM Systems Journal, 9(2):78–
117, 1970.

[64] Message-Passing Interface Forum. MPI-2.0: Extensions to the
Message-Passing Interface. MPI Forum, 1997.

140

Bibliography

[65] J. Misra. Distributed discrete-event simulation. Computing Surveys,
18(1):39–65, 1986.

[66] R. E. Moore, editor. Reliability in Computing: The Role of Inter-
val Methods in Scientific Computing, volume 19 of Perspectives in
Computing. Academic Press, Inc., San Diego, CA, 1988.

[67] K. Nagel and M. Rickert. Parallel implementation of the TRAN-
SIMS micro-simulation. Parallel Computing, 27:1611–1639, 2001.

[68] K. Nagel and A. Schleicher. Microscopic traffic modeling on paral-
lel high performance computers. Parallel Computing, 20:125–146,
1994.

[69] K. Nagel and M. Schreckenberg. A cellular automaton model for
freeway traffic. Journal de Physique I, 2:2221–2229, 1992.

[70] K. Nagel, D. E. Wolf, P. Wagner, and P. Simon. Two-lane traffic
rules for cellular automata: A systematic approach. Physical Review
E, 58(2):1425–1437, 1998.

[71] A. Neumaier. Interval methods for systems of equations, volume 37
of Encyclopedia of Mathematics and its Applications. Cambridge
University Press, Cambridge, 1990.

[72] D. Nicol. Parallel discrete-event simulation of fcfs stochastic queue-
ing networks. SIGPLAN Notices, 23(9):124–137, 1988.

[73] D. M. Nicol and E. Carr. Empirical study of parallel trace-driven
LRU cache simulators. In Proceedings of the 9th Workshop on Par-
allel and Distributed Simulation, pages 166–169, 1995.

[74] D. M. Nicol and R. M. Fujimoto. Parallel simulation today. Annals
of Operations Research, (53):249–285, 1994.

[75] D. M. Nicol, A. G. Greenberg, and B. D. Lubachevsky. Massively
parallel algorithms for trace-driven cache simulations. IEEE Trans-
actions on Parallel and Distributed Systems, 5(8):849–859, 1994.

141

Bibliography

[76] I. Nikolaidis, R. M. Fujimoto, and C. A. Cooper. Time-parallel sim-
ulation of cascaded statistical multiplexers. In Proceedings of the
1994 SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pages 213–240, 1994.

[77] Institute of Electrical and Electronics Engineers. IEEE standard for
distributed interactive simulation — application protocols (IEEE std.
1278.1-1995), 1995.

[78] Institute of Electrical and Electronics Engineers. IEEE Standard for
Modeling and Simulation (M&S) High Level Architecture (HLA) -
Federate Interface Specification (IEEE1516.1-2000), 2000.

[79] Institute of Electrical and Electronics Engineers. IEEE Standard for
Modeling and Simulation (M&S) High Level Architecture (HLA) -
Framework and Rules (IEEE1516-2000), 2000.

[80] Institute of Electrical and Electronics Engineers. IEEE Standard for
Modeling and Simulation (M&S) High Level Architecture (HLA)-
Object Model Template (OMT) Specification (IEEE1516.2-2000),
2000.

[81] F. Olken. Efficient methods for calculating the success function
of fixed-space replacement policies. Technical report lbl-12370,
Lawrence Berkeley Laboratory, 1981.

[82] D. Olteanu, T. Kiesling, and F. Bry. An evaluation of regular path
expressions with qualifiers against XML streams. In Proceedings of
the 19th International Conference on Data Engineering, pages 702–
704, 2003.

[83] D. A. Patterson and J. L. Hennessy. Computer Organization & De-
sign – The Hardware/Software Interface. Morgan Kaufmann Pub-
lishers, San Francisco, 1998.

[84] N. U. Prabhu. Queues and Inventories. J. Wiley & Sons, 1965.

[85] F. Quaglia and R. Baldoni. Exploiting intra-object dependencies in
parallel simulation. Information Processing Letters, 70(3):119–125,
1999.

142

Bibliography

[86] F. Quaglia and R. Beraldi. Space uncertain simulation events: some
concepts and an application to optimistic synchronization. In Pro-
ceedings of the 18th Workshop on Parallel and Distributed Simula-
tion, pages 181–188, 2004.

[87] D. M. Rao, N. V. Thondugulam, R. Radhakrishnan, and P. A. Wilsey.
Unsynchronized parallel discrete event simulation. In Proceedings
of the 1998 Winter Simulation Conference, pages 1563–1570, 1998.

[88] D. A. Reed, A. D. Malony, and B. D. McCredie. Parallel discrete
event simulation using shared memory. IEEE Transactions on Soft-
ware Engineering, 14(4):541–553, 1988.

[89] V. K. Rohatgi. An Introduction to Probability Theory and Mathe-
matical Statistics. John Wiley & Sons, 1976.

[90] R. Rönngren and M. Liljenstam. On event ordering in parallel dis-
crete event simulation. In Proceedings of the 13th Workshop on Par-
allel and Distributed Simulation, pages 38–45, 1999.

[91] T. L. Saaty. Elements of Queueing Theory with Applications.
McGraw-Hill, 1961.

[92] B. Samadi. Distributed Simulation, Algorithms and Performance
Analysis. PhD thesis, Computer Science Department, University of
California, Los Angeles, 1985.

[93] R. E. Shannon. Systems Simulation: the Art and Science. Prentice
Hall, Englewood Cliffs, NJ, 1975.

[94] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive skyline
computation. In Proceedings of the 27th International Conference
on Very Large Data Bases, pages 301–310, 2001.

[95] A. S. Tanenbaum. Modern Operating Systems. Prentice Hall, Upper
Saddle River, NJ, 2001.

[96] J. G. Thompson. Efficient Analysis of Caching Systems. PhD thesis,
1987. Also published as: UCB, CSD TR-87/374.

143

Bibliography

[97] N. V. Thondugulam, D. M. Rao, R. Radhakrishnan, and P. A. Wilsey.
Relaxing causal constraints in PDES. In Proceedings of the 13th
International Parallel Processing Symposium, pages 696–700, 1999.

[98] NMSU tracebase. New Mexico State University. Available at http:
//tracebase.nmsu.edu/tracebase.html.

[99] TRANSIMS – transportation analysis and simulation system. http:
//transims.tsasa.lanl.gov/.

[100] D. B. Wagner and E. D. Lazowska. Parallel simulation of queueing
networks: Limitations and potentials. In SIGMETRICS, pages 146–
155, 1989.

[101] J. J. Wang and M. Abrams. Approximate time-parallel simulation
of queueing systems with losses. In Proceedings of the 1992 Winter
Simulation Conference, pages 700–708, 1992.

[102] J. J. Wang and M. Abrams. Determining initial states for time-
parallel simulation. In Proceedings of the 7th Workshop on Parallel
and Distributed Simulation, pages 19–26, 1993.

[103] J. J. Wang and M. Abrams. Massively time-parallel, approximate
simulation of loss queueing systems. Annals of Operations Research,
53:553–575, 1994.

[104] R. Wiedemann. Simulation des Straßenverkehrsflusses. In Schriften-
reihe des Instituts für Verkehrswesen, 8. Universität Karlsruhe, Ger-
many, 1974.

[105] S. Wolfram. Theory and Applications of Cellular Automata. World
Scientific, Singapore, 1986.

[106] C. Woolley, D. Luebke, B. Watson, and A. Dayal. Interruptible ren-
dering. In Proceedings of the 2003 Symposium on Interactive 3D
Graphics, pages 143–151, 2003.

[107] H. Wu, R. M. Fujimoto, and M. Ammar. Time-parallel trace-driven
simulation of CSMA/CD. In Proceedings of the 17th Workshop on
Parallel and Distributed Simulation, pages 105–114, 2003.

144

http://tracebase.nmsu.edu/tracebase.html
http://tracebase.nmsu.edu/tracebase.html
http://transims.tsasa.lanl.gov/
http://transims.tsasa.lanl.gov/

Bibliography

[108] R. Yavatkar. MCP: A protocol for coordination and temporal syn-
chronization in multimedia collaborative applications. In Proceed-
ings of the 12th International Conference on Distributed Computing
Systems, pages 606–613, 1992.

[109] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and
Simulation. Academic Press, San Diego, CL, 2nd edition, 2000.

[110] S. Zhou, W. Cai, S. J. Turner, and F. B. S. Lee. Critical causality in
distributed virtual environments. In Proceedings of the 16th Work-
shop on Parallel and Distributed Simulation, pages 53–59, 2002.

[111] S. Zilberstein and A.-I. Mouaddib. Reactive control of dynamic pro-
gressive processing. In Proceedings of 16th International Joint Con-
ference on Artificial Intelligence, pages 1268–1273, 1999.

145

Bibliography

146

	I Background
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Overview

	2 Preliminaries
	2.1 Discrete-Event Simulation
	2.2 Parallel Discrete-Event Simulation
	2.2.1 Conservative Synchronization
	2.2.2 Optimistic Synchronization

	2.3 Time-Parallel Simulation

	3 Thesis Context
	3.1 Classification of the Approach
	3.1.1 Bias Independent of Parallelization
	3.1.2 Bias due to Technical Conditions in Parallel Simulation
	3.1.3 Bias in Order to Achieve Higher Efficiency

	3.2 Directly Related Work
	3.2.1 Temporal Uncertainty
	3.2.2 Spatial Uncertainty
	3.2.3 Relaxed Ordering Mechanisms
	3.2.4 Approximation in Time-Parallel Simulation

	II Approximate Time-Parallel Simulation
	4 Formal Model of Time-Parallel Simulation
	4.1 Basic Principles
	4.2 Iterative Fix-up Computations
	4.3 Continuous Fix-Up Computations

	5 Approximate State Matching
	5.1 Basic Approach
	5.2 Error Characterization
	5.3 Error Control

	6 Progressive Time-Parallel Simulation
	6.1 Basic Idea
	6.2 Simulation Progress
	6.3 Simulation Results

	III Case Studies
	7 Queuing Systems
	7.1 Foundations
	7.2 Time-Parallel Queuing Simulation
	7.3 Computational Overhead
	7.3.1 Facts on M/M/1 Queues
	7.3.2 Expectation of the Computational Overhead

	7.4 Approximate State Matching
	7.5 Progressive Queuing Simulation
	7.5.1 Theory
	7.5.2 Experiments

	7.6 Summary

	8 Cache Simulation
	8.1 Least-recently-used caching
	8.2 Simple parallel cache simulation
	8.3 Parallel full LRU stack simulation
	8.4 Approximate Cache Simulation
	8.4.1 Simple cache simulation
	8.4.2 Full LRU stack simulation

	8.5 Simulation Results and Termination Detection
	8.6 Experiments
	8.7 Summary

	9 Traffic Simulation
	9.1 The Nagel/Schreckenberg Model
	9.2 Time-Parallel Traffic Simulation
	9.2.1 State Deviation Measures

	9.3 Feasibility Study
	9.3.1 Microscopic State Matching
	9.3.2 Aggregated Deviation Measures
	9.3.3 Travel Time Deviations

	9.4 Summary

	IV Conclusions
	Bibliography

