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Abstract 

Abstract  
 
This thesis provides a comprehensive overview of all current and planned satellite navigation 
systems, either global or regional, putting special emphasis on their signal structure. Particular 
attention is paid to the European Global Navigation Satellite System Galileo, under 
development at the moment. The results of this work can be considered as a significant 
contribution to the design and development of the Galileo’s Open Service (OS) in the E1 
frequency band. 
 
The present work provides as main contribution a generally valid theoretical framework with 
which all current and future navigation signals can be described. Generalized signal 
waveforms and their corresponding time and spectral characteristics are derived and 
investigated. Complete families of signals are presented and analyzed regarding their spectral 
and performance characteristics, underlining their potential for future generations of satellite 
navigation systems. This thesis proves that the generalized signal waveforms proposed in this 
work cover any current and other optimized signals that could be proposed in the future. In 
this sense, it is shown that all current navigation signals can be mathematically described as 
Multilevel Coded spreading Symbols or, in particular, as Binary Coded Symbols. 
 
Using the analytical expressions of the generalized signal model, the corresponding 
generalized signal waveforms are further studied regarding their Spectral Separation 
Coefficients (SSCs). This parameter is of great interest in satellite navigation to understand 
the compatibility between different signals. Generalized formulas for smooth spectra are also 
derived to calculate the SSCs between any two arbitrary signals. Particular cases of interest 
are computed following the obtained analytical expressions and by means of simulations with 
real Pseudo Random Noise (PRN) codes. Results from this comparison show a perfect 
matching between the predicted analytical results and the numerical computations. Realistic 
scenarios are carried out to assess the impact of non-ideal PRN codes and navigation data 
onto the spectral properties that have been derived analytically. 
 
Finally, current and new multiplexing schemes are studied in detail together with the 
feasibility to introduce optimized signal waveforms. Special attention is paid to understand 
the required changes that are necessary to multiplex non-binary signals. Pros and Cons of the 
different solutions are discussed and investigated with regard to the application of future 
signal waveforms. Among these last ones, the Composite Binary Offset Carrier (CBOC) 
implementation of the Multiplexed Binary Offset Carrier (MBOC) modulation for the 
Galileo’s Open Service signal in the E1 frequency band deserves an important chapter. In 
addition, some chapters are dedicated to analyze receiver structures optimized to work with 
MBOC for both GPS and Galileo.  
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Introduction 

1 

1. Introduction 
 
Seven years ago, the U.S. Global Positioning System was the only operative Global Satellite 
System (GNSS) worldwide. The GLONASS constellation had dwindled down to seven 
satellites. Final approval and funding of Europe’s Galileo program was yet to be achieved. 
Since then, Russia has gone a long way towards rebuilding and modernizing GLONASS. 
Galileo has put its two first experimental GNSS satellites, GIOVE-A and GIOVE-B, into 
space and China has announced plans to build a full-fledged GNSS of its own, Compass. 
 
Today there is not any more a sole global positioning system and the coexistence between 
different GNSSes particularly challenges engineers to understand how the coexistence of 
current and future signals can be guaranteed. As the evolution of the different navigation 
systems mentioned above has shown, all modernized GNSSes provide more complex signal 
waveforms compared to the past and signal design has become a topic of great interest and 
subject to intensive research. This thesis will analyze the problems and challenges that this 
new world poses from the point of view of the signal structure, describing how future 
generalized GNSS signal waveforms could look like.  
 

1.1 Objectives of this Thesis 
 
The first main objective of this thesis is the derivation of a generally valid theoretical model 
under which all current and future navigation signals can be described. This thesis proves that 
the generalized signal waveforms can cover all current signals and other optimized signals 
that could potentially be proposed in the future. Chapters 2 and 3 give a general overview of 
today’s satellite navigation, paying special attention to those aspects related to signal and 
frequency design. Chapter 4 presents the theoretical framework this thesis relies on. 
 
A second objective of this work is to assess the spectral performance of these generalized 
signal waveforms by analyzing the Spectral Separation Coefficient (SSC). This figure is of 
great interest in satellite navigation to understand the interaction of any two signals. Building 
on the generic signal formulas defining the spectrum, generalized expressions are derived for 
the SSCs. Particular cases of interest are investigated in detail, using on the one hand side the 
obtained analytical expression and on the other hand real simulations under ideal conditions. 
Results show a perfect matching between the predicted analytical results and those obtained 
from numerical computations, under multiple assumptions. Furthermore, the SSC theory is 
extended to account also for imperfections and non-ideal effects induced by the codes. 
 
Finally, the third main objective of this thesis is to provide a full understanding on current and 
future multiplexing techniques. This work proposes different solutions to integrate any 
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generalized signal waveform into an unique multiplexed signal to be transmitted by the 
satellite. Pros and Cons of the different solutions are discussed and investigated with regards 
to the application for future signal waveforms. 
 
To accomplish all these objectives, several tasks have been identified: 
 

• To provide an actual description of the signal and frequency plan of all the 
Global Navigation Systems that have played or will play an important role in the 
coming decades. The American GPS and the Russian GLONASS are today in a 
process of modernization that will transform both in dual-use systems. In parallel, the 
European Galileo project will soon start to work and the Chinese Compass is under 
current development. This thesis presents their main constellation figures together 
with other relevant signal and frequency characteristics. 

• To present a general description of all the Regional Satellite Navigation Systems 
that exist or are under design. In order to provide improved positioning 
performance, Japan (QZSS), India (IRNSS) and China (Beidou) are currently 
developing their own regional satellite navigation systems. A detailed description of 
their main parameters will be provided together with a discussion on the future and 
utility of these regional approaches.  

• To provide an actual and detailed description of all the current and planned 
GNSS Augmentation Systems. As the number of countries with a global navigation 
system increases, also the requirement to give an answer to particular needs in certain 
regions gains in interest. To cover this demand, the USA (WAAS), Europe (EGNOS), 
Japan (MSAS), Russia (SDCM), India (GAGAN), Nigeria (NIGCOMSAT), Canada 
(CWAAS), China (SNAS) and South America (CSTB), have planned or are currently 
developing satellite based augmentation systems to enhance the capabilities of the 
global navigation systems, providing in most cases common operations between 
different systems. In addition, other means to augment the navigation signals on a 
terrestrial basis (GRAS, LAAS, Pseudolites) are also shortly discussed in this work. 

• To present a clear picture of the evolution of the Galileo Signal and Frequency 
Plan over the past years, covering all the gaps in the signal design history that have 
not been covered sufficiently in the literature. An important objective in this regard is 
indeed to present the evolution of the Galileo Signal Baseline in a comprehensive 
way, underlining the drivers that have led Galileo to the final plan it presents today. 

• To provide a complete description of all the services and signal characteristics of 
Galileo. This work pursues to present a correct and complete overview of all the 
aspects of the Galileo’s Signal and Frequency plan, emphasizing on those signals that 
due to their still short life are less known in the literature. Given the importance that 
Galileo has played in past years, special attention is dedicated to it. 
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• To provide a theoretical framework that describes all current and future 
navigation signals. After a complete overview of the signal structure of current 
GNSSes and future modernizations, all the potential modulations of interest for 
satellite navigation are presented. These are shown to belong to a generalized family 
of signals, known as Multilevel Coded Symbols (MCS). A theoretical framework will 
be set up and used to derive analytical expressions of generic signal waveforms.  

• To prove that the theoretical framework that describes any generalized 
navigation signals covers all current and all new modulations. This thesis further 
proves that all current signal waveforms are in fact particular cases of the generalized 
modulations that are proposed in this work.  

• To provide the reader with a list of appropriate tools to evaluate the goodness of 
a signal waveform against other potential alternatives. Designing the signal and 
frequency plan of any navigation system requires the deep understanding of the effect 
of any signal characteristic aspect onto the final positioning accuracy. This work 
provides answers to this. 

• To understand the meaning and importance of the Spectral Separation 
Coefficient (SSC), stressing the value of this parameter in the design of the 
Signal and Frequency plan of any navigation system. The SSCs have been widely 
used over the past years to assess compatibility of the candidate signals of all the 
navigation systems that exist or are under development. Furthermore, a good 
understanding of them provides a very rich insight into the global compatibility and 
interoperability performance of a modulation. 

• Based on the theoretical framework that describes analytically any generic 
signal, analytical expressions are also derived for the Spectral Separation 
Coefficient (SSC) between any two signals. The analytical SSCs are further cross-
checked with results coming from numerical computation showing the validity of the 
derived expressions. 

• To assess how non-idealities of the real signal implementations are reflected in 
the final performance of a signal.  This work will assess the SSCs under ideal and 
more realistic conditions, evaluating the potential effects that the drift from the ideal 
case can cause onto the final performance of a navigation signal. 

• To investigate the effects of the SSCs on the mutual interference and 
compatibility among different navigation systems. Using a generally accepted 
interference model, the influence of the signal waveform on the final compatibility 
and interference will be assessed. 

• One final but ambitious task of this work will be to provide a complete overview 
of all the current and potential multiplexing schemes of future and modernized 
navigation systems. Signal Multiplexing has gained in importance over the past years 
as an increasing number of signals and services are planned to be shared in the very 
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scarce Radio-Navigation bands that satellite navigation has assigned today. This 
thesis will try to give a comprehensive and complete overview of all the multiplexing 
schemes that are relevant for satellite navigation, paying special attention to those 
approaches that GPS and Galileo presently use and will potentially implement in the 
future. 

 
The organization of the thesis is determined by these objectives and will be further outlined in 
chapter 1.3. 
 

1.2 Contributions of this Thesis 
 
The major achievements of this thesis are enumerated next: 
 

• Review of current satellite navigation systems and signal waveforms: 
 

o A detailed description of the signal and frequency plans, including the main 
constellation parameters, of all the global, regional and augmentation 
navigation systems that exist today or are planned for the coming years. 

o A detailed overview of how the Galileo Signal and Frequency Plan has 
evolved over the past years, providing insight into the technical drivers that 
have led to the baseline that Galileo presents today. 

o A complete overview of all the signal waveforms that have been relevant in the 
past decades and of those that could potentially become alternative for 
modernized Satellite Navigation Systems. 

o A complete description of the Galileo baseline signals and services as well as 
of other candidates that were relevant in the past years together with an 
assessment of their potential positioning performance. 

 
• Development of new theory on signal design for satellite navigation: 
 

o A mathematical framework capable of describing any generic signal waveform 
is developed and analytical expressions derived. This is further used to obtain 
general expressions for the Spectral Separation Coefficients. 

o Derivation of analytical expressions and theory of generic Multi-Coded 
Symbol (MCS) Signals and their particular cases. By using this theoretical 
framework it is shown that any signal can be in principle expressed following 
the generalized theory on MCS signals. 

o Derivation of analytical generalized expressions for the Power Spectral 
Densities that can describe all signals, modulations and multiplexing schemes 
that are used today or could be used some day in the future to enhance 
navigation. 
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o Analysis of the MBOC modulation and its different implementations by GPS 
and Galileo as well as possible receiver architectures for GPS and Galileo 
E1/L1 common receivers. 

o Derivation of analytical expressions for the Spectral Separation Coefficients 
(SSC) of generic Multi-Coded Symbol signals with infinite and limited 
bandwidth and generalization to more complex waveforms. Original formulas 
are proposed to calculate the SSC between any two arbitrary signals.  

o Assessment of the effect of non-random codes and data on the Spectral 
Separation Coefficients. Particular examples for Galileo and GPS signals are 
provided and the consequences are discussed. 

o Overview of the most representative multiplexing schemes in satellite 
navigation with special emphasis on those modulations that GPS, Galileo and 
potentially other navigation systems will use in the future. Furthermore, the 
possibility to use the above described multiplexing schemes to accommodate 
the generalized signal waveforms is also discussed in this thesis. 

 

1.3 Thesis Outline 
 
This thesis focuses on the derivation of general analytical expressions that can describe all the 
current signal waveforms, modulations and multiplexing schemes today or that could be 
implemented in the future. Furthermore, given the importance that the Spectral Separation 
Coefficient plays in the design of any Satellite Navigation System’s signal plan, special 
attention is paid to this figure. The thesis concludes discussing existing and new theory on 
multiplexing. In order to provide a comprehensive overview, this thesis has been divided in 
the following chapters: 
 

• Chapter 1 gives and introduction to the semantics and to the scope of this thesis, 
giving a brief overview of the current situation and expectations on the future 
development of satellite navigation in the next decades. 

• Chapter 2 concentrates on giving a detailed overview of all the current and planned 
Satellite Navigation Systems, summarizing the main constellation parameters and 
envisioned signal and frequency plans. The chapter begins with a brief discussion on 
the direction in which GNSS could evolve in the coming years. Then, the American 
Global Positioning System (GPS) is presented, followed by the European Galileo, the 
Russian GLONASS and the Chinese Compass system. After summarizing the main 
characteristics of these four systems, additional regional and augmentation satellite 
systems are introduced and their main figures are briefly outlined. To conclude the 
chapter, actual information on other augmentation systems that are not based on 
satellite technology is also provided. 



Introduction 

6 

• Chapter 3 makes a review of the evolution of the Galileo’s Signal and Frequency 
Plan since it was officially announced that Europe would also pursue to have its own 
Global Navigation Satellite System. The chapter begins with the description of the 
first signal plan back in the late 1990´s and concludes with the newly adopted MBOC 
modulation. In recognition of the difficulty that the signal design represents, this 
chapter tries to provide the technical arguments that were used to justify each of the 
signal waveform that form today’s signal plan. Furthermore a brief description of the 
navigation services that Galileo will offer is equally provided. 

• Chapter 4 presents the theory on generalized signal waveforms, setting up a complete 
theory framework with which all of the signals used today for satellite navigation can 
be described mathematically. The chapter begins defining the main spectral and time 
characteristics of any signal waveform, introducing then the generic Multi-Coded 
Symbol (MCS) modulation. After that, general and particular analytical expressions 
are derived and compared with the well known expressions that can be found in the 
literature. Generalized waveforms are further introduced concluding the chapter with 
the recently adopted MBOC modulation and an assessment of its performance for 
different receiver configurations.  

• Chapter 5 is dedicated to the derivation of analytical expressions for the Spectral 
Separation Coefficients (SSC) using the theory presented in chapter 4. The chapter 
begins deriving generic expression for the SSCs between any two generic BCS signals 
with infinite bandwidth. It concludes giving general expressions for the power in the 
band and for different efficiency parameters of interest. Analytical results and 
numerical computations are compared to show the validity of the model. 

• Chapter 6 concentrates on assessing the validity of the expressions derived in chapter 
5 under more realistic scenarios. The effect of non-random codes and data is further 
examined and different signal waveforms are further investigated regarding their 
spectral properties as seen in the receiver.  

• Chapter 7 deals with signal multiplex techniques for GNSS. After giving a quick 
review of all the techniques that are relevant for satellite navigation, the most relevant 
ones are investigated in detailed. The chapter begins with a brief discussion on the 
need of multiplexing and the requirement on constant envelope to justify the different 
solutions that will be later studied. Beginning with non-constant envelope, the chapter 
goes through more flexible techniques such as Interplex and its generalization to any 
number of sub-carriers, to finally conclude with new multiplexing schemes. To 
conclude, this chapter presents a brief discussion on CDMA and FDMA stressing its 
importance on the modernization of GLONASS. 

• Annexes A to N derive the analytical expressions for the Power Spectral Densities, 
Spectral Separation Coefficients, Multiplexing schemes and interference models that 
are presented in the previous chapters. 
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2. Global Navigation Satellite Systems (GNSS) 
2.1 GNSS – Thinking global 
 
The USA entered the global navigation satellite system (GNSS) era with the Global 
Positioning System as the result of efforts that began in the late 1960s. The Russians followed 
soon afterwards with GLONASS. Both systems are now undergoing extensive modernization. 
Moreover, the European Galileo system is joining the GNSS club, and China is now planning 
its own version called Compass.  
 
In the meantime lots of augmentation and regional systems have been developed or are 
currently under consideration. From military to civil signals, from Medium Earth Orbit 
(MEO) to Geostationary Earth Orbit (GEO) and Inclined GeoSynchronous Orbits (IGSO), the 
palette of systems and offered services is considerably wide. 
 
It is time to pause and think for a moment about where we want GNSS to move. It is already 
time to really think global and to coordinate and harmonize all the existing and projected 
navigation satellite systems. Indeed the question naturally arises: what should the Global 
Navigation Satellite System of Systems look like? 
 
This chapter describes the world of GNSS in which we will live around the year 2020 if all 
the currently modernizing and planned new systems come into reality. The word coordination 
will be the key since, if things are well done, it will give the users the possibility to profit 
from all the navigation systems as if they were only one. After all, GNSS users should not 
care about whether one of the signals comes from GPS, the other from Galileo, the third from 
GLONASS and the fourth from Compass as long as the GNSS receiver works well. 

2.2 Scenes from the Present 
 
Today only GPS is fully operational. Nevertheless, Russia hopes to return GLONASS to full 
operation capability (FOC) with a completed constellation by 2009, and Galileo’s FOC is now 
expected end of 2013. Compass has also ambitious plans and in spite of the fact that China 
has still a long way to go and lengthy negotiations will be needed, a scenario of four global 
coverage satellite systems seems to be very likely in a future not so far away from today. 
 
From the experience with Galileo, we know how important the roles of interoperability and 
compatibility with GPS were from the very beginning. Unfortunately, major differences 
between those two systems using the Code Division Multiple Access (CDMA) and 
GLONASS using the Frequency Division Multiple Access (FDMA) approach still exist today. 
However, GLONASS seems to have made first movement into adopting CDMA as will be 
shown in chapter 2.5. It seems that Compass will use CDMA too.  
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On the GPS/GLONASS side, work for reaching real interoperability continues. During the 
GPS/GLONASS Working Group 1 meeting in December 2006 both sides emphasized the 
benefit to the user community that a common approach concerning FDMA/CDMA will bring 
in terms of interoperability. The Russian side announced that they would come to a decision 
by the end of 2007 [US-Russia Statement, 2006] but it was not until April 2008 that the final 
decision was taken. GLONASS seems to plan now CDMA signals in L1 and L5 as we will 
show in chapter 2.5. 
 
In fact, if the need of standardization was always there, it seems that the concept is gaining in 
interest the more systems come into play. But before dreaming with our ideal GNSS, let us 
first look more closely into what the current reality is and the plans for new GNSS systems. 
 
If we take a look at the signal structure, we can recognize that all the present GNSS systems 
are based on the Direct Sequence Spread Spectrum (DSSS) technique which is a particular 
case of the more general Spread Spectrum (SS) method. Moreover, Code Division Multiple 
Access (CDMA), Frequency Division Multiple Access (FDMA) and Time Division Multiple 
Access (TDMA) are particular cases of DSSS. The overall constellation parameters of the 
four global GNSSes are shown in Table 2.1 next. 
 

Table 2.1. Space Constellation Parameters 
Parameter Galileo GPS GLONASS Compass 

Constellation 
Walker MEO 
(27/3/1) plus 3 

non-active spares 

MEO (24/6) 
including 3 

active spares 
MEO (24/3) 

GEO (5),  
MEO (27), 
IGSO (3) 

GEO Longitudes - - - 
58.75°, 80°, 

110.5°, 140° and 
160° E 

GSO Equatorial 
Crossing 

- - - 118° 

Eccentricity 0 0 0 0 
GSO Inclination - - - 55° 
MEO Inclination 56° 55° 64.8° 55° 

Semi-major axis 29,601.297 km 26,559.7 km 25,440 km MEO 27,878 km 
IGSO 42,146 km 

 
As we know, in spread spectrum communications a higher-frequency signal is injected into a 
baseband signal bandwidth. This results in the energy used in transmitting the information of 
the baseband signal being spread over a wider bandwidth. Typically, the SS power level drops 
below the RF noise floor, which makes the SS signal invisible for unauthorized users. The 
ratio (in dB) between the spread baseband and the original signal is called processing gain and 
typical SS processing gains range from 10 dB to 60 dB [G.W. Hein et al., 2006c]. 
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For the particular case of the DSSS technique, the Pseudo Random Noise Code (PRN) is 
inserted at the data level. How this is realized makes the difference between CDMA, FDMA 
and TDMA. In the case of GPS and Galileo, the pseudo-random sequence is mixed or 
multiplied with the information signal (CDMA) while GLONASS employs different 
frequencies for each signal (FDMA).  
 
To facilitate the reading in the next chapters and given that the different existing and planned 
GNSSes refer sometimes to different bands with the same notation and other times to the 
same band with different names, the following table of correspondences is presented for 
clarification. Furthermore, it is interesting to note that Galileo used for a long time L1 to refer 
to the actual E1 band. In fact, only after [Galileo SIS ICD, 2008] the notation has changed 
from L1 to E1 to make it consistent with the rest of the bands. 
 

Table 2.2. Correspondence between frequency bands of different GNSSes 
 

System GPS GLONASS Galileo Compass 
Frequency Band L1 L1 E1 B1 

Centre Frequency 1575.42 MHz 1602 MHz 1575.42 MHz 
1561.098 MHz (B1) 

 1589.742 MHz (B1-2) 

System GPS GLONASS Galileo Compass 
Frequency Band L2 L2 - - 

Centre Frequency 1227.60 MHz 1246 MHz - - 

System GPS GLONASS Galileo Compass 
Frequency Band L5 - E5a - 

Centre Frequency 1176.45 MHz - 1176.45 MHz - 

System GPS GLONASS Galileo Compass 
Frequency Band - - E6 B3 

Centre Frequency - - 1278.75 MHz 1268.52 MHz 

System GPS GLONASS Galileo Compass 
Frequency Band - L3 E5b B2 

Centre Frequency - 1201 MHz 1207.14 MHz 1207.14 MHz 
 
Finally, Figure 2.1 next shows the signal structure of all the existing and planned GNSSes. 
Negotiations among the involved countries are still needed to ensure compatibility (and to 
fulfil ITU regulations) and interoperability of the signals. It is important to note that the GPS 
L1C pilot and data signals are shown in quadrature in the figure although according to     
[GPS ICD-800, 2006] the final phasing is still open. 
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Figure 2.1. GPS, GLONASS, Galileo, and planned Compass signals (Courtesy of Stefan Wallner)
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2.3 The Global Positioning System (GPS) 

2.3.1 GPS System Overview 
 
GPS is made up of a network of initially 24 active satellites placed into orbit by the U.S. 
Department of Defense. Although originally developed for military applications, the U.S. 
government made GPS available to civilians, transforming it into the dual-use system it is 
today. Accordingly, certain signal capabilities are reserved for U.S. and allied military 
applications while the civilian signals are open and free for worldwide use. 
 
The GPS baseline constellation consists of 24 satellites (21 + 3 active spares) in six orbital 
positioned circular MEO planes at a nominal average orbit semi-major axis of 26559.7 km, 
and at an inclination of the orbital planes of 55 degrees with reference to the equatorial plane.  
 
The first developmental satellites were launched beginning in 1978, and the first operational 
satellites went on orbit in 1989. The system reached initial operational capability (IOC) in 
1993 and FOC, in 1995. The present GPS constellation exceeds the baseline constellation 
with 32 orbiting satellites after the last successful launch was on March 15th, 2008. The 
history of all GPS launches can be seen in Figure 2.2. 
 

 
Figure 2.2. Launch History of GPS 
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2.3.2 GPS Signal Plan 

2.3.2.1 GPS L1 Band 
 
The GPS L1 band (1575.42 MHz) has turned to be the most important band for navigation 
purposes. Indeed most of the applications in the world nowadays are based on the signals 
transmitted at this frequency.  As stated in [GPS ICD 200], three signals are transmitted at the 
moment by GPS in L1: C/A Code, P(Y) Code and M-Code. In the future, an additional new 
civil signal, known as L1C, will also be transmitted. We describe all of them in the next lines: 
 

• The Coarse/Acquisition (C/A) code signal was primarily thought for acquisition of the 
P (or Y) code and has become nowadays the most important signal for mass market 
applications. The PRN C/A Code for SV ID number i is a Gold code, Gi(t), of 1 
millisecond in length at a chipping rate of 1.023 Mbps. The Gi(t) sequence is a linear 
pattern generated by the Modulo-2 addition of two subsequences, G1 and G2i, each of 
them being a 1023 chip long linear pattern. The epochs of the Gold code are 
synchronized with the X1 epochs of the P-code. 

• The P Code is the precision signal and is coded by the precision code. Moreover the 
Y-Code is used in place of the P-code whenever the Anti-Spoofing (AS) mode of 
operation is activated as described in the ICDs 203, 224 and 225. The PRN P-code for 
SV number i is a ranging code, Pi(t), 7 days long at a chipping rate of 10.23 Mbps. 
The 7 day sequence is the Modulo-2 sum of two sub-sequences referred to as X1 and 
X2i with 15,345,000 chips and 15,345,037 chips, respectively. The X2i sequence is an 
X2 sequence selectively delayed by 1 to 37 chips allowing the basic code generation 
technique to produce a set of 37 mutually exclusive P-code sequences 7 days long. 

• The modernized military signal (M-Code) is designed exclusively for military use and 
is intended to eventually replace the P(Y) code [E. D. Kaplan and C. Hegarty, 2006]. 
The M-Code provides better jamming resistance than the P(Y) signal, primarily 
through enabling transmission at much higher power without interference with C/A 
code or P(Y) code receivers [B.C. Barker et al., 2000]. Moreover, the M-Code 
provides more robust signal acquisition than is achieved today, while offering better 
security in terms of exclusivity, authentication, and confidentiality, along with 
streamlined key distribution. In other aspects, the M-Code signal provides much better 
performance than the P(Y) Code and more flexibility.  

• The L1 Civil signal (L1C), defined in the [GPS ICD-800, 2006], consists of two main 
components; one denoted L1CP to represent the pilot signal, consisting of a time-
multiplexing of BOC(1,1) and BOC(6,1), thus without any data message, and L1CD, 
with a pure BOC(1,1), for the data channel. This is spread by a ranging code and 
modulated by a data message. The pilot channel L1CP is also modulated by an SV 
unique overlay secondary code, L1CO. 
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For more details on the code generation refer to the [GPS ICD 200] and                        
[GPS ICD-800, 2006]. Finally, the technical characteristics of the existing and planned GPS 
signals in the L1 band are summarized in the following table. 
 

Table 2.3. GPS L1 signal technical characteristics 
 

GNSS System GPS GPS GPS GPS 
Service Name C/A L1C P(Y) Code M-Code 

Centre Frequency 1575.42 MHz 1575.42 MHz 1575.42 MHz 1575.42 MHz 
Frequency Band L1 L1 L1 L1 
Access Technique CDMA CDMA CDMA CDMA 
Signal Component Data Data Pilot Data N.A. 

Modulation BPSK(1) TMBOC(6,1,1/11) BPSK(10) BOCsin(10,5) 
Sub-carrier 

frequency [MHz] 
- 1.023  

1.023 & 
6.138  

- 10.23 

Code frequency 1.023 MHz 1.023 MHz 10.23 MHz 5.115 MHz 
Primary PRN 
 Code length 

1023 10230 6.19·1012 N.A. 

Code Family Gold Codes Weil Codes 

Combination 
and short-

cycling of M-
sequences 

N.A. 

Secondary PRN 
Code length 

- - 1800 - N.A. 

Data rate 
50 bps / 
50 sps 

50 bps / 
100 sps 

- 
50 bps / 
50 sps 

N.A. 

Minimum Received 
Power [dBW] 

-158.5 -157 -161.5 N.A. 

Elevation 5° 5° 5° 5° 
 
Of all the signals above, the C/A Code is the best known as most of the receivers that have 
been built until today are based on it. The C/A Code was open from the very beginning to all 
users, although until May 1st, 2000 an artificial degradation was introduced by means of the 
Select Availability (SA) mechanism which added an intentional distortion to degrade the 
positioning quality of the signal to non-desired users. As we have already mentioned, the   
C/A Code was thought to be an aid for the P(Y) Code (to realize a Coarse Acquisition). The  
M-Code is the last military signal that has been introduced in GPS. 
 
For a long time different signal structures for the M-Code were under consideration         
[J.W. Betz, 2001] being the Manchester code signals (BPSK) and the binary offset carrier 
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(BOC) signals the two favoured candidates. Both solutions result from the modulation of a 
non-return to zero (NRZ) pseudo random noise spreading code by a square-wave sub-carrier. 
While the Manchester code has a spreading code of rate equal to that of the square-wave, the 
BOC signal does not necessarily have to be so, being the only constraint that the rate of the 
spreading code must be less than the sub-carrier frequency. 
 
The interesting aspect about these signals is that, like the conventional sub-carrier modulation, 
the waveform presents a zero at the carrier frequency due to the square-wave sub-carrier. In 
fact, their split-power spectra clearly facilitate the compatibility of the GPS military M-Code 
signal with the existing C/A Code and P(Y) Code.  
 

 
Figure 2.3. Spectra of GPS Signals in L1  

 
It is important to note that although the GPS L1C pilot and data signals are shown in 
quadrature in the figure above, according to [GPS ICD-800, 2006] the final phasing is still to 
be decided. Furthermore, we can clearly recognize that GPS L1C concentrates more power at 
higher frequencies – due to BOC(6,1) – in the pilot channel than in the data channel. This will 
be described in detail in chapter 4.7.4 
 
Finally, it is important to note that for all the figures next the commonly used expressions for 
bandwidths in MHz must be understood as multiplied by the factor 1.023. Thus BPSK(10) 
refers in reality to a BPSK signal with a chip rate of 10.23 MHz. This remains valid for all the 
bandwidths in this thesis, unless different stated. 
 
2.3.2.2 GPS L2 Band 
 
GPS is transmitting in the L2 band (1227.60 MHz) a modernized civil signal known as L2C 
together with the P(Y) Code and the M-Code. The P(Y) Code and M-Code were already 
described shortly in the previous chapter and the properties and parameters are thus similar to 
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those in the L1 band. In addition, for Block IIR-M, IIF, and subsequent blocks of SVs, two 
additional PRN ranging codes will be transmitted. They are the L2 Civil Moderate (L2 CM) 
code and the L2 Civil Long (L2 CL) code. These two signals are time multiplexed so that the 
resulting chipping rate is double as high as that of each individual signal. We further describe 
them in the next lines more in detail: 
 

• L2 CM Code is transmitted in the IIR-M, IIF, and subsequent blocks. The PRN        
L2 CM Code for SV number i is a ranging code, CMi(t), which is 20 milliseconds in 
length at a chipping rate of 511.5 Kbps. The epochs of the L2 CM Code are 
synchronized with the X1 epochs of the P-code. The CMi(t) sequence is a linear pattern 
which is short cycled every count period of 10,230 chips by resetting with a particular 
initial state. Furthermore, for Block IIR-M, the navigation data is also Modulo-2 added 
to the L2 CM Code. It is interesting to note that the navigation data can be used in one 
of two different data rates selectable by ground command: 

o D(t) with a data rate of 50 bps  
o D(t) with a symbol rate of 50 symbols per second (sps) which is obtained by 

encoding D(t) with a data rate of 25 bps coded in a rate 1/2 convolutional code. 
Finally, the resultant bit-train is combined with the L2 CL Code using time-
division multiplexing. 

• L2 CL Code is transmitted in the IIR-M, IIF, and subsequent blocks. The PRN L2 CL 
Code for SV number i is a ranging code, CLi(t), which is 1.5 seconds in length at a 
chipping rate of 511.5 Kbps. The epochs of the L2 CL Code are synchronized with the 
X1 epochs of the P Code. The CLi(t) sequence is a linear pattern which is generated 
using the same code generator polynomial as of CMi(t). However, the CLi(t) sequence 
is short cycled by resetting with an initial state every count period of 767,250 chips.  

 
Finally, it is important to note that the GPS L2 band will have a transition period from the 
C/A Code to L2C and mixed configurations could occur. Next figure shows the baseband L2 
signal generation scheme. As we can recognize, although the chipping rate of the L2 CM and 
L2 CL signals is of 511.5 Kbps individually, after the time multiplexing the composite signal 
results in a stream of 1.023 MHz. 

 
Figure 2.4. Modulation scheme for the GPS L2 Signals 
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The technical characteristics of the GPS L2 signals are summarized next: 
 

Table 2.4. GPS L2 signal technical characteristics 
GNSS System GPS GPS GPS GPS 
Service Name L2 CM L2 CL P(Y) Code M-Code 

Centre Frequency 1227.60 MHz 1227.60 MHz 1227.60 MHz 1227.60 MHz 
Frequency Band L2 L2 L2 L2 
Access Technique CDMA CDMA CDMA CDMA 

Spreading 
modulation 

BPSK(1) result of multiplexing 2 
streams at 511.5 kHz 

BPSK(10) BOCsin(10,5) 

Sub-carrier 
frequency 

- - - 10.23 MHz 

Code frequency 511.5 kHz 511.5 kHz 10.23 MHz 5.115 MHz 
Signal 

Component 
Data Pilot Data N.A. 

Primary PRN 
Code length 

10,230 
(20 ms) 

767,250 
(1.5 seconds) 

6.19 x 1012 N.A. 

Code Family 
M-sequence from a maximal 

polynomial of degree 27 

Combination 
and short-

cycling of M-
sequences 

N.A. 

Secondary PRN 
Code length 

- - - N.A. 

Data rate 

IIF 
50 bps / 50 sps 

IIR-M 
Also 25 bps  

50 sps with FEC 

- 
50 bps / 
50 sps 

N.A. 

Minimum 
Received Power 

[dBW] 

II/IIA/IIR 
-164.5 dBW 

IIR-M 
-161.5 dBW 

IIF 
-161.5 dBW 

II/IIA/IIR 
-164.5 dBW 

IIR-M 
-161.4 dBW 

IIF 
-160.0 dBW 

N.A. 

Elevation 5° 5° 5° 
 
The spectra of the different signals described in the preceding lines are shown in the next 
figure: 
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Figure 2.5. Spectra of the GPS Signals in L2 

2.3.2.3 GPS L5 Band 
 
The GPS L5 (1176.45 MHz) signal will be transmitted for the first time on board IIF 
satellites. The GPS carriers of the L5 band are modulated by two bit trains in phase 
quadrature: the L5 data channel and the L5 pilot channel. Moreover, two PRN ranging codes 
are transmitted on L5: the in-phase code (denoted as the I5-code) and the quadraphase code 
(denoted as the Q5-code).  The PRN L5-codes for SV number i are independent, but time 
synchronized ranging codes ( )tX i

I and ( )tX i
Q , of 1 millisecond in length at a chipping rate of 

10.23 Mbps [GPS ICD-705, 2005]. For each code, the 1-millisecond sequences are the 
modulo-2 sum of two sub-sequences referred to as XA and XBi with lengths of 8,190 chips and 
8,191 chips respectively, which restart to generate the 10,230 chip code. The XBi sequence is 
selectively delayed, thereby allowing the basic code generation technique to produce the 
different satellite codes. 
 
The generation scheme can be shown graphically as follows: 
 

 
Figure 2.6. Modulation scheme for the GPS L5 signals 
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For more details on L5, refer to [E. D. Kaplan and C. Hegarty, 2006]. The different signals 
present the following spectrum: 

 
Figure 2.7. Spectra of GPS Signals in L5 

 
To conclude, the technical characteristics of the GPS signals in L5 can be summarized as 
follows: 

Table 2.5. GPS L5 signal technical characteristics 
 

GNSS System GPS GPS 
Service Name L5 I L5 Q 

Centre Frequency 1176.45 MHz 1176.45 MHz 
Frequency Band L5 L5 
Access Technique CDMA CDMA 

Spreading modulation BPSK(10) BPSK(10) 
Sub-carrier frequency - - 

Code frequency 10.23 MHz 10.23 MHz 
Signal Component Data Pilot 

Primary PRN Code length 10230 10230 

Code Family 
Combination and short-cycling of 

M-sequences 
Secondary PRN Code length 10 20 

Data rate 50 bps / 100 sps - 
Minimum Received Power [dBW] -157.9 dBW -157.9 dBW 

Elevation 5° 5° 



Global Navigation Satellite Systems 

19 

2.3.3 GPS Modernization 
 
Before December 2005 the basic GPS capability consisted of the Standard Positioning Service 
(SPS) provided by the C/A Code on the L1 frequency and the Precise Positioning Service 
(PPS) provided by the P(Y) Code on L1 and L2. Although those services are of relatively 
good quality, the United States envisaged modernizing the signals in order to improve the 
quality and protection of both civil and military users. To that objective, the following GPS 
Modernization plan was proposed. This can be timely divided in the following three blocks: 
 

• Block IIR-M (Replenishment-Modernized) satellites. This generation of spacecraft 
has introduced a second civil signal with improved services (L2C) and is planning to 
reach the 24-satellite FOC around 2012. Additionally, for military purposes the 
modernized M-Code — BOC(10,5) — will be placed on L1 and L2 signals. Block 
IIR-M satellites also have antijam flex power capabilities for military needs.  More 
details on the planned signal plan can be found in Figure 2.1. The first operational  
IIR-M satellite was launched on December 16th, 2005 and the last on                   
March 15th, 2008. 

 
• Block IIF (Follow-on) satellites. With the design of GPS Block IIF, the American 

navigation system has undergone an important transformation that has finally 
redefined GPS from a military service with the guarantee of civil use to a true dual 
service [P.A. Dafesh et al., 1999a]. Indeed, what started as a modest upgrade to 
introduce a new civil frequency quickly evolved into a complement of new signals for 
enhanced military and civil use. The culmination of this transformation will be GPS 
Block III.  The third civil signal (L5), namely BPSK(10), will begin with the IIF 
satellites and the FOC with 24 satellites is expected to be reached around 2015. 

 
• Block III is still in the design phase. GPS Block III includes prospective 

improvements to both the ground and space segments. These will most likely include 
increased anti-jam power, increased security, increased accuracy, navigation surety, 
backward compatibility, assured availability, system survivability, and controlled 
integrity among other improvements. The fourth civil signal (L1C) will also be 
introduced with this block. In the 2004 GNSS cooperation Agreement between the 
United States and the European Union, the two parties agreed to have BOC(1,1) as the 
baseline waveform on both the GPS L1C and Galileo E1 Open Service (OS) signals. 
Nevertheless, a group of experts from Working Group A set up under the 2004 
Agreement proposed to optimize this signal using MBOC(6,1,1/11) as shown in  
[G.W. Hein et al., 2006a] and [G.W. Hein et al., 2006b]. Although an earlier schedule 
is under consideration, the first Block III satellite launch will probably occur 
somewhere around 2014 with FOC being reached by about 2020.  
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2.4 Galileo 

2.4.1 Galileo System Overview 
 
Galileo is the European global navigation satellite system (ENSS) and provides a highly 
accurate, guaranteed global positioning service under civilian control. According to        
[Galileo SIS ICD, 2008], the system will be interoperable with GPS and — at least to some 
extent, excluding the real-time high-precision part — with GLONASS, the two global satellite 
navigation systems available today. 
 
The fully deployed Galileo system will consist of 30 satellites (27 operational + 3 non-active 
spares), positioned in three circular MEO planes at a nominal average orbit semi-major axis of 
29,601.297 kilometres, and at an inclination of the orbital planes of 56 degrees with reference 
to the equatorial plane. Once FOC is achieved, the Galileo navigation signals will provide 
good coverage even at latitudes up to 75 degrees north and 75 degrees south. Galileo provides 
enhanced distress localization and call features for the provision of a Search And Rescue 
(SAR) service interoperable with the COSPAS-SARSAT system. 
 

 
Figure 2.8. Galileo Space Segment [Figure from ESA Website] 

 
The Galileo orbit altitude results in a repeat cycle of ten sidereal days during which each 
satellite completes seventeen revolutions. Indeed this repetition period of seventeen 
revolutions was chosen because simulation analyses showed that with seventeen terms to 
represent the series of the gravitational field satisfactory results were obtained. In order to 
avoid the gravitational resonance associated with a 12 hour orbital period as it is the case of 
GPS, the Galileo satellites will have an altitude approximately 3000 km higher than that of 
GPS. The relatively short repeat period is convenient for mission planning purposes. The 
constellation lifetime is of 20 years, while the Galileo satellites have a design lifetime of 12 
years [R. Zandbergen et al., 2004] and [R. Piriz et al., 2005]. 
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The European GNSS approach began with the European Geostationary Navigation Overlay 
Service (EGNOS), which provides civil complements to GPS since mid-2005 in its initial 
operation. From the very beginning, EGNOS was meant to be the bridge to Europe’s own 
full-fledged GNSS. Galileo’s first developmental satellites, GIOVE-A and GIOVE-B, were 
launched in December 2005 and April 2008 respectively. The Galileo In-Orbit Validation 
(IOV) phase is planned to start at the end of 2008 with four satellites and FOC should be 
achieved end of 2013. Furthermore, diverse options are being considered to launch the Galileo 
satellites including Ariane 5, Proton, Soyuz or Zenit rockets. 
 

2.4.2 Galileo Signal Plan 

2.4.2.1 Galileo E1 Band 
 
The E1 Open Service (OS) modulation receives the name of CBOC (Composite Binary Offset 
Carrier) and is a particular implementation of MBOC (Multiplexed BOC)                       
[J.-A. Avila-Rodriguez et al., 2007]. This signal will be explained in detail in chapter 4.7. 
MBOC(6,1,1/11) is the result of multiplexing a wideband signal – BOC(6,1) – with a 
narrowband signal – BOC(1,1) – in such a way that 1/11 of the power is allocated, in average, 
to the high frequency component. This signal was the last one to be defined. 
 
The normalized (unit power) power spectral density, specified without the effect of band-
limiting filters and payload imperfections, is given by  
 

 ( ) ( ) ( )fGfGfG )1,6(BOC)1,1(BOC)11/1,1,6(MBOC 11
1

11
10

+=  (2.1) 

 
As shown in [Galileo SIS ICD, 2008], the generic view of the E1 Open Service signal 
generation can be depicted as follows [J.-A. Avila-Rodriguez et al., 2007]: 

 

 
Figure 2.9. Modulation Scheme for the Galileo E1 OS Signals 
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The whole transmitted Galileo E1 signal consists of the multiplexing of the three following 
components: 
 

• The E1 Open Service Data channel )(BE1 te − is generated from the I/NAV navigation 
data stream )(BE1 tD − and the ranging code )(BE1 tC − , which are then modulated with 
the sub-carriers ( )( )tsc 1,1BOC1E −  and ( ) ( )tsc 1,6BOC1E −  of BOC(1,1) and BOC(6,1) 

respectively. 
• The E1 Open Service Pilot channel )(E1 te C−  is generated from the ranging code 

)(E1 tC C− , including its secondary code, which is then modulated with the sub-carriers 

( )( )tsc 1,1BOC1E −  and ( )( )tsc 1,6BOC1E −  in anti-phase. 

• The E1 PRS channel, also denoted as E1-A, which results from the modulo-two 
addition (respectively product if we consider the physical bipolar representation of the 
signal) of the PRS data stream )(PRS tD , the PRS code sequence )(PRS tC  and the sub-
carrier )(PRS tsc . This sub-carrier consists of a BOC(15,2.5) in cosine phasing. 

 
For more details on the mathematical definition of the signal refer to chapter 7.7.8 where it is 
described more in detail. 

 
Figure 2.10. Spectra of Galileo Signals in E1 

 
It is interesting to see how the spectra of the two systems described so far in E1/L1 overlap: 

 
Figure 2.11. Spectra of GPS and Galileo Signals in L1  
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It is important to note that the GPS L1C pilot and data signals are shown in quadrature in the 
figure although according to [GPS ICD-800, 2006] the final phasing is still open. Furthermore 
it is important to recall that for a long time the actual E1 band received the name of L1 band 
in analogy with GPS and it was not until the publication of the [Galileo SIS ICD, 2008] that 
L1 changed to the current E1. 
 
The E1 Open Service (OS) codes are, as well as the E6 CS codes that we will see later, also 
random memory codes. The plain number of choices to set the 0’s and 1’s for the whole code 
family is enormous and thus special algorithms have to be applied to generate random codes 
efficiently [J.-A. Avila-Rodriguez et al., 2007].  
 
Finally, the technical characteristics of all the Galileo signals in E1 can be summarized in the 
following table: 

Table 2.6. Galileo E1 signal technical characteristics 
 

GNSS System Galileo Galileo Galileo 
Service Name E1 OS PRS 

Centre Frequency 1575.42 MHz 
Frequency Band E1 
Access Technique CDMA 

Spreading 
modulation 

CBOC(6,1,1/11) BOCcos(15,2.5) 

Sub-carrier 
frequency 

1.023 MHz and 6.138 
(Two sub-carriers) 

15.345 MHz 

Code frequency 1.023 MHz 2.5575 MHz 
Signal Component Data Pilot Data 
Primary PRN Code 

length 
4092 N/A 

Code Family Random Codes N/A 
Secondary PRN Code 

length 
- 25 N/A 

Data rate 250 sps - N/A 
Minimum Received 

Power [dBW] 
-157 N/A 

Elevation 10° N/A 
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2.4.2.2 Galileo E6 Band 

As shown in [Galileo SIS ICD, 2008], the transmitted Galileo E6 signal consists of the 
following three components: 
 

• The E6 Commercial Service (CS) data channel: this modulating signal is the modulo-
two addition of the E6 CS navigation data stream )(CS tD  with the CS data channel 
code sequence )(CS tC D . This last one is already modulated by a BPSK(5) at 5.115 MHz. 

• The E6 Commercial Service (CS) pilot channel: this modulating signal is the modulo-
two addition of the E6 CS pilot channel code )(CS tC P with a BPSK(5) at 5.115 MHz. 

• Finally, the E6 PRS channel is the modulo-two addition of the E6 PRS navigation data 
stream )(PRS tD  with the PRS channel code sequence )(PRS tC  at 5.115 MHz. This 

signal is further modulated by a sub-carrier of 10.23 MHz in cosine phasing. 
 
This is graphically shown as follows: 
 

 
Figure 2.12. Modulation Scheme for the Galileo E6 Signals 

 
Moreover, the spectrum of the different E6 signals is shown to be as follows: 
 

 
Figure 2.13. Spectra of Galileo Signals in E6 
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The E6 Commercial Service (CS) codes are random codes [J. Winkel, 2006]. The main idea 
behind is to generate a family of codes that fulfils the properties of randomness as well as 
possible [J.-A. Avila-Rodriguez et al., 2007]. The codes can be driven to fulfil special 
properties such as balance and weakened balance, where the probability of 0’s and 1’s must 
not be identical but within a well-defined range, or to realize the autocorrelation side-lobe 
zero (ASZ) property. This latter property guarantees that the autocorrelation values of every 
code correlate to zero with a delayed version of itself, shifted by one chip.  
 

Table 2.7. Galileo E6 signal technical characteristics 
 

GNSS System Galileo Galileo Galileo 
Service Name E6 CS data E6 CS pilot E6 PRS 

Centre Frequency 1278.75 MHz 
Frequency Band E6 
Access Technique CDMA 

Spreading modulation BPSK(5) BPSK(5) BOCcos(10,5) 
Sub-carrier frequency - - 10.23 MHz 

Code frequency 5.115 MHz 
Signal Component Data Pilot Data 

Primary PRN Code length 5115 5115 N/A 
Code Family Memory codes N/A 

Secondary PRN Code length - 100 N/A 
Data rate 1000 sps - N/A 

Minimum Received Power [dBW] -155 N/A 
Elevation 10° N/A 

2.4.2.3 Galileo E5 Band 
 
The different Galileo E5 signal components are generated according to the following    
[Galileo SIS ICD, 2008]: 
 

• The E5a data channel: This channel is the modulo-two addition of the E5a navigation 
data stream ( )tD aE5  with the E5a data channel PRN code sequence ( )tC D

aE5  of 

chipping rate 10.23 MHz. 
• The E5a pilot channel: This channel is the E5a pilot channel PRN code sequence 

( )tC P
aE5  of chipping rate 10.23 MHz. 

• The E5b data channel: This channel is the modulo-two addition of the E5b navigation 
data stream ( )tD bE5  with the E5b data channel PRN code sequence ( )tC D

bE5  of 

chipping rate 10.23 MHz. 
• The E5b pilot channel: This channel is the E5b pilot channel PRN code sequence 

( )tC P
bE5  of chipping rate 10.23 MHz. 
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The E5 modulation receives the name of AltBOC and is a modified version of a Binary Offset 
Carrier (BOC) with code rate of 10.23 MHz and a sub-carrier frequency of 15.345 MHz. 
AltBOC(15,10) is a wideband signal that is transmitted at 1191.795 MHz. More details on the 
mathematical definition will be given in chapter 4.8.1. Next figure shows the Galileo E5 
signal modulation diagram: 

 

Figure 2.14. Modulation Scheme for the Galileo E5 Signals 
 
The power spectral density for the modified AltBOC(15,10) modulation with constant 
envelope is shown to adopt the form: 
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adopting the spectrum of the E5 signal modulation the following form: 

 
Figure 2.15. Spectra of Galileo Signals in E5 

 
which was generated following the theory of chapter 4.8.1 and Appendix I. As we can 
recognize from the figure above, the AltBOC(15,10) modulation is very similar to two 
BPSK(10) signals shifted by 15 MHz to the left and right of the carrier frequency. Indeed, 
since to acquire all the main lobes of the modulation a very wide bandwidth is necessary, 
many receivers will operate correlating the AltBOC signal with a BPSK(10) replica. 
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To have a better feeling about the overlapping between GPS and Galileo in E5, the next figure 
shows all the signals described so far for this band. 

 
Figure 2.16. Spectra of GPS and Galileo Signals in E5 

 
The E5 primary codes can be generated with shift registers. Indeed, the outputs of two parallel 
registers are modulo-two added to generate the primary codes. For more details on the start 
values of the primary codes and the corresponding secondary codes of each satellite, refer to 
[Galileo SIS ICD, 2008]. Finally, some details on the technical characteristics of the E5 signal 
are presented. 

Table 2.8. Galileo E5 signal technical characteristics 
GNSS System Galileo Galileo Galileo Galileo 
Service Name E5a data E5a pilot E5b data E5b pilot 

Centre Frequency 1191.795 MHz 
Frequency Band E5 
Access Technique CDMA 

Spreading modulation AltBOC(15,10) 
Sub-carrier frequency 15.345 MHz 

Code frequency 10.23 MHz 
Signal Component Data Pilot Data Pilot 

Primary PRN Code length 10230 
Code Family Combination and short-cycling of M-sequences 

Secondary PRN Code 
length 

20 100 4 100 

Data rate 50 sps - 250 sps - 
Minimum Received Power 

[dBW] 
-155 dBW -155 dBW 

Elevation 10° 10° 
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2.4.2.4 Galileo Services 
 
The Galileo signals will be assigned to provide the service categories which are summarized 
in the following Table [J.-A. Avila-Rodriguez et al., 2008]. 
 

Table 2.9. Galileo Services mapped to signals 
 

Id OS SoL CS PRS SAR 
E5a      
E5b      
E6A      

E6B,C      
L6      
E1A      

E1B,C      
 
2.4.2.4.1 Open Service (OS) 
 
The single-frequency (SF) OS will be provided by each of the three signals: E1, E5a and E5b.  
The dual-frequency (DF) OS will be provided by the dual-frequency signal combinations 
E1(B&C) - E5a and E1(B&C) - E5b 
 
2.4.2.4.2 Commercial Service (CS) 
 
The CS will be provided by the E6 (B&C) signal plus the OS signals – E1 (B&C), E5a and 
E5b. The E6 (B&C) signal contains the value-added data and it is combined with OS signals 
for improved performance. 
 
2.4.2.4.3 Safety of Life (SoL)  
 
The mono-frequency SoL will be provided by each of the two signals: E1(B&C) and E5b. 
The dual-frequency SoL will be provided by the following dual-frequency signal 
combination: E1(B&C) - E5b. It has to be noted that the Galileo Safety of Life frequencies are 
in Aeronautical Radio-Navigation Service (ARNS) bands allocated for GNSS. The integrity 
broadcast and the protection provided in the ARNS bands are two important features of the 
Galileo SoL. A third important added value provided by Galileo to safety critical operations is 
the frequency diversity offered by E1, E5a and E5b ARNS Galileo bands. Assuming 
combined E1, E5a and E5b receivers and using a probabilistic theory related to involuntary 
jamming of GNSS receivers, it has been shown that the probability of losing the dual 
frequency navigation function has been assessed and computed to be approximately 15,000 
times lower in the case where a tri-frequency single system receiver is used instead of a dual-
frequency single system receiver, making this event an improbable case.  This result is 
particularly important for safety of life applications, such as civil aviation. Therefore, 
frequency diversity has an enormous potential as a simple interference mitigation means     
[J.-A. Avila-Rodriguez et al., 2007]. 



Global Navigation Satellite Systems 

29 

2.4.2.4.4 Public Regulated Service (PRS) 
 
The PRS service will be provided by the E1-A and E6-A signals. These will use encrypted 
ranging codes, navigation data and sub-carriers improving signal processing performances. 
 
2.4.2.4.5 Search And Rescue Service (SAR) 
 
The SAR distress messages will be detected by the Galileo satellites in the 406-406.1 MHz 
band and then broadcasted to the dedicated receiving ground stations in the 1544-1545 MHz 
band, called L6 (below the E2 navigation band and reserved for the emergency services). The 
SAR data transmitted from SAR operators to distress emitting beacons will be used for alert 
acknowledgement of distress alerts and coordination of rescue teams. The data will be 
embedded in the OS data of the signal transmitted in the E1 carrier frequency 
 
2.4.2.5 Galileo C-band 
 
The Radio-Navigation Satellite Service (RNSS) portion of the RF spectrum is overcrowded. 
This is especially true on the E1/L1 band. Nevertheless even those bands that have not been 
used yet will certainly be shared by many systems in the near future. Thus, the search of other 
free frequency resources is something that will occur with a high probability in the next years.   
 
During the World Radio Conference 2000 (WRC-2000), the Galileo program obtained 
authorization to use C-band frequencies between 5010 and 5030 MHz. At the time, a 
dedicated portion of the C-band was assigned for Radio-Navigation, but technical 
complexities made it impossible for the first generation of Galileo. 
 
Indeed, phase noise problems, the higher free space attenuation (related to the use of omni 
directional antennae) and the strong signal attenuation due to rain made all the proposed 
solutions not adequate for the first Galileo constellation. However, in some decades things 
could have changed and C-band could be a real alternative. As suggested in                     
[G.W. Hein et al., 2007b] and [G.W. Hein et al., 2007c], the C-band could be reserved for 
military/governmental applications leaving the L-band alone for civil users. This would have 
interesting benefits to both types of user and consequences as depicted in that article. 

2.4.3 Galileo Modernization 
 
Galileo is not yet in operation but already the so-called evolution program for the second 
generation has started end of 2007. Galileo II could arrive somewhere around 2020 and is 
expected to introduce new modernization elements analogous to the steps made by its 
counterparts GPS and GLONASS. Inter-Satellite Links (ISL) could be introduced at that time 
and aeronautical certification could be of relevance. In fact, under current plans only the first 
phase of Galileo – EGNOS – will be certified for aeronautical users. 
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2.5 GLONASS 

2.5.1 GLONASS System Overview 
 
The GLObal NAvigation Satellite System (GLONASS – ГЛОНАСС: ГЛОбальная 
НАвигационная Спутниковая Система) is the Russian navigation satellite system and, like 
GPS, it defines itself as a dual-use system. It is operated for the Russian Federation 
government by the Russian Space Forces. The system is governed by the Coordination 
Scientific Information Centre of the Ministry of Defense of the Russian Federation. Since 
some years the responsibility for GLONASS has been nominally delegated to Roscosmos, 
with funding coming from both Ministry of Defense and space agency budgets. When 
GLONASS was at peak efficiency it offered a standard – Coarse-Acquisition or “C/A” –  
positioning and timing service for civil users and a more accurate signal  – Precision or        
“P Code” – available for Russian military use. The first three test satellites were placed in 
orbit in October 1982 with the first operational satellite entering service in December 1983. 
First plans aimed at making the system operational in 1991 but it was not until September 
24th, 1993 that the system was finally announced to enter operation.  
 
The GLONASS ground segment is entirely located within the former Soviet Union territory, 
thus regionally, unlike for GPS and Galileo where it is spread all over the world. As a 
consequence, GLONASS presents an inferior performance in the stability and predictability 
of the satellite orbits. The Ground Control Centre and Time Standards are located in Moscow 
and the telemetry and tracking stations are in Saint Petersburg, Ternopol, Eniseisk and 
Komsomolsk-na-Amure. 
 
The GLONASS nominal constellation is composed of 24 satellites in three orbital planes with 
ascending nodes 120 degrees apart. Of the 24 satellites, 21 are active while the other three, 
one in each plane, are spare satellites. In each plane, the eight satellites are equally spaced 
with argument of latitude displacement of 45 degrees. Each of the satellites is identified by a 
slot number, which defines the corresponding orbital plane and the location within the plane: 
1-8 for the first plane, 9-16 for the second place and 17-24 for the third plane. The orbital 
planes have 15-degree argument of latitude displacement relative to each other.  
 
The satellites operate in circular orbits of 19,100 kilometres (25,440 km semi-major axis) at 
an inclination of 64.8 degrees, and each satellite completes the orbit in approximately 11 
hours 15 minutes. The satellite orbit repeats thus after approximately 8 days and since each 
plane contains 8 satellites there is a non-identical repeat after one sidereal day (not to confuse 
with the GPS sidereal day, which is different). The spacing of the satellites allows for 
continuous and global coverage of the terrestrial surface and the near-earth space, so that a 
minimum of 5 satellites are in view at any given time. 
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As shown in Figure 2.17, the current GLONASS status is far away from its nominal numbers 
and as of May 9th, 2008, only 14 active GLONASS satellites are transmitting from space 
(these are green in the figure). Two additional spacecraft are on orbit but have been 
temporarily switched off and are currently in maintenance (in yellow in the figure). However, 
in September and November 2008, Russia plans to conduct triple launches of modernized 
GLONASS satellites (GLONASS-M). If successful, that could ensure the envisaged 
completion of an 18-spacecraft constellation comprising all GLONASS-M satellites by the 
end of 2008. 

 
Figure 2.17. Launch History of GLONASS 

 
The initial GLONASS Program Budget of 2001 was arranged for reaching FOC in 2011. 
However the GLONASS program is speeding up on its course in accordance with a 
presidential directive issued January 18th, 2006. The new ambitious modernization plans of 
GLONASS envisioned the achievement of minimal operational capability (18 satellites) again 
by end of 2007 and FOC by end of 2009. While this ambitious schedule has failed as of May 
2008, the program still pursues to reach the objectives by the end of 2008 with the extra 
budget that has been set up for the years 2007 to 2011. See Figure 2.18 for more details. 
Besides reaching FOC, Russia also wants to achieve a comparable performance of GLONASS 
to that of GPS and Galileo until 2010 [G.W. Hein et al., 2007a]. 

 
Figure 2.18. Plans to re-establish Full Operation Capability of GLONASS 
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These plans to re-establish FOC for GLONASS are supported by cooperation works between 
the governments of India and Russia. According to them, Russia will launch two   
GLONASS-M satellites on Indian Geostationary Satellite Launch Vehicle (GSLV) rockets. 
Additionally, during the December 2005 summit between the Indian Prime Minister and the 
Russian President, it was agreed that India would share the development costs of the 
GLONASS-K series and launch them from India. 
 
As mentioned above, as of May 9th, 2008, the real number of satellites in operation (14) is 
lower than the planned 18, making the real fulfilment of the GLONASS program objectives 
very difficult. Indeed, although Russia added six GLONASS-M satellites to the constellation 
during 2007 as planned, it was forced to decommission other five satellites since the 
beginning of 2008 due to the short design life of the first generation spacecraft. The next 
figure shows the availability of GLONASS over the earth on May 9th, 2008 as provided by 
[GLONASS Centre]. 
 

 
Figure 2.19. Availability of GLONASS May 9th, 2008 (Minimum Elevation Angle 5°)  

 
For more information on the current status of all the GLONASS satellites, we refer to 
[GLONASS Centre] and [GLONASS Constellation Status]. Equally important as the number 
of satellites in sight is the power level of the received RF signals from GLONASS satellites. 
When measured at the output of a 3 dBi linearly polarized antenna the value is assured to be 
not lower than -161 dBW for the L1 band at an elevation of 5° or more. For the modernized 
GLONASS-M satellites transmitting also in the L2 band, the power level under the same 
conditions can not be lower than -167 dBW for this band.  
 
In the same manner as with the minimum received power, similar figures can be derived for 
the maximum received power of GLONASS. According to this, the maximum received power 
level will not be more than –155.2 dBW in the specific configuration, as described in 
[GLONASS ICD, 2002].  
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2.5.2 GLONASS Signal Plan 
 
As it was mentioned at the beginning of this chapter, GLONASS, unlike the other GNSS 
systems, makes use of a different DSSS technique [G.W. Hein et al., 2006c] based on 
Frequency Division Multiple Access (FDMA) to transmit its ranging signals.  
 
GLONASS uses FDMA in both the L1 and L2 sub-bands. According to this scheme, each 
satellite transmits navigation signals on its own carrier frequency, so that two GLONASS 
satellites may transmit navigation signals on the same carrier frequency if they are located in 
antipodal slots of a single orbital plane [GLONASS ICD, 2002]. Indeed the actual 
constellation is taking advantage of this property since 2005 when the higher frequency 
channels had to be turned off to fulfil the CCIR Recommendation 769. We can clearly see this 
if we have a look at the satellites assigned to each of the GLONASS planes as shown in the 
following figure with status as of May 2008. As is clear to see, antipodal satellites are 
transmitting at the same frequency. 

 
Figure 2.20. Antipodal Assignment of GLONASS Satellites. The parameter i(k) indicates 

that the satellite in almanac slot i transmits on frequency number k 
 
The red slots indicate that the satellite is in maintenance. Blue means correct operation. 
Moreover, two different types of signals [GLONASS ICD, 2002] are transmitted by 
GLONASS satellites: Standard Precision (SP) and High Precision (HP) in both the L1 and L2 
bands. The GLONASS standard accuracy signal, also known as C/A Code, has a clock rate of 
0.511 MHz and is designed for use by civil users worldwide while the high accuracy signal  
(P Code) has a clock rate of 5.11 MHz and is modulated by a special code which is only 
available to users authorized by the Ministry of Defence. Since GLONASS-M, both L1 and 
L2 provide users with the standard accuracy code C/A. Moreover, the modernized GLONASS 
will also transmit FDMA signals on the L3 band and CDMA signals in L1 and L5 as we will 
see in chapter 2.5.3. 
 
The nominal values of the FDMA L1, L2 and L3 carrier frequencies are defined as: 
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where: 
 

• k represents the frequency channel, 
• 

10L
f = 1602 MHz for the GLONASS L1 band, 

• 1LfΔ = 562.5 kHz frequency separation between GLONASS carriers  in the L1 band, 
• 

20L
f = 1246 MHz for the GLONASS L2 band, 

• 1LfΔ = 437.5 kHz frequency separation between GLONASS carriers in the L2 band, 
• 

30L
f = 1201 MHz for the GLONASS L3 band, and 

• 3LfΔ = 437.5 kHz frequency separation between GLONASS carriers in the L3 band. 
 
As we can see, the GLONASS L2 carrier reference signal is 7/9 of the L1 carrier reference 
and the GLONASS L3 carrier reference is 3/4 of the L1 carrier reference. Moreover, it must 
be noted that until 2005 the GLONASS satellites used the frequency channels k = 0,...,12 
without any restrictions and the channel numbers k = 0 and 13 for technical purposes. 
 
Since then GLONASS is only using the frequency channels k = -7,...,+6 and all the satellites 
launched beyond that year will use filters, limiting out-of-band emissions to the harmful 
interference limit contained in CCIR-ITU Recommendation 769 for the 1610.6 – 1613.8 MHz 
and 1660 – 1670 MHz Radio-Astronomy bands. It is interesting to note that although the 
limitation to use the higher frequency channels does only affect the L1 band, since the 
parameter k determines the channel in both the L1 and L2 bands, the upper frequencies of L2 
corresponding to channels +7 to +13 were automatically sacrificed. 
 
To have a clearer insight into how the spectra of the GLONASS signals look like, we study 
next all the bands in detail.  

 GLONASS L1 Band 
 
The transmitted navigation signal is in both services of L1 a bipolar phase-shift key (BPSK) 
waveform with clock rates of 0.511 and 5.11 MHz for the standard and accuracy signals 
respectively. The L1 signal is modulated by the Modulo-2 addition of the pseudo random 
(PR) ranging code, the digital data of the navigation message and an auxiliary meander 
sequence. All above-mentioned frequencies are generated coherently using a single onboard 
time/frequency oscillator standard [GLONASS ICD, 2002]. For the case of the standard 
accuracy signals (C/A), the PR ranging code is a sequence with length the maximum of a shift 
register (m-sequence) and a period of 1 millisecond with bit rate of 511 kbps. The navigation 
message is sent at 50 bps and the auxiliary meander sequence at 100 Hz. 
 
Moreover, it is important to note that the GLONASS FDMA L1 band does not exactly 
coincide with the GPS and Galileo L1 band. In fact, the GLONASS L1 band ranges from 
1592.9525 MHz to 1610.485 MHz when only the 14 channels k = -7...+6 are employed. In the 
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next figures, each of the channels was filtered to only transmit the main lobe of the BPSK 
signal and the PSD was normalized to have unit power within the corresponding transmission 
bandwidth.  
 
The PSDs of the GLONASS signals are shown in the following figure: 

 
Figure 2.21. Spectra of GLONASS signals in L1 

 
Once again, in order to have a clearer picture of how overcrowded the RNSS bands are 
becoming as more and more countries claim their rights to have their own GNSS, Figure 2.22 
shows all the systems described so far in the E1/L1 band. 
 

 
Figure 2.22. Spectra of GPS, Galileo and GLONASS Signals in E1/L1 

 
It is important to note that the GPS L1C pilot and data signals are shown in quadrature in the 
figure although according to [GPS ICD-800, 2006] the final phasing is still open. To finalize 
some details on the technical characteristics of the GLONASS L1 signals are presented next: 
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Table 2.10. GLONASS L1 signal technical characteristics 
GNSS System GLONASS GLONASS 
Service Name C/A Code P Code 

Centre Frequency (1598.0625-1605.375) MHz ± 0.511 MHz 
Frequency Band L1 L1 
Access Technique FDMA FDMA 

Spreading modulation BPSK(0.511) BPSK(5.11) 
Sub-carrier frequency - - 

Code frequency 0.511 MHz 5.11 MHz 
Signal Component Data Data 

Primary PRN Code length 511 N/A 
Code Family M-sequences N/A 

Meander sequence 100 Hz N/A 
Data rate 50 bps N/A 

Minimum Received Power 
[dBW] 

-161 dBW N/A 

Elevation 5° N/A 

It is important to note that unlike for the case of GPS and Galileo in the previous chapters, the 
frequencies do not have to be multiplied by the factor 1.023. 

2.5.2.1 GLONASS L2 Band 
 
The transmitted navigation signal is, as also in L1, a bipolar phase-shift key (BPSK) 
waveform with similar clock rates as in the L1 band. The L2 signal is modulated by the 
Modulo-2 addition of the PR ranging code and the auxiliary meander sequence. For the case 
of the standard accuracy signals (C/A), the PR ranging code is a sequence of the maximum 
length of a shift register (M-sequence) with a period of 1 millisecond and a bit rate of         
511 kbps. The navigation message is sent at 50 bps and the auxiliary meander at 100 Hz. 

 
Figure 2.23. Spectra of GLONASS Signals in L2 
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We show in the figure next all the signals of GPS and GLONASS in the L2 band together 

 
Figure 2.24. Spectra of GPS and GLONASS Signals in L2 

To finalize some details on the technical characteristics of the GLONASS L2 signals are 
presented in the next table: 

 
Table 2.11. GLONASS L2 signal technical characteristics 

GNSS System GLONASS GLONASS 
Service Name C/A Code P Code 

Centre Frequency (1242.9375…1248.625) MHz ± 0.511 MHz 
Frequency Band L2 L2 
Access Technique FDMA FDMA 

Spreading modulation BPSK(0.511) BPSK(5.11) 
Sub-carrier frequency - - 

Code frequency 0.511 MHz 5.11 MHz 
Signal Component Data Data 

Primary PRN Code length 511 N/A 
Code Family M-sequences N/A. 

Meander sequence 100 Hz N/A 
Data rate 50 bps N/A 

Minimum Received Power 
[dBW] 

-167 dBW N/A 

Elevation 5° N/A 
 
It is important to note again that unlike for the case of GPS and Galileo in the previous 
chapters, the frequencies do not have to be multiplied by the factor 1.023. 
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2.5.2.2 GLONASS L3 Band 
 
As shown during the Munich Satellite Navigation Summit of 2008, GLONASS is planning to 
transmit navigation signals also on the L3 band, although the definite signal plan has not been 
decided yet. Indeed, four possible scenarios are being studied at the moment: 
 

• Option 1: GLONASS K satellites would use a bandwidth of approximately 15 MHz 
with 16 channels. Both the in-phase and quadrature signals would be BPSK(4) with a 
chip rate of 4.092 MHz. It is interesting to note that as GPS and Galileo, the factor 4 
must be understood as multiplied by 1.023 although we talk about FDMA signals. 

• Option 2: GLONASS-L3 would have a 24 MHz bandwidth and would transmit 
BPSK(8) for the in-phase channel and BPSK(2) for the quadrature signals.  

• Option 3: This option is identical to option 1 but shifted by 3 MHz to higher 
frequencies to achieve better isolation with Galileo E6. 

• Option 4: This option is identical to option 2 but shifted by 3 MHz to higher 
frequencies, also to improve the spectral isolation with other signals in the band. 

 

 
Figure 2.25. Spectra of GLONASS Signals in L3 (Option 1) 

 
And now with GPS and Galileo together: 

 
Figure 2.26. Spectra of GPS, Galileo and GLONASS Signals in L3 (Option 1) 
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We analyze now the second option for the GLONASS signals in L3. The following figure 
shows the different spectra. 

 
Figure 2.27. Spectra of GLONASS Signals in L3 (Option 2)  

 
and again, with GPS and Galileo together: 
 

 
Figure 2.28. Spectra of GPS, Galileo and GLONASS Signals in L3 (Option 2) 

 
To finalize, the technical characteristics of the GLONASS L3 signals are summarized in the 
next table: 
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Table 2.12. GLONASS L3 signal technical characteristics 
 

GNSS System GLONASS GLONASS 
Service Name L3 I L3 Q 

Centre Frequency 1201 MHz 
Frequency Band L3 L3 
Access Technique FDMA FDMA 

Spreading modulation 

Option 1 
BPSK(4) 
Option 2 
BPSK(8) 

Option 1 
BPSK(4) 
Option 2 
BPSK(2) 

Sub-carrier frequency - - 

Code frequency 

Option 1 
4.092 MHz 

Option 2 
8.184 MHz 

Option 1 
4.092 MHz 

Option 2 
2.046 MHz 

Data Rate 100 or 125 bps N.A. 

2.5.3 GLONASS Modernization 
 
Similar to GPS, GLONASS is on the way to modernizing its infrastructure. Apart from the 
signals in the L1 band, the Russian system has already established a second civil signal at L2 
upon launch of the first GLONASS-M satellite in 2003. The new GLONASS-M satellites 
have better signal characteristics as well as a longer design life (7-8 years instead of the 
current 3 years) and a third civil signal at the L3 band is planned to start in 2010 aboard 
GLONASS-K satellites. The different options have been discussed some lines above. In 
addition, GLONASS also intends to transmit CDMA signals in L1 and L5.  
 
This last generation of satellites is planned to be based on low mass satellites with a 
guaranteed lifespan of 10 to 12 years. The new GLONASS satellites are planned to reduce 
their weight by 50 %. This will allow to significantly lower launch costs by using the Soyuz-
U launch vehicles. Regarding the number of satellites, it seems that GLONASS envisions 
updating its constellation up to 36 satellites. 
 
GLONASS is not yet fully compatible and interoperable with the rest of GNSS systems. 
Indeed, major differences between GPS and Galileo using the Code Division Multiple Access 
(CDMA) and GLONASS using the Frequency Division Multiple Access (FDMA) approach 
still exist. A deeper insight into this topic will be provided in the next chapters. However, it is 
important to note at this point that in spite of the fundamental differences that the FDMA and 
CDMA approaches represent, solutions for common receivers can be found today. 
Nonetheless, common receiver architectures are considerably more complex and expensive.  
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The experience of Galileo has shown how important the roles of interoperability and 
compatibility with GPS were from the very beginning. Fortunately, it seems that GLONASS 
is taking important steps towards increasing compatibility and interoperability in the future as 
the common GPS/GLONASS statements in the framework of Working Group 1 (WG 1) seem 
to show. Indeed, during the GPS/GLONASS meeting in December 2006 in Yaroslavl 
(Russia), both sides emphasized the benefit to the user community that a common approach 
concerning the use of FDMA and CDMA would bring in terms of interoperability. The 
memorandum textually states ”Both sides noted that concerning the question of the use of 
FDMA and CDMA, significant progress was made in understanding the benefit to the user 
community of using a common approach.” [US-Russia Statement, 2006].  
 
Russia announced then that they would come to a decision on the change from FDMA to 
CDMA by the end of 2007 [US-Russia Statement, 2006]. Finally, on February 15th, 2008, a 
government decree on new GLONASS requirements announced that GLONASS will also 
transmit open CDMA BOC(2,2) signals at 1575.42 MHz (GPS and Galileo E1/L1 band) and a 
BOC(4,4) signal centred at 1176.45 MHz (GPS L5 or Galileo E5a bands). It is however also 
possible that GLONASS could offer MBOC in E1 and BPSK(10) in L5 instead in its final 
CDMA Signal baseline plan in order to enhance interoperability with the rest of navigation 
systems in the band, namely with GPS and Galileo. As we have seen, these frequencies 
essentially correspond to the centre points of GPS and Galileo. According to this, GLONASS 
will be able to implement CDMA signals on L1 and L5 already in the GLONASS-K satellites 
planned for Phase 3 of the GLONASS modernization. This will imply a tremendous effort in 
the design of the satellite’s payload regarding the power consumption, because if GLONASS 
moves to CDMA, this does not mean that FDMA will be completely abandoned. Indeed, for 
legacy and security reasons, FDMA and CDMA payloads will fly together increasing 
considerably their weight and required power. If all the modernization plans are thus realized, 
GLONASS will transmit FDMA signals in the current L1 and L2 GLONASS FDMA bands, 
together with the new FDMA signals in L3. In addition, CDMA open signals will also be 
provided in E1/L1 and L5. It is important to note that as shown in Table 2.2, the current 
GLONASS FDMA L1 band and the GPS and Galileo L1 band do not coincide. However, the 
new GLONASS CDMA signals will be allocated in the same E1/L1 band and the same 
E5a/L5 band as Galileo and GPS. This implies that GLONASS will transmit 5 bands in total, 
what is a considerable effort. 
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2.6 Compass 
2.6.1 Compass System Overview 
 
Compass is the GNSS system planned by China [G.W. Hein et al., 2007a] and will consist of 
a constellation of 30 Non-GEOstationary (3 IGSOs and 27 MEOs) satellites and 5 
GEOstationary satellites with positions at 58.75º E, 80º E, 110.5º E, 140º E and 160º E. Each 
satellite transmits the same four carrier frequencies for navigational signals, where B1 and 
B1-2 are counted as separate bands. These navigational signals are modulated with a 
predetermined bit stream, containing coded ephemeris data and time.  
 
China has sent three Compass navigation test satellites into orbit between 2000 and 2003. The 
launch of the two Beidou (Compass first version) satellites early 2007 is expected to cover 
China and parts of neighbouring countries by 2008, before expanding into a global system. 
The Compass satellites will be developed, manufactured, and launched by the China 
Aerospace Science and Technology Corporation (CASTC). 
 
The will of China to develop its own global navigation system is clearly reflected in the 
policy document released by the State Council Information Office of October 12th, 2006. Here 
it was stated that China will  independently develop application technologies and products in 
applying satellite navigation, positioning and timing services. Compass could begin operation 
in 2012 if the political statements are brought into reality. 
 
Although the intentions and services that Compass will provide are still unclear, it seems that 
Compass will offer two levels of services: free open and commercial services for users in 
China, and licensed service for the military. As in GPS, Galileo and GLONASS, the licensed 
service will be more accurate than the free service and might be used for communication too. 
 
In October 2003 the Galileo Joint Undertaking (GJU) signed a cooperation agreement with 
China. The National Remote Sensing Centre of China (NRSCC) was designated as the 
European Union’s Chinese partner on the Galileo Project. 
 
2.6.2 Compass Signal Plan 
 
The current frequency filings [Compass ITU Filing] for radio bands made by China to the 
International Telecommunications Union (ITU) indicate that it would overlay both the Galileo 
Public Regulated Service (PRS) and the military GPS M-code at E1/L1, as well as in the L2 
band. Given the importance of these protected signals and bands, we describe next in detail 
the intended signal plan of Compass. Since the use that China plans to do with Compass is 
still unclear, the spectra will be plotted in the next figures in grey to underline this fact. 
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2.6.2.1 Compass B1 Band 
Although not all the technical aspects of the Compass signals in B1 are defined yet, an 
envisaged signal waveform has already been submitted to the ITU [Compass ITU Filing]. 
Next figure shows the spectral details of the studied option in the B1 and B1-2 bands. 

 
Figure 2.29. Spectra of Compass Signals in B1 and B1-2 bands 

 
As also done in previous chapters, in order to have a better overview of all the GNSS signals 
around the Compass B1 and B1-2 bands, next figure depicts the spectral environment: 
 

 
Figure 2.30. Spectra of GPS, Galileo, GLONASS (Option 2) and Compass Signals in L1 

 
It is important to note that the GPS L1C pilot and data signals are shown in quadrature in the 
figure although according to [GPS ICD-800, 2006] the final phasing is still to be decided. To 
conclude some technical characteristics of the Compass B1 signals are given next: 
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Table 2.13. Compass B1 signal characteristics [Compass ITU Filing] 
 

GNSS System Compass Compass Compass 

Service Name B1 GSO B1 N-GSO 
B1 

GSO and N-GSO
Phase I Q 

Centre Frequency 
Carriers at 1561.098 MHz (B1)  

and 1589.742 MHz (B1-2) 
Frequency Band B1 
Access Technique CDMA 

Spreading modulation QPSK(2) 
Sub-carrier frequency - 

Code frequency 2.046 MHz 2.046 MHz 
Signal Component Data Data Data 

Primary PRN Code length - - - 
Code Family - - - 

Secondary PRN Code length - - - 
Data rate 500 bps 50 bps 500 bps 

Minimum Received Power [dBW] -163 dBW 
Elevation - - - 

2.6.2.2 Compass B2 Band 
Similar to the B1 and B1-2 bands, not all the technical aspects of the Compass signals in B2 
have been defined yet. Nonetheless a proposed signal waveform has already been submitted 
to the ITU [Compass ITU Filing]. Next figure shows the spectral details of the studied option. 

 
Figure 2.31. Spectra of Compass Signals in the B2 band 
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As also done for the rest of GNSS bands, we show in the next figure all the systems together. 
 

 
Figure 2.32. Spectra of Galileo and Compass signals in the E5 - B2 bands 

 
To conclude, some technical characteristics on the Compass B2 signals are presented more in 
detail in the next table: 
 

Table 2.14. Compass B2 signal technical characteristics [Compass ITU Filing] 
 

GNSS System Compass Compass Compass 

Service Name B2 GSO B2 N-GSO 
B2  

GSO and N-GSO 
Phase I Q 

Centre Frequency 1207.14 MHz  
Frequency Band B2 
Access Technique CDMA 

Spreading modulation QPSK 
Sub-carrier frequency - 

Code frequency 2.046 MHz 10.23 MHz 
Signal Component Data Data Data 

Primary PRN Code length - - - 
Code Family - - - 

Secondary PRN Code length - - - 
Data rate 500 bps 50 bps 500 bps 

Minimum Received Power [dBW] -163 dBW 
Elevation - - - 
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2.6.2.3 Compass B3 Band 
Finally, the spectral characteristics of the Compass B3 signals are also shown here. Similar to 
the B1, B1-2 and B2 bands, not all the technical aspects of the Compass signals are defined 
yet. Next figure shows the Power Spectral densities of the proposed Compass signals in B3: 
 

 
Figure 2.33. Spectra of Compass Signals in the E6 - B3 band 

 
In order to have a better insight on how the Galileo E6 – Compass B3 band looks like, the 
following figure presents all the planned signals together. 
  
 

 
Figure 2.34. Spectra of Galileo and Compass Signals in the E6 - B3 band 

 
To conclude, some technical characteristics on the Compass B3 signals are provided next 
[Compass ITU Filing]. 
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Table 2.15. Compass B3 signal technical characteristics [Compass ITU Filing] 
 

GNSS System Compass Compass Compass 

Service Name B3 GSO B3 N-GSO 
B3  

GSO and N-GSO 
Phase I Q 

Centre Frequency 1268.52 MHz  
Frequency Band B3 
Access Technique CDMA 

Spreading modulation QPSK(10) 
Sub-carrier frequency - 

Code frequency 10.23 MHz 10.23 MHz 
Signal Component Data Data Data 

Primary PRN Code length - - - 
Code Family - - - 

Secondary PRN Code length - - - 
Data rate 500 bps 50 bps 500 bps 

Minimum Received Power [dBW] -163 dBW 
Elevation - - - 

2.7 Summary on Global Navigation Satellite 
Systems 

 
Satellite navigation has become a technology of great acceptance. Every superpower wants to 
have a satellite navigation system and preferably a global one. As suggested in                
[G.W. Hein et al., 2007a], the real need of having multiple systems is questionable at some 
point from an economic perspective.  
 
A very different issue, but one of great importance, is whether we can have so many systems 
coexisting together without degrading the performance of one another. The interference 
caused on one system by the rest is technically difficult to measure, and especially if each 
system would develop its own compatibility and interoperability concept without taking the 
rest into account. As shown in Appendix M, there are methodologies to assess interference 
but to what extent they accurately describe the real interference environment is a different 
issue. 
 
In the 2004 Agreement on the Promotion, Provision, and Use of Galileo and GPS Satellite-
Based Navigation Systems and Related Applications an interference and compatibility 
methodology was developed following ITU standards. The bilateral Agreement, however, is 
only between Americans and Europeans.  
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A natural solution would be to develop general methodologies valid for all GNSS systems on 
a multilateral basis but then it would be difficult to find out who should or could be 
responsible for coordinating these actions. It seems that the United Nations Office of Outer 
Space Affairs or the ITU could play such a role, extending its efforts in sponsoring formation 
of the International Committee on GNSS (ICG). But transforming existing bilateral 
agreements into compatible multilateral fora is not an easy task. 
 
GPS and Galileo are compatible, and interoperable to a high degree, but they are not equal. 
Although important common actions have occurred in recent years, there is still a long way to 
go. And the difficulties are compounded when we compare the evolution of both systems with 
that of GLONASS or the planned Compass. 
 
No matter what the system designers do, the fact is that the user market will explode in the 
next years. GNSS receivers will work better and almost everywhere, and the fusion with other 
communication devices is already on the threshold.  International standards and certification 
are urgently needed and although it is true that ICAO, ITU, RTCA and other for a already 
provide models for certification and regulation, the market forces are stronger and demand 
faster reactions.    

2.8 Regional Satellite Navigation Systems  
 
In addition to the global satellite-based navigation systems already under way, three regional 
satellite navigation systems are also being developed by Japan, India and China: namely 
QZSS, IRNSS and Beidou respectively. But before we describe them in detail together with 
all the augmentation systems that already exist or are planned to be set up in the coming 
years, it is the right moment to make some reflexions on the need of regional and 
augmentation systems if, as we saw in the lines above, in a not so far future four global 
systems might already be reality. 
 
As we have seen above, four global navigation systems might be operational in two decades 
providing thus an excellent coverage of most of the locations on earth. Today with GPS alone 
as the only real operational system, an average of approximately 10 satellites can be seen at 
any point of the earth. When GPS, GLONASS, Galileo, and Compass are in operation and 
assuming they would be fully interoperable, four times more satellites could be available for 
navigation, positioning, and timing [G.W. Hein et al., 2007b]. 
 
Locations with poor coverage today might not need any more a regional augmentation. As a 
result, the added value of using regional systems when all the planned global systems would 
already deliver good accuracy is questionable. 
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In the framework of Galileo, different studies have been carried out in the past years to assess 
the effect of increasing the number of satellites of an existing constellation as shown in  
[G.W. Hein et al., 2006a]. Here the effect of doubling the number of satellites was studied. In 
terms of positioning accuracy, the improvement resulting from the better geometry is clear to 
see in [G.W. Hein et al., 2006a]. Indeed, the step from GPS alone to Galileo + GPS represents 
with no doubt a clear gain for the final user. Nevertheless, once a pretty dense constellation of 
satellites is achieved, other measures such as the increase of power in the satellite would be of 
more profit to the final user. Let us think of a hypothetical scenario of 110 satellites as 
described in [G.W. Hein et al., 2007b].  
 
Indeed, one might expect that the relative gain brought by 30 satellites when there already 
exist 30 is higher than that of 30 additional satellites when there are already 60. This is 
equivalent to saying that the marginal gain diminishes as the size of the constellation grows. 
Such a conclusion should not come as a surprise, because it reflects a well known economic 
law that applies to most goods and services in the world. 

 
Figure 2.35. Qualitative analysis of the expected marginal gain as a function of the 

number of GNSS satellites 
 

The four global satellite systems now in existence or under development will have around 110 
satellites altogether. As shown by [G.W. Hein et al., 2007b], it seems that the saturation level 
in terms of geometry lies around this number. 
 
The problem gains even more multidimensionality if we recall the development of the 
semiconductor industry in recent years. It is not so unrealistic to think that not too far in the 
future pseudolites could be a cheap product that anyone could place in locations with poor 
GNSS coverage. These single-chip pseudolites (SCPL) could thus meet users’ positioning 
requirements in areas where the satellites signals could not be received.  
 
Only time will tell if there will be a real need of regional and augmentation systems in the 
future. Nevertheless, since they are still an important component of today’s GNSS, we will 
pay them the attention they deserve in the next lines. 
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2.8.1 Quasi Zenith Satellite System(QZSS) 

2.8.1.1 QZSS System Overview 
 
QZSS is the Japanese regional system that will serve as enhancement for GPS in Japan. The 
constellation consists of three satellites inclined in elliptic orbits with different orbital planes 
in order to pass over the same ground track. QZSS was designed so as to guarantee that at any 
time at least one of its three satellites is close to the zenith over Japan. 
 
Initially, QZSS was conceived as a government – private sector program aiming for new 
satellite business, in which the private sector would be responsible for mobile 
communications and mobile broadcasting while the government would be responsible for the 
navigation part. However, due to the lack of participation by the Japanese communication 
industry, the QZSS satellites will not carry any communication payloads but rather will 
concentrate on the navigation element funded by the government alone.  
 
QZSS and GPS will be fully interoperable and the first satellite launch date is planned for the 
year 2008. Figure 2.36 below shows in detail the ground track of the three QZSS satellites. 
The ground tracks of the Indian Regional Navigation Satellite System (IRNSS) satellites, the 
modernization of GAGAN, are also shown. Next chapter will be dedicated to this regional 
navigation satellite system. 
 
The overall constellation parameters of both systems together are shown next in Table 2.16.  

 
Table 2.16. Space Constellation Parameters of QZSS and IRNSS 

 
Parameter QZSS IRNSS 

Constellation GSO(3) GEO(3)+GSO(4) 
GEO 

Longitudes 
- 34°, 83°, 132° E 

GSO Equatorial 
Crossing 

- 55°(2), 112°(2) 

Eccentricity 0.099 0 
Inclination 45° 29° 

Semi-major axis 42,164.0 km 42,164.0 km 
 
The ground tracks of the two systems are graphically shown as follows: 
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Figure 2.36. Ground Tracks of QZSS and IRNSS. This figure was generated using the 

Satellite Tool Kit (STK) [Satellite Tool Kit STK, 2006] 
 
Moreover, the Maximal Number of QZSS Satellites visible at a Minimum Elevation Angle of 
10° is shown in the next figure. 

 
Figure 2.37. Number of visible QZSS Satellites at Minimum Elevation Angle of 10° 

 

2.8.1.2 QZSS Signal Plan 
 
QZSS and GPS have the highest level of interoperability among all the Satellite Navigation 
Systems as we will see in the following tables. In fact, the spectral properties are equivalent to 
those that we saw in chapter 2.3.2 and therefore will not be shown here. The characteristics of 
the different signals in particular are summarized in detail in the following tables. For the case 
of the L1 band the technical characteristics of the QZSS signals are presented next: 
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Table 2.17. QZSS L1 signal technical characteristics 
 

GNSS System QZSS QZSS QZSS 
Service Name C/A L1C SAIF 

Centre Frequency 1575.42 MHz 1575.42 MHz 1575.42 MHz 
Frequency Band L1 L1 L1 
Access Technique CDMA CDMA CDMA 

Spreading 
modulation 

BPSK(1) BOC(1,1)  BPSK(1) 

Sub-carrier 
frequency 

- 1.023 MHz - 

Code frequency 1.023 MHz 1.023 MHz 1.023 MHz 
Signal Component Data Data Pilot Data 
Primary PRN Code 

length 
1023 10230 1023 

Code Family Gold Codes Weil Codes Gold Codes 
Secondary PRN 

Code length 
- - 1800 - 

Data rate 50 bps 50 bps - 250 bps 
Symbol rate 50 sps 100 sps - 500 sps 

Minimum Received 
Power [dBW] 

-158.5 -157 -161 

Elevation 5° 5° 5° 
 
Equally, for L2, L5 and E6, the technical characteristics of the QZSS signals are summarized 
in the following table. As we can clearly recognize, except for the LEX signal in E6, QZSS 
and GPS are practically identical. It is interesting to note that this signal makes use of a very 
interesting multiplexing scheme for its experimental LEX signal, based on Code Shift Keying 
(CSK) [QZSS SIS ICD]. 
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Table 2.18. QZSS L2, L5 and E6 signal technical characteristics 
GNSS 
System 

QZSS QZSS QZSS QZSS QZSS QZSS 

Service Name L2CM L2CL L5 I L5 Q LEX LEX 
Centre 

Frequency 
1227.60 

MHz 
1227.60 

MHz 
1176.45 

MHz 
1176.45 

MHz 
1278.75 

MHz 
1278.75 

MHz 
Frequency 

Band 
L2 L2 L5 L5 E6 

Access 
Technique 

CDMA CDMA CDMA CDMA CDMA 

Spreading 
modulation 

BPSK(1) result of 
multiplexing 2 streams 

at 511.5 kHz 
BPSK(10) BPSK(10) BPSK(5) 

Sub-carrier 
frequency 

- - - - - 

Code 
frequency 

511.5 kHz 511.5 kHz 10.23 MHz 10.23 MHz 5.115 MHz 

Signal 
Component 

Data Pilot Data Pilot Data Pilot 

Primary 
PRN Code 

length 

10230 
(20 ms) 

767250 
(1.5 s) 

10230 10230 10230  1048575 

Code Family 
M-sequence from a 

maximal polynomial of 
degree 27 

Combination and short-
cycling of M-sequences 

Small Kasami Set. 
Chip by chip 

multiplex 
Secondary 
PRN Code 

length 
- - 10 20 - 

Data rate 

IIF 
50 bps 
IIR-M 

Also 25 
bps 

- 
50 bps 

 
- 2 kbps - 

  - 100 sps - 250 sps - 
Minimum 
Received 

Power [dBW] 
-160.0 dBW -157.9 dBW -155.7 dBW 

Elevation 5° 5° 5° 5° 
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2.8.2 Indian Regional Navigation Satellite System 
(IRNSS) 

2.8.2.1 IRNSS System Overview 
The IRNSS is an independent seven-satellite constellation that will be built and operated by 
India. IRNSS will seek to maintain compatibility with other GNSS and augmentation systems 
of the region and is planned to provide services for critical national applications.  
 
Of the seven satellites that comprise the constellation, three are geostationary and are known 
as GAGAN. GAGAN will be further explained in the following chapter. The other four, 
geosynchronous. The geostationary satellites have designated positions at 34º E, 83º E and 
132º E, while the geosynchronous (GSO) have equatorial crossings at 55° E (two satellites) 
and 111° E (two satellites), with an inclination of 29° and a relative phasing of 56°. 

 
The first IRNSS payload is expected to reach FOC in 2012. The constellation parameters of 
IRNSS as well as the ground tracks were shown in the previous chapter together with QZSS. 

2.8.2.2 IRNSS Signal Plan 
 
The final definition of all the IRNSS signals has not been concluded yet and investigations are 
still on course. We summarize in the next table the first proposal for the Signal and Frequency 
Plan presented in November 2006 during the First ICG Meeting in Vienna. 
 

Table 2.19. IRNSS L5 Band technical characteristics 
 

GNSS System IRNSS IRNSS IRNSS IRNSS 
Service Name L-band L-band L-band S-band 

Centre Frequency [MHz] 1191.795 1191.795  1191.795 2491.75 
Frequency Band L5 A L5 B L5 C S 
Access Technique CDMA CDMA CDMA CDMA 

Spreading modulation BOC(10,2) BPSK(10) BPSK(10) N/A 
Sub-carrier frequency 10.23 MHz - - N/A 

Code frequency 2.046 MHz 10.23 MHz 10.23 MHz N/A 
Signal Component Data Data Pilot N/A 

Primary PRN Code length N/A N/A N/A N/A 
Code Family N/A N/A N/A N/A 

Secondary PRN Code 
length 

N/A 
N/A N/A N/A 

Data rate N/A 50 bps /100 sps N/A 50 bps /100 sps
Minimum Received Power  N/A N/A N/A N/A 

Elevation N/A N/A N/A N/A 
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Given the similarity with the Galileo signals in terms of services that IRNSS might be 
providing, the same convention as for Galileo was employed. That is A for the PRS and B and 
C  for the Open Service data and pilot signals respectively. Furthermore, the spectral 
properties of the IRNSS signal would be as follows: 

 
Figure 2.38. Spectra of IRNSS Signals in the E5b band 

 
To conclude, it is interesting to mention that the Indian Satellite Navigation Programme has 
been doing much work in the past years on ionospheric and tropospheric modelling in the 
Region of India what could mean that IRNSS does not plan to use dual frequency at least in 
the first generation.  
 
Moreover, India also plans to transmit similar signals for the S-band to those we have just 
described for the L5 band. The carrier frequency of S-band is at 2491.75 MHz. The 
modulation schemes and data rates would be the same as for L5 but no final decision on the 
other parameters has been made yet. In addition, it seems that India also plans to transmit 
signals in L1 as announced during the second Meeting of the ICG in India, in 2007. 
 
As a summary of the studied regional satellite systems so far, the signal plan of QZSS and 
IRNSS is shown in the next figure 

 
Figure 2.39. QZSS and IRNSS planned signals. It must be noted that IRNSS is also 

expected to send augmentation signals on L1 
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2.8.3 Beidou 
   
Beidou (in Chinese 北斗卫星导航定位系统 where 北斗 means North Dipper) is the first 
stone to build up Compass, an independent Global Navigation System under control of the 
People’s Republic of China. Beidou is the name of a Chinese constellation, which is 
equivalent in the Chinese astronomony to the Big Dipper of Western culture. 
 
In September 2003, China joined the Galileo project after signing an Agreement with the 
Galileo Joint Undertaking (GJU). It was agreed that China would invest 230 € million in 
Galileo over the following years. On November 2nd, 2006 however, China announced its 
intention of building its own navigation system, Beidou, offering equivalent open services to 
those of Galileo. The Chinese Council Information Office on October 12th, 2006 publicly 
announced that China will independently develop application technologies and products in 
applying satellite navigation, positioning and timing services. 
 
China is planning to build Beidou and its modernized version Compass on the basis of pure 
Chinese technology. Both the satellite and carrier rocket are being developed by the Chinese 
Research Institute of Space Technology and China Academy of Launch Vehicle Technology, 
which are under the China Space Science and Technology Group.  
 
2.8.3.1 Beidou System Overview 
 
Beidou is the experimental version of the Global Navigation System Compass that we saw in 
the previous chapter. Beidou will be composed of 5 geostationary satellites, covering an area 
on earth from 70°E to 140°E and from 5°N to 55°N. 
 
The first Beidou Navigation Test Satellite, Beidou 1A, was launched by a Chinese Long 
March 3M booster on October 31st, 2000, into a geostationary orbit slot at 140° E, to the east 
of China. It was followed by Beidou 1B on December 21st, 2000, which was placed in a 
geostationary slot at 80 degrees East longitude. Beidou 1C was launched into an orbit at 
110.5°E on May 25th, 2003 from the Xichang Satellite Launch Centre on a CZ-3A booster and 
the last Beidou satellite of the 1X generation, namely Beidou 1D, has been successfully put in 
orbit on February 2nd, 2007, on another CZ-3A booster. Some weeks later, on April 13th, 2007 
China made the first clear step to the Global Navigation System Compass after launching its 
first MEO, known as Beidou 2A. The spacecraft began transmitting signals on three of four 
frequencies within a few days.  
 
2.8.3.2 Beidou Signal Plan 
The Beidou signal plan was already described in chapter 2.6.2. Indeed, Beidou is the first 
stone to Compass and the five GEO satellites we talked about in this chapter constitute what 
we call here the Beidou system. For more details on the technical characteristics of the 
signals, refer thus to this chapter. 
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2.8.3.3 Beidou Modernization (Compass) 
The four GEO satellites (1A, 1B, 1C, 1D) mentioned above were designed as experimental 
satellites. Nevertheless, the plans for the modernized system, also known as Compass (see 
chapter 2.6 for more details) are to have 35 satellites in orbit, offering then a complete 
coverage of the globe. Of the 35 satellites, 30 will be MEO satellites (Beidou 2) and the rest 
five will be the geostationary satellites of Beidou 1. 
 
The first MEO Beidou 2 satellite is already in the space and as we show in the next figures, 
the emitted signals correspond to those we have described in chapter 2.6.1. The measurements 
were made by the French Space Agency CNES on April 24th, 2007. In addition, it must be 
noted that the following figures include partial RF equalization. 
 

 
Figure 2.40. Compass Spectra centered on E1 carrier, observed on April 24th, 2007 

(Courtesy of CNES) 
 
Compass Spectra centered on L1 carrier, observed on 
 
As we can clearly recognize from the figure above, of the two planned QPSK(2) signals at -14 
and +14 MHz with respect to the L1 carrier, only the left side was being transmitted as of 
May 10th, 2007. 
 
In the case of E6, we can clearly recognize the BPSK(10) signal. If we recall the parameters 
and description given in chapter 2.6.1, we can clearly see that this signal will be sitting 
directly on top of the Galileo PRS of E6. 
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Figure 2.41. Compass Spectra observed on E6 carrier, observed on April 24th, 2007  

(Courtesy of CNES) 
Finally, the results for E5 show the superposition of a BPSK(2) and a BPSK(10) at 1207.14 
MHz in consonance with the description of Compass given in chapter 2.6.2 of this chapter. 
 

 
Figure 2.42. Compass Spectra observed on E5 carrier, observed on April 24th, 2007  

(Courtesy of CNES) 
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2.9 GNSS Augmentation Systems 

2.9.1 Satellite Based Augmentation Systems 
 
A Satellite Based Augmentation System (SBAS) is a system that supports wide-area or 
regional augmentation of any GNSS in general through the use of at least one dedicated 
satellite. If we recall the thoughts on regional augmentation systems of previous chapters, we 
can see that the same reflexions on the future need of such systems are also valid here. 
 

 
Figure 2.43. Existing and planned GNSS Augmentation Systems 

 
From the figure above it is important to note that the GRAS system is Australia was included 
for completeness although it is not a satellite based augmentation system (SBAS) but a 
Ground Based Augmentation System (GBAS). 
 
We describe next all the different Augmentation Systems that already exist or are planned. 
 

2.9.1.1 Wide Area Augmentation System (WAAS) 
 
The Wide Area Augmentation System (WAAS) augments GPS over the North American 
territory to provide the additional accuracy, integrity, and availability needed to enable users 
to rely on GPS for safety-critical applications, particularly in the field of aviation. Before 
WAAS, the U.S. National Airspace System (NAS) did not have the capability of providing 
horizontal and vertical navigation for aviation precision approach operations for all users at all 
locations. WAAS is constituted by four geostationary satellites. 
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2.9.1.2 European Geostationary Navigation Overlay Service (EGNOS) 
 
The European Geostationary Navigation Overlay Service (EGNOS) is a satellite-based 
augmentation system (SBAS) under development by the European Space Agency (ESA), the 
European Commission (EC), and EUROCONTROL. EGNOS supplements GPS by reporting 
on the reliability and accuracy of the signals. It consists of three geostationary satellites 
(AOR-E, IOR-W and ARTEMIS) and a network of ground stations. The system started its 
initial operations in July 2005, and is intended to be certified for use in safety of life 
applications in 2008. 

2.9.1.3 MTSAT Space-based Augmentation System (MSAS) 
 
The Japanese equivalent to WAAS and EGNOS incorporates the Multifunctional Transport 
Satellite (MTSAT) into MSAS (MTSAT Space-based Augmentation System). In addition to 
transmitting correction and integrity data for GPS, the MTSAT satellites are used for 
meteorological observations and communication services following a multi-mission concept. 
After failing with the initial launch of the first MTSAT satellite in 1999 the substitute satellite 
MTSAT-1R was set into orbit in February 2005. An additional satellite, MTSAT-2, was put 
into mission in February 2006. 
 

2.9.1.4 Russian Differential Correction and Monitoring (SDCM) System 
 
The Russian System for Differential Correction and Monitoring (SDCM) is the Russian 
version of SBAS. It is being developed under the leading role of the Russian Institute of 
Space Device Engineering (RISDE) and will augment GLONASS, GPS and Galileo signals in 
E1/L1, providing real-time corrections for all the systems over the Russian territory from two 
geostationary satellites. SDCM will use eight tracking stations within Russia, plus others on 
foreign ground yet to be decided, and will provide WAAS- and EGNOS-like capabilities over 
the Russian airspace, monitoring the integrity and quality of the GLONASS, GPS and Galileo 
navigation services. The design of the system started in 2002 in accordance with the contract 
signed with the Federal Space Agency of Russia. As announced during the Second Meeting of 
the International Committee on GNSS (ICG) celebrated in Bangalore, India, in 2007, the 
system is planned to be validated in 2010 and operational by 2011.  
 

2.9.1.5 GPS and GEO Augmented Navigation system (GAGAN) 
The GPS and GEO Augmented Navigation system (GAGAN) is India’s SBAS for the South 
Asian region. Established by the Indian Space and Research Organization (ISRO) and the 
Airports Authority of India to aid civil aviation in the country, GAGAN will expand into 
IRNSS. 
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The first geostationary navigation payload in the C-band and the L1 and L5 frequencies      
(L-band) will be carried on an Indian geostationary satellite, GSAT-4, placed at 82°E. Two 
more satellites, GSAT8 and GSAT9 will follow it to complete the augmentation system, with 
FOC expected by 2009. 

2.9.1.6 Nigerian Communications Satellite System (NIGCOMSAT) 
 
With its Communications Satellite (NIGCOMSAT-1), Nigeria is the first African country in 
planning to enter the stage of GNSS Augmentation Systems by transmitting two L-band 
augmentation signals in L1 and L5. The manufacturing of the satellite was assigned to 
China’s state-owned space hardware manufacturer and is thus China’s first satellite export 
sale [GAGAN, 2006d]. The satellite was launched by a Long March 3B carrier rocket at the 
Xichang Satellite Launch Centre on May 14th, 2007. Two ground stations are going to be built 
in Nigeria and in China. NIGCOMSAT-1 will be placed in a geostationary orbit at 42°E, 
although it is a suboptimal location for covering Nigeria. 
 

2.9.1.7 Other Satellite Augmentation Navigation Systems 

2.9.1.7.1 Canadian Wide Area Augmentation System (CWAAS) 
 
The United States Wide Area Augmentation System (WAAS) that was described in chapter 
2.9.1.1 can only be partially used in southern Canada. In order the full territory of Canada to 
have too augmentation of the GNSS signals, the Canadian WAAS (CWAAS) is under 
development. First studies started as soon as mid 1990s. 

2.9.1.7.2 South American Satellite Augmentation System (CSTB) 
 
The Caribbean and South American Region have taken initial steps to establish a GNSS 
Augmentation Test Bed (CSTB) throughout the region to support and facilitate research, 
development, acquisition, and implementation efforts associated with an operational transition 
to satellite navigation. 
 
2.9.1.7.3 Chinese Satellite Navigation Augmentation System (SNAS) 
 
Finally, also China plans its own satellite augmentation system. The Chinese version receives 
the name of Satellite Navigation System (SNAS) and is under current development. 
 
The overall constellation parameters of those GNSS Augmentation Systems whose 
specifications are well defined are shown next in Table 2.20. 
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Table 2.20. GNSS Augmentation Systems Constellation Parameters 
 

Parameter WAAS EGNOS SDCM MSAS GAGAN NIGCOMSAT
Constellation GEO(4) GEO(3) GEO(2) GEO(2) GEO(3) GEO(1) 

GEO 
Longitudes 

53° W 
98° W 
120° W 
178° W 

15.5° W 
25.0° E 
21.5° E 

TBD 
140° E 
145° E 

34° E 
83° E 
132° E 

42° E 

Semi-major 
axis (km) 

42,164.0 42,164.0 42,164.0 42,164.0 42,164.0 42,164.0 

 
Figure 2.44 next shows the coverage region of the satellite-based augmentation systems 
visible to users at elevations higher than 10 degrees.  
 

 
Figure 2.44. Ground tracks of EGNOS, WAAS, MSAS, GAGAN and NIGCOMSAT 

[Satellite Tool Kit STK, 2006] 
 

2.9.2 Other Augmentation systems (GBAS, LAAS) 
 
The previous chapters dealt with the different regional and augmentation systems on a 
satellite basis. In this chapter we will shortly describe other approaches to generate ranging 
signals from the ground, being the Ground Based Augmentation (GBAS) and the Local Area 
Augmentation System (LAAS) the two most important exponents. 
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2.9.2.1 Ground Based Regional Augmentation System (GRAS) 
 
The Ground-based Regional Augmentation System (GRAS) is the Australian system to 
provide GNSS augmentation from the ground. The system is complementary to any of the 
Satellite Based Augmentation Systems (SBAS) that we saw above and also complements the 
Ground Based Augmentation Systems (GBAS) in general. 
 
The user receives information directly from ground based transmitters allowing thus 
continuous reception of the service over a large geographical area of approximately 200 
nautical miles. GRAS supports GNSS operations in all the phases of flight including en-route, 
terminal and instrument approach. GRAS is made up of multiple ground stations with 
overlapping coverage.  
 
Regarding the operational requirements, The GRAS SARPs (Standards and Recommended 
Practices) have been submitted to ICAO for acceptance and amendment in the ICAO 
Annexure-10 volume I.  

2.9.2.2 Local Area Augmentation System (LAAS) 
The Local Area Augmentation System (LAAS) is a ground-based augmentation to GPS that 
focuses its service on the airport area (approximately a 20-30 mile radius) for precision 
approach, departure procedures and terminal area operations.  
 
LAAS broadcasts its correction message via a very high frequency (VHF) radio data link 
from a ground-based transmitter. LAAS is expected to yield the extremely high accuracy, 
availability, and integrity necessary for Category I, II, and III precision approaches, and will 
provide the ability for flexible, curved approach paths. LAAS demonstrated accuracy is less 
than 1 meter in both the horizontal and vertical axis.  
 

 
Figure 2.45. Typical Architecture of LAAS [Federal Aviation Administration FAA] 
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2.10 Pseudolites 
 
A pseudolite (or pseudo-satellite) is a ground-based transmitter that broadcasts GNSS like 
signals [T.G. Morley, 1997]. The concept of a terrestrial GNSS transmitter is actually quite 
mature. In fact, as early as 1977, the Inverted Range, a GPS user equipment test facility 
located at the Yuma Proving Ground, used four ground transmitters (GTs) to augment the 
limited number of space-borne GPS satellites during initial GPS trials. Since then, interest in 
augmenting GPS with pseudolites (PLs) has grown steadily. One of the first papers to suggest 
the use of PLs for civilian aviation and maritime users was presented by                       
[D. Klein and B.W. Parkinson, 1984]. 
 
We can also find some modifications to this concept in what is known as synchrolites or 
synchronized pseudolites, which derive their timing from individual GNSS satellites. 
Synchrolites are especially interesting for differential applications [H. S. Cobb, 1997]. 
 
One of the clearest examples of the pseudolite concept even for experimentation is the 
European GATE project. As we could see some lines above, the European satellite navigation 
system Galileo is under development, with a planned operational availability around 2011. 
The development of Galileo based applications and products becomes thus a matter of major 
importance. In the region of Bavaria, Germany, the GATE project has been set up. GATE is 
the German Galileo Test and Development Environment, a ground based, realistic test bed 
that was developed to cover the needs of receiver manufacturers and application developers 
[GATE Testbed]. It must be noted that the GATE transmissions are continuous and not 
pulsed. 
 

 
Figure 2.46. German Galileo Test and Development Environment [GATE Testbed]
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3. Galileo Baseline Evolution 
3.1 Introduction 
 
Once we have taken a close look at the different existing and planned navigation systems, it is 
time to start analyzing one of the main elements of any navigation system: its signals. Our 
objective in the coming chapters and indeed in the whole thesis is to underline the problematic 
of developing optimum signal waveforms for navigation. With that in mind, the Galileo signal 
design and GPS modernization will be special focus of this work. Nonetheless, given the 
importance that the Galileo programme has played in the last years, we dedicate this chapter 
to talk a little bit on the historical process that has lead to the Galileo Signal and Frequency 
Plan that we have today. 
 
Galileo is an impressive technological achievement and one of the most important projects 
that are meant to unite the different countries of Europe. Given the enormous interest that 
Galileo is arising in the GNSS community, we will dedicate a whole chapter to describe how 
the Galileo Baseline has evolved in the last years and shortly describe what ideas were in the 
mind of those engineers that made it possible. This chapter aims thus at giving a historical 
overview of how the Galileo Signal and Frequency Plan has evolved over the time.  
 

3.2 Square-Root Raised Cosine (SRRC) Signal 
waveforms for Galileo? 

 
The Square-Root Raised Cosine (SRRC) was the first option for the Galileo Signal and 
Frequency Plan. It is already long time ago since the proposal was made but these first works 
deeply influenced the evolution of the coming years. At the time when the first analyses on 
the future Galileo signals were made [R. De Gaudenzi et al., 2000], the current frequency 
band assignments had not taken place yet. Thus, to limit the number of signal and frequency 
combinations, a set of seven candidate signal structures was identified, such that each of them 
could be independently assigned to a particular frequency. These are shown in Table 3.1. 
 
As we can recognize, all the signals from Table 3.1, with the exception of S3, consist of an in-
phase BPSK modulated spread-spectrum signal and an unmodulated quadrature spread-
spectrum pilot that uses a different spreading sequence. It is also interesting to note the 
presence of an unmodulated pilot to achieve robust carrier phase tracking. This idea would 
remain until the final baseline of Galileo as we will see. Indeed, in spite of the fact that the 
SRRC was quickly abandoned due to its limitations, some original ideas present in Table 3.1 
were kept until the end. 
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Table 3.1. Galileo Signal Plan proposed in [R. De Gaudenzi et al., 2000]. N/A* indicates 
that the pilot channel is not modulated by data 

 
Signal 

Identifier 
Spreading 

code Length 
Chipping 

Rate (Mcps) 
Modulation 

Arm 
Information 

Rate 
Coding 

Rate 
Data 
Rate 

I 750 1/2 1500 
S1 10230 3.069 

Q N/A* 
I 250 1/2 500 

S2 10230 3.069 
Q N/A* 
I 250 1/2 500 

S3 1023 3.069 
Q 250 1/2 500 
I 1500 1/2 3000 

S4 10230 15.345 
Q N/A* 
I 250 1/2 500 

S5 10230 15.345 
Q N/A* 
I 750 1/2 1500 

S6 10230 15.345 
Q N/A* 
I 2000 2/3 3000 

S7 10230 15.345 
Q N/A* 

 
In addition, the S3 signal used a short spreading code of 1023 chips as the GPS C/A to 
support fast acquisition of the S3 signal. The driver behind was to use this signal to assist 
acquisition of the longer codes on other frequencies and thus the implicit assumption was also 
that the S3 signal would always be present regardless of the combination of other signals. On 
the other hand, all other signals were planned to use longer spreading codes of length 10230 
to provide increased robustness against inter- and intra-system interference. The proposed 
signals allowed a strict occupancy for the narrowband and wideband cases respectively.  

 
Figure 3.1. Galileo first Frequency plan for L-band [R. De Gaudenzi et al., 2000] 

 
For the purposes of the Galileo Signal Validation Facility (GSVF) project, the frequency 
bands of interest were assumed to be El, E2, E4 as well as GPS-L1 and GLONASS-G1 as 
shown in the previous figure. 



Galileo Baseline Evolution 

67 

The centre frequency and available bandwidth for the different frequency designators are also 
shown in Table 3.2. It is important to note that all the signals are band-limited with a square 
root raised cosine filter. The basic signals used a roll-off factor, α = 0.22 although other roll-
off factors such as α = 0.28 and α = 0.35 were also under consideration. In chapter 4.8.2 a 
more detailed description of the Square-Root Raised Cosine (SRRC) modulation is given. 
 

Table 3.2. First studied Galileo Frequency bands [R. De Gaudenzi et al., 2000] 
Frequency Designator Available Bandwidth [MHz] Centre Frequency [MHz] 

E1 4.0 1598.742 
E2 4.0 1561.098 
E4 4.0 1256.244 
E5 20.0 1202.025 
E6 20.0 1278.750 
C1 20.0 5014.746 

 
The Signal Plan presented above was not the only proposed solution from                       
[R. De Gaudenzi et al., 2000]. In fact additional solutions were proposed as shown in the 
following table: 
 
Table 3.3. Galileo Signal parameters for different options [R. De Gaudenzi et al., 2000] 

Freq. 
Band 

Target 
C/N0 

(dB-Hz) 

EIRP 
(dBW) 

Carrier 
Frequency 

(MHz) 

Chip 
Rate 

(Mcps) 

Data 
Stream 

Info. 
Bit 

Rate 
(bps) 

FEC, 
Coded 

data rate 
(bps) 

Code 
length, 

Gold seq. 
(chips) 

Code 
duration 

(μs) 

Baseline 
E1 45 31.0 1589.742 3.069 E-NAV’ 1500 ½, 3000 1023 333,3 
E2 45 30.8 1561.098 3.069 E-NAV’ 1500 ½, 3000 1023 333,3 
E4 45 28.4 1256.244 3.069 E-NAV’ 750 ½, 1500 1023 333,3 

Option 1 
G1 45 31.0 1598.949 15.345 E-NAV’ 1500 ½, 3000 1023 66,7 
E2 45 30.3 1561.098 3.069 E-NAV’ 750 ½, 1500 1023 333,3 
G2 45 28.9 1589.106 15.345 E-NAV’ 1500 ½, 3000 1023 66,7 

Option 2 
E1 45 31.0 1589.742 3.069 E-NAV’ 1500 ½, 3000 1023 333,3 
E4 45 28.4 1256.244 3.069 E-NAV’ 750 ½, 1500 1023 333,3 
C 38 34.0 5014.746 15.345 E-NAV’ 1500 ½, 3000 1023 66,7 

 

Finally, in regards to the Galileo orbit parameters, the following values were suggested. 
 

Table 3.4. Galileo MEO Orbit Parameters [R. De Gaudenzi et al., 2000] 
Orbital height 20,230 km 

Orbital plane inclination 55° 

Maximum Doppler Shift 
4.4-5.2 kHz (L-band) 

14.7-17.3 kHz (C-band) 
Maximum Number of satellites in view 7-12 

Elevation angle 5°-90° 
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As we can recognize, changes were also made here with respect to the final configuration of 
Galileo that we saw in chapter 2.4.1. 
 
The Square-Root Raised Cosine (SRRC) modulation comes from the communications world 
and was proposed at that time due to its optimum spectral efficiency in the sense that for a 
limited bandwidth it is capable of transmitting more power than any other signal waveforms, 
such as the rectangular one. But as we know, the needs of navigation and communication do 
not always go hand by hand and what is good for the one is not necessarily also good for the 
other. The SRRC signal is band-limited as we will thoroughly describe in chapter 4.8.2 and 
even though it performs very well for narrow bandwidths the signal would have been 
handicapped from the beginning regarding its navigation performance since no matter how 
much we would broaden the receiver bandwidth, the performance would never be able to get 
any better. Indeed, this was its major drawback. 
 
The intersymbol interference is better with the SRRC waveform than with a rectangular 
solution being this a very important aspect to take into account in environments with 
extremely low SNR as in the case of deep space transmissions. Nonetheless, the limited 
bandwidth of the signal to a very narrow value as shown above, condemned the signal to 
never being able to perform any better further away than 3 MHz. Of course the signal would 
be very good in terms of power transmission for that very narrow bandwidth, but no matter 
what we would do, we would never be able to improve its limited natural performance of       
3 MHz. The ACF would present a very rounded peak and for navigation purposes this would 
imply a low intrinsic quality in terms of tracking.  
 
Other consequences from the band-limited property of the SRRC pulse would be that 
compared to the GPS signals, for example, no improvement due to narrow correlation would 
be possible. In terms of receiver complexity in comparison with the rectangular waveform 
solution an additional degradation was observed.  
 
Last but not the least, such a signal would have a degraded antijamming protection. We will 
see more in detail this in the coming chapters but we can already mention here that the 
antijamming protection against narrowband and wideband interference, may it be due to an 
intentional or unintentional source, increases as the spectrum of the signal widens. For the 
case of a limited-band signal thus, an important degradation in this regard would be observed. 
This would be especially critical for the Public Regulated Service (PRS) of Galileo. To 
finalize, it is important to mention that at the time as the studies were made                       
[R. De Gaudenzi et al., 2000], the PRS signal was not even planned yet. 
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3.3 Galileo Baseline of 2002 
 
The first tentative Galileo frequency and signal plan alternative to the one that we saw in the 
previous chapter was presented in [G.W. Hein et al., 2001] and it slowly became the baseline 
for the development of Europe’s satellite navigation system. The Galileo carrier frequency, 
modulation scheme and data rate of all the 10 Galileo navigation signals as of September 
2002 had experienced very important changes with respect to the first proposals. Moreover, 
the band frequency assignment was not an unknown any more and Galileo was developing 
similar concepts with regards to signal modulation as GPS. This means in other words, that 
the SRRC concept was abandoned and similar signal structures as those of GPS were now 
proposed for Galileo too. As we will point out later again, the status was already in a very 
mature phase and until the final signal plan not many substantial changes were required. 
 
The main changes and add-ons with respect to the initial Signal Plan of chapter 3.2 are 
summarized in the following lines [G.W. Hein et al., 2001]: 
 

• In the lower L-band (i.e. E5a and E5b) the central frequency for E5b was moved to 
1207.14 MHz in order to minimize possible interference from the Joint Tactical 
Information Distribution System (JTIDS) and the Multifunctional Information 
Distribution System (MIDS). All signals on E5a and E5b would be using chip rates of 
10 Mcps but the modulation scheme for that band was not decided yet. The idea in 
mind was to have a modulation that allowed processing of very wideband signals by 
jointly using the E5a and E5b bands. This joint use of the bands has the potential to 
offer enormous accuracy for precise positioning with a low multipath as we will see in 
the next chapters. This final wideband signal would be the AltBOC modulation. 
Furthermore, data rates had also been fixed in the baseline of 2002.  

• In the middle (i.e. E6) and upper (i.e. E2-L1-E1) L-band, data and chip rates were also 
defined as well as the Search and Rescue (SAR) up- and downlink frequencies. 
Furthermore, extensive interference considerations took place in E5a/E5b concerning 
Distance Measuring Equipment (DME), the Tactical Air Navigation System 
(TACAN) and the Galileo overlay on GPS L5; in E6 concerning the mutual 
interference to/from radars and in E2-L1-E1 frequencies with regard to the Galileo 
overlay on GPS L1. 

 
In addition, by 2002 the EC Signal Task Force and ESA had refined criteria for the code 
selection and had also formulated the requirements on each frequency. Nonetheless, different 
code structures were still under investigation.  
 
It is also important to note that the Transport Council of the European Union in its meeting of 
25th/26th, March 2002, where the development phase of Galileo was finally decided, 
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underlined that compatibility and interoperability to GPS should be one of the key drivers for 
Galileo. With this signal plan, Galileo presented a good interoperability to GPS but still slight 
changes would be required. Next figure summarizes the characteristics of the resulting 
baseline signal plan of 2002. 

 
Figure 3.2. Galileo Frequency plan of September 2002 

3.4 The Long Way to the Agreement 
 
As we saw in the figure above, the signal plan of 2002 was already very mature in its design 
and with respect to today’s baseline only little changes can be observed, especially in the E1 
band, where a slight modification was needed to ensure compatibility between GPS and 
Galileo. The main changes are summarized next: 
 

• E6: the PRS changed the phasing of the BOC(10,5) signal from sine to cosine. 
• E1: The OS signals changed from BOC(2,2) to BOC(1,1) and the PRS moved from 

BOCsin(14,2) to BOCcos(15,2.5) in order to fulfil the Agreement of 2004 as we will 
mention in the next lines. 

• E5: AltBOC remains until the end as the wideband signal of E5. 
 
Let us analyze the changes that took place in a shorter time frame and with special attention to 
the most troublesome band: the E1 band. 
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3.4.1 Public Regulated Service in E1 
 
Following the guidelines set up by the Transport Council of the European Union, beginning of 
2004 the negotiations between the European Commission and the United States had clearly 
intensified with the objective of reaching compatibility and interoperability. At that moment, 
it was clear that Galileo would have to change its PRS signal from BOCsin(14,2) to another 
solution. In the preceding months different solution for the PRS had been thoroughly 
assessed: 
 

• BPSK(5) at 1593.834 MHz as Public Regulated Service instead of BOCsin(14,2). As 
we can see in the following figure, such a signal would concentrate its PSD 
asymmetrically, allocating most on the power on the upper part of the E1 band. 

 
Figure 3.3. Signal Plan for E1 studied in 2004: PRS with BPSK(5)@1594 MHz 

 
• BOC(2.5,2.5) at 1593.834 MHz was another alternative that was object of analysis. 

Similar to the solution described above, the signal would concentrate all its power on 
the upper part of the spectrum. 

 
Figure 3.4. Signal Plan for E1 studied in 2004: PRS with BOC(2.5,2.5)@1594 MHz 
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• BOCcos(15,2.5). This was indeed the solution that was found to be the optimum one. 
Its Power Spectral Density is shown in the next figure. 

 

 
Figure 3.5. Signal Plan for E1 studied in 2004: PRS with BOCcos(15,2.5) 

3.4.2 Open Service: BOC(2,2) - BOC(1.5, 1.5) - 
BOC8(2,2) - BOC(1,1) 

While there was common agreement on both the American and European side that the PRS 
signal had to change from BOCsin(14,2) to BOCcos(15,2.5) to preserve compatibility between 
GPS and Galileo, the Open Service signal and Civil signal of Galileo and GPS were still 
object of long discussions. Indeed, in Figure 3.5 above we can clearly recognize that although 
the PRS corresponds to the actual signal waveform, other signals such as BOC(1.5,1.5) were 
also being studied for the OS service. Some results on the performance of such solutions were 
also presented by [M. Irsigler et al., 2005]. Additionally, other interesting solutions were 
being explored such as BOC8(2,2), also known as the 8-PSK BOC(2,2), to which we will 
dedicate more time in chapter 4.5.5.1. 

3.5 Agreement of 2004: BOC(1,1)+BOCcos(15, 2.5) 
Finally, after many years of fruitful cooperation, the member states of the European Union 
and the United States signed on June 26th, 2004, the Agreement on the Promotion, Provision, 
and Use of Galileo and GPS Satellite-Based Navigation Systems and Related Applications. 
With it, a new world of possibilities in satellite navigation opened. The agreement fixed 
BOC(1,1) as the baseline for both Galileo and GPS future OS signals, but at the same time 
opened the door to future possible implementations under the condition that they should have 
the current baseline as the core of potential optimizations and that they would be compatible 
with both the GPS M-Code and Galileo PRS. The PRS was raised to the same category as the 
M-Code. Next figure shows the resulting baseline of 2004: 
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Figure 3.6. Galileo baseline after the Agreement of 2004 

 
We can also take a closer look at the L1 band to see more in detail the spectral environment of 
the band. It must be noted that RAS refers to the Radio-Astronomy Service. 
 

 
Figure 3.7. Galileo and GPS baseline in E1/L1 after the Agreement of 2004 

3.6 The Way to Today’s Baseline 

3.6.1 Crazy BPSK, CBOC(5) and Others 
Shortly after the Agreement of 2004 was signed, experts from both sides of the Atlantic 
started to work together to find possible alternatives to the common BOC(1,1) modulation 
that would clearly outperform the Open Service and Civil signals of the baseline and fulfil at 
the same time the requirements of the Agreement. Among the many solutions that were 
investigated at that time, we underline the following: 
 

• MBOC(5) as the result of multiplexing BOC(1,1) and BOC(5,1) 
• Crazy BPSK. This signal is a particular BCS sequence with 1.5 MHz chip rate and can 
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be described as BCS([15x0,1,4x0],1.5). The notation [15x0,1,4x0] denotes that the 
code chip is divided in 20 parts of equal length being the first 15 subchips logical 
zeros (or physically -1), then comes a +1 and finally 4 zeros (-1) are placed at the end. 
For more details on the mathematical properties of these signals refer to chapter 4.3. 
Given its great similarity with a BPSK signal, but with an additional quick flip, the 
signal was baptized as crazy BPSK. 

• BCS signals with chip rates of 1.023 MHz or multiplexed versions with BOC(1,1). 

3.6.2 Composite BCS (CBCS)  
 
As we underlined in the chapter above, although the Agreement fixed BOC(1,1) as the 
baseline for both Galileo E1 Open Service and GPS future L1C signals, it also stated that the 
Parties would work together toward achieving optimization of that modulation for their 
respective systems, within the constraints of the Agreement. In September 2005              
[G.W. Hein et al., 2005], a sophisticated signal known as CBCS was presented by members of 
the Signal Task Force of the EC. This signal promised improvement of more than 40 % in 
multipath performance with respect to BOC(1,1) under certain conditions. We will talk about 
it more in detail in chapter 4.6. 
 
CBCS was highly compatible with BOC(1,1) receivers and fulfilled to a high degree the 
requirements of the Agreement of 2004. Moreover, it offered an important improvement in 
terms of performance. 

3.6.3 Alternating Composite BCS (CBCS*) 
 
CBCS had some inconvenient properties that we will analyze more in detail in chapter 4.6. 
Among them, the existence of a tracking bias that could potentially appear due to the cross-
correlation between the CBCS signal and BOC(1,1) legacy receivers. This problem could be 
solved in different manners being the most interesting that of alternating the BCS sequence. 
The resulting signal thus received the name CBCS* where the * refers to the phase-alternation 
of the BCS component. 
 

3.6.4 MBOC(4,1) 
 
Shortly before MBOC(6,1) was selected, one more signal was intensely studied as potential 
alternative to BOC(1,1). This signal was MBOC(4,1). MBOC(4,1) was the result of 
multiplexing BOC(1,1) and BOC(4,1) but due to its spectral properties it showed a lower 
degree of growth potential than MBOC(6,1) and was thus abandoned. 
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3.7 MBOC(6,1) 
 
Finally, a joint design activity involving experts from the United States and Europe produced 
a recommended optimized spreading modulation for the L1C signal and the Galileo E1 OS 
signal [MBOC Recommendation, 2006] and [GPS ICD-800, 2006]. The spreading 
modulation design places a small amount of additional power at higher frequencies in order to 
improve signal tracking performance. The signal was found to be satisfactory to both parties 
and significantly improved BOC(1,1). More details on MBOC will be provided in chapter 4.7. 
Next picture shows the working group members that participated in the informal meeting of 
Munich on March 9th, 2005 where MBOC was selected as candidate for the E1 Open Service 
and the L1 Civil Signal in L1. 
 

 
Figure 3.8. Members of the US/EU working group celebrate their agreement on a 

recommended common MBOC structure for GPS and Galileo L1 civil signals: from left 
to right: Chris Hegarty, Tony Pratt, Jean-Luc Issler, John Owen,                                

José-Ángel Ávila-Rodríguez, John W. Betz, Sean Lenahan, Stefan Wallner,                 
and Günter W. Hein 
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The final frequency plan of Galileo is shown in the next figure in detail: 
 

 
 

Figure 3.9. Final Galileo Frequency Plan
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4. GNSS Signal Structure 
 
Once a general overview on all the current and planned navigation systems has been 
provided, we will deal in the next chapters with the task of finding general expressions to 
define any navigation signal. 

4.1 GNSS Modulation Schemes 
 
Galileo and GPS signals are generated using the well known Direct Sequence Spread 
Spectrum (DSSS) technique. DSSS is a particular case of Spread Spectrum (SS) technique.  
 
The SS principle seems simple and evident, but its implementation is indeed complex. In 
order to accomplish this objective, different SS techniques are available, but they all have one 
thing in common: they perform the spreading and dispreading operation by means of a pseudo 
random noise (PRN) code attached to the communication channel. The manner of inserting 
this code into the transmitting chain before the antenna is actually what defines the particular 
SS technique, as next figure shows:  
 

 
Figure 4.1. SS techniques classification depending on the point in the system at which 

the PRN code is inserted in the communication channel 
 
According to this, a DSSS signal, s(t) can be represented as follows [C.J. Hegarty, 2003] and 
[C.J. Hegarty et al., 2005]: 
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where {ck} represents the pseudorandom code symbols (which may be periodic), p(t) is the 
chip waveform which is non-zero only over the interval support [ )cT,0  refers to the chip 

period and N is the number of equal length divisions of one chip period. In the next chapters 
of this chapter we will study different waveforms and analyze them in terms of their spectral 
efficiency and characteristics.  
 
Of all the possible chip waveforms, the binary solutions belong to the most interesting for 
satellite navigation. Nevertheless, technology progresses so fast that it is possible to imagine 
more complex non-binary alternative spreading waveforms in a near future. In this chapter we 
will discuss the possibilities and potential they could bring to the navigation world. 
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4.1.1 Autocorrelation and Power Spectral Density 
 
When dealing with DSSS signals, two very important characteristics are the autocorrelation 
function and the power spectrum, since they determine the navigation performance of a 
signal. 
 
Let us assume that our signal is stationary in wide sense and can be expressed as follows:  
 
 ( )∑ −−=

k
ck kTtptcts )()( θ  (4.2) 

where θ is a uniformly distributed variable within [ )cT,0 . As we know, we say that a signal is 

stationary in wide sense when the first and second moments do not change with the time. This 
means in other words: 
 
 ( ){ } ( ){ } RtsEtsE ∈∀+= ττ  (4.3) 

and  
 ( ) ( ){ } ( ) ( ) ( ) RtttttttstsE sss ∈∀−ℜ=++ℜ=ℜ= τττ 0,,, 2121212

*
1  (4.4) 

 
what is equivalent to saying that the mean is constant and the correlation function does only 
depend on the difference of time between t1 and t2. It must be noted that θ  does not vary with 
time representing thus an initial random shift in the signal that remains constant over time.  
 
Assuming that our signal fulfils the above described properties, we can show that the 
autocorrelation function is defined thus as: 
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since the signal is assumed to be stationary. We can further simplify this expression as: 
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According to this, the power spectral density of s(t) can be obtained from the Fourier 
Transform of the autocorrelation of s(t), ( )τsℜ  derived above, according to: 
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where P(f) is the Fourier Transform of the waveform p(t). Moreover, the signal was assumed 
to be real. Assuming now that the PRN codes show ideal properties – that is random, non 
periodic, identically distributed, equiprobable and independent – then the crosscorrelation can 
be approximated as { } knnkccE δ≈*  or what is equivalent ( )mmc δ≈ℜ )( , and the power 

spectrum density simplifies to: 
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For further justification on the use of the Dirac delta in the previous lines, refer to                       
[M. J. Lighthill, 1958] where additional arguments are provided. This expression is of great 
value since it will allow us to calculate the power spectral density of the different signals we 
will analyze in our work. Indeed, if we can express all the different signal waveforms by 
means of their chip waveform we will be able to use this expression to obtain the power 
spectral density. As we will mention later, this is not possible in a general case but fortunately 
it is a good approximation for most of the cases. 
 
Moreover, real DSSS signals are not stationary in wide sense. Thus, it is better to work with 
the average autocorrelation function in general. According to this, the average autocorrelation 
function can be expressed as follows:  
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where )(tp was assumed to be real. This expression can be further developed as follows: 
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where ( )τsℜ  was derived some lines above in (4.6). Again, assuming the codes show ideal 
properties, the crosscorrelation will be [ ] knnk ccE δ≈ . 
 
Observing the equation above we can clearly recognize that the average autocorrelation 
function for a DSSS signal is equal to the aperiodic autocorrelation function of the chip 
waveform under the assumption that the codes are ideally random. This is a very important 
result since we will base most of the derivations of this chapter on it. Later we will relax this 
strong assumption on the ideality of the codes and see how the results differ when actual non-
ideal codes are employed to modulate the chip waveform. 
 
Once we have derived the expression for the average autocorrelation function (ACF) of a 
generic DSSS signal, the first question that arises is how the ACF of an ideal waveform 
should look like in order to be able to accomplish the best possible precise ranging in satellite 
navigation. As shown in the following figure, the sharper the peak of the autocorrelation 
function, the more precise the ranging will be with this waveform. Similar works with band-
limited signals have been carried out by [F. Antreich and J. A. Nossek, 2007]. An                 
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E-L discriminator with 0.1 chips of spacing was employed in this example. 

 
Figure 4.2. Example of the relationship between ACF and multipath performance 

 
The following conclusions can be obtained from the figure above: 
 

• If an E-L tracker is used, there is a high correlation between the multipath 
performance of a signal and the first derivative of the autocorrelation function. 

• The first plateau (in yellow in the figure) or peak of the multipath envelopes is 
determined by the spacing of the correlator, by the location of the first secondary peak 
of the ACF and by the slope of the ACF around the main peak. 

• The steeper the slope, the better as it reduces the plateau of the multipath envelopes. 
• The nearer to the main peak the inversion of the sign of the secondary peak takes 

place, the better the multipath since the envelope is obligated to fall to 0 (blue). 
• An inversion in the slope of the ACF forces the multipath envelopes to pass through 

zero. Therefore the closer this inversion is to the main peak, the lower the multipath 
envelopes will be for short multipath (blue). 

• No inversion in the slope makes the multipath envelope to move/keep the height of the 
plateau (green). 

• A change in the slope (not in the sign) makes the multipath envelope tend to a new 
plateau (yellow). 

• The sensitivity of a signal to multipath is lower the higher the chipping rate is since 
the effect of multipath is invisible to the receiver once the multipath signal comes 
from a given distance that depends on the particular discriminator. 

 
As a conclusion, the steeper the main peak of the autocorrelation and the more ripples this 
has, the better the potential performance of the signal will be. The counterpart is that the 
higher the number of elements in one chip, the higher will be the number of ripples of the 
autocorrelation so that the receiver might have problems to track or acquire the correct peak.  
From (4.10) we can deduce that a signal with a sharp autocorrelation function can be 
generated by selecting p(t) with good aperiodic correlation properties. In the ideal case, p(t) 
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should be a Dirac delta. 
The expression for the chip waveform p(t) is given by 
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According to this, each chip waveform is broken up into n rectangular pulses of duration nTc  
with amplitudes defined by the sequence {pi}. Furthermore, ( )tp nTc /  represents the shape of 

each of the rectangular pulses the chip waveform is broken up into. In principle {pi}, defined 
as MCS (Multilevel Coded Symbols) sequence in this thesis, could adopt any real value, 
although for satellite navigation a bi-phase signal with {pi}∈{+1,-1} is typical. 
 
Finally, the power spectral density of the DSSS signal can be obtained as the Fourier 
Transform of the autocorrelation function derived above, according to 
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The interesting thing about the derivations above is that since the autocorrelation function was 
expressed in a tailored way using the general formulation of (4.11), the power spectrum can 
also be tailored shaping thus the attributes of the desired signal as we wish. This is of great 
interest for navigation applications, since on the one hand, as we mentioned above, we are 
interested in having autocorrelation functions as sharp as possible around the main peak, 
while at the same time a broad spectrum with minimum overlapping with other signals would 
minimize mutual interference with other existing signals in the band. 
 
One final but important comment is that normally it is assumed that the transmitted GNSS 
interfering signals are band limited at the satellite transmitter. Thus, if we assume an ideal 
transmit filter of rectangular form (also referred to as brick-wall filter in this thesis) with 
bandwidth βT, the normalized power spectral density of unit power within the satellite 
transmission bandwidth should be expressed as follows: 
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4.2 Multilevel Coded Spreading Symbols (MCS)  
 
Generalizing the definition of [J.W. Betz, 2003], [C.J. Hegarty, 2003] and                        
[A.R. Pratt and J.I.R. Owen, 2003b] to non-binary signals, Multilevel Coded Spreading 
Symbols can be seen as generalizations of BPSK and BOC. Each spreading symbol (which is 
phase modulated by a spreading code value) is divided into a number of equal-length 
segments, each of which is assigned a deterministic value. As we can infere from this 
definition, each of the segments, also called subchips in this thesis, can in principle adopt any 
value. The shape of the subchip could be thus rectangular, sinusoidal or something different. 
 
The notation we will follow in this work to define an MCS signal as MCS([s], fc) where [s] 
represents the MCS sequence in one chip and fc is the chip rate. For the particular case that we 
work with binary signals we will have a BCS (Binary Coded Symbols) signal instead.  
 
As shown in [C.J. Hegarty et al., 2005] and [C.J. Hegarty et al., 2004], Binary Coded 
Symbols are already present in the literature since long time ago but it has not been until 
recent times that they have been considered as a serious alternative to the current BPSK and 
BOC modulations. In fact, the BPSK modulation can also be denoted as BCS([1], fc) having 
each segment unit value all over the chip. In a similar way, BOC(1,1) has fs=1 and fc=1 and 
thus a BCS sequence with values [+1,-1] spread with a 1.023 MHz code would uniquely 
define it. According to our definition, BOC(1,1) can also be denoted as BCS([1,-1],1). The 
following figure shows how a particular BCS signal could look like. 
 

 
Figure 4.3. BCS([1,-1,1,-1,1,-1,1,-1,1,1], fc) chip waveform in signal levels. This 

corresponds to the BCS component proposed for Galileo E1 OS (CBCS proposal) 
 
We can go one step further in our definition of Binary Coded Symbols in line with           
[J.W. Betz, 2003] and define BCS([s1],[s2],…,[sn], fc) as the result of blending n different 
binary coded symbols at a chip rate fc. This can be achieved for example by time multiplexing 
the different spreading symbols or by using different BCS sequences on In-phase and 
quadrature phase channels with independent spreading channels. As we will see in the 
following chapters, the MBOC signal relies on this blending concept. In the same manner 
MCS([s1],[s2],…,[sn], fc) would be the result of blending n different Multilevel coded symbols 
at a chip rate fc. 
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Binary Coded Symbols have gained in interest for the enormous flexibility that they could 
offer for future GNSS optimizations.  
 
In this chapter we will derive general expressions to calculate the power spectral density of 
BCS and MCS sequences in general. Additionally, analytical expressions for calculating the 
Spectral Separation Coefficient (SSC) between two BCS signals will be derived in chapter 5. 
Finally, more complex signal waveforms that result from applying the theory on MCS and 
BCS sequences will be obtained and analyzed in terms of their potential use for navigation. 
 
MCS sequences are a promising field since well selected configurations offer clear 
performance advantages as well as the possibility to control spectral properties in a more 
efficient way. This aspect has been of crucial importance during the design of Galileo in order 
to be compatible and interoperable with GPS, and could show us the way to proceed in the 
future when new signals are planned to be placed in the already crowded RNSS bands. 

4.2.1 MCS Power Spectral Density 
 
The power spectrum of any DSSS signal can be obtained by means of its corresponding 
autocorrelation function as we saw in (4.12): 
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or by means of the Fourier Transform of the signal, as defined in (4.8). 
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For the sake of convenience we will use the notation )( fS to refer to the chip waveform 

spectrum. In the following lines, we will make use of this latter expression to derive the PSD 
of a generic MCS signal. Indeed, the Fourier transform of a generic signal MCS([s], fc) is 
shown to be: 
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where n refers to the number of symbols in one chip and fc is the chip rate of the MCS signal. 
This can be further expressed in the frequency domain as follows: 
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Once we have a general expression for the Fourier transform of an MCS signal, the power 
spectral density can be derived according to (4.8) as follows: 



GNSS Signal Structure 

 

84 

 ( ) ( )
( )

22

1
2

2

)],([MCS)],([MCS e
sin

c

cc

nf
kf

jn

k
k

c
cfsfs s

f
nf

f

ffGfG
π

π

π
−

=
∑

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

==  (4.18) 

We can go one step further in our derivation if we assume that the sequence consists of real 
coefficients (not necessarily binary) such that *

kk ss = . In this case,  
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For simplicity in the notation we call { }kcnf
fjk

=
π2

e  and we will express the product of sums of 

(4.19) by means of the following matrix representation: 
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where l denotes the row index and m the column index. Since the coefficients are assumed to 
be real, mlmlml ssssss == **  and the sum of all the terms in the matrix above can be expressed 

as follows: 
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  (4.21) 
Furthermore, we can express the term is parentheses in a more simplified form if we apply the 
variable change l+m-1=k’, yielding thus: 
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Observing the matrix of (4.20) above, we can clearly see that we only need to look at the 
terms of the right superior triangular part of the matrix to compute the PSD of the MCS signal 
for any given real sequence. Moreover, it must be noted again that this sequence has not to be 
necessarily binary, being BCS a particular case of MCS as defined in the lines above. 
Combining now (4.18) and (4.22) we have the general expression for the power spectral 
density of a generic MCS signal: 
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or equivalently, 
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4.3 Binary Coded Symbols (BCS) 
 
Binary coded symbols are a particular case of MCS signal with a binary chip sequence 

{ }1,1 −+∈ls . The power spectral density of a generic [ ]( )cn fssss ,,...,,,BCS 321  can thus be 

derived from (4.23) or (4.24) and is shown to adopt the following simplified form: 
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Or equivalently: 
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where the first term of the product corresponds to the PSD of a BPSK with nfc MHz of chip 
rate and the second term can be represented by the matrix defined in (4.20) and is shown to 
have a power of 1 in an infinite bandwidth. We can thus represent the PSD as follows: 
 
 ( ) ( )( ) ( )fGfGfG

cnfs ModBPSK)1],([BCS =  (4.27) 

 
According to this, the function that seems to bring more information about the BCS sequence 
is the sum of the second factor. This term, namely ( )fGMod , can be easily computed with the 

matrix we defined in (4.20) and we will call it modulation term for short. Furthermore, it is 
important to realize that the modulation term and the spreading symbol are used indistinctly in 
the literature to indicate the same.  
 
Furthermore, it is important to note that (4.27) can be further generalized to  
 
 ( ) ( ) ( )fGfGfG s ModpulseSubchip)1],([BCS =  (4.28) 

 
for the case that the sub-chip is modulated by a generic non-rectangular pulse. This will be 
used in further chapters when we derive more general expressions and is also shown in the 
Appendixes of this thesis. 
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The main conclusion that can be drawn from observing this definition matrix is that a subchip 
alone, or in other words an element of the sequence alone, does not directly affect the PSD of 
the whole signal. It must be understood in relationship with all the other elements of the 
sequence. This adds an important complexity. In fact, it is not trivial to derive qualitatively 
the shape of any generic BCS signal by only having a look at its generation sequence [ ] ss = . 
 
We can clearly see this in the following example. Let us imagine different BCS signals of 
length 21 consisting only of ones expect for one logical zero (or -1 at signal level) where the 
zero subchip is placed at different locations within the BCS vector.  
 

 
Figure 4.4. Autocorrelation Function of different BCS sequences 

 

 
Figure 4.5. First Derivative of the Autocorrelation of different BCS sequences 
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Figure 4.6. Multipath Envelopes of different BCS 

 
For the previous figures, an E-L discriminator with 0.1 chips of spacing was employed. As we 
can recognize, a single shift to the right in the BCS sequence alters the final multipath 
performance significantly. This leads us thus to the conclusion that evaluating the multipath 
performance of a signal with a quick look is not an easy task as it was with BPSK and BOC 
signals, for example. Even though we knew how the BCS sequence looks like, a simple shift 
would significantly modify the multipath properties of the signal. Indeed, the mathematical 
ideas and conclusions gathered above have driven many of the works that were carried out in 
the past years to find the MBOC signal. 

4.3.1 Binary Phase Shift Keying Modulation (BPSK) 
 
A very important and useful signal in satellite navigation is the BPSK modulation which was 
in fact the first one to be used for Satellite Navigation. In spite of its simplicity, it is still used 
nowadays but could eventually be substituted by the BCS modulation or combinations with 
this one in the medium-long term. 
 
We will derive now the power spectral density of a BPSK(fc) using the general definition of 
BCS that we saw in chapter 4.3. According to this, any BPSK(fc) signal can be described as a 
BCS sequence with vector s = [1 1 1 …1] whatever the length of the vector. We will derive 
the expression of the PSD generalizing over n. 
 
First we build the [ ]( )sM n  matrix for any n, which is shown to be: 
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According to this, the modulating function will be: 
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Similar to how we will do with the BOC modulation, once the modulating term has been 
calculated, the power spectral density can be expressed as follows: 
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  (4.31) 
After some math, it has been shown in Appendix M that (4.31) can be simplified to the well 
known expression that we can find everywhere in the literature: 
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4.3.2 Binary Offset Carrier (BOC) 
 
Binary Offset Carrier Signals are a particular case of BCS signals with a representation vector 
formed by +1’s and -1’s alternating in a particular defined way. Two notations                     
[E. Rebeyrol et al., 2005] can be found in the literature to define the BOC signals. We 
describe them shortly in the following lines. 
 
The first model defines the BOC modulation as the result of multiplying the PRN code with a 
sub-carrier which is equal to the sign of a sine or a cosine waveform, yielding so-called     
sine-phased or cosine-phased BOC signals respectively as shown in [J.W. Betz, 2001], 
[L.R.Weill, 2003], [J. Godet, 2001] and [E. Rebeyrol et al., 2005]. According to this 
definition, the expression of the sine-phased BOC signal would be: 
 
 ( ) ( )[ ]tftcts Sπ2sinsign)( =  (4.33) 

with                                                                             
 ( )∑ −=

k
ck kTthctc )(   (4.34) 

where 
• ck is the code sequence waveform, 
• fs  is the sub-carrier frequency, 
• and h(t) is the Non Return to Zero (NRZ) code materialization with value 1 over the 

support [ )cT,0 . 
 
The second model defines the BOC modulation as follows: 
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where )(tp
cT describes the chip waveform and is broken up into n rectangular pulses of 

duration nTc  with amplitude ±1. It is important to note that in this case the sine-phasing or 

cosine-phasing is considered as part of the chip waveform definition. This convention has 
been introduced in [A.R. Pratt and J.I.R. Owen, 2003a] and [J.W. Betz, 2001]. 
 
No matter what definition we choose to describe the BOC modulation in the time domain, the 
BOC signal is commonly referred to as BOC(fs, fc) where 023.1⋅= mfs  and 023.1⋅= nfc  so 

that generally one only says BOC(m, n) for simplicity. Moreover, unless it is indicated in a 
different way, when we talk about BOC signals we will always mean the sine-phased variant. 
 
The parameter Φ is of great interest when analyzing BOC signals. It is defined as two times 
the ratio between the sub-carrier and the chip frequency as follows: 
 

 
n
m

f
f

c

s 22 ==Φ  (4.36) 

As we can see, Φ represents the number of half periods of the sub-carrier that fit in a code 
chip so that this ratio can be even or odd. When Φ  is even, the  two definitions presented 
above for the BOC modulation coincide since we can consider the sub-carrier as included in 
the chip waveform. However, when Φ is odd the second definition is not valid any more. The 
following example shows this. Indeed, depending on the convention that we adopt to define 
the BOC signal we can see that different time series result.  
 
Consider the code sequence {1,-1,1, -1,1,1} and a sine-phased waveform with 32 =cs ff . If 

we employ the first convention, the rectangular sub-carrier that results from taking the sign of 
the sine waveform will be as follows: 

 
Figure 4.7. Sine-phased sub-carrier for the BOC modulation 

 
Accordingly, the product of the binary sub-carrier (4.33) with the code sequence results in the 
following time series: 
 

 
Figure 4.8. Product of the sine-phased sub-carrier and the code sequence {1,-1,1,-1,1,1} 

 
where all the transitions have been underlined in red. If we follow now the approach of 
defining the sub-carrier as part of the chip waveform as it is done in the second definition, the 
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chip waveform to use will be: 

 
Figure 4.9. Chip waveform to represent the sine-phasing according to the second 

definition of BOC 
 
and the resulting time series will be as follows: 

 
Figure 4.10. Product of the sine-phased chip waveform and the sequence {1,-1,1,-1,1,1} 

 
If we compare now Figure 4.8 and Figure 4.10 we can clearly recognize that the two 
definitions of BOC do not lead to an unique time series representation. Indeed the difference 
is a polarity inversion every two bits as identified in [E. Rebeyrol et al., 2005]. 
 
We conclude thus that if Φ is odd, a slight modification must be made in the second definition 
to account for the effect of the sub-carrier onto the code as shown in [J.W. Betz, 2001]. 
Indeed, the new definition should be for the case of Φ odd as follows: 
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k
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c

−−= ∑                     (4.37) 

resulting then both conventions in the same time series.  
 
If we look at the equations above in detail, we can recognize the term ( )k1−  introduced in the 

expression, what can be interpreted as a modification of the PRN sequence so that all the even 
code positions would alternate. Indeed, the new code would be then ( ) k

k c1−  instead of the 

original ck. As a conclusion, in the case of Φ odd a modification must be made on the code 
sequence if we want the sub-carrier to be included in the chip waveform. This does not 
represent a real problem from a theoretical point of view but it is important to note that 
depending on which convention is used, the receiver must be adapted consequently because 
otherwise it would suffer from non desired losses [E. Rebeyrol et al., 2005]. 
 
Once the two definitions of BOC have been presented, it seems that the first one represents 
better the original definition of the BOC signal since no exception in the definition must be 
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made depending on whether the figure 
c

s

f
f

2=Φ  is even or odd. Nonetheless, the second 

convention allows for easier and more tractable derivations in some cases and thus both 
conventions will be indistinctively used in this thesis. 
 
Moreover, we have shown that the second convention is also correct as long as the PRN code 
is correspondingly modified. Since in this chapter we will derive expressions for smooth 
spectra and assume consequently that the PRN code shows ideal properties, also the modified 
code version should present similar ideal properties and we can directly consider the sub-
carrier as included in the code materialization. This will considerably simplify the derivations 
as we will see. Consequently we can use (4.8) to calculate the power spectral density of BOC 
as shown in the different Appendixes. This is actually not only valid for the BOC modulation, 
but for all the signals that can be expressed as shown in (4.2). 
 
Last but not the least, it must be noted that for non-ideal codes or very short codes this is not 
true any more. We will analyze these effects in chapter 6.2.2. 
 
It is important to note that the conclusions derived above for the sine-phased BOC modulation 
can easily be extended to the cosine case and to any BCS signal in general. In fact, also for a 
BCS signal we can distinguish between even and odd BCS signals in a similar manner as we 
did above. However, the examples might not be so easy to analyze in this case. 

4.3.2.1 Binary Offset Carrier with sine phasing: BOCsin(fs , fc) 
 
As we saw in chapter 4.3.2 the Binary Offset Carrier Modulation can be expressed as a BCS 
sequence with a vector that is formed by alternating +1 and -1 a number of times cs ff . In 

the next lines we will derive the general expression of the power spectral density. To do so, 
we recall (4.26) and we build up the corresponding matrix to calculate ( )fGMod  as defined in 

the previous chapter. As we will see next, the matrix shows symmetry properties that will 
allow to simplify the problem considerably.  
 
To start, let us analyze the particular case of BOC(fc, fc). As we saw in the preceding lines, 
BOC(fc, fc), also known as BOCsin(fc, fc), can be expressed as BCS([1,-1], fc) and presents thus 
the following matrix: 

 [ ]( ) { } { }
{ }

{ } { }
{ }⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−

01
1101

0
10

1,1
22

21112

ss
ssss

M  (4.38) 

According to this 
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adopting the pulse term of the PSD the following form:  
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Finally, according to (4.26), the power spectral density of this particular case would be: 
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Let us now extend this expression to any BOCsin(fs, fc) generalizing on cs ff with 

cs ff being an integer, namely the number of times that the pair {1,-1} repeats. Indeed, once 
we have found the expression ( )fGMod  with 1=cs ff , we calculate for 2=cs ff  in the 

same manner: 
 BOCsin(fs, fc)= BOCsin(2fc, fc) or BCS([1,-1,1,-1],fc)  (4.42) 
 
where the definition matrix is shown to be: 
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and thus  
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It is interesting to note that the term in the brackets resembles a Fourier series until term n-1. 
If we continue now by induction we can see that the expression for any n adopts the following 
form: 
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where { }...8,6,4,2∈n . It must be noted that the variable n refers to the number of subchips 

and not to the number of times that the sub-carrier contains the code rate as usually done in 
the literature. Once we have obtained the modulating term of the power spectral density, the 
general form of the PSD for any sine-phased BOC modulation can be expressed as: 
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  (4.46) 
which can be explicitly simplified as shown in Appendix B: 
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As a conclusion, the BOC signal in sine phase can be considered as a BCS signal whose 
sequence is formed by concatenating [+1,-1] a number of times cs ff . Thus the length n will 
be cs ff2 and (4.47) can also be expressed as: 
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which is the well known form we find in the literature [J.W. Betz, 2001]. 

4.3.2.2 Binary Offset Carrier with cosine phasing: BOCcos(fs , fc) 
 
Following the same approach of the previous chapter, we will derive next the well known 
expression for the power spectral density of the BOC modulation with sub-carrier in cosine 
phasing. Taking as an example the sine-phased BOC signal of the lines above, we will derive 
now also a general expression by induction over n. Let us begin with BOCcos(fc, fc): 
 
 BOCcos(fs, fc)= BOCcos(fc, fc) or BCS([1,-1,-1,1],fc) with fc=1.023 MHz (4.49) 
 
The corresponding definition matrix under these assumptions is shown to be: 
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Thus, the modulating function adopts the following form: 
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If we repeat now the calculation for BOCcos(2fc, fc) in order to derive the generalized 
expression by induction over n, we have BOCcos(fs, fc) = BOCcos(2fc, fc) or                       
BCS([1,-1,-1,1,1,-1,-1,1] , fc), so that  
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  (4.52) 
If we generalize now, we can see that the expression for any n will adopt the following form: 
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where { }...16,12,8,4∈n . Finally, once we have obtained the modulating term of the power 

spectral density for any n, we can express the power spectral density of any cosine-phase 
BOC signal as follows: 
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As derived in Appendix C, after some math (4.54) can still be explicitly expressed for the 
even case as follows: 
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The BOC signal in cosine phase can be considered as a BCS signal whose sequence is formed 
by concatenating [1,-1,-1,1] a number of times cs ff . Thus the length n will be cs ff4 and 

(4.55) simplifies to: 
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 (4.56) 

In the same manner, for the odd case cosine-phase we have according to Appendix C: 
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 (4.57) 

 

4.3.2.3 Autocorrelation function of a generic BOC signal 
 
One of the most interesting figures in the analysis of the signal structure is the autocorrelation 
function of the chip waveform as we saw at the beginning of this chapter. In this chapter we 
will derive general expressions to define the analytical shape of the autocorrelation function a 
generic BOC signal with infinite bandwidth. This will help us understand the importance of 
having a good autocorrelation function in order to have good ranging potential for 
positioning. Additionally, analytical expressions will permit us establishing comparisons 
between sine- and cosine-phased BOC modulations and investigate the effect that extra terms 
in the definition of the ACF can bring. 
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Before that, we derive first the inverse Fourier Transform of some functions of interest. The 
importance of these functions lies in the fact that since the Power Spectral Density of any 
MCS signal can be developed as a series with them, the derivation of analytical expressions 
for the ACF will be then possible no matter how complex the shape of the signal is. 
 
As we know, the inverse Fourier transform of ( ) ( ) 2cos ωωω ck fkT =  can be defined as 

follows: 
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where k fixes the height of the function at 0=τ . Moreover, the function ( )τkT  is expressed as 

a function of τ  [chips]. Next the trapezoid function is shown graphically: 
 

 
Figure 4.11. Definition of the trapezoid function Tk(τ ) 

 

Also, the Fourier inverse Transform of ( )
( )2

1
ω

ω
k

Sk =  can be expressed by means of a 

function that we will call ( )τkS  as follows: 
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Figure 4.12. Definition of the S k(τ ) function 
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For the more general case, we will define the inverse Fourier Transform of  
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as:  
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where we assume that 12 kk ≥  without loss of generality. In addition, we can clearly see that 
( )τkT   is a particular case of ( )τ

21 ,kkM   since ( )( ) ( )ττ
22,0 kk TM = . 

 
Next we compare the BOC signal in sine and cosine phasing for different chip rates. For 
exemplification we will take a sub-carrier rate of 10.23 MHz and a code rate of 5.115 MHz. 
We recall that these modulations correspond to the GPS M-Code and the Galileo PRS (E6). 
 

 
Figure 4.13. Power Spectral Densities of BOCsin(10,5) and BOCcos(10,5)  

 

The difference between the sine-phased and cosine-phased BOC modulation is even more 
obvious when we look at the BOCsin(15,2.5) and BOCcos(15,2.5) signals. As we can see, while 
the sine-phased concentrates more power at inner frequencies, so does the cosine version at 
outer frequencies. 
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Figure 4.14. Power Spectral Densities of BOCsin(15,2.5) and BOCcos(15,2.5) 

 
Now that we have the tools to derive the generic form of the ACF of any MCS signal, we 
develop the power spectral density of BOCsin(15,2.5) as follows: 
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  (4.62) 

And using the formulations derived in previous pages, we can express the ACF as follows:   

 ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++−

−−−+++

+−+−+−

=

τττ

τττττ

τττττ

τ

11
12
11

12
5

12
7

2
1

3
1

6
1

4
1

3
2

4
3

6
5

12
1

)5.2,15(BOC

4628

5640486480

7232241688

sin

STT

TTTTT

TTTTT

ACF  (4.63) 

which adopts graphically the following form: 
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Figure 4.15. Autocorrelation Function of BOCsin(15,2.5) 

 

In the same manner, the power spectral density of BOCcos(15,2.5) can be equally expressed in 
terms of the functions defined above such that the ACF is shown to adopt the following form:  
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Figure 4.16. Autocorrelation Function of BOCcos(15,2.5) 

 
If we compare now (4.63) and (4.64) we see that we can express the ACF of the            
cosine-phase BOC as a function of the ACF of the sine-phased BOC in the following way: 
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what can be graphically shown as follows:  

 
Figure 4.17. Difference DBOC(15,2.5)(τ) of ACF of BOCcos(15,2.5) and BOCsin(15,2.5) 

 
By looking at Figure 4.17 the following interesting properties can be observed: 
 

• We can distinguish 6 peaks on every side with an amplitude of ( )621 ⋅ . In fact, for the 
general case we will have n peaks on every side with an amplitude ( )n⋅21  where 

cs ffn = .  

• This function shows the interesting property that we can easily convert the sine-phased 
autocorrelation function of any BOC signal into its cosine-phased counterpart by 
adding the corresponding difference function shown above. 

 
Moreover, if we calculate now the Fourier transform of (4.66), we obtain the following 
spectrum: 

 
Figure 4.18. Power Spectral Density of the Difference Function DBOC(15,2.5)(τ )  

As we can recognize, this spectrum is the difference between the power spectral densities of 
the sine-phased and cosine-phased BOC(15,2.5) modulations. 
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4.3.2.4 BOC signals vs. BPSK signals 
 
The BOC modulation was the first attempt to modernize the GNSS signals and has indeed 
opened a new field of research in navigation that has recently lead to the AltBOC and MBOC 
solutions. These will be described in the following pages. As commented by                       
[J.-A. Avila-Rodriguez et al., 2006d] and [G.W. Hein et al., 2006a], while very good 
performance can be obtained with the C/A code signal, it has been recognized that better 
performance can be obtained using spreading modulations that provide more power at high 
frequencies away from the centre frequency. In fact, this is the main idea behind the BOC 
modulation where a sub-carrier signal shifts spectral components to outer parts of the. The old 
BPSK modulation that is currently still used for GPS C/A code has limited capability for 
ranging and requires high performance receivers to use very wide front-end bandwidths as 
shown in [J. W. Betz and D. B. Goldstein, 2002]. Moreover, Intra-system interference is 
exacerbated by the short C/A codes. The relatively slow 1.023 MHz spreading code rate of the 
BPSK-R modulation offers limited channel capacity, restricting the number of simultaneous 
signals as well as the tolerable power differential between signals. Additionally, the data 
message modulated on the C/A code signal is inefficient and inflexible. 
 
An interesting aspect of the BOC signal regarding its complexity is that it can be considered 
as two BPSKs shifted to –fs and +fs by the sub-carrier signal. Indeed many receiver 
implementations will make use of this principle to receive the future BOC signals. Side-lobe 
processing is thus a promising solution to treat BOC signals using the old BPSK architecture 
if we realize that a BOC signal is qualitatively similar to two BPSK signals with each half the 
power [J.W. Betz et al., 2005]. This idea is also of interest to process AltBOC. 
 

4.3.3 Generic BCS Signals 
 
In the previous lines we have studied two particular cases of the BCS modulation, namely the 
BPSK and BOC modulations. Nonetheless, the general expression derived at the beginning of 
the chapter is valid for any BCS vector. For exemplification, we show in the next lines how 
the PSD of a generic BCS could be derived. 
 
Let us assume a BCS signal with vector s = [+1, +1, -1]. We have thus 11 +=s , 12 +=s , 

13 −=s . The modulating term of the PSD can be easily calculated as: 
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which can be further simplified to: 
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while  



GNSS Signal Structure 

 

101 

 ( )( )
( )2

2

3BPSK
pulse

3
sin

f
f
f

ffG c
c

fc

π

π
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=  (4.69) 

Thus the spectrum of this BCS sequence would adopt the following form: 
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In general, in order to understand how the spectrum will look like for a given sequence, we 
have to be able to understand how every term of the sum above contributes to the total PSD.  
 

4.4 Sinusoidal Multilevel Coded Symbol (SMCS) 
Signals  

 
In the previous chapter we have examined signal waveforms with rectangular pulse shape. 
This is indeed the most typical case in most of the applications. Now we will go one step 
further and we will discuss a family of signals that results from modulating each subchip of 
the generation vector s  with a sinusoidal function. Such signals receive the name of 
Sinusoidal Offset Carrier signals or SOC for short if the sinusoidal function is modulated by a 
binary code. The alternative use of Linear Offset Carrier or LOC is also offen observed in the 
literature. As we can recognize, SMCS can be interpreted as a particular MCS that uses 
subchip pulses with sinusoidal shape. Accordingly, (4.28) could be applied. The original idea 
to use this signal for satellite navigation was presented in [J. W. Betz, 1999] and  has been 
further developed in [J. Winkel, 2002]. The SOC signal can be defined as follows: 
 
 ( ) ( )tfncts ck π2sin2SOC =  (4.71) 

where n corresponds to the number of periods of the sine wave that are contained in each code 
bit and the factor 2 was introduced to normalize the power to 1. Furthermore, kc  refers to 

the subchips modulating the chip waveform. It is important to note that the chip waveform is 
defined by the sequence of subchips that forms it according to the generation vector s  as 
defined in chapter 4.2. 
 
While this definition applies only to the case of Offset Carrier Chips ([1, -1, 1, -1, …]), one 
can imagine a generalized version for Binary Coded Symbols. We will define these signals 
thus in general as Sinusoidal Binary Coded Symbols or SBCS for short. Next figure shows an 
example of SBCS with vector [1,-1,1]. 
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Figure 4.19. Sinusoidal Binary Coded Symbol signal with generation vector [+1,-1,+1] 

 
As we can clearly recognize, there exists the same relationship between SBCS signals and 
SOCs as there was between BCS and BOC. In fact, the SOC signal that we defined above is a 
particular case of the SBCS modulation that we have just described. According to this, if we 
talk about SBCS([1,-1],1) and SOC(1,1) we are indeed referring to the same signal. 
 
In addition, it is important to mention that since, as we know from theory, the square-wave 
contains tones at odd frequencies multiple of the elemental frequency, the SOC signal can be 
interpreted qualitatively as a BOC signal that is filtered to have only the first tone. 
 
To summarize, we can conclude that this idea can be understood as a particular case of 
Multilevel Coded Symbols (MCS) modulation with a pulse waveform of sinusoidal form. 
Next figure shows another example.  

 
Figure 4.20. Sinusoidal Multilevel Coded Symbol signal with generation vector [1,-2,2]. 

In this example the amplitude was not normalized to have 1 W of power 
 
Furthermore, it is important to note that unlike in the most straightforward definition of the 
SOC modulation, the factor accompanying the sine signal will not be in general 2  and will 
depend on the particular symbol sequence. In fact, the factor has the mission to normalize the 
power of the signal to unity. 
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4.4.1 Sinusoidal Binary Offset Carrier (SOC) Signals  
 
To derive the spectrum of the SOC signals, the most convenient is to use the convolution 
theorem. According to it, the Fourier transform of the chip waveform can be expressed in 
terms of a convolution between the modulating carrier and the code bit. The problem reduces 
then to calculating the Fourier transforms for each signal as shown in [J. Winkel, 2002]. In 
fact: 
 ( ) ( ){ } ( ){ } ( ){ }tcFTtfnFTtsFTfS kc ⊗== π2sin2SOCSOC  (4.72) 
 
which can be further simplified as follows, assuming that the code is ideal: 
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Therefore, the power spectral density adopts the following form: 
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It is interesting to note also that the same distinction between even and odd SOCs can also be 
made here as with the rectangular signals that we have already studied. Furthermore, the 
maximum of the spectrum is not located at cnff = as one might expect, but somewhere close 

to that point as shown in [J. Winkel, 2002]. Finally, the autocorrelation function of the SOC 
signal for the sine-phased case is shown to be [J. Winkel, 2002]: 
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  (4.75) 
 
where ( )τΛ  is the triangular function and ( )τθ  represents the Heaviside step function. As we 

know the triangular function is defined as follows: 
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and the Heaviside step function is equally shown to be defined as: 
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4.4.2 Minimum Shift Keying (MSK)  
 
The MSK modulation is a constant envelope signal with continuous phase that results from 
modulating the instantaneous frequency with rectangular pulses. MSK is considered to be a 
special case of Offset QPSK (OQPSK) with half sinusoidal pulse weighting rather than 
rectangular. Furthermore, MSK presents lower side lobes than QPSK and OQPSK as shown 
in [S. A. Gronemeyer and A. L. McBride, 1976] and [H. R. Mathwich et al., 1974]. As one 
can imagine, this could be of great interest for those navigation bands where the Out of Band 
emission constraints are stringent as in the case of the C-band between 5010 and 5030 MHz. 
 
Assuming that the PRN codes are ideal and making the same assumptions of previous 
chapters, the MSK modulation can be seen as a particular case of SMCS with sinusoidal pulse 
waveform. Moreover, since MSK is a particular case of MCS, all the expressions derived in 
previous chapters can also be used for this particular case. 
 
In the MSK modulation the evolution of the phase over the time is linear. Indeed, recalling the 
general expression of (4.2) and keeping in mind that MSK is a frequency modulation, it can 
be shown that the evolution of the frequency over time adopts the following expression: 
 
 ( )∑ −=

k
ck kTtptctf )()(  (4.78) 

where ( )tck  is the PRN code and )(tp is the frequency pulse, defined for period n as follows: 
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Accordingly, the variation of the phase over the time will adopt the following form: 
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with 21=h . Putting now (4.78) and (4.80) together, the evolution of the phase over one 
period n , that is ( )TntnTc 1+≤≤ , will be: 
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which can also be expressed as follows: 
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Accordingly, the expression of the MSK will be: 
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Taking now the real and imaginary part of (4.83), the sinusoidal shape of the chip waveform 
is then observed. Since we assume ideal codes, we only need to work with the chip waveform 
as described in (4.8). Next figure compares the typical binary pulse with that of MSK: 
 

 
Figure 4.21. Binary and MSK chip waveform 

 
In order the original power of MSK to remain equivalent to that of the ordinary binary 
signals, the factor 2=A  was used in the MSK expression as we can observe. To derive 
now the PSD according to (4.8), we calculate first the Fourier Transform of the MSK pulse 
waveform: 
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which simplifies to: 
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As we can recognize, we are defining the spreading waveform in a subchip of length scT  
where scc nTT = , being cT the duration of a chip and n the number of subchips in one chip. 
Accordingly, this is the Fourier transform of the subchip part and csc nff = . This expression 

can be further simplified yielding: 
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According to this, the normalized Power Spectral Density of the spreading MSK waveform 
adopts the following form: 
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which can also be expressed as follows: 
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As we can recognize, this expression perfectly coincides with that derived in                       
[S. Pasupathy, 1979]. 
 
Once we have derived the pulse waveform for a cosine shape, any SMCS can be obtained 
using the general formula obtained in (4.28). As an example, in the next lines we derive the 
expression for a sine-phased BOC(fs , fc) with MSK pulses and we will compare it with the 
original BPSK with MSK pulses. For simplicity in the notation we call MSK(fs , fc) to the first 
one and MSK(fc) to the second one. As one can imagine, this notation can be generalized to 
any BOC or arbitrary BCS signal. It is important to note that in this particular case scT  is 
equal to nTc  and csc nff =  consequently. In addition, it can be shown that sc fnf 2=  for the 

modulating term as it was also the case for the usual BOC modulation. In conclusion, the PSD 
of MSK-BOC(fs , fc) or MSK(fs , fc) for short, will adopt the following form: 
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where in this particular case: 
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since csc ff 2= for the sine-phased MSK-BOC case. On the other hand, for the even case, the 

modulation spectral term adopts the following form in general: 
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where n is again the number of subchips in one chip. Thus, multiplying now both terms and 
normalizing the power to integrate to 1 in an infinite bandwidth yields thus the PSD of the 
MSK(fs , fc): 
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  (4.92) 
For comparison the PSDs of MSK(1,1), MSK(1), BPSK(1) and BOC(1,1) are shown next: 
 

 
Figure 4.22. PSDs of MSK(1,1), MSK(1), BOC(1,1) and BPSK(1) 

 
As we can recognize from the previous figure, for the same chip rate of 1.023 Mcps, MSK(1) 
has a main lobe that is 1.5 times wider than that of BPSK(1). On the other hand, MSK(1,1) 
has a main lobe that is as broad as that of BOC(1,1) but with secondary lobes that are half the 
width. MSK has a very good spectral confinement and provides at the same time constant 
envelope. 

4.4.3 Gaussian Minimum Shift Keying (GMSK)  
 
In the previous chapter the analytical expression of the MSK modulation was shown to be a 
particular case of MCS with frequency modulation and sinusoidal pulse. We have also seen 
that MSK presents a very good spectral confinement in the band of interest but still an 
important amount of power is allocated on the side lobes of the signal. 
 
This chapter presents a modified version of the previous MSK where the phase is further 
filtered through a Gaussian filter to smooth the transitions from one point to the next in the 
constellation. Next figure presents the GMSK generation scheme: 
 

 
Figure 4.23. GMSK generation scheme 
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where the Gaussian filter ( )tg adopts the following form in the time domain: 
 

 ( ) 2ln
2 222

e
2ln

2 tB

Btg
ππλ

−
=  (4.93) 

 
where λ is a normalization constant to maintain the power and the product cBT  is the -3 dB 

bandwidth-symbol time product. The higher this value, the cleaner will be the eye diagram of 
the signal but more power will be transmitted on the side lobes of the spectrum. A typical 
value in communication applications is 3.0=cBT  which is a good compromise between 

spectral efficiency and Inter-Symbol interference. 
 

4.5 Generalized Multilevel Coded Symbols 
(GMCS) 

 
As we saw in the definition of chapter 4.2, Multilevel Coded Symbols consist of spreading 
waveforms that are divided into an integer number of equal-length segments, each of them 
with a deterministic value. According to this definition, any imaginable signal can in principle 
be described as an MCS signal as long as the length of the segments can be expressed as a 
rational number. In that case, we will always be able to find a finite length n to build the MCS 
vector and define each of the segments with the notation used above. As we saw in previous 
chapter, also non-rectangular forms are possible to modulate the subchips, as long as they are 
deterministic. In general, the basic pulse of each of the segments can adopt any arbitrary 
shape as equation (4.28) reflected.  
 
Let us now extend our definition of MCS to signal waveforms with divisions that are not 
necessarily rational and thus with non finite n. As we will see in the following chapters, this 
will open new possibilities and further simplify the notation. To do so, it is first necessary to 
define an intermediate function that we will call Tertiary Coded Symbols or TCS for short. 
The reason for that is that many of the Generalized MCS signals can be expressed as sum of 
different TCS. A modified version of the TCS waveform, namely the Unilateral TCS (UTCS), 
is analyzed in detail in Appendix E. 
 
We further define MCS in a general case as follows:  
 [ ]n

nsssss ρρρρ ...,, 321
321=

  (4.94) 

 
where ρi indicates the part of the chip that the symbol occupies such that  

 1
1

=∑
=

n

i
iρ   (4.95) 

This can also be seen in the following figure: 
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Figure 4.24. Generalized Multilevel Coded Symbols (GMCS) 

 
We can clearly see that in this new definition the duration of every subchip does not 
necessarily have to be expressed as Tc/n but can adopt any imaginable length. Moreover, the 
amplitude of that subchip can adopt any amplitude too. Finally, it is important to note that if 
the MCS generation vector [s] could have an infinite length, the SOC modulation that we saw 
in the previous chapter could also be considered as a particular case of the generalized MCS 
(GMCS) signal. In general we can also say that MCS is a particular case of GMCS with 
segments of equal length.  

4.5.1 Tertiary Coded Symbols (TCS) 
 
Tertiary Coded Symbols are a particular case of GMCS with three-state amplitude adopting 
the values {-1,0,1}. As shown in Appendix D, the power spectral density of a generic TCS 
signal is shown to be: 
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  (4.96) 
where ρ indicates the dwell time where the function adopts a value 0. As we can see, the 
expression above is practically identical to (4.23) as derived in chapter 4.2.1 except for the 
factor (1-ρ). This will help us in finding explicit expressions for particular TCS modulations 
in the next chapters. Moreover, it must be noted that the definition above is not only valid for 
binary signals but could be extended to any amplitude in general 

4.5.2 Tertiary Offset Carrier (TOC) 
 
A particular case of the TCS signal is the Tertiary Offset Carrier modulation, or TOC for 
short. As shown in [A.R. Pratt and J.I.R. Owen, 2003b], Tertiary Offset Carrier Signals are   
3-level signals, similar in the form to the BOC signals, but with a dwell time ρ of value 0 in 
each sub-carrier half cycle. As shown by [A.R. Pratt and J.I.R. Owen, 2003b], these signals 
have appeared in response to the ever demanding needs of compatibility and interoperability 
of satellite navigation, in particular in the E1/L1 band. 
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According to this definition, if 2ρ  is a rational number it will be possible to express it by 

means of a fraction and the denominator of the reduced form of this fraction will be half of 
the minimum required length n of the MCS vector that would define the modulation using the 
MCS notation of chapter 4.2. As we can observe from our assumption that 2ρ  is a rational 

number, the length n would be finite too. Indeed, if ρ were irrational, n would have to be 
infinite to represent the signal using the MCS definition. However, the Generalized MCS 
definition would be in this case more appropriate and the TOC modulation could be seen as a 
particular case of GMCS. In this chapter we concentrate on the case when 2ρ  is rational. 
 
A straightforward approach to derive the general power density of the TOC signals is based 
on (4.96). Indeed, Tertiary Offset Carrier signals are a particular case of TCS with the same 
definition vector as that of the BOC signals. Thus, we can use the derived expressions for the 
modulating factor obtained in chapter 4.3.2 to give the general expression of a generic 
TOC(fs, fc, ρ). Again, we will distinguish between TOC signals in sine phasing, namely 
TOCsin(fs, fc, ρ), and TOC signals in cosine phasing or TOCcos(fs, fc, ρ). We analyze both next. 

4.5.2.1 Tertiary Offset Carrier in sine phasing  : TOCsin(fs, fc, ρ) 
 
Assuming that ρ is a rational number, the sine-phased TOC signal fulfils the condition that 

nm/2=/2ρ and is shown to follow the pattern below. Indeed, for the particular case of the 

sine-phased TOC(fs, fc, ρ), the TCS vector would adopt the following form: 
 
0,0,0,0,0,0,0,…,1,1,1,1,1,1,1,1…,0,0,0,0,0,0,0…,-1,-1,-1,-1,-1,-1,-1…,0,0,0,0,0,0,0,… 
 
          m                    n/2-2m                 2m                       n/2-2m                       m          
 (4.97) 
It is clear to see that the concept can be easily generalized to any sine-phased TOC(fs, fc, ρ) 
without great difficulties as far as cs ff delivers an integer number. We would simply have to 
extend the figure above by the factor cs ff . 
 
Recalling (4.96) and simplifying the terms in the GMod brackets for the case of a binary code, 
it can be shown that the PSD of a generic TOCsin(fs, fc, ρ) signal adopts the following form: 
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If we go now one step further using the results obtained in (B.11) for the sine-phased BOC 
modulation, the power spectral density is shown to simplify to the following expression: 
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We can also write it in a more compact way as follows, 
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since cs ffn 2= , what coincides perfectly with the formulas derived in                       

[A.R. Pratt and J.I.R. Owen, 2005] for the even case.  
 
In the same manner, we can also obtain the expression for the power spectral density of the 
odd sine-phased TOC modulation as follows: 
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Next figure shows the evolution of the signal in the time domain: 
 

 
Figure 4.25. Chip waveform of TOCsin(1,1) for a dwell time ρ 

 

4.5.2.2 Tertiary Offset Carrier in cosine phasing : TOCcos(fs, fc, ρ) 
 
In a similar way, the PSD of any TOCcos(fs, fc, ρ) can be expressed as follows,  
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where, 
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As shown in (C.26), this modulating term can be simplified for any n, yielding the following 
expression for the even cosine-phased TOC modulation: 
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what can also be written in a more compact way as follows, 
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where we have made the change cs ffn 4= as already seen in chapter 4.3.2.2. 
 
In the same manner, the expression for the power spectral density of the odd cosine-phased 
TOC modulation is shown to present the following form: 
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Finally, it is important to comment regarding the time representation of the cosine-phased 
TOC modulation, that this is similar to the sine-phased version that we studied in the previous 
chapter, but shifted by a quarter of the phase. 

4.5.3 Tertiary Phase Shift Keying TPSK  
 
Tertiary Phase Shift Keying signals or TPSK for short are also a particular case of Tertiary 
Coded Symbols with a modulation vector that consists of only ones. Next figure shows the 
chip form of such a signal: 

 
Figure 4.26. Chip waveform of TPSK (1) for a dwell time ρ 
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According to the definition of previous chapters, it can be shown that the power spectral 
density adopts the following form in this case: 
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As we already saw in chapter 4.3.1, the term in the brackets can be simplified after some 
math, and thus the expression for the power spectral density is shown to simplify to: 
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Or more explicitly: 
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4.5.4 Generic m-PSK Coded Symbols  
 
All the modulations that we have analyzed so far in chapter 4.5 are tertiary. However, TCS 
signals are a particular case of a greater family of signals known as m-PSK Coded Symbols. 
In addition, m-PSK Coded Symbols are a particular case of MCS.  
 
m-PSK Coded Symbols have as spreading symbol an integer number m of equal-length 
segments with a castle-like shape of ( ) 1log2 2 −m amplitude levels. Moreover, it can easily be 

shown that m-PSK Coded Symbols can be expressed as a linear combination of TCS or 
UTCS signals, where the UTCS signals are Unilateral TCS waveforms, analyzed in   
Appendix E. A particular case of m-PSK signal that is especially interesting in navigation is 
the m-PSK Offset Carrier Modulation. We describe this signal waveform in detail in the 
following chapters. 

4.5.5 m-PSK Offset Carrier or m-PSK BOC 
 

The m-PSK Offset Carrier modulation was discussed in [A.R. Pratt and J.I.R. Owen, 2003b] 
where it was defined as m-PSK BOC modulation. In this thesis we will use the generalized 
notation to define such a signal. Additionally, we will distinguish between sine-phasing and 
cosine-phasing. According to this, a sine-phased Offset Carrier with sub-carrier frequency fs 

and code frequency fc corresponds to an m-PSK BOCsin(fs, fc) in our notation. It is important 
to recall that whenever we refer to a BOC, we mean the sine-phased version by default. 
Otherwise we will indicate it. 
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The interest of this modulation lies in the fact that it allows for a very accurate spectrum 
control. Given the importance that this topic has had during the design of the Galileo E1 OS 
signals, specific configurations like 8-PSK BOC(2,2), were seriously considered in the past. 
 
In next chapter, general expressions for the power spectral densities will be derived for this 
case. As we will see, since the m-PSK Offset Carrier signals can be expressed as a linear 
combination of TCS and UTCS, we can  use the expressions derived above in our derivations. 
 

4.5.5.1 8-PSK Offset Carrier in sine phasing or 8-PSK BOCsin(fs, fc) 
 

The m-PSK BOC modulation can be expressed as a linear combination of TOCs with their 
corresponding amplitudes. For the case of the BOC8(fs , fc), Figure 4.27 shows in detail how 
the castle chip construction of the chip waveform would look like. 

 
Figure 4.27. Time domain representation of a sine-phased BOC8(fs , fc) 

 
It must be noted that m refers here to the ratio between the sub-carrier frequency and the code 
rate according to the figure above. The amplitudes of the different parts of the chip result from 
projecting the phase points of an 8-PSK modulation as graphically explained in Figure F.2 of 
the Appendix. Moreover, as we derive in Appendix F, all the points of the constellation 
present the same probability of occurrence. 
 
Following thus the time definition of Appendix F, the Fourier transform of any                      
8-PSK sine-phased BOC signal can be expressed as follows, 
 
 ( )( ) ( ) ( )scslcscs

ffsfflff
SSfS ρρ λλ ,,TOC,,TOC,BOC sinsin8

sin
+=  (4.110) 

 
where lρ  and sρ represent the length of the zero support of the long and short sine-phased 
TOC modulations as defined in chapter 4.5.2.1. Moreover, lλ and sλ  are the weighting factors 
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required to shape the chip waveform as shown in Figure 4.27. Appendix F proves that its 
power spectral density can be expressed as: 
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which is graphically shown in the next figure for the particular case of BOC8(2,2). As we 
have already commented in other parts of this thesis, this signal was considered for some time 
as a potential alternative for the Galileo E1 OS service given its high level of interoperability 
with GPS. For comparison also the original BOC(2,2) is depicted in the next figure. 

 
Figure 4.28. Power Spectral Density of BOC(2,2) versus BOC8(2,2) 

 
As we can recognize, the 8-PSK BOC(2,2) presents a very similar spectrum to that of the 
original BOC(2,2), especially at low frequencies, with the interesting advantage that it 
introduces additional zeros at 6 and 10 MHz. Moreover, reducing the power spectrum around 
the M-Code helps in ensuring higher compatibility with the rest of GPS signals around as 
identified in [A.R. Pratt and J.I.R. Owen, 2003b]. 

4.5.5.1.1 ACF of 8-PSK Offset Carrier in sine phasing 
 
Once we have derived the spectral properties of the 8-PSK BOC(2,2) modulation, we spend 
some time in the next lines deriving the analytical expression of its ideal autocorrelation 
function for the case of infinite bandwidth. 
 
To derive the general form of the ACF of any 8-PSK Offset Carrier in sine phasing we will 
make use of the functions derived in chapter 4.3.2.3. To do so, we have to express first the 
PSD in the oscillation domain of ω in the appropriate form that we saw in previous chapters. 
According to this, using the spectrum derived in the previous pages, it can be shown that: 
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which can be further developed and expressed as follows for the particular case of the 8-PSK 
BOC(2,2): 
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where 
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From (4.113), we can now obtain an expression for the autocorrelation function in the time 
domain in a similar form as we did for the BOC signals of previous chapter: ´ 
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  (4.115) 
where ( )τkT  and ( )τkS  were defined in (4.58) and (4.59) respectively. It is important to note 

that the time unit is the chip. 
 
Figure 4.29 shows graphically the shape of the autocorrelation function for the particular case 
of the BOC(2,2) modulation. 

 
Figure 4.29. Autocorrelation Function of BOC8(2,2) 
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We analyze in the next chapter the ACF of the cosine-phased version of the 8-PSK BOC(fs, fc) 
modulation. Later we will compare it with its sine-phased counterpart that we have just 
studied. As an example, we will take the Galileo PRS since this service will make use of the 
cosine phased BOCcos(15,2.5). 

4.5.5.2 8-PSK Offset Carrier in cosine phasing or 8-PSK BOCcos(fs, fc) 
 
If we express the cosine-phased 8-PSK modulation as a linear combination of TOC signals as 
we did with its sine-phased counterpart in (4.110), the representation in the time domain is not 
so easy to accomplish. Therefore, as shown in Appendix E, an alternative expression is 
employed that is based on a linear combination of unilateral TCS symbols (UTCS).  
 
According to this, the power spectral density of a generic even cosine-phased 8-PSK BOC 
modulation is shown to adopt the following form: 
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 (4.116) 
If we particularize now the expression above for the case of the cosine 8-PSK BOC(15,2.5) 
modulation, we can recognize interesting spectral properties compared with those of the 
typical BOCsin(15,2.5) case. We show the resulting spectrum in the next figure and compare it 
with other similar alternatives that were object of study during the design of the Galileo 
Signal Plan. 
 

 
Figure 4.30. Power Spectral Density of some studied PRS alternatives 
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As we can recognize in the figure above, the cosine-phased 8-PSK BOC(15,2.5) modulation 
behaves similar to the cosine-phased BOC(15,2.5) in the inner part of the spectrum, while on 
the outer part it is slightly better regarding the spectral isolation, what would be interesting if 
we consider the effect on the GLONASS signals. In addition, BOCsin(15,2.5) and                  
8-PSK BOCsin(15,2.5) are also shown for comparison.  
 
A figure of great interest in analyzing the spectral compatibility between signals in a shared 
band is the Cross Power Spectral Density (CPSD). The Cross Power Spectral Density is 
basically the product of the power spectral densities of two signals and gives an idea of how 
much they overlap with each other. Indeed, the Cross Power Spectral Density between the 
studied signal and the M-Code is shown in the next figure. We will talk about this figure more 
in detail in the chapter 5. 
 

 
Figure 4.31. Cross Power Spectral Density of PRS alternatives with GPS M-Code 

 
As we can clearly see, while for an offset of less than 20 MHz both analyzed solutions show 
more or less the same values, ( )5.2,15BOC8

cos  seems to be slightly better above 20 MHz. To 

conclude our analysis on the cosine-phased 8-PSK modulation, we derive in the next lines 
some expressions of interest for the autocorrelation function. 

4.5.5.2.1 ACF of 8-PSK Offset Carrier in cosine phasing 
 
For the particular case of ( )5.2,15BOC8

cos , the power spectral density is shown to be expressed 

as follows in the ω domain. 
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with 
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From (4.117), we can derive an expression for the autocorrelation function in the time 
domain. It is important to note that the time variable is expressed in chips. 
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The autocorrelation is shown graphically in the next figure.  
 

 
Figure 4.32. Autocorrelation Function of BOC8(15,2.5) 

 

4.5.6 m-PSK Coded Symbols (m-PSK CS) 
 
So far, we have analyzed the case of 8-PSK sine-phased and cosine-phased BOC modulations 
but as one can imagine, we can extend the idea to any BCS using more levels. Next figure 
shows some examples: 

 
Figure 4.33. Example of waveform for a general 8-PSK BCS signal 

 
In addition, we can recognize again here that the BOC case that we studied above is nothing 
else than a particular BCS case, as shown next: 
 

 
Figure 4.34. Equivalence between 8-PSK BCS(1,-1) and 8-PSK BOC 

 
This rule applies also for the case of other well-known BCS signals as BPSK. Finally, it is 
important to underline that all the signals we have studied in the preceding chapters are 
indeed particular cases of the most general MCS definition that we gave at the very 
beginning. The only distinction to make is whether the MCS segments are of equal length or 
not. 
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4.6 CBCS Modulation definition and analysis of 
performance 

 
On June 26th, 2004, the United States of America and the European Union signed the 
Agreement on the promotion, provision and use of Galileo and GPS satellite-based 
navigation systems and related applications [G.W. Hein et al., 2005]. Among other topics it 
was decided to adopt a common baseline signal to be transmitted by both the Galileo E1 Open 
Service (OS) and the future GPS L1 Civil signal (L1C) on E1/L1. Although the agreement 
fixed BOC(1,1) as the baseline for both Galileo E1 OS and the GPS future L1C signals, it left 
the door open for a possible optimization of that signal considering the overall framework 
conditions of the agreement.  
 
Right after the Agreement was signed, experts on both sides of the Atlantic started to work on 
possible solutions that would fulfil the criteria set up in the Agreement. The solution would 
have to clearly outperform the agreed BOC(1,1). Finally, in September 2005 a first temptative 
solution, known as CBCS(20) was presented by members of the Signal Task Force (STF) of 
the European Commission (EC) [G.W. Hein et al., 2005]. The proposed solution was highly 
interoperable with the baseline BOC(1,1) and offered at the same time the possibility to have 
superior performance to high precision receivers with wider bandwidths. 
 
The CBCS modulation (Composite Binary Coded Symbols) is the result of superposing 
BOC(1,1) and a BCS (Binary Coded Symbol) waveform with the same chip rate, according to 
the following expression: 
 
 ( ) ( )( ) [ ]( )( )fGfGfG s 1,BCS1,1BOCCBCS βα +=  (4.120) 
 
where α and β indicate the amount of power that is put on BOC(1,1) and on the BCS signal 
with respect to the total OS power of the signal. Thus, α and β fulfil the condition 1=+ βα . 
For this same reason, we will use in other parts of the thesis ρβ =  and ρα −= 1  instead. 

Moreover, [s] represents the BCS vector as defined in chapter 4.2.  As we saw there, BCS is a 
generalization of the BPSK and BOC modulations. In addition, it is important to realize that 
the CBCS definition intrinsically assumes the use of Interplex to multiplex the signals. 
 
The flexibility of the CBCS approach lies in the fact that it could be easily converted into 
another CBCS by changing the contribution of the BCS part or even choosing different chip 
rates. In fact, a particular case of the CBCS solution is the pure BCS signal which seems to 
present the best performance in terms of multipath for selected sequences. Nonetheless, for 
the EU developers keeping high interoperability with BOC(1,1) receivers was a mandatory 
from the very beginning and this forced the design to have an important amount of BOC(1,1) 
in the definition.  
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We show next graphically the signal generation of CBCS in the time domain. It is important 
to note that CBCS is not a binary signal but two binary signals in anti-phase in data and pilot. 
 

 
Figure 4.35. CBCS representation in the time domain 

 
As we saw in previous chapters, signal waveforms with a very sharp peak were the goal of the 
optimization carried out in the past years for both GPS and Galileo. Indeed, as we have shown 
in chapter 4.1.1, by selecting ( )tp

cT  with good aperiodic correlation, important improvements 

in terms of performance can be obtained, especially regarding multipath. In the course of the 
optimization other interesting solutions were found with even different chip rates than those 
of the Agreement. Nevertheless, the important constraint to be compliant with BOC(1,1) 
limited the candidates to have a chip rate of 1 MHz, as we have already underlined. 
 
Unlike the MBOC signal that we will present in the next chapter, the CBCS modulation was 
proposed alone from the European side. Thus, to the signal definition of the equation (4.120) 
above the extra constraint to use the Interplex modulation scheme was added in the definition 
in light with the development of other signals in the Galileo satellites. Indeed, the CBCS 
modulation is defined as the superposition of a BOC signal with a BCS using a modified and 
optimized Interplex scheme in the navigation payload of the satellite.   

4.6.1 CBCS Time Domain Representation and Spectrum 
 
The CBCS signal features a spread-spectrum signal with 4-level sub-carriers, whereas the 
BOC or BCS signals feature only binary sub-carriers. As we will show in detail in chapter 7, 
an implementation of the CBCS signals on the Galileo E1 modulation could have been 
performed using other multiplexing schemes such as the FH-Interplex (Faded-Harmonics) 
[CNES, 2005], as this also relies on the sum of two 4-level spread-spectrum signals. 
 
Yet, the analysis of the FH-Interplex scheme for the CBCS put in evidence two important 
drawbacks [G.W. Hein et al., 2005]:  
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• The inter-modulation product relative power of the FH-Interplex that results from 
applying CBCS is increased resulting thus in an important loss of efficiency 

• The quadrature component suffers from important distortions which may induce 
unacceptable losses on the receiver, as well as an increased spreading of the 
quadrature signal in adjacent frequency bands. In the case of Galileo, the degraded 
signal would be the PRS what supposed an important drawback. 

As a solution, a new modulation scheme was developed in [L. Ries et al., 2006] to provide an 
optimized implementation of the CBCS signals, without the drawbacks described in the 
preceding lines. The resulting modulation is more efficient than the Modified Hexaphase as it 
reduces significantly the effect and power of the inter-modulation product. 
 
As shown in Appendix J, the generic CBCS baseband modulation can be expressed 
mathematically as follows: 
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where: 
 

• A1 is the amplitude of the modulation envelope, sum of the OS data (D) and pilot (P), 
PRS and Inter-Modulation product IM. The maximum possible value of A1 that 
respects the Agreement of 2004 is a function of the percentage of power put on the 
BCS component of the signal and the spectral relationship between BOC(1,1) and 
BCS. Moreover, TPA 21 = where TP  is the total power of the multiplexed signal. 

• θ1 and θ2 describe the angular distance of points of the 8-PSK modulation as described 
in Figure 4.36. This depends on the percentage of power that is placed on BCS. 

• ( ) )(1,1BOC ts represents the BOC(1,1) modulation with chip rate of 1.023 MHz 
• ( ) )(1],[BCS ts s represents the BCS([s],1) modulation with a chip rate of 1.023 MHz and a 

BCS vector given by [s]. 
• )(PRS ts is the PRS modulation BOCcos(15,2.5) 

• sIM (t) is the Inter-Modulation product signal 
• cD (t) and cP (t) are the data and pilot codes respectively. It is important to note that    

cD (t) also includes the data bits. 
 
The phase points of the resulting constellation are shown in the following figure: 



GNSS Signal Structure 

 

126 

 
Figure 4.36. Modified 8-PSK modulation with constant envelope for the optimized signal 
 
The modulation can be optimized so as to pseudo-randomly time-multiplex the BOC and BCS 
sub-carriers on the in-phase component. Rearranging the terms of (4.121) to make this 
pseudo-random time-multiplexing appear yields to the following expression: 
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 (4.123) 

If we look at the previous equation in detail, we can observe that the BOC(1,1) sub-carrier of 
the OSD (Data) and OSP (Pilot) components is transmitted during the same time-slots as it was 
on the original Hexaphase modulation with only BOC(1,1). This will be further analyzed in 
chapter 7.7. In addition, the BCS sub-carrier of the OSD and OSP components is transmitted in 
time-slots complementary to those of the BOC sub-carrier (i.e in the time slot when the 
Modified Hexaphase in-phase component was equal to zero and therefore nothing was 
transmitted). As a result, the IM product is considerably reduced and 8 phase points appear 
instead of only 6. Also important to note is that the quadrature component (the PRS signal) is 
left unaffected by this new scheme, except for its relative amplitude.  
 

 
Figure 4.37. Pseudo-random time multiplexing of BCS and BOC(1,1) in CBCS solution 
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Another important conclusion that we can draw from observing the equation above is that if 
one optimizes the data and pilot channel codes with each other, the code structure that results 
from applying the multiplexing scheme of (4.123) does not necessarily have to be also 
optimized in the general case.  
 
Indeed, we can clearly recognize that the code that actually modulates the BOC(1,1) signal 
waveform is the semi-sum of the data and pilot codes. Equally, the semi-difference of the data 
and pilot codes modulates the BCS sequence. Moreover, these codes are not binary since they 
can take the values +2, 0 and -2 [P.G. Mattos, 2005]. As shown in [F. Soualle et al., 2005] the 
data and pilot codes were optimized without accounting for the modulation scheme. The 
consequence of this is that unless the receiver applies a coherent processing of the incoming 
signal, the codes will show a slight degradation.  
 
Another very important aspect from the CBCS modulation is the power distribution, since this 
determines in the end the multipath rejection potential of the solutions. As shown in     
Appendix J, the following expressions for the data and pilot channels can be derived: 
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where the parameter r represents the correlation between BOC(1,1) and the BCS signal: 

 ( )( ) [ ]( )( )∫=
cT s

c

ttsts
T

r d1
1,BCS1,1BOC  (4.126) 

This parameter is of great importance as we will see when we describe the MBOC modulation 
in the next chapter. In fact, the BCS sequence of the CBCS was selected among other reasons 
because its value of r is zero. However, the cross-correlation of the CBCS signal with a 
BOC(1,1) alone receiver is not zero any more and presents a so-called tracking bias. Indeed, 
this was the main drawback of the CBCS solution with respect to the finally selected MBOC. 
We show in the next figure the cross-correlation of the CBCS signal with BOC(1,1): 

 
Figure 4.38. Cross-correlation between CBCS and a BOC(1,1) receiver 
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Indeed, this asymmetry leads to the mentioned tracking bias, as can be seen in the next figure: 
 

 
Figure 4.39. CBCS and local BOC(1,1) discriminator function 

 
We will talk a little bit more on this bias at the end of this chapter. Nevertheless, it is 
important to mention here that although there are solutions to eliminate the tracking bias that 
results from the non-zero correlation between CBCS and BOC(1,1), the need to have a signal 
that would not present such a disadvantage was the main reason that lead to moving to the 
finally selected CBOC solution. CBOC is a particular implementation of MBOC where the 
Interplex multiplex is part of the definition as shown in chapter 4.6. Furthermore, CBOC can 
also be seen as a particular case of CBCS where the selected BCS is BOC(6,1). For more 
details on MBOC and its implementations, refer to chapter 4.7 
 
A figure of great interest to analyze the impact of the CBCS modulation on a BOC(1,1) 
receiver is given by the cross-correlation that a receiver would suffer if it would only track the 
BOC(1,1) component of the CBCS signal. 
 
As shown in [G.W. Hein et al., 2005], the delta correlation losses with respect to the baseline 
BOC(1,1) are the difference between the cross-correlation measured when the input is CBCS 
and the result of the auto-correlation when the input is a BOC(1,1) signal. Figure 4.40 below 
shows in detail the scheme assumed to measure the correlation losses.  
 

 
Figure 4.40. Model to measure the delta correlations between CBCS and BOC(1,1) 
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The driving idea behind this model is to measure the real delta correlation losses that a 
receiver would experience if instead of the baseline BOC(1,1), the CBCS were emitted. It 
must be noted that while CBCS will of course not correlate 100 % with a BOC(1,1) replica as 
BOC(1,1) would do, resulting thus in losses, the more efficient CBCS modulation that results 
from reducing the IM product allows for higher receiver powers at user level for the same 
transmitted power from the satellite. Both figures go in opposite directions and must be 
considered together. Indeed, as shown in [G.W. Hein et al., 2005], the delta correlation losses 
are shown to be:  
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When we express it in dB, the three contributions to the delta correlation losses can be clearly 
separated as follows:   
 
 LossMismatch SharePower BOC(1,1)PowerEnvelopeTotal LLLL Δ+Δ+Δ=Δ  (4.128) 
where 
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ΔLEnvelope Power  accounts for the fact that the amplitude of the baseline interplex modulation 
and that of the optimized signal differ slightly. Additionally, the term ΔLBOC(1,1) Power Share 
represents the losses of power of the BOC(1,1) signal since part of it goes now to the BCS 
component and finally the third term ΔLMismatch Loss of the correlation losses is a function of the 
correlation between the chosen BCS([s],1) and BOC(1,1) and gives an idea of how similar to 
BOC(1,1) the CBCS signal is. If we look at the correlation term more in detail,  
 

 
1

2
LossMismatch cos

cos1
θ
θrL +=Δ  (4.132) 

we can see that this contribution to the correlation losses can be eliminated by two means. 
The first one is doing 22

πθ = what corresponds to the case of pure BOC(1,1). The other 

possibility and of much more interest is to have 0=r  what leads to a CBCS solution with 
zero mismatch correlation losses. For reasons of implementation due to symmetry, special 
attention was paid to the solutions with 0=r . 
 
Now that we have shown the mathematical background behind the CBCS modulation, we are 
ready to introduce the signal that for some time was the most interesting candidate of Galileo 
to substitute BOC(1,1) until CBOC came: namely CBCS. CBOC is the European 
implementation of MBOC as will be shown in chapter 4.7.3. 
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4.6.2 CBCS([1,-1,1,-1,1,-1,1,-1,1,1], 1, 20 %) 
 
After signing the Agreement of 2004 and as a result of long months of hard work, a BCS 
sequence was found to be an interesting candidate for the Galileo E1 OS signal. The selected 
BCS sequence was compatible to a very high degree with pure BOC(1,1) receivers         
[G.W. Hein et al., 2005] while it offered at the same time an important potential to improve 
the positioning performance and to mitigate multipath. Moreover, the selected signal was 
compliant with the Agreement of 2004 and did not require important changes in the satellite 
payload. The BCS sequence was [s] = [1, -1, 1, -1, 1, -1, 1, -1, 1, 1] and the amount of power 
on the BCS sequence with respect to the total OS power was selected to be 20 % at user level 
what would corresponds to approximately 26 % at generation in the satellite. For simplicity, 
the signal was thus baptized with the name CBCS([1, -1, 1, -1, 1, -1, 1, -1, 1, 1], 1, 20 %) or 
CBCS(20) for short. The selected BCS sequence can be seen as a quasi BOC(5,1). Indeed, in 
terms of performance it was very similar to a BOC(5,1) but had a more favourable spectral 
distribution since it did not overlap the M-Code as much as the last one.  
 
As we have said above, the CBCS modulation had a minimum impact on the payload, what 
made the solution a serious alternative. In addition a number of advantages can be identified: 
 

• Compared with the original Interplex using only BOC(1,1), the CBCS modulation is 
more efficient, reducing the IM product power by more than 3 dB. 

• As a result, the optimized modulation offered an additional margin of 0.26 dB on the 
link budget, for the same transmitted power at satellite level. 

• The modulation is fully compatible with a flexible signal generator implementation 
based on modulation tables with a high number of bits of quantization.  

• Finally, in spite of having two additional phase points closer to each other, the CBCS 
modulation is less sensitive to payload phase noise than the original modulation.  

 
The following figure shows in detail how the Galileo and GPS Signal Plan would have looked 
like if the CBCS signal had been selected instead of MBOC. 
 

 
Figure 4.41. Power Spectral Density of Galileo and GPS signals in E1/L1 
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In the next figure we show in detail the power distribution of the spectra of the different 
components of the CBCS modulation: 
 

 
Figure 4.42. Power Spectral Distribution of BOC(1,1) and BCS within CBCS 

 
An important number of constraints were introduced during the search of the best potential 
signal candidate for the Galileo E1 OS to substitute BOC(1,1). Finally among all the solutions 
that passed the selected criteria, the best candidate was chosen. One of the most important 
performance merit figures for the final selection was the multipath performance for a given 
bandwidth (12 MHz) since this was considered to be the most important source of error due to 
its unpredictable properties. Furthermore 12 MHz was thought to be a reasonable bandwidth 
for future receivers even in the field of mass market. 
 

 
Figure 4.43. Ranking of CBCS solutions in terms of multipath mitigation potential  
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As we can recognize in the previous figure, CBCS(20) occupies the first place in the ranking, 
followed by CBOC(6) and CBOC(5). It is interesting to note that other solutions were also 
found at that time, with performance figures close to those of the CBCS signal. The figure 
above shows the ranking of the different solutions and the multipath performance of each of 
them. We can clearly recognize that CBOC(6) performed in second place for 12 MHz. This is 
indeed the signal finally selected as baseline for Galileo E1 OS and GPS L1C since it presents 
a better performance over a wider range of receiver bandwidths. We will come back on this 
point in the next chapter. We can also read from the previous figure that CBOC(5) was an 
interesting option, but its major drawback was that the coefficient r, as defined in (4.126), is 
not zero and thus the delta correlation losses of this solution would increase very rapidly as 
we would increase the power on the BOC(5,1) component. As a result, the percentage of the 
non-BOC(1,1) component was very limited, and consequently the growth potential in terms of 
multipath mitigation. 
 

4.6.3 CBCS Power Spectral Density 
 

Using the theory developed above for BCS signals and thoroughly explained in chapter 4.3 
we will derive here a compact simplified expression for the CBCS signal. As we have seen, 
the selected BCS sequence was [ ]1,1,1,1,1,1,1,1,1,1 ++−+−+−+−+=s . Summing now in 

parallel the terms of the 10 diagonals of the matrix definition of BCS, we have: 
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For our particular CBCS case, we have thus: 
 
 ( ) ( ) ( )fGGfG BCS)1,1(BOCCBCS 1 ρρ +−=  (4.134) 
 
being ρ the percentage of power on the BCS component, as we saw above. According to this, 
we can express the power spectral density of the CBCS([s],1,%) modulation as follows: 
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 (4.135) 

 
As derived in Appendix B the power spectral density of BOC(1,1) is shown to be: 
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Nevertheless, since we are interested in finding a simplified expression for the CBCS Power 
Spectral Density, it is convenient to express BOC(1,1) as a BCS sequence with a vector of 
length 10. Indeed, BOC(1,1) can also be expressed as BCS([+1,+1,+1,+1,+1,-1,-1,-1,-1,-1],1). 
 
Another way of describing CBCS in the frequency domain is to realize that the BCS signal 
can be expressed as the sum of a BOC(5,1) signal and an MCS(0,0,0,0,0,0,0,0,0,2) signal in 
the time domain. Thus, we have to calculate first the Fourier Transform of both, sum them up 
and calculate the modulus according to equation (4.8): 
 
As we know, the spectrum of BOC(5,1) is shown to be: 
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Equally, the spectrum of a pulse signal of duration (Tc/10) with the pulse centred on the last 
subchip can be expressed as follows: 
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Hence the PSDs for the data and pilot signals yields: 
 
 ( ) ( )( ) ( )( ) ( ){ }[ ]2

1,5BOC1,1BOC1 fSfSfSffG pulsecD ++−= ρρ  (4.139) 

 ( ) ( )( ) ( )( ) ( ){ }[ ]2

1,5BOC1,1BOC1 fSfSfSffG pulsecP +−−= ρρ  (4.140) 

4.6.4 CBCS Positioning Performance 
 
One of the performance figures used to select the CBCS signal was the multipath error. In 
order to realistically estimate the multipath that the candidate signals could present in real 
environments, the methodology presented in [G.W. Hein and J.-A. Avila-Rodriguez, 2005] 
and [M. Irsigler et al., 2005] was followed. Furthermore, in order to reduce the computations 
and given the enormous number of potential signals to assess, a simplified model was 
employed. Nevertheless, [M. Irsigler et al., 2005] and [M. Irsigler, 2008] have shown that 
more simplified models also give satisfactory results in the same direction at the expense of 
generalizing the assumptions and simplifying scenarios.  
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Another important aspect to note with regards to the CBCS modulation is that the data and 
pilot channels are in anti-phase and present thus different correlation functions as shown in 
Appendix J. The direct consequence of that is that the data and pilot channels present different 
performance depending on whether the signal has the BOC(1,1) and BCS in phase or in anti-
phase. As we will show in the next pages, the anti-phase signal has got the sharpest ACF and 
thus better performance. For this reason, this was assigned to the pilot channel. 
 
In the following lines we show the performance of CBCS in terms of multipath using the 
multipath error envelopes. As we know, its computation relies on the assumptions that the line 
of sight is always visible, that only one multipath signal is present and that the multipath 
signal experiences a fixed amplitude attenuation (e.g. coefficient of reflection 5.0=α in our 
simulations) with respect to the direct signal. In addition, a static environment is commonly 
assumed. 
 
More sophisticate models to quantify the differences between the multipath performance of 
different signals for a given receiver architecture or different receiver implementations have 
been analyzed in [M. Irsigler, 2008].  
 
In the next figures we compare the performance of the CBCS(20) signal with that of other 
solutions that were also considered in the past. As we can see, the same CBCS with a slight 
lower power was also object of the analysis. The reason to reduce the power on the BCS 
component to 15.6 % was to improve the coexistence of the signal with the rest of signals in 
the E1/L1 band. Of course, this reduction of power on the BCS part implied a slight 
deterioration of the performance. Note also that the A and B channels perform the same and 
thus the dotted and continues curves overlap each other.  
 

 
Figure 4.44. Multipath error envelopes for different Galileo signal candidates. A pre-

correlation bandwidth of 12 MHz and a chip spacing of δ = 0.1 chips have been assumed 
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Figure 4.45. Running average multipath errors for different Galileo signal candidates. A 
pre-correlation bandwidth of 12 MHz and a chip spacing of δ = 0.1 chips were assumed 

 
As analyses have shown, CBCS presented a considerable improvement of more than 25 % 
with respect to the baseline for a bandwidth of 24 MHz. Furthermore, the improvement was 
of even 40 % in terms of multipath with 12 MHz as previous figure shows. This was 
especially relevant in urban and suburban environments. Moreover, for 12 MHz CBCS 
performed even better than BOC(2,2). This is a direct consequence of the fact that while 
BOC(1,1) needs a larger bandwidth of 24 MHz to exploit to the limit the possibilities of the 
modulation, the CBCS modulation needs a lower bandwidth to make an optimum use of the 
signal in the sense that its Gabor bandwidth for the same receiver bandwidth is higher. A 
complete analysis of positioning accuracy using the concept of the User Equivalent Range 
Error (UERE) was presented by [J.-A. Avila-Rodriguez et al., 2005b] where the superiority of 
CBCS in different baseline scenarios was demonstrated. 
 
Finally, to have a complete insight into the performance of CBCS, the Cramér Rao Lower 
Bound (CRLB) is shown in the following figure.  
 

 
Figure 4.46. Cramér Rao Lower Bound of E1 OS signals. It must be noted that OSA 

refers to the data channel while OSB refers to the pilot channel 



GNSS Signal Structure 

 

136 

The Cramér Rao Lower Bound is defined in (4.141) and is the lower bound of the           
mean-squared error for any estimate of a non-random parameter as shown by                        
[H. Cramér, 1946] and [J.-A. Avila-Rodriguez et al., 2006b].  The Cramér-Rao lower bound 
defines the ultimate accuracy of any estimation and shows the minimum code pseudorange 
variance we would have with the best possible receiver implementation. Indeed, this bound is 
a different way of expressing the Gabor bandwidth which sets the physical limit of a signal 
for a given bandwidth. This last one is also known in the literature as the Root Mean Square 
(RMS) bandwidth. As shown in Appendix K, the Cramér Rao Lower Bound is defined as: 
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where LB  refers to the loop bandwidth of the code tracking loop and ( )0ssR ′′  and ( )fGs  are 

respectively the autocorrelation and power spectral density of the signal.  
 
The Cramér-Rao lower bound is usually employed to assess the performance of the position 
estimation based on the delay between the transmitting satellite and the receiver. However, 
since the function that maps the signal delay to the physical location is not necessarily 
continuous and differentiable everywhere due to the usual oscillations and discontinuities of 
the received signal, the Cramér Rao lower bound cannot be applied in all cases. In fact, 
differentiability is a requirement for the Cramér Rao lower bound to be properly used. As 
shown in [H. Koorapaty, 2004], it may be feasible to create a continuous approximation of 
this mapping function although this is discontinuous in reality. However, in order to be 
accurate, the function would need to have large local variations and the Cramér-Rao bound 
would then be too inaccurate. In the same manner, if a smooth function without large 
variations were assumed, the bound would also be inaccurate. In particular, such an approach 
would be too pessimistic in its performance estimates.  
 
As an alternative, the Barankin bound was proposed in [E. Barankin, 1949]. As shown in    
[H. Koorapaty, 2004], the Barankin bound does not require the mapping function to be 
continuous and differentiable being hence better suited for some problems. The Barankin 
bound is computed by selecting a set of test points [ ]Nxxx ,...,, 21  in the area of analysis and 

defining the following function: 

 ( ) ( )
( )xrP

xrP
xxr i

i =,,L  (4.142)  

where ( )xrP  denotes the conditional probability density function at the set of chosen test 
points with { }Ni ,...,2,1∈ . According to this, the Barankin matrix is defined as follows:  
 
 ( ) ( ) ( ) ( ) ( ) ( ){ }xxrLxxrLErxrPxxrLxxrLxB jijiji ,,,,d,,,,, ∫∫ ==  (4.143)  
 
with ( ) { } { }NNji ,...,2,1,...,2,1, ×∈ . Furthermore, the Barankin bound on the covariance 

( )[ ]rx̂Cov  for the parameter x based on the measurements r is given by: 
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 ( )[ ] ( ) TxBrx ΛΛ≥ −1ˆCov  (4.144)  
where  
 { } { } { }[ ]T

N xxxxxx −−−=Λ ,...,, 21  (4.145)  
 

As we can recognize, the computation of the Barankin bound only requires knowledge of the 
conditional probability density function ( )xrP  at the set of chosen test points and no 

assumption on the differentiability is required. Moreover, it is important to note that the 
Barankin bound is a lower bound on the covariance matrix of the position errors but it does 
not say anything about the probability density function of the position errors.  
 
Finally, we must underline that the Barankin bound is more accurate than the Cramér Rao 
lower bound as shown in [R. McAulay and E. Hofstetter, 1971]. In fact, the Barankin bound 
can be made tighter than the Cramér-Rao bound provided the correct test points are chosen. 
Moreover, the Barankin bound can be applied in general to more cases than the Cramér Rao 
bound under the assumption that we have some a priori knowledge on the conditional 
probability of some particular points. As one can imagine, this information is not always 
available and justifies the common use of the  Cramér Rao lower bound instead. 

4.6.5 CBCS Interference Performance 
 
Another important aspect in the performance of a signal is the interference that the signal 
suffers and causes from and to the rest of signals in the band. The Spectral Separation 
Coefficient (SSC), to which we will dedicate the next two chapters, is the key figure to assess 
the isolation among signals and gives us thus a good insight into this problem. In the next 
tables different SSCs are given for the case that no filter is used at the satellite. However, it 
must be noted that in case of filtering the spectral isolation would even improve. For the 
calculations a transmission bandwidth of 40.92 MHz and a receiver bandwidth of 24.00 MHz 
were assumed. 
 
Table 4.1. Spectral Separation Coefficients of proposed Open Signals on E1/L1. For the 

CBCS signal an optimized filter was employed to avoid the third harmonic emissions 
 

SSC [dB-Hz] C/A Code BOC(1,1) CBCS(20%) 
C/A Code -61.8008 -67.7844 -68.1428 
BOC(1,1) -67.7844 -64.7373 - 

CBCS(20%) -68.1428 - -65.6087 
 
As we will see in detail in chapter 5, the self SSC (SSC of one signal with itself) tells us how 
the intra-system interference is. From the table above we can also recognize that CBCS has 
better spectral isolation with itself than BOC(1,1) given its wider spreading. Moreover, the 
CBCS modulation has better spectral isolation with the GPS C/A Code than BOC(1,1) which 
is logical since part of the power has been moved to higher frequencies. As a conclusion, 
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CBCS presented an improvement in the SSC values that lead to an increase of the minimum 
C/N0 value (in both Galileo OS and GPS L1C) of up to 0.6 dB, resulting thus in an overall 
superior link budget. 
 
The interference that we have analyzed so far refers to interference from other GNSS sources. 
Now we concentrate on the case of non-intentional interference coming from other potential 
sources. We distinguish between narrowband interference and wideband interference.  
 

• Narrowband interference: The susceptibility to narrow band interference depends on 
the continuous PSD and on the code structure. Since this latter is not modified by 
CBCS, and because the continuous PSD of CBCS was wider than that of BOC(1,1), 
the optimized CBCS presented a higher robustness to narrowband interference. 

• Wideband interference: The susceptibility to wide band interference is closely linked 
to the spreading of the PSD: the more the PSD is spread, the higher the robustness will 
be. Because CBCS features a PSD which is more spread than that of the BOC(1,1) 
signal, the CBCS was consequently present a higher robustness than BOC(1,1). 

 
For more details on the mathematical model behind, refer to Appendix J. As we will see, also 
here CBCS was superior to BOC(1,1). 
 

One final aspect to analyze the performance of a signal is the acquisition. A very 
straightforward strategy to acquire CBCS was presented in [G.W. Hein et al., 2005], proving 
that false acquisition should not represent a big problem. In fact, the only degradation 
observable with respect to BOC(1,1) would be of less than 1 dB, coming from the correlation 
losses due to processing with a pure BOC(1,1) receiver. 
 

4.6.6 Receiver Options for CBCS 
 
As presented in [G.W. Hein et al., 2005] and [A.R. Pratt et al., 2006] there are several options 
to receive the CBCS signals. As we will see, some solutions are more efficient while others 
aim at reducing the receiver complexity as much as possible. We enumerate them next: 
 

• The most straightforward approach is to use a CBCS replica at receiver level for both 
the data and the pilot channels. As usual, the pilot signal can be used to support data 
demodulation of the other signal and help in scenarios with poor C/N0 ratios.  

 
• A simplified model would be to use a BOC(1,1) replica only. Indeed, as we have 

repeatedly commented in different parts of this thesis, special care was put during the 
optimization of the E1 OS signals to achieve a modulation that should be as highly 
interoperable as possible with BOC(1,1). This option results in a slight loss of signal 
power (-0.97 dB) but the receiver is then enormously simplified. 
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• Another imaginable configuration would be to only process the BCS channel 
extracting thus the difference data message as we will describe in chapter 7. However, 
the BCS signal was not optimized for this application, more due to the high data rate 
than to the low amount of power that was put on the BCS modulation, which was 
about -6.97 dB lower. Nevertheless, there could be other interesting benefits in terms 
of improved performance to multipath given the wider bandwidth BCS.  

• Another possibility would be to form composite codes from the sum and the 
difference of the data and pilot codes. By doing so, we could dispread the BOC(1,1) 
and BCS channels with the BOC(1,1) and BCS signal waveforms correspondingly. 
This option could also support data-aiding as identified in                       
[A.R. Pratt and J.I.R. Owen, 2005] but it would not be absolutely necessary. 

 

4.6.7 Drawbacks of the CBCS solution 
 
After describing all the positive aspects of the CBCS modulation, it is time to describe now 
the two main drawbacks of CBCS with respect to other solutions that were not selected at that 
time. These are basically the cross-correlation bias and the need of filtering to achieve spectral 
compatibility with the rest of signals in the band. We concentrate on them now: 

4.6.7.1 CBCS Cross-Correlation Bias 
 
The selected CBCS solution presented a non-symmetric correlation function when a 
BOC(1,1) receiver correlates with the incoming CBCS signal as we saw in Figures 4.38 and 
4.39. As a result, a constant bias appears that is a function only of the percentage of power put 
on the BCS signal with respect to the OS signal, the received power of the desired signal and 
the receiver bandwidth. In principle this bias could be corrected if manufacturers would 
calibrate it as another bias in the receiver processing. Additionally, this bias could be avoided 
with an appropriate correlation at the receiver [A.R. Pratt et al., 2006] and future receivers 
could consider it as a variable that could be updated at any moment in case future changes in 
the signal structure would occur. Nevertheless if due to imperfections not all the satellites 
would be similar, this would introduce a non-negligible complexity that handicapped CBCS. 
 
Different solutions were proposed to avoid the tracking bias, being one of the more interesting 
the so-called flipping CBCS or CBCS*. This consisted of a BOC(1,1) plus a BCS sequence 
that alternates its sign from chip to chip. The CBCS* signal would adopt the following form: 

 

( ) [ ]( )[ ]

( ) [ ]( )[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+⎟
⎠
⎞

⎜
⎝
⎛ +

+

+−−+

+−+

=

)(
2

sinsin)( 

 )(cos)1()(cos
2

)(

)(cos)1()(cos
2

)(

)(

IM
21

PRS

1,BCS21,1BOC1

1,BCS21,1BOC1

1

tstsj

tststc

tststc

Ats s
mP

s
mD

θθ

θθ

θθ

 (4.146) 



GNSS Signal Structure 

 

140 

 ⎟
⎠
⎞

⎜
⎝
⎛ −

−=
2

sinsin)()()()( 21
PRSIM

θθtstctcjts PD  (4.147) 

where we can recognize that compared to (4.121) the alternating term m)1(− was introduced to 

account for the alternation of the BCS sequence from one chip to the other chip. As a result, 
the cross-correlation between CBCS* and BOC(1,1) would be in average zero as desired. The 
disadvantage of this approach would be on the other hand that the real length of the BCS 
would duplicate to all effects due to the phase-alternation. 
 

4.6.7.2 CBCS Satellite Transmission Filter 
 
A second and actually the major drawback of the CBCS solution was the need to introduce a 
filter in the satellite to get sufficient isolation of the third harmonic of the BCS signal with the 
Galileo PRS signal. As we mentioned above, the selected BCS sequence is qualitatively very 
similar to a BOC(5,1) which, as we know from theory, has got harmonics at odd multiples of 
the sub-carrier frequency of 5 MHz. Thus, the third harmonic would fall directly on the PRS 
at 15 MHz. As suggested in [G.W. Hein et al., 2005] different measures might have been 
implemented in the satellite payload without inducing a loss of power at user level. A careful 
selection of the technique guarantees that the main power stays more or less around 5 MHz 
offset from the centre frequency so that the resulting waveform does not show any significant 
impact in the multipath error considerations and subsequent performance of the final signal. 
Whilst this is true, it is also true that from the moment a filter would have been introduced, 
the multipath mitigation performance would have been limited saturating for wider 
bandwidths what was a very undesirable property. Similar arguments have also been used 
against SRRC signals as we will show at the end of this chapter. This can be shown by means 
of the Root Mean Square bandwidth in the next figure. For completeness also MBOC is 
depicted. This modulation (baseline of the Galileo Open Service and GPS Civil signals in 
E1/L1) will be described in detail in the next chapter. 
 

 
Figure 4.47. Root Mean Square Bandwidth (RMS) of studied OS candidate signals. 
pMBOC refers to the pilot signal and the percentage to the amount of pilot power 
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As we know, the Root Mean Square (RMS) bandwidth of a spreading symbol is defined by: 
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= 2
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r
ffGfBW r
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ββ  (4.148) 

 
where ( )fG  is normalized for unit power over the signal bandwidth being used, and rβ  is 

the double-sided receiver pre-correlation bandwidth. The RMS bandwidth can also be seen as 
another way of interpreting the Cramér Rao lower bound or as the Gabor bandwidth of a 
signal. According to this, the higher the RMS bandwidth, the better the signal will be. 
 
If we observe now the results of Figure 4.47 above, we can clearly see that unlike CBCS*, the 
potential RMS bandwidth of MBOC does not saturate for higher bandwidths. CBCS* is the 
phase alternating version of CBCS that we describe in the following lines. Furthermore, not 
only is MBOC by far better than BOC(1,1), but it presents also a performance comparable to 
that of BOC(2,2) and even superior for some implementations. It is interesting to note that for 
bandwidths higher than about 14 MHz the RMS bandwidth of CBCS* does not grow any 
more due to the necessary filtering, while that of MBOC does. 
 
As a conclusion, the CBCS signal candidate presented in [G.W. Hein et al., 2005] clearly 
outperformed the baseline BOC(1,1) but presented some inherent limitations that rose some 
doubts. Especially the two drawbacks explained above were reason of concern since they 
demanded modification from the receiver manufacturers to get rid of these potential biases. 
The solution to all those problems would not take much time to come: the name was MBOC 
and this time, not only Galileo was eager to adopt it, but also GPS for its modernized GPS. 

4.7 MBOC modulation definition and analysis 
 
Nearly twenty months after the EU and the US signed the Agreement on the Promotion, 
Provision and use of Galileo and GPS Satellite-Based Navigation Systems and Related 
Applications an optimized signal waveform named MBOC (Multiplexed Binary Offset 
Carrier modulation) was proposed by a common group of experts of the EU and US for GPS 
L1C and Galileo E1 OS [G.W. Hein et al., 2006a], [G.W. Hein et al., 2006b] and                  
[J.-A. Avila-Rodriguez et al., 2006d]. 
 
Except for the fact that the CBCS definition requires Interplex to multiplex all the signals, the 
MBOC modulation can be seen a particular case of the CBCS solution where the BCS 
sequence adopts the known sine-phased BOC-like form. In this sense, MBOC(6,1,1/11) could 
also be expressed as CBCS([1,-1,1,-1,1,-1,1,-1,1,-1,1,-1],1,1/11) if the requirement on the 
Interplex Multiplexing were abandoned. The main objective of the common GPS and Galileo 
signal design activity was that the PSD of the proposed solution would be identical for GPS 
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L1C and Galileo E1 OS when the pilot and data components are computed together. This 
assures a high interoperability between both signals. This normalized (unit power) power 
spectral density, specified without the effect of bandlimiting filters and payload 
imperfections, is given by  
 

 ( ) ( ) ( )fGfGfG )1,6(BOC)1,1(BOC)11/1,1,6(MBOC 11
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where the high BOC frequency component, that is BOC(6,1), is shown to be: 
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with fc=1.023 MHz. Equally, the low BOC frequency component, namely BOC(1,1) will be: 
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and thus: 
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Additional conclusions can be drawn from analyzing the spectral shape of MBOC. Indeed, as 
shown in [J.-A. Avila-Rodriguez et al., 2006b], an interesting interpretation of (4.141) and 
(4.148) is that an ideal power spectral density regarding the tracking performance should be 
inversely proportional to the square of the frequency, according to:  

 ( ) 2
1
f

fG ∝   (4.153) 

It must be noted that such a spectrum would have nevertheless other non desirable properties 
with regards to its implementation. However, if we look now at the envelope of the well 
known power spectral densities of BPSK(1) and BOC(1,1) we can clearly recognize that their 
envelopes interestingly decay with 21 f , as Figure 4.48 shows next. Moreover, MBOC 

seems to follow pretty well this desirable pattern too. In fact, this was one of the figures in the 
mind of all those people involved in the optimization of the Galileo OS in E1. 
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Figure 4.48. Decay of the envelopes of the power spectral densities of BOC(1,1) – in blue 
– and BPSK(1) – in black. As it can be clearly seen, the selected MBOC signal for GPS 

L1C and Galileo E1 OS – in red – follows a similar pattern 
 
We show in the next figure all the Galileo and GPS signals in the E1/L1-band. 

 
Figure 4.49. GPS and Galileo Spectra in E1/L1 

 

4.7.1 Implementing MBOC 
 
Once we have defined the power spectral density of MBOC, it is the right moment to talk 
about the implementation. Indeed, different time representations result in the same power 
spectral density and the Agreement between the EU and the US on MBOC left this freedom to 
both parties so that each could implement its own solution according to its own conception. 
Two solutions have been realized to implement MBOC: 
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• CBOC: The Composite BOC is the solution adopted by Galileo for the Open Service 

in E1/L1. It is an Interplex multiplexing where the sub-carriers BOC(1,1) and 
BOC(6,1) are added in anti-phase on each channel. 

• TMBOC: The Time-Multiplexed BOC is the solution adopted by GPS for L1C. It is a 
binary signal where BOC(1,1) and BOC(6,1) are time-multiplexed according to a pre-
established pattern that was optimized to improve the correlation properties of the 
signal when the effect of the PRN code is taken into account. 

 
We describe the two possible implementations in detail in the next chapters. Before that, it is 
interesting to mention that between CBCS and the final MBOC(6,1) there was an intermediate 
solution that was object of interest for a short period of time. This was the so called 
MBOC(4,1) that was shortly described in chapter 3.6.4. 
 
One final but important comment is related to the power allocated on the high frequency 
component of MBOC, namely BOC(6,1). Indeed, the 1/11 of power refers to the power at 
generation, without accounting for the effect of the satellite’s filter and other imperfections. 
This is so because as we know, MBOC admits different implementations, being one of them 
TMBOC. If we would define the exact power split at user level, the power at generation 
would be different depending on the final implementation. As we have seen, TMBOC 
accomplishes the required power percentage by time-multiplexing BOC(6,1) and BOC(1,1) so 
that 1/11 of the time the satellite transmits BOC(6,1) and the rest of the time BOC(1,1). Since 
the GPS L1C codes have a length of 10,230 chips as we saw in chapter 2.3.2.1, this 
percentage incorporates the factorial decomposition of 10,230. It is trivial to show that 

31 x 11 x 5 x 3 x 2  10,230 =  and indeed 11 was found to be the optimum number to divide the 

transmission periods of the multiplexing signals of GPS L1C. Indeed, 1/11 of the time was 
long enough to considerably improve the performance with respect to BOC(1,1) but not so 
long to concentrate too much power on the high frequencies and overlap the M-Code and PRS 
to non acceptable levels. More details on the exact location of the BOC(6,1) chips are given in 
chapter 4.7.4 of this chapter. 
 
Finally, it is important to mention that in the case of CBOC, the generation of power presents 
no limitations since this is achieved by correspondingly modulating the amplitude as 
described in (4.121). 

4.7.2 On MBOC and Antisymmetric sequences 
 
Before we describe the performance of MBOC regarding the characteristics and details of its 
different implementations, let us first make some final comments on the MBOC spectrum and 
the ideas behind. 
 
As we have seen some lines above, the Galileo MBOC implementation (CBOC) is the result 
of an additive and subtractive mixture of two separate spreading symbols.  Moreover, we have 
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already noted that some BCS sequences can potentially cause tracking bias in receivers 
adapted to receive only one of the spreading symbols. This was indeed one of the main 
disadvantages of CBCS. The solution to this problem was given by MBOC and the key 
concept is antisymmetric sequences. These sequences are explained in detail in Appendix K 
but in the next lines we anticipate some concepts already. Since BOC(1,1) is antisymmetric, 
receiver biases can be avoided by choosing the correct properties for the partner spreading 
symbol sequence.   
 
As we have repeatedly mentioned in this chapter, compatibility with BOC(1,1) receivers was 
a major driver in the design of the optimized Galileo signal. As a result of this, having 
BOC(1,1) a partner spreading symbol sequence with zero cross-correlation became one of the 
most important drivers in the design of the Galileo OS in E1. 
 
After CBCS was proposed, a new BCS solution that could avoid all the drawbacks described 
in chapter 4.6.7 was the objective of the works of US and EU. We can summarize the 
properties that this desired BCS sequence should present: 
 

• Anti-symmetry 
• Balance (zero-sum) for the sequence 
• Zero crosscorrelation with the partner sequence 
 

As shown in [A.R. Pratt et al., 2006] a comprehensive search for binary sequences was 
conducted with some or all of these properties.  These are listed below for a variety of 
sequence lengths n, all divisible by 2, from 2 to 12.  Moreover, we show only distinct 
sequences so that the tables contain {xi} but not the time reversed versions {-xi}, {xn-1-i} or   
{-xn-1-i}.  Since the sequences are antisymmetric, they may be considered to be constructed 
from a base sequence {ŷi} of length n as shown in the following equation: 
  }ˆ,ˆ{}{ 1 inii yyxX −−−==  (4.154) 
 
As shown in Appendix K, all antisymmetric sequences of even length n are balanced. The 
next tables show the cross-correlation with a BOC(1,1) partner sequence, under the 
assumption that the spreading symbol durations are common, that is the duration of an 2=n  
sequence is identical with that of an 12=n  sequence, for example. 
 
Moreover, the cross-correlation between ( )1,1BOC0 =x  and the corresponding BCS sequence 

kx  is shown to be: 
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where mn mod  represents the modulo operation defined as the remainder of the division of  
n  by m . Next pages summarizes the results: 
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Table 4.2. Tables of Distinct Spreading Symbol Sequences for n=2 to 12 
 

2=n  )0(,0

c
xx k

R

x0 1,-1 1.0 
 

4=n  )0(,0

c
xx k

R

x 0 1,1,-1,-1 1.0 
x 1 1,-1,1,-1 0.0 

 
6=n  )0(,0

c
xx k

R

x 0 1,1,1,-1,-1,-1 1.0 
x 1 1,1,-1,1,-1,-1 1/3 
x 2 1,-1,1,-1,1,-1 1/3 

 
8=n  )0(,0

c
xx k

R

x 0 1,1,1,1,-1,-1,-1,-1 1.0 
x 1 1,1,1,-1,1,-1,-1,-1 0.5 
x 2 1,1,-1,1,-1,1,-1,-1 0.5 
x 3 1,1,-1,-1,1,1,-1,-1 0 
x 4 1,-1,1,-1,1,-1,1,-1 0 
x 5 1,-1,-1,1,-1,1,1,-1 0 

 
10=n  )0(,0

c
xx k

R

x 0 1,1,1,1,1,-1,-1,-1,-1,-1 1.0 
x 1 1,1,1,1,-1,1,-1,-1,-1,-1 3/5 
x 2 1,1,1,-1,1,-1,1,-1,-1,-1 3/5 
x 3 1,1,1,-1,-1,1,1,-1,-1,-1 1/5 
x 4 1,1,-1,1,1,-1,-1,1,-1,-1 3/5 
x 5 1,1,-1,1,-1,1,-1,1,-1,-1 1/5 
x 6 1,1,-1,-1,1,-1,1,1,-1,-1 1/5 
x 7 1,-1,1,1,-1,1,-1,-1,1,-1 1/5 
x 8 1,-1,1-,1,1,-1,1,-1,1,-1 1/5 
x 9 1,-1,-1,-1,1,-1,1,1,1,-1 -1/5 
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12=n  )0(,0

c
xx k

R

x0 1,1,1,1,1,1,-1,-1,-1,-1,-1,-1 1.0 
x 1 1,1,1,1,1,-1,1,-1,-1,-1,-1,-1 4/6 
x 2 1,1,1,1,-1,1,-1,1,-1,-1,-1,-1 4/6 
x 3 1,1,1,1,-1,-1,1,1,-1,-1,-1,-1 2/6 
x 4 1,1,1,-1,1,1,-1,-1,1,-1,-1,-1 4/6 
x 5 1,1,1,-1,1,-1,1,-1,1,-1,-1,-1 2/6 
x 6 1,1,1,-1,-1,1,-1,1,1,-1,-1.-1 2/6 
x 7 1,1,1,-1-,1,-1,1,1,1,-1,-1,-1 0 
x 8 1,1,-1,1,1-,1,1,-1,-1,1,-1,-1 2/6 
x 9 1,1,-1,1,-1,1,-1,1,-1,1,-1,-1 2/6 
x 10 1,1,-1,1,-1,-1,1,1,-1,1,-1,-1 0 
x 11 1,1,-1,-1,1,1,-1,-1,1,1,-1,-1 2/6 
x 12 1,1,-1,-1,1,-1,1,-1,1,1,-1,-1 0 
x 13 1,1,-1,-1,-1,1,-1,1,1,1,-1,-1 0 
x 14 1,-1,1,1,1,1,-1,-1,-1,-1,1,-1 4/6 
x 15 1,-1,1,1,1,-1,1,-1,-1,-1,1,-1 2/6 
x 16 1,-1,1,1,-1,1,-1,1,-1,-1,1,-1 2/6 
x 17 1,-1,1,-1,1,-1,1,-1,1,-1,1,-1 0 
x 18 1,-1,1,-1,-1,1,-1,1,1,-1,1,-1 0 
x 19 1,-1,-1,-1,-1,1,-1,1,1,1,1,-1 -2/6 

 
From the tables, it can be seen that only tables for 4mod0 n= , that is 12,8,4=n , have any 

entries with zero crosscorrelation with BOC(1,1). For 4=n , there is only 1 sequence 
corresponding to a BOC(2,1) spreading symbol modulation.  For 8=n , there are 3 
permissible sequences, x3, x4, x5. Of these, x4 corresponds to the BOC(4,1) modulation that we 
mentioned some lines above.  Finally for 12=n , there are 6 possible sequences, x7, x10, x12, 
x13, x17, x18 where x17 corresponds to BOC(6,1), one of the solutions and indeed the best in 
terms of performance. 
 

4.7.3 CBOC Implementation 
 
The CBOC implementation is a particular case of the CBCS modulation that we studied in 
chapter 4.6. As we saw there, the CBOC modulation can be expressed as follows 
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where we can recognize that in this particular case the BCS component is BOC(6,1) with a 
percentage of power of 1/11. Furthermore the high frequency signal is placed on both the data 
and pilot channels and equal power for both channels is assumed. In addition, the total OS 
power is equal to that of the PRS and the modulation parameters that result of solving the 
equations system (J.35) of Appendix J are the following: 
 

Table 4.3. Interplex parameters of the CBOC(6,1,1/11) modulation 
 

Percentage ρ  1/11 
1θ  0.1314692798 π 
2θ  0.4064655161 π 
1A  1.0409984082268 

4.7.4 TMBOC Implementation 
 
In a TMBOC spreading time series [G.W. Hein et al., 2006a], different BOC spreading 
symbols are used for different chip values, in either a deterministic or periodic pattern. To 
produce an MBOC(6,1,1/11) spectrum, the used spreading symbols are BOC(1,1) chips, 
denoted as ( ) ( )tg 1,1BOC , and BOC(6,1) chips, denoted as ( ) ( )tg 1,6BOC , where 
 

 ( ) ( ) ( )[ ]
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and 
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Since the pilot and data components of a signal can be formed using different spreading time 
series, and the total signal power can be divided differently between the pilot and data 
components, many different TMBOC-based implementations are possible.  
 
The selected TMBOC implementation is a signal with 75 % power on the pilot component 
and 25 % power on the data component, such that all the BOC(1,1) spreading symbols are 
used for the data, since data demodulation does not benefit from the higher frequency 
contributions of BOC(6,1). On the other hand, the pilot component time series comprises 
29/33 BOC(1,1) spreading symbols and 4/33 BOC(6,1) spreading symbols. This design places 
all of the higher frequency contributions in the pilot component, providing the greatest 
possible benefit to signal tracking when only the pilot channel is used to this purpose. 
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Figure 4.50 next shows the BOC(6,1) spreading symbols in locations 1, 5, 7, and 30 of each 
33 spreading symbol locations. This pattern will be repeated 310 times since the spreading 
code is 10230 chips long.  
 

 
Figure 4.50. TMBOC time representation with all BOC(6,1) Spreading symbols in the 

75% Pilot Power Component  
Several considerations affect the choice of the specific locations of the BOC(6,1) spreading 
symbols. For example, if the BOC(6,1) chips were placed in both the pilot and data 
components, the receiver implementation would be more simple than if these symbols were 
placed in the same locations in both. In addition, the proper placement of the BOC(6,1) 
symbols leads to an improvement of the spreading codes’ autocorrelation and crosscorrelation 
properties of approximately 1 dB, compared to those that can be observed when only 
BOC(1,1) spreading symbols are used. The good results obtained for L1C using the BOC(6,1) 
locations and the performance of the spreading codes for L1C [G.W. Hein et al., 2006a] 
confirm the optimality of the described positions of BOC(6,1). 
 
Finally, we show in the next table the correlation losses that result from correlating a 
BOC(1,1) replica with different implementations of MBOC, included the finally selected for 
GPS, discussed above. The definition of correlation losses was provided in (4.126): 
 

Table 4.4. Correlation losses of different MBOC implementations 
Power in 

pilot channel 
50% 75% 

Signal CBOC(6,1,1/11) TMBOC(6,1,1/11) CBOC(6,1,1/11) TMBOC(6,1,1/11) 

System Galileo GPS Galileo GPS 
Pilot losses 1/11 (0.4 dB) 2/11 (0.9 dB) 1/11 (0.4 dB) 4/33 (0.6 dB) 
Data losses 1/11 (0.4 dB) 0 1/11 (0.4 dB) 0 

 
After having analyzed the two possible implementations of MBOC, namely CBOC and 
TMBOC, we can conclude that there are no significant differences of performance between 
both as this depends actually on the final user configuration. Indeed, how good or bad placing 
all the high frequency BOC(6,1) component on both data and pilot or only on the pilot channel 
is depends on the particular application. In addition, from the point of view of the correlation 
characteristics, we have seen that TMBOC provides an additional improvement of 1 dB in 
terms of reduced correlation if the BOC(6,1) component is placed at proper locations, what 
futher improves the noise input. 
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4.7.5 Optimal Tracking of CBOC 
 
As one can imagine, until the final Galileo implementation of MBOC was selected, different 
CBOC implementations were under consideration. In the next lines we summarize the main 
results of the analyses carried out to optimally track CBOC each of the proposed solutions.  
 
Following the results from [O. Julien et al., 2006] we will show in this chapter the tracking 
performance of the CBOC modulation when only one channel of the Galileo E1 OS (data or 
pilot) is used. As we have seen above, there are many ways of implementing MBOC and even 
if we would constrain our analysis to CBOC, it can be shown that the variety of solutions is 
still broad. Indeed, the high frequency BOC(6,1) component could go in principle on both 
data and pilot channels, only on the pilot, only on the data, the power splits could change, and 
they all would still fulfil the MBOC definition that we gave above. To simplify thus our 
analysis, the three main cases are exposed next. These correspond basically to the three 
CBOC implementations that were considered for the Galileo E1 OS: 
 

• The use of a CBOC(6,1,1/11) where both the data and pilot channels have a BOC(6,1) 
component in anti-phase. In this case, the power of the BOC(6,1) part is 1/11 of the 
channel total power. This is the implementation finally selected for Galileo E1 OS. 

• The use of a CBOC(6,1,2/11) where only one of the channels, the pilot or the data, has 
a BOC(6,1) component with alternating sign, while the other channel is a pure 
BOC(1,1). In this case, the power of the BOC(6,1) part is 2/11 of the pilot channel 
total power. Moreover, it is important to note that the alternation of BOC(6,1) is 
necessary to get rid of the cross spectral terms that would result otherwise. This will 
be shown in the following lines. 

• CBOC(6,1,1/11) is used on both the data and pilot channels, being BOC(6,1) in both 
channels with alternating sign. In this case, the data and pilot channels have a 
BOC(6,1) power of 1/11 of the channel total power.  

 
Recalling now the general CBCS definition from (4.121) and substituting BCS by BOC(6,1) 
we can define the general CBOC model as follows: 
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and looking only at the pilot channel for the three cases described above, we have:  
 
 ( ) ( ) ( ) ( ){ })()()'',,1,6(CBOC 6,1BOC21,1BOC1 tsktsktct P +=+ρ  (4.163) 
 ( ) ( ) ( ) ( ){ })()()'',,1,6(CBOC 6,1BOC21,1BOC1 tsktsktct P −=−ρ  (4.164) 
 
where ρ indicates the amount of power on the high frequency BOC(6,1) component: 

 2
2

2
1

2
2

kk
k
+

=ρ  (4.165) 

The last model to introduce is the alternating model, which is shown to be: 
 
 ( ) ( ) ( ) ( ){ })()()'/',,1,6(CBOC 6,1BOC21,1BOC1 tsktsktct P +=−+ρ  (4.166) 

for even chips, and  
 
 ( ) ( ) ( ) ( ){ })()()'/',,1,6(CBOC 6,1BOC21,1BOC1 tsktsktct P −=−+ρ  (4.167) 

for odd chips. The autocorrelation function of the three models is shown next: 
 
 ( ) ( ) ( ) ( ) ( )ττττρ 6,1BOC/BOC(1,1)21BOC(6,1)

2
2BOC(1,1)

2
1)'',,1,6(CBOC 2 ℜ−ℜ+ℜ=ℜ − kkkk  (4.168) 

 ( ) ( ) ( ) ( )ττττρ BOC(6,1)/BOC(1,1)21BOC(6,1)
2
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2
1)'',,1,6(CBOC 2 ℜ+ℜ+ℜ=ℜ + kkkk  (4.169) 

 ( ) ( ) ( )τττρ BOC(6,1)
2
2BOC(1,1)

2
1)'/',,1,6(CBOC ℜ+ℜ=ℜ −+ kk  (4.170) 

 
As we can see, the two first auto-correlations present an additional cross-term due to the 
existence of cross-correlation between BOC(1,1) and BOC(6,1). As we mentioned above, this 
cross-term is not desirable and must be eliminated to generate a spectrum according to the 
MBOC definition. This is possible if data and pilot are in anti-phase (each with a different 
sign) or if the BOC(6,1) component alternates its sign. Nonetheless, we will keep these 
signals for reference in the following figures to show the performance. We show next the 
autocorrelation functions of the different analyzed solutions compared with the TMBOC 
solution for a receiver bandwidth of 24 MHz: 
 

 
Figure 4.51. CBOC and TMBOC Autocorrelation Function 
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As we can recognize in the figure above, the shape of the auto-correlation function highly 
depends on the amount of power on BOC(6,1). Indeed, the higher the value of ρ, the more 
ripples the auto-correlation will present and the better the potential performance will be. 
Furthermore, it is interesting to see that the sharpest slope around the origin is shown by 
TMBOC and the ( )''CBOC −  version while TMBOC(6,1,2/11) and ( )'/',11/2,1,6CBOC −+  

perform similar. MBOC is analyzed next regarding the following three criteria: 
 

• False tracking points 
• Code tracking noise 
• Multipath-induced code tracking error 

4.7.5.1 False Tracking Points 
If we take a closer look at the auto-correlation function of Figure 4.51 above, it is clear to 
recognize the existence of secondary peaks that could lead to stable false locks. Indeed, the 
more ripples the function presents and the more accentuated the undulations are, the higher 
the probability that we lock on a non desired but stable tracking point. Fortunately, not all the 
solutions are equally susceptible to suffering from this effect, since this depends actually on 
how the auto-correlation function looks like. In fact, while the selected CBOC(1/11) for 
Galileo E1 OS is not likely to lead to stable false lock points as shown in                       
[J.-A. Avila-Rodriguez et al., 2006c], the existence of false lock points would be nearly 
unavoidable for the ( )'/',11/2,1,6CBOC −+  implementation, implying thus a higher 

complexity to detect the right peak. This is in fact the prize for allocating more BOC(6,1) 
power on the channel. Finally, it is important to note that no matter which of the 
implementations we look at, since BOC(1,1) is the dominant signal in all of them, a false lock 
detector is still necessary in order to make sure that the receiver is tracking the signal based 
on the correct autocorrelation main peak, and not the secondary of BOC(1,1). 

4.7.5.2 Thermal Noise-Induced Code Tracking Error 
In order to understand how the code tracking noise behaves for the different implementations 
of MBOC discussed above, we present in the next figure the Cramér Rao Lower Bound.  
 

 
Figure 4.52.  BOC(1,1), CBOC and TMBOC Cramér Rao Lower Bound with 1 Hz Loop 

Bandwidth, 1/12 Chip E-L Spacing, 4 ms Integration and 12 MHz One-Sided Filter 
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As we can see, the best performance corresponds to the alternating ( )'/'CBOC −+  version 

with 2/11 of power on BOC(6,1) or to its equivalent TMBOC version, since these can take 
advantage of the high frequency components of the signal the best. Moreover, among the 
different CBOC solutions with the 1/11 of average power that results from considering data 
and pilot together, the worst performance is shown to be that of the in-phase ( )'',11/1CBOC +  
solution while the anti-phase ( )'',11/1CBOC −  is the best. This was to expect since its 

autocorrelation function’s main peak has the steepest slope. We can also see this if we 
compare both phase and anti-phase versions in the time domain.  
 

 
Figure 4.53. CBOC data chip with BOC(1,1) and BOC(6,1) in-phase 

 
Equally, the pilot channel would present the following shape for a chip. 
 

 
Figure 4.54. CBOC pilot chip with BOC(1,1) and BOC(6,1) in anti-phase 

 
From the previous figures it is easy to recognize that the pilot channel will have more 
components at higher frequencies since at 0.5 chips the amplitude variation is higher. 
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Furthermore, the alternating CBOC solution with 1/11 of power on BOC(6,1) performs as the 
average of the phase and anti-phase solutions shown above. To avoid any confusion, it is 
important to underline that the solutions studied above correspond to MBOC implementations 
that were object of study during the design of Galileo E1 OS and GPS L1C. The finally 
selected CBOC implementation of Galileo has BOC(6,1) on both data and pilot, being these 
in anti-phase with respect to each other. According to the previous notation, this means that 
the pilot channel of Galileo E1 OS will be ( )'',11/1CBOC −  and the data channel 

( )'',11/1CBOC + . 

4.7.5.3 Multipath Induced Tracking Error 
The multipath performance of a signal highly depends on the shape of the auto-correlation 
function, as we saw in chapter 4.1.1. Indeed, this was one of the aspects that were more 
seriously taken into consideration during the optimization of the Galileo Open Service and 
GPS Civil signals in E1/L1. We show in the next figures the multipath performance of 
different MBOC implementations by means of the multipath envelopes and the multipath 
running average error as done in [G.W. Hein et al., 2006a] and [G.W. Hein et al., 2006b]. 
Note that TMBOC(6,1,1/11) and )'/',111,1,6(CBOC −+ perform the same and therefore are 

overlapped in the next figures. 

 
Figure 4.55.  MBOC Multipath Envelopes with an E-L Spacing of 0.1 chips and a 

Double-Sided Filter of 24 MHz 

 
Figure 4.56.  MBOC Multipath Running Average Error with an E-L Spacing of 0.1 

chips and a Double-Sided Filter of 24 MHz 
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As we can see, for an early-late spacing of 0.1 chips and a one-sided front-end filter of         
12 MHz, the best performance is exhibited by ( )'/',11/2,1,6CBOC −+ , followed by 

( )'',11/1,1,6CBOC − , ( )'/',11/1,1,6CBOC −+  and ( )'',11/1,1,6CBOC + . Moreover, it is clear to 

see that all the solutions clearly outperform BOC(1,1). In addition, it is important to note that 
( )'/',11/1,1,6CBOC −+  and TMBOC(6,1,1/11) perform the same in average when both data 

and pilot are processed in the receiver. 

4.7.5.4 Conclusions on Optimal CBOC Tracking 

As we have seen in previous lines, the best CBOC implementation of MBOC in terms of 
performance is the anti-phase ( )'',11/1,1,6CBOC −  solution. Nevertheless, as demonstrated in 

(4.169), this solution presents the great inconvenient of showing a non desired cross-term that 
can only be eliminated if the other channel adopts the counterpart ( )'',11/1,1,6CBOC + . This is 

indeed the case in the finally selected CBOC implementation of Galileo E1 OS. Then, the 
total performance of this CBOC implementation, seen as data and pilot together, is equivalent 
to that of the alternating ( )'/',11/1,1,6CBOC −+  solution.  

 
Another studied option was to use directly the ( )'/',11/1,1,6CBOC −+  solution on both the 

data and pilot channels, in which case both channels would have the same tracking 
performance. This implementation would perfectly fulfil the MBOC spectrum too but the 
drawback was be the extra complexity required for the implementation of the alternation. 
Equally, the option of using a ( )'/',11/2,1,6CBOC −+  on one channel and a pure BOC(1,1) on 

the other channel would permit to have one channel with excellent tracking performance, 
while the other channel would just use a pure BOC(1,1) modulation. This signal would be of 
interest for some types of receivers with a philosophy behind very much in line with how 
TMBOC is conceived. 
 
All the figures that we have shown above rely on the assumption that a CBOC replica signal 
has to be locally generated by the receiver. Indeed, CBOC is a linear combination of two sub-
carriers and has thus more than two levels, so that 2 bits are needed to encode the signal. 
While this should not be a great challenge as some works have already shown                   
[P.G. Mattos, 2007], we will study in the next chapter a suboptimal tracking of CBOC using 
local replicas encoded with only 1 bit, as shown in [J.-A. Avila-Rodriguez et al., 2006c] and 
[O. Julien et al., 2006]. One could of course think of separating the correlation of the 
incoming CBOC signal with a pure BOC(1,1) replica and, on the other side, with a pure 
BOC(6,1) replica. Then a simple linear combination of the outputs of both correlators would 
be sufficient to obtain the same result as if we had correlated directly with the CBOC replica 
of two bits.  However, this processing requires twice as many correlators as the traditional 
CBOC tracking. In the next lines we present a solution that avoids to have to pay this prize 
[O. Julien et al., 2006] and [J.-A. Avila-Rodriguez et al., 2006c]. 
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4.7.6 Suboptimal Tracking of CBOC: TMBOC like 
approach 

As shown in [J.-A. Avila-Rodriguez et al., 2006c], the idea behind the 1-bit receiver 
technique is to correlate the incoming CBOC signal with a locally generated signal obtained by 
time-multiplexing a BOC(1,1) sub-carrier and a BOC(6,1) sub-carrier. We can model this 
replica as follows: 
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where S1 is the union of the segments of time when a BOC(1,1) sub-carrier is used. Equally, 
S2, the complement of S1 in the time domain, is the union of the segments of time when a 
BOC(6,1) sub-carrier is generated. In addition, we write TM61 in order to distinguish this 
technique from the typical CBOC replica approach studied above. The advantage of this 
approach is that by using such a replica we only need to encode with 1 bit reducing thus the 
complexity of the receiver. Moreover, time-multiplexing reduces the number of correlators.  
 
Let us define α  to designate the percentage of time that the BOC(6,1) sub-carrier is used in 
one code length, and αβ −= 1  to represent the amount of time reserved for the BOC(1,1) 

local sub-carrier part. Furthermore, we will assume that the sign of the BOC(6,1) local sub-
carrier in the local replica is taken according to the sign of the BOC(6,1) used in the CBOC 
signal. This means that for the case the CBOC channel is in-phase, we have a positive sign 
and thus the percentage of BOC(6,1) time is given by ++ −= βα 1 . Equally, for the anti-phase 
CBOC component the percentage of BOC(6,1) time is given by −− −= βα 1 . It must be noted 

that +α and −α  can be different in general. As a result, the cross-correlation that results from 
using the TM61 replica with the different CBOC implementations of previous chapter is given 
by the following expressions: 
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 (4.174) 
As we can see in the expressions above, the correlation functions of BOC(1,1) and BOC(6,1) 
are also weighted as was also the case for the CBOC replica, with the difference that the 
weights are in this case controlled by the factors α and β and the cross-correlation between 
TM61 and CBOC induces additional correlation losses as shown in [O. Julien et al., 2006] and 
[J.-A. Avila-Rodriguez et al., 2006c]. 
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It is also interesting to see in [O. Julien et al., 2006] and [J.-A. Avila-Rodriguez et al., 2006c] 
that if the Dot Product (DP) discriminator is employed, different TM61 replicas could be used 
for the prompt correlator and for the early and late correlators. Indeed, for the particular case 
of the DP discriminator, the prompt correlator only affects the tracking noise squaring losses 
and is thus recommendable to choose a local prompt replica that minimizes the correlation 
loss with the incoming CBOC signal. As shown in [J.-A. Avila-Rodriguez et al., 2006c], this 
can be achieved by selecting 0=α  or what is equivalent, by using a pure BOC(1,1) sub-
carrier as proposed in [J.-A. Avila-Rodriguez et al., 2006c]. 
 
On the other hand, the early and late correlator outputs determine the gain of the discriminator 
as well as the noise correlation between the early and late correlators’ output. Next table 
shows the tracking noise degradation that results from the use of the TM61 technique for the 
different studied CBOC cases and we compare it with the optimal TMBOC tracking for the 
same BOC(6,1) power [O. Julien et al., 2006].  
 

Table 4.5. TM61(α) Tracking Noise Degradation with respect to TMBOC in Terms of 
Equivalent C/N0 for Different CBOC Configurations 

TM61(α) Tracking Noise Degradation w.r.t. TMBOC in 
Terms of Equivalent C/N0 [dB] 

CBOC(6,1,1/11,’x’) vs 
TMBOC(6,1,1/11) 

CBOC(6,1,2/11,’x’) vs 
TMBOC(6,1,2/11) 

Value of α for Early and 
Late TM61(α) Local 

Replicas 
+ - +/- +/- 

0 4 2 2.9 5 
0.2 5.1 2.9 3.6 4.2 
0.4 5.1 2.8 3.4 3.3 
0.6 4.9 2.6 3.3 2.6 
0.8 4.6 2.3 3.2 2.1 
1 4.3 1.9 3 1.6 

 
As we can see, for CBOC(1/11) the most interesting values are either a high or a low value of 
α, since for those cases the equivalent C/N0 degradation of the tracking noise is the lowest 
with a value of 1.9 dB for the ( )'',11/1,1,6CBOC − , of 3 dB for the ( )'/',11/1,1,6CBOC −+  and 
of 4 dB for the ( )'',11/1,1,6CBOC + . It is important to note that 0=α  implies to use a pure 

BOC(1,1) replica and 1=α  a pure BOC(6,1) replica. 
 
In the same manner, the best option for ( )'/',11/2,1,6CBOC −+  and TMBOC(6,1,2/11) would 

be to take a value of α as high as possible. This means, a pure BOC(6,1) replica for the E-L 
correlators would be the ideal choice in this case. As a conclusion, in order to have a common 
architecture for CBOC(6,1,1/11), CBOC(6,1,2/11) and TMBOC(6,1,2/11), the best would be 
to select a TM61 tracking technique that would only use pure local replicas: BOC(1,1) for the 
prompt correlator and BOC(6,1) for the E-L correlators. Moreover, no time-multiplexing 
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would be needed any more, simplifying thus the complexity of the receiver. As one can 
imagine, if this approach is valid for the different MBOC implementations discussed in 
previous pages, it is also valid for the particular CBOC and TMBOC solutions adopted by 
Galileo and GPS. 
 
Another aspect that we have not touched yet is the multipath rejection of the different 
discussed TM61 options. As shown in [O. Julien et al., 2006] for both the CBOC(1/11) and the 
CBOC(2/11) cases, a value of α around 0.5 would lead to the best results. Nevertheless, 
values of α close to 1 would also deliver performances close to the optimum. In addition, 
using 0=α  is shown to be suboptimal in terms of multipath rejection  since the performance 
is then that of BOC(1,1) [J.-A. Avila-Rodriguez et al., 2006c].  
 
As a conclusion, it seems that a sub-optimum implementation of a CBOC-TMBOC receiver 
based on a 1 bit architecture could use a pure local BOC(1,1) replica for the prompt correlator 
and a pure local BOC(6,1) replica for the early and late correlators. Moreover, we have seen 
that this scheme provides with relatively low degradation in terms of code tracking noise 
compared to the optimal TMBOC tracking.  
 
The preceding derivations pursued to show that processing CBOC with a1 bit receiver is 
possible already today at the cost of some degradation. However, 2-bit receivers are already 
reality as shown in [P.G. Mattos, 2007] and an optimal processing with 2 bits would be thus 
preferred. This would additionally imply some superiority of CBOC with respect to the 
TMBOC implementation since no blanking would be needed any more. Indeed, blanking of 
the BOC(6,1) pulses to avoid correlation losses is equivalent to reducing the equivalent code 
length by a factor 29/33 of the total length (10230). It must be noted though that this supposes 
a minimum additional complexity. 

4.7.7 MBOC Tracking Sensitivity 
As shown in [O. Julien, 2005], we can distinguish two types of tracking sensitivity: 
 

• Code Tracking Sensitivity (DLL) 
• Carrier Tracking Sensitivity (PLL) 
 

We describe the MBOC properties regarding Code Tracking sensitivity in detail. 

4.7.7.1 Code Tracking Sensitivity 
Following the definition from [O. Julien, 2005], the tracking sensitivity can be defined as the 
minimum pre-correlation Signal to Noise Ratio (SNR) that is necessary to correctly track a 
desired signal. To correctly track, the post-correlation SNR should be as high as possible, 
what can be achieved by different means. Whatever the followed approach is, the main 
objective is always to increase the correlation gain, which is the ratio between the post-
correlation SNR and pre-correlation SNR. 
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According to [O. Julien, 2005], the post-correlation SNRpost is shown to be 
 

 ( )
( )0~
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post RN
RPTSNR I τε

=  (4.175) 

where 
• τε is the code delay 

• R~ is the correlation of the filtered incoming signal with the local replica 
• 0N  is the noise power density 

• P is the power of the desired signal 
• and IT  is the coherent integration time. 

On the other hand, the pre-correlation SNR adopts the following form: 
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where rβ  is the pre-correlation bandwidth.  
 
Therefore the correlation gain can be expressed as [R. Watson, 2005] 
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which can be further simplified to  
 rITG β2=  (4.178) 

as also shown in [O. Julien, 2005]. 

4.7.7.2 Effect of longer integrations on code tracking sensitivity 
 
If we take a closer look into the expressions above, we can clearly see that the most 
straightforward way of improving the tracking sensitivity is to increase the coherent 
integration IT  as much as possible. Unfortunately, this is not always possible due to the 

presence of data bits or secondary codes. Additionally, even though it were possible to 
integrate for long periods of time in the absence of data, other major problems coming from 
the code and phase delay variation during the integration would appear. 
 
The best known solution to overcome this problem is the use of standard non-coherent 
summations according to the following expression 
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where Ik and Qk correspond to the in-phase and quadrature non-coherent correlation inputs 
obtained over a coherent integration time TI. Moreover M is the number of values used for the 
non-coherent integration and Yst , as defined in (4.179), can be used to apply the Neumann-
Pearson lemma, as this lemma allows one to obtain a powerful test in the case of two simple 
alternative hypotheses 1H  and 2H . 
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By doing so, further correlation gain can be reached but due to the squaring in the expression 
above the process is subject to the so-called squaring losses that reduce the total gain           
[M.M. Chansarkar and L. Garin, 2000] and [G.D. MacGougan, 2003]. The squaring loss 
depends on the SNR before the non-coherent integration is realized and is higher the lower 
the SNR. Thus, long coherent integration is desirable before the non-coherent correlation is 
applied, in order to reach a good SNR before accumulating. Indeed, by non-coherent 
integrating we increase the power of our desired signal but since the noise is not eliminated as 
with the coherent integration, the gain in power is lower than the increase of noise. 
 
According to this scheme, depending on whether the desired signal is or is not present in the 
searching bin, the variable Zk will present a Ricean or Rayleigh distribution correspondingly.  
Indeed, it can be shown that if the desired signal is present, a Ricean distribution holds, which 
has the following probability density function [J.-A. Avila-Rodriguez et al., 2006b]: 
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where z is the test variable, A is the signal amplitude, 2σ the noise power and ( )0I  the zero-

order modified Bessel function of the first kind. According to this, if the output SNR is 
defined as: 
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where 
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the squaring loss can be obtained according to [G. Lachapelle, 2004] as follows: 

 ( ) ( )zL z
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as shown graphically in the following figure:  

 
Figure 4.57. Squaring Loss as a function of the SNR after coherent integration (before 

the non-coherent accumulation) 
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Reading the squaring losses from the figure above, the total processing gain with respect to 
the pre-correlation SNR can be easily calculated [J.-A. Avila-Rodriguez et al., 2006b]: 
 
 ( ) ( ) ( ) LIrIr SMTGTG −+=+= 1010NC10 log10log10log10 ββ  (4.184) 
where  

• G is the total processing gain (dB) with respect to the pre-correlation SNR, 
• NCG  is the non-coherent signal gain from the non-coherent integration alone, 
• rβ  is the pre-detection bandwidth, 

• TI is the total coherent integration time, 
• M is the number of non-coherent integrations, 
• and SL are the squaring losses that we defined above. 

 
The main drawback from the standard non-coherent integration comes from the fact that the 
noise is squared. Alternative expressions have been studied in the literature to sort out this 
problem as explained in [J.-A. Avila-Rodriguez et al., 2005c] and [G. Lachapelle, 2004]. One 
of those is the non-coherent differential correlation dc, also known as dot-product correlation, 
which is based on multiplying consecutive samples. One of its multiple expressions is:  
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where Ii and Qi denote again the output of the coherent integration process. Since now the 
input i is multiplied with the input i-1, better results are expected in the ideal case, given that 
the noise is uncorrelated in the time with itself. This is in fact what the simulations show. 
However, this algorithm presents a main drawback due to its high sensitivity to Doppler. 
 

In the previous lines we have briefly discussed the most straightforward way of increasing 
tracking sensitivity by increasing the total integration time. Additionally, there exist other 
ways of increasing the post-correlation SNR such as increasing the signal power at the 
satellite. Unfortunately, this would have extremely negative effects on interference with 
already existing terrestrial systems.  

4.7.7.3 Signal structure and DLL code tracking error 
 

Fortunately, there is another way of increasing the per se tracking sensitivity of a receiver, 
which is based on the signal structure of the desired signal. As we know, any DLL 
configuration is usually based on the combination of early and late correlators, so that the 
noise correlation of each output is also important to the resulting combined noise. Here plays 
the signal structure an outstanding role since the DLL tracking sensitivity will be affected by 
the selection of the signal waveform. In the next lines, we will show the theoretical tracking 
performance of MBOC and we will compare it with that of BOC(1,1) and the C/A Code. 
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If perfect normalization is assumed and the loop bandwidth is negligible compared with the 
bandwidth of the discriminator noise, [J.K. Holmes, 2000] and [O. Julien, 2005] have shown 
that the DLL estimated code delay tracking error variance with Gaussian noise yields: 
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where 
• disc refers to the type of discriminator, 
• 

discNS is the discriminator noise PSD,  

• BL is the loop bandwidth, 
• TI is the integration time, and 

• discK  is the loop gain associated to the discriminator, with 
0
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DK , where 

Ddisc is the discriminator function. 
 
Additionally, since the noise power spectral density that results from multiplying the 
incoming signal with the local replica is very wide band, we can approximate the expression 
above by the following [O. Julien, 2005]: 
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where 2
discDσ represents the discriminator output standard deviation without normalizing. This 

expression is very close to that of the PLL, with the difference that the effect of the 
normalization (through discK ) has been introduced here. This means in other words, that the 

DLL tracking error is directly dependent upon the discriminator resistance to noise, and thus 
on the signal structure. 
 
If perfect normalization is assumed again, no frequency uncertainty is considered, a front-end 
filter with ideal unity gain and receiver bandwidth rβ  and a code delay error remaining small, 

the DLL tracking error variance produced by use of an EMLP discriminator is shown to be 
[O. Julien, 2005] and [J.W. Betz and K.R. Kolodziejski, 2000]: 
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where rβ  is the receiver bandwidth and δ  the correlator spacing of the receiver.  
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Figure 4.58. Pseudorange Code Measurement Accuracy as a function of the 

discriminator spacing 
 

In the figure above, derived according to [J.W. Betz and K.R. Kolodziejski, 2000], a receiver 
bandwidth rβ  of 24 MHz, a loop bandwidth BL of 1 Hz, a C/N0 of 45 dB-Hz and a coherent 

integration time TI of 4 ms were used for BOC(1,1) and MBOC(6,1,11). For BPSK(1), 20 ms 
coherent integration were assumed. It is important to note that other alternative models have 
been derived to describe the behaviour of the code tracking noise for spacing values close to 
zero as shown in [T. Pany et al., 2002]. In addition, similar figures could also be obtained for 
different receiver discriminators. One final comment on the figure above is that MBOC has 
got less dangerous regions than CBCS* regarding the code spacing what was also an 
important advantage in favour of MBOC. 
 
Equally, as derived in [O. Julien, 2005], the DLL tracking error variance using a Dot Product 
(DP) discriminator presents the following expression: 
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which simplifies for the case that an infinite receiver bandwidth is assumed, yielding: 
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where α is the slope of the autocorrelation function around the main peak. The above derived 
expressions are in consonance with the results obtained in [L. Ries et al., 2003] and             
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[O. Julien, 2005] and confirm the fact that depending on the slope of the autocorrelation 
function of the signal waveform around the main peak, the tracking performance and 
achievable sensitivity will be better or worse, as we expected. Indeed, the steeper the 
autocorrelation function around the main peak is, the better the performance of the signal will 
be in terms of standard error. This result underlines the conclusions that we drew in chapter 
4.1.1 on how an optimized signal should be designed. 
 
Additionally, we can see from the expressions above that if an infinite front-end filter 
bandwidth is assumed, the squaring losses for the Dot Product (DP) discriminator do not 
depend on the signal structure any more, while for case of the Early Minus Late Power 
(EMLP) discriminator they do depend, being these larger the steeper the autocorrelation 
function around the main peak. 
 
If we take a look now at Figure 4.59 next, we can recognize that while the GPS C/A code 
presents a slope value of 1=α , for BOC(1,1) the slope around the main peak is of 3=α , 
resulting thus in an improvement of the tracking error standard deviation of 2.4 dB 
approximately (without accounting for the squaring effects).  

 
Figure 4.59. Autocorrelation Function of BPSK(1), BOC(1,1) and MBOC(6,1,1/11) 

 
The improvement is still more spectacular if we take a look at the MBOC autocorrelation 
function, where the average slope around the main peak, considering data and pilot together, 
is shown to be 53/11. This represents an improvement of the tracking performance of 
approximately 1.03 dB with respect to BOC(1,1) and of 3.41 dB with respect to BPSK(1). 
The slope of the main peak can be easily computed from (4.149). 
 
In fact, the slope of the autocorrelation function of BOC(6,1) takes a value of 23 around the 
main peak for infinite bandwidth. Equally, for BOC(1,1) the slope has a value 3 and the 
resulting slope of MBOC around the main peak will be 11531110311123 =⋅+⋅ . In general, 

the slope of the main peak of a BOC(x,1) is shown to be 14 −x  for the case of infinite 
bandwidth. It is important to note that the MBOC ACF shown above (CBOC implementation) 
corresponds to the mean ACF that results from averaging the data and pilot channel. In the 
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case that both data and pilot would alternate the phase of the BOC(6,1) signal every chip, a 
similar result could be obtained. For the TMBOC case, it would represent the case when 
BOC(6,1) is on both data and pilot with the same power on both. This is equivalent to saying 
that the cross-correlation between BOC(1,1) and BOC(6,1) does not show up in the figures 
above since they average to zero. 
 
We can see this more clearly if we recall the equations derived in chapter 4.6 for the CBOC 
implementation of MBOC. Indeed,  
 
 ( ) ( ) ( )τττ )1,6(BOC

2
2)1,1(BOC

2
1)'/('CBOC RkRkR +=−+  (4.192) 

 
so that the cross-term between the BOC(1,1) and BOC(6,1) does not appear in the expression, 
unlike for the ( )''CBOC + and ( )''CBOC − cases. 
 
If we take a look now into the performance of the data and pilot channels separately, we can 
see that for the case of GPS L1C, the TMBOC implementation of MBOC puts all the high 
frequency power on the pilot channel for tracking purposes. This results in a steeper slope of 
the autocorrelation function around the main peak. Recalling the GPS power split between 
data and pilot of 25/75 in L1C, the slope will have a value of 331793329333423 =⋅+⋅ , 

bringing thus an improvement for the pilot channel of approximately 3.67 dB with respect to 
BPSK(1) and of 1.28 dB with respect to BOC(1,1). On the other hand, the data channel will 
present a performance equivalent to that of BOC(1,1). 
 

Equivalently, its counterpart Galileo will have a performance 3.41 dB better than BPSK(1) 
and will be 1.03 dB better than BOC(1,1) since BOC(6,1) is placed on both data an pilot with 
a power split 50/50. This can also be seen if we take a look at the ACFs of the data and pilot 
channels separately.  
 
Finally, it is important to note that although MBOC(6,1,1/11) and BOC(1,1) present improved 
performance with respect to BPSK(1), the tracking region is smaller if we track the whole 
MBOC. In fact, the linear region around the main peak will be six times narrower. 

4.7.7.4 Signal structure and DLL sensitivity 
 
Now that we have calculated the code tracking error for MBOC and the rest of Open signals 
in E1, the next step is to obtain the necessary C/N0 to ensure a correct tracking. This will give 
us an idea of the potential DLL sensitivity of the different analyzed signal structures. 
 
Following [P. Ward, 1996] and [O. Julien, 2005] to study the PLL sensitivity, the rule of 
thumb we will use is to have a 3-sigma of the errors within the linear tracking region, which is 

in theory
2
δ

± . This can also be expressed as follows: 
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It must be noted that actually not all the errors are included in the expression above, and thus 
the multipath-induced tracking error must be studied separately. The reason for this is that the 
multipath error does not imply a tracking error in the sense that it would push the tracking 
loop away from its stability point as explained in detail in [O. Julien, 2005].  
 
Recalling now the equations for the tracking error of (4.190) and (4.191) above, we can see 
that (4.190) can be simplified for the EMLP as follows: 
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where 
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and 
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Equally for the Dot Product Discriminator, (4.191) can also be expressed as:  
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According to this, if we assume as mentioned above that 23 TH, δσ
τε ≤  for the case of the 

EMLP discriminator, the EMLP tracking threshold results to be: 
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and for the DP we have equally: 
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Using the expressions above, the tracking thresholds are computed in the next figures as a 
function of the coherent integration time and the DLL loop bandwidth. For the case of infinite 
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bandwidth the expressions for the standard delay error simplify considerably adopting A1, A2 
and A3 the following values: 

 
α

δ

2
2
11

1

⎟
⎠
⎞

⎜
⎝
⎛ −

=
ILL TBB

A  (4.201) 

 ( )
2

2
2

ITA δα−
=  (4.202) 

 ITA =3  (4.203) 
 
For comparison, a spacing of 0.1 chips (left) and a spacing of 0.2 chips (right) will be used. 

  
Figure 4.60. DLL Tracking Threshold of BPSK(1) for the DP Discriminator 

 

  
Figure 4.61. DLL Tracking Threshold of BOC(1,1) for the DP Discriminator 

 

  
Figure 4.62. DLL Tracking Threshold of MBOC(6,1,1/11) for the DP 
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As we can recognize, using a chip spacing of 0.1 or 0.2 chips does not really make a big 
difference. 
 
If we take a close look at the results shown in the figures above, we can see that MBOC 
presents the lowest tracking threshold and thus the best sensitivity, followed by BOC(1,1) and 
BPSK(1). It is also interesting to see that the results of the simulations show an even higher 
improvement of the C/N0 sensitivity of MBOC with respect to BOC(1,1) and BPSK(1) than 
that predicted in chapter 4.7.7.3. Indeed, while we saw there that MBOC was expected to 
have a tracking threshold 1 dB lower than that of BOC(1,1) and 3.4 dB better with respect to 
BPSK(1), the results of the figures above account for higher improvements. This could be due 
to filtering effects in the loop bandwidth and coherent integration that are not reflected in the 
analytical expressions for infinite bandwidth and that would positively favour MBOC against 
the other studied options. 
 
Another important comment is that for the simulation of MBOC, a slope of 53/11 was 
assumed around the main peak. This is actually the average of data and pilot as we saw above. 
If we concentrate on the pilot performance of GPS L1C, the slope will be steeper since it has 
all the BOC(6,1) contribution, and even better results are expected.  
 
In order to be able to compare the three signals more efficiently, the next figures show again 
the tracking thresholds for specific DLL configurations and chip spacing values. 
 

 
Figure 4.63. DLL tracking threshold for the DP Discriminator with a DLL loop 

bandwidth of 0.5 Hz and a chip spacing of δ =0.1 (left) and δ =0.2 (right) 
 
It is interesting to note that for a coherent integration time of 0.5 seconds and a spacing of   
0.1 chips, the improvement in sensitivity of BOC(1,1) and MBOC(6,1,1/11) with respect to 
BPSK(1) is even more spectacular. Indeed, BOC(1,1) performs approximately 4.6 dB better 
than BPSK(1), while MBOC outperforms BPSK(1) by 6.5 dB.  
 
If we repeat the figures above for a DLL loop bandwidth of 0.1 Hz, we can see that although 
the difference in sensitivity of the various signals reduces, for a coherent integration of        
0.5 seconds and a spacing of 0.1 chips, BOC(1,1) is still 4.2 dB better than BPSK(1) and 
MBOC(6,1,1/11) approximately 1.7 dB better than BOC(1,1). 
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Figure 4.64. DLL tracking threshold for the DP Discriminator with a DLL loop 

bandwidth of 0.1 Hz and a chip spacing of δ=0.1 (left) and δ =0.2 (right) 
 

Once the sensitivity performance of the different signals has been compared as a function of 
the DLL loop bandwidth and the spacing, the next step is to assess the behaviour of these 
signals as a function of the coherent integration time. 
 

  
Figure 4.65. DLL tracking threshold for the DP Discriminator with a coherent 
integration time of 20 ms and a chip spacing of δ =0.1 (left) and δ =0.2 (right) 

 
As we can see, for a DLL loop bandwidth of 0.5 Hz and a chip spacing of 0.1, BOC(1,1) has a 
sensitivity approximately 3.5 dB higher than that of BPSK(1) while MBOC(6,1,1/11) is better 
than BOC(1,1) by 1.4 dB. 
 

  
Figure 4.66. DLL tracking threshold for the DP Discriminator with a coherent 
integration time of 500 ms and a chip spacing of δ =0.1 (left) and δ =0.2 (right) 
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Furthermore, when the coherent integration time is increased to 500 ms, the sensitivity 
improvement of BOC(1,1) turns to be even clearer, resulting in a improvement of 
approximately 4.6 dB for BOC(1,1) with respect to BPSK(1) and of 1.9 dB for MBOC with 
respect to BOC(1,1). 
 
From the figures above we can clearly recognize that the tracking threshold decreases as the 
integration time increases and the DLL loop bandwidth decreases. We can also see that the 
obtained values seem to be very low compared to those obtained in real applications. 
However, it must be noted that ideal conditions were assumed in the simulations.  
 
The following tables summarize the results for a chip spacing of 0.1 chips with DP and EMLP 
discriminators. Similar tables could have also been derived for a spacing of 0.2 chips showing 
always the superiority of MBOC against BOC(1,1) and C/A Code. 
 

Table 4.6. DLL Tracking Threshold [dB-Hz] using the DP discriminator δ = 0.1 chips 
DLL Tracking Threshold [dB-Hz] 

DP discriminator 
Loop bandwidth [Hz] 

Coherent 
integration 
time [ms] 

Signal 0.1 0.25 0.5 1 

BPSK(1) 17.1896 19.6931 21.7531 23.9894 
BOC(1,1) 14.4201 16.7131 18.5537 20.5185 10 

MBOC(6,1,1/11) 13.2798 15.5096 17.2816 19.1553 
BPSK(1) 16.0525 18.7428 20.9791 23.4025 
BOC(1,1) 13.1316 15.5434 17.5082 19.6268 20 

MBOC(6,1,1/11) 11.9461 14.2713 16.1450 18.1493 
BPSK(1) 13.9894 17.2301 19.8594 22.5642 
BOC(1,1) 10.5185 13.3552 15.6970 18.1742 100 

MBOC(6,1,1/11) 9.1553 11.8369 14.0460 16.3974 
BPSK(1) 12.8697 16.4445 19.0688 21.3663 
BOC(1,1) 8.7073 11.9971 14.4897 16.7134 500 

MBOC(6,1,1/11) 7.0563 10.1846 12.5878 14.7558 
BPSK(1) 12.5642 16.0585 18.3560 19.5899 
BOC(1,1) 8.1742 11.4794 13.7031 14.9092 1000 

MBOC(6,1,1/11) 6.3974 9.5775 11.7455 12.9294 
 
Once we have computed the DLL tracking threshold for the case of infinite bandwidth, the 
next step should be to employ different assumptions on the receiver bandwidth. Different 
configurations have been analyzed delivering however similar results to those provided in 
previous lines. 
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The previous results show the ideal sensitivity values when all the potential sources of error 
are eliminated. As we know, increasing the total integration time does not only require extra 
complexity but implies other real challenges. Indeed, there are several problems inherent to 
longer coherent integration times, which are mainly related to the fact that the longer the 
coherent integration is, the more likely it will be that the signal conditions change during the 
integration period. Among others, the existence of frequency errors, non-ideal normalizations 
in the discriminator and the change of signal power during the integration would be the main 
sources of additional errors. They were not considered in the simulations above, since we are 
interested here in finding the theoretical limit, no matter how this is realized in reality. The 
same comment applies for the normalization of the discriminator. In fact, as explained in    
[O. Julien, 2005], the effect of normalization in the discriminator would be another factor to 
take into account for more realistic simulations.   

Table 4.7. DLL Tracking Threshold [dB-Hz] for an EMLP discriminator with δ = 0.1 
DLL Tracking Threshold [dB-Hz] EMLP discriminator 

with a spacing of 0.2 chips Loop bandwidth [Hz] 
Integration 
time [ms] 

Signal 0.1 0.25 0.5 1 

BPSK(1) 17.2781 19.7695 21.8173 24.0394 
BOC(1,1) 14.7318 17.0015 18.8170 20.7487 10 

MBOC(6,1,1/11) 13.8245 16.0236 17.7618 19.5899 
BPSK(1) 16.1323 18.8070 21.0291 23.4380 
BOC(1,1) 13.4266 15.8067 17.7384 19.8161 20 

MBOC(6,1,1/11) 12.4688 14.7515 16.5796 18.5248 
BPSK(1) 14.0394 17.2612 19.8788 22.5755 
BOC(1,1) 10.7487 13.5301 15.8260 18.2612 100 

MBOC(6,1,1/11) 9.5899 12.1906 14.3255 16.6008 
BPSK(1) 12.8891 16.4539 19.0742 21.3695 
BOC(1,1) 8.8363 12.0725 14.5367 16.7432 500 

MBOC(6,1,1/11) 7.3358 10.3650 12.7075 14.8350 
BPSK(1) 12.5755 16.0639 16.0639 19.5924 
BOC(1,1) 8.2612 11.5264 13.7329 14.9323 1000 

MBOC(6,1,1/11) 6.6008 9.6972 11.8247 12.9918  
The figures obtained above extend over very long coherent integrations. In fact, no data 
channel could in reality reach such values unless external sources were used, what shows 
clearly the superiority of the pilot channel for these purposes. Indeed, the introduction of pilot 
channels by Galileo and the modernized GPS can be considered as one of the main 
contributions to the navigation. Navigation and communication applications require of 
different needs and the use of pilot signals in GNSS in the future is clear proof of that.  
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4.7.8 MBOC Interference with other GNSSes  
 
Interoperability and compatibility have been hot issues in the design of Galileo since the 
beginning. Indeed, as more systems join the select club of countries with their own navigation 
system, the more important these concepts have become. As we have seen in chapter 2, the 
global system of systems that GPS, GLONASS, Galileo, the Japanese Quasi Zenith Satellite 
System (QZSS), the Chinese Compass and the Indian Regional Navigation Satellite System 
(IRNSS) might become one day makes this chapter of major interest. 
 
As defined in, [S. Wallner et al., 2005] and [S. Wallner et al., 2006] and, interoperability 
refers to the ability of civil U.S. and foreign space-based PNT services to be used together to 
provide better capabilities compared with those that would be achieved relying solely on one 
service or signal.  
 
In June 2004, the United States and the European Union signed a historical Agreement on the 
common use of shared frequencies, setting up a complete methodology to assess the 
GPS/Galileo radio frequency compatibility. More details on the theoretical framework can be 
found in Appendix M. Based on the mathematical ideas gathered in the work,                       
[S. Wallner et al., 2005] have carried out simulations with smooth spectra and with real codes. 
According to the results, the degradation from GPS on Galileo and of Galileo on GPS is lower 
than 0.25 dB proving thus that both systems can perfectly coexist. Moreover, the introduction 
of QZSS will lead to an increase of the intersystem interference in the visibility region of 
QZSS that will never be higher than 0.07 dB. We show next the degradation values for 
BOC(1,1) when the analytical model is employed. 
 

 
Figure 4.67. Maximum C/N0 Degradation due to Intersystem Interference caused by the 
GPS L1 Signals on Galileo [S. Wallner et al., 2005]. Minimum: 0.186 dB, mean 0.214 dB 

and maximum 0.243 dB 
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If the same model is applied to the MBOC baseline, we can see that this contributes to an 
easier compatibility since the interference reduces in all considered scenarios. In fact, for 
average scenarios the typical figures are far lower than the 0.25 dB mentioned above. 
 
The additional reduction of interference that MBOC provides is direct consequence of the 
better Spectral Separation Coefficients (SSC) of the signal. This confirms the great 
importance of this instrument to assess the degradation and overlapping among different 
signals. In the next figure we show the reduction of the maximum C/N0 degradation that 
resulted from changing the baseline from BOC(1,1) to the final MBOC(6,1,1/11). 
 

 
Figure 4.68. Reduction of the maximum C/N0 Degradation due to Intersystem 

Interference when MBOC is used instead of BOC(1,1) [S. Wallner et al., 2005]. 
Minimum: 0.016 dB, mean 0.018 dB and maximum 0.023 dB 

 
Equally, if we include the effect of QZSS, the following results are obtained. 

 
Figure 4.69. Maximum C/N0 Degradation due to Intersystem Interference caused by the 

GPS L1 and QZSS Signals on Galileo [S. Wallner et al., 2005]. Minimum: 0.187 dB, 
mean 0.247 dB and maximum 0.310 dB 
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The mathematical framework of the methodology described in Appendix M can be easily 
expanded to other bands as for example E5-L5 or to other SBAS systems as done in             
[S. Wallner et al., 2005] where the results with smooth spectra and real codes were compared. 
One final comment on the figures above is that the minimum power levels were used for the 
simulations resulting thus in significantly higher values of interference than those we will 
observe in a typical scenario. Nonetheless, it must be kept in mind that the purpose of an 
interference methodology is to assess compatibility in all the cases, and therefore looking at 
the worst cases is thus of major interest. 
 

4.8 Other Modulation Schemes 
4.8.1 AltBOC Modulation 
 
The Alternative BOC modulation (AltBOC) is conceptually very similar to the BOC 
modulation but with an important difference, since contrary to BOC, AltBOC provides high 
spectral isolation between the two upper main lobes and the two lower main lobes 
(considering the I and Q phases separately). This is accomplished by using different codes for 
each main lobe. We can clearly see this if we remember how single band processing works                   
[J. W. Betz, 1999]. Indeed, any BOC signal could be correlated with a BPSK replica having 
as chip rate the sub-carrier frequency of the original BOC signal. Of course the prize is the 
loss of power, but processing the upper or lower main lobe would make no difference since 
both are modulated with the same PRN code. On the other hand, if we would do the same 
with the AltBOC signal, we could still receive each main lobe separately since different codes 
would be needed. This is very interesting because AltBOC allows thus keeping the BOC 
implementation simple while permitting to differentiate the lobes [E. Rebeyrol et al., 2005]. 
Similar to the BOC modulation, for simplicity the AltBOC modulation is generally referred to 
as AltBOC(fs, fc) with 023.1⋅= mf s  and 023.1⋅= nfc so that commonly one only says 

AltBOC(m, n) for simplicity. 
 
The Alternative BOC modulation uses a complex sub-carrier so that the spectrum is not split 
up, as is the case of BOC, but simply shifted to higher or lower frequencies. We already 
analyzed in chapter 4.3.2 the problematic of using different conventions to represent the BOC 
signals, and indeed the same conclusions are also valid here for the AltBOC modulation. In 
order to avoid this, we will make use of the definition presented in [L. Ries et al., 2003] where 
the AltBOC signal is defined as the product of a PRN code sequence with a complex sub-
carrier. This convention covers even and odd ratios with no necessary modification. 
 
The AltBOC signal can be formed by two (only data signals) or four codes (data and pilot). If 
we have only two codes, the signal is composed of only data and can be expressed as follows: 
 
 ( ) ( )tcctccts sUsL

*
AltBOC )( +=  (4.204) 
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where cs(t) is the complex sub-carrier, complex sum of the rectangular cosine and sine-phased 
rectangular waveform. As we can see, this is the binary version of the complex exponential 
function and can be defined as follows 
 
  ( ) ( )[ ] ( )[ ] ( ) ( )tsjtctfjtftc rrsss +=+= ππ 2sinsign2cossign  (4.205) 
 
where cL and cU are the lower and upper codes respectively. As we can recognize from 
(4.204), what we are basically doing by multiplying the lower code and the upper code by the 
complex sub-carrier and its conjugate is approximately to shift the lower code to –fs and the 
upper code to +fs. In fact, this would be the case if we would multiply with the exponential 
function: 
 ( ) ( )tfjtf ss

tfj s πππ 2sin2cose 2 +=  (4.206) 
 
Although not exactly the same, the binary complex function is indeed a good approximation. 
Furthermore, AltBOC can be seen as a particular case of MCS with complex chip waveform. 
The following figure shows the spectrum (in units of Watts) of the complex sub-carrier and its 
conjugate. As we can see, most of the power is concentrated at the coefficients +1 and -1 and 
only the first 10 negative and positive coefficients are depicted in the figure (a repetition 
interval of 20 samples was assumed for the simulation). It is important to note that +1 and -1 
corresponds in general to +fs and – fs after normalizing by the repetition period of the 
exponential function. Moreover, we can recognize that the spectrum, indeed the square of the 
Fourier coefficients 2

kc , is normalized to integrate to 2 W of power. 
 

 
Figure 4.70. Spectrum 2

kc  [W] of the complex sub-carrier 
 
If we add now the pilot channel to the definition, the general expression of the AltBOC 
modulation will adopt the following form: 
 

 ( ) ( ) ( ) ( )tccjctccjcts s
P
U

D
Us

P
L

D
L

*
AltBOC )( +++=  (4.207) 

 
where D

Lc  is the data lower code, P
Lc  the pilot lower code, D

Uc  the data upper code and P
Uc  the 

pilot upper code. 
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The signal defined above corresponds to the general case of the AltBOC modulation. The 
only problem is that by introducing a complex sub-carrier and complex codes for the data and 
pilot channels, the composite signal looses the constant envelope that the original BOC 
modulation possessed. As we have seen when we analyzed the MBOC modulation, having a 
constant envelope is a must since otherwise the distortion caused by the High Power 
Amplifier (HPA) in the satellite would not be tolerable. 
 
In order to solve this problem, a constant envelope modified version of the AltBOC 
modulation was presented in [J. Godet, 2001]. The idea behind is to bring the phase points of 
the constellation back to the circle so that the amplitude of the envelope remains constant. 
This is achieved by introducing a new signal called Inter-Modulation (IM) product whose 
new terms do not contain any usable information. The modified constant envelope AltBOC       
[M. Soellner et al., 2003] and [E. D. Kaplan and C. Hegarty, 2006], yields:  
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where sT  is the period of the sub-carrier. Moreover, 
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and the following data and pilot sub-carriers 
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As we can see, while in our original conception the complex sub-carrier was composed of a 
cosine-phased rectangular signal for the real part and a sine-phased rectangular signal for the 
complex part, now both the real and complex part are a mixture of both sine and cosine 
delayed and early rectangular waveforms. 
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Figure 4.71. Shapes of data and pilot sub-carriers 

 
Another interesting observation is that if we take a look at the phase plots of the constant 
envelope AltBOC signal, we can clearly recognize that it is a classical 8-PSK modulation 
with a non-constant allocation of the 8 phase-states.  
 
As shown in Appendix I, the power spectral density for the modified even AltBOC 
modulation with constant envelope is shown to be: 
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  (4.212) 
while for the odd case, we have: 
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  (4.213) 
Finally, it is important to underline that the AltBOC modulation in its most general form does 
not have a constant envelope as shown in Appendix I. As shown in chapter 7.7, due to the 
need to have a constant envelope, slight changes were made in the multiplexing scheme and 
the result was the modified AltBOC modulation that we have shown in the previous lines. 
 
AltBOC can not only be understood as a signal waveform but also as a multiplexing scheme 
as those that we will see in chapter 7. The same comment is indeed also valid for the BOC 
modulation that we studied in previous chapters. 
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4.8.2 Square-Root Raised Cosine Signals (SRRC) 
 
One of the main drawbacks of all the signal waveforms studied so far is that although they 
can very well control the power emissions within the bandwidth of interest, they send 
relatively high amounts of power out of this one. A practical way of reducing the side-lobes 
of the spectrum of the navigation signals could be to use a Raised Cosine Filter (RCF) since 
this has a limited bandwidth. The Raised Cosine Filter is a particular case of Nyquist filter 
and is defined in the frequency domain as follows 
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where 0WW −  is defined as the excess bandwidth and indicates how much the spectrum of 
the Raised Cosine spills over a given bandwidth 0W . As we know, Nyquist pulses (filters) are 

pulses that result in no Inter Symbol Interference (ISI) at the sampling time. The Nyquist 
pulse-shaping criterion or Nyquist condition for zero ISI is fulfilled if 
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Indeed, this is a necessary and sufficient condition which can also be expressed as follows: 
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where ( )fX is the Fourier transform of a generic signal x(t) and cT  the time period of the 

pulse. The Raised Cosine filter that we described some lines above has an equivalent 
representation in the time domain. This is shown to be: 
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Another way of expressing the excess bandwidth is by means of the roll-off factor, which is 
defined as follows: 
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The roll-off factor indicates how much power the Raised Cosine emits above a given 
bandwidth W0. Therefore 10 ≤≤ α . This can be clearly seen in the following figure for 
different roll-off factors: 
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Figure 4.72. Raised Cosine Filter for different roll-off factors 

 
We show next the time representation )(RC th  of the Raised Cosine pulses of the previous 

figure for different roll-off factors: 
 

 
Figure 4.73. Raised Cosine pulses for different roll-off factors  

As we can recognize, the raised cosine pulse waveform with the optimum spectrum 
occupation ( 0=α ) is the pulse that also presents more oscillations in the time domain, what 
is a non desired characteristic in principle. In fact, low values of α  allow for a more efficient 
use of the spectrum but increase the ISI. Moreover, we have to keep in mind that none of the 
filters of the figures above could correspond to a real implementation since they are not causal 
as ( ) 0≠th  for 0<t . To avoid this, a minimum delay should be added for the pulse to gain 

causality. Indeed, real implementations already add a delay of some chips from the moment 
the signal enters the filter and leaves it. This is observed in the Raised Cosine filters too. 
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It is important to note that a band-limited Nyquist pulse cannot avoid by itself the ISI unless 
the channel is ideal. This means that the RC pulses have got to be implemented together with 
an equalizer at the receiver for the correct identification of the symbols at the sampling time. 
We can express this in the following expression: 
 )()()()()( ERXCTXRC fHfHfHfHfH =  (4.220) 
 
where )(TX fH  is the transmission filter, )(C fH is the channel frequency response, )(RX fH  
is the receiver filter and )(E fH is the equalizer. The usual approach is to design the 

transmitter and receiver filters such that 
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and leave the equalizer filter to take care of the imperfections and ISI caused by the channel: 
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According to this, the square-root raised cosine (SRRC) pulses are Nyquist pulses of finite 
bandwidth with power spectral density given by: 
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Moreover, it can be shown that  
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where we can recognize that the bilateral bandwidth is finite and of value ( ) cTα+1 . In the 

same manner, the time representation of such SRRC pulses is shown to adopt the following 
form [E.A. Lee and D.B. Messerschmitt, 1994]: 
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which is indeed a pulse shape with infinite support as we expected, since bandlimited signals 
extend to infinity in the time-domain. The interesting aspect of this waveform is that it 
satisfies the Nyquist condition for zero Inter-Symbol interference (ISI), so that the bit-error 



GNSS Signal Structure 

 

181 

probability is identical to that of BPSK with Non Return to Zero (NRZ) pulses if the receiver 
samples at zero-ISI locations. 
 
In spite of its interesting properties, the Raised Cosine Signals proposed by                       
[R. De Gaudenzi et al., 2000] for Galileo presented a series of major problems that made it 
not recommendable for satellite navigation applications: 
 

• One of the most important disadvantages is the fact that the RC signal is handicapped 
from the beginning regarding its potential improvement of performance. We have seen 
that the SRRC modulation makes a very efficient use of the assigned spectrum. This 
remains true. However, the signal is by definition band-limited to a very narrow 
bandwidth so that the performance could never be as good as that of other signals 
sharing the band with wider bandwidths. A SRRC would have been maybe the best for 
a narrowband receiver of around 3 MHz as we commented in chapter 3 but Galileo 
would have lost the race in competitiveness as soon as other signals would have made 
use of wider bandwidths.  

• Another consequence of the fact that the SRRC modulation is bandlimited is that its 
auto-correlation function has a very rounded peak. As we have seen at the beginning 
of this chapter, the quality of a signal improves as the slope of the ACF becomes 
steeper around the main peak. In the case of the Raised Cosine Signal no matter how 
wide the receiver bandwidth would be, we would not be able to do anything to 
improve the quality of our measurements. If there is something that technology shows 
us permanently, that is the fact that we cannot design systems thinking of today’s 
limitations but we must challenge our potentials. 

• As shown in [R. De Gaudenzi et al., 2000] the receiver complexity could have profited 
from simplified receivers with lower complexity. While this might be true, an inherent 
degradation would be introduced in the system per definition since the replica signals 
in the receivers would be band-limited and thus handicapped. Furthermore, techniques 
like the narrow correlator would have brought no improvement due to the band-
limited property of the SRRC pulse. 

• The Raised Cosine solutions that were proposed in [R. De Gaudenzi et al., 2000] 
presented another very serious inherent problem: namely a worse antijamming 
protection compared with other signals, due to its spectrum concentrated in a 
relatively narrow bandwidth. As we can see in Appendix M and in chapter 4.7.8, the 
more spread the frequency components of a signal are, the better the resistance against 
narrowband and wideband interference will be. 

• Finally, the original proposal of [R. De Gaudenzi et al., 2000] did not contemplate the 
possibility of having a military signal as the PRS. Such a signal would need wide 
bandwidths per definition and using SRRC would have also implied important risks 
due to its weakness against all sources of interference. 
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4.8.3 Prolate Spheroidal Wave Functions (PSWF) 
 
Another family of waveforms that have gained in interest in the past months is that of the so-
called Prolate Spheroidal Wave Functions (PSWF). The PSWF family offers an infinite base 
of orthogonal functions ( ) ( ) ( ){ },...,...,, 21 ttt iψψψ  with associated Eigenvalues { },...,...,, 21 iλλλ  

that are real and positive. Similar to the SRRC signal that we saw in the previous chapter, 
they also show ideal bandlimiting within [ ]2,2 rr ββ− , making the PSWF signals very 

interesting to fulfil stringent demands on band-limitation.  
 
As the name well indicates, the Prolate Spheroidal Wave Functions are the result of solving 
the Helmholtz equation or wave equation in Prolate Spheroidal coordinates. This 
electromagnetic identity is shown to adopt the following form: 
 
 0),,(),,( 2 =+Δ zyxkzyx ϕϕ  (4.226) 
 
where k defines the wave number in prolate spheroidal coordinates. The Prolate Spheroidal 
coordinates can be expressed in Cartesian coordinates according to the following 
transformation [M. Abramovitz and I.A. Stegun, 1965]: 
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with  
 πφξη 20,1,11 ≤≤∞≤≤≤≤−  (4.228) 

where: 
• f  is the semifocal distance, 
• η  is the angular coordinate, 
• ξ  is the radial coordinate, and 
• φ  is the azimuthal coordinate. 

 
Furthermore, the Laplace operator in the new coordinate system adopts the following form: 
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Thus the scalar wave equation can be written in prolate spheroidal coordinates as follows: 
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being 2fkc =  per definition. As it can be shown in [M. Abramovitz and I.A. Stegun, 1965], 

this partial differential equation of second order can be solved by variables separation as 
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follows: 
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where ( )ξ,cRmn  represents the radial part and ( )ξ,cSmn  depicts the angular component of the 

solution. According to this, the radial solution is shown to comply with the following equation 
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while the angular part needs to be a solution of the differential equation shown next 
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In the radial as well as in the angular differential equations shown above, the eigenvalues are 
denoted as ( )cmnλ . In addition, since both differential equations are identical except for their 

respective definition supports, a transformation from the radial to the angular expression is 
possible without great difficulties. Furthermore, if we particularize the previous equations for 

0=c , both the radial and the angular differential equations are shown to result in the same 
expression. The resulting homogeneous equation presents as solutions the so-called Legendre 
Functions, which can be expressed as follows: 
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being ( )zP μ

ν  the Legendre function of degree ν  and order μ . In analogy to other similar 

problems that can be found in the literature, the homogeneous solutions can be used to solve 
the radial and angular differential equations. In fact, the particular prolate angular solution 

( )η,cSmn  can be expressed as an infinite series of Legendre functions in the following way: 
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where the symbol * indicates that the index r of the summation is even if n-m is even and that  
the index r is odd if n-m is odd. If we further introduce the homogeneous solution of the 
prolate angular function ( )η,cSmn  into the general differential equation we obtain the 

following recursive relationship [S. Wallner 2007]: 
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with 
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If we apply now the following recurrence relation, valid for all Legendre functions in general: 
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and rewrite it in the following matrix form [S. Wallner 2007]: 
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we can recognize that the problem to solve is in fact the well known Eigenvalue equation with 
Eigenvector ( )cd mn  and associated Eigenvalue mnλ . According to this, the general prolate 

angular function is shown to adopt the following form: 
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where μ
νP  refers to the Legendre function as defined previously. A very interesting property 

of these functions is that they have a limited domain, i.e. →− ]1,1[:μ
νP IR and so do also have 

all Prolate Spheroidal Wave Functions. It is important to say that this property cannot only be 
used in the frequency domain but also in the time domain, what could also be of interest in 
some applications. That is to say, that the Prolate Spheroidal Wave Functions could be used to 
either define the Power Spectral Density directly or the time chips. 
 
Another way of expressing the Prolate Spheroidal Wave Functions is as solution of the 
following integral equation: 
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where cT  represents the chip duration and rβ  the double-sided bandwidth. An analytical 

expression is not easy to derive but [F. Antreich and J. A. Nossek, 2007] have shown that 
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interesting signal waveforms can be derived using only a few vectors of the functions base. It 
must be noted though that the proposed solutions do not take into account important 
constraints related to spectrum compatibility and implementation aspects. 
 
It is interesting to note that the previous integral equation (4.242) can also be interpreted as a 
Karhunen-Loève transform. The Karhunen-Loève is a representation of a stochastic process 
by means of a linear combination of orthogonal functions on a finite support of definition. 
The coefficients are random variables and the expansion basis takes a form that depends on 
the specific problem. For example, for the Wiener process the basis functions are sinusoidals. 
If we take a close look at equation (4.242), we can recognize the similarity of: 
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to the Dirichlet kernel. This kernel can be further expressed in terms of Legendre 
prolynomials which are in fact the basis functions of the Prolate Spheroidal Wave Functions 
as we saw in previous pages. It is also interesting to see that the integral equation above 
implicitly describes the problem of maximizing the power of a signal in the frequency domain 
when this signal is also highly localized in time. As a matter of fact, the continuous PSWFs 
are highly confined simultaneously in time and frequency, what makes them also of great 
interest for modeling periodic phenomena if they are used as wavelet functions. 
 
Related to the discussion of previous chapters on signals with good spectral confinement, it is 
of interest to note that while the Fourier and Shannon bandwidths are normally used to 
estimate what the effective bandwidth of a process is, also other figures such as the Campbell 
bandwidth equally provide valuable information. The Campbell bandwidth indicates the 
process spectral entropy and is defined as follows: 
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4.8.4 Faded Harmonics (FH) Interplex Modulation 
 
Faded Harmonics (FH) is an Interplex modulation that uses non-binary signals to better 
control the spectral emissions of the open signals of Galileo. For more details on Interplex 
refer to chapter 7.7. Using tertiary modulation waveforms is a way of achieving this objective. 
Tertiary Offset carrier signals have been introduced in [A.R. Pratt and J.I.R. Owen, 2003] and 
are conceptually equivalent to the TCS and TOC modulations that we described in chapter 
4.5. The main driver of the work presented in [A.R. Pratt and J.I.R. Owen, 2003] was to find 
an alternative signal to the original BOC(2,2) baseline of 2002. that would overlay the 
military signals less while it should perform as good as the reference BOC(2.2) signal. The 
proposed solution received the name of 8-PSK BOC(2,2) or BOC8(2,2). The idea behind, as 
we already pointed out in chapters 4.5.1 and  4.5.2, is to suppress specific secondary lobes by 
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zeroing one pair of harmonics in the sub-carrier spectra. This can be easily accomplished by 
building up multilevel signals which can be expressed as the sum of other elementary sub-
carriers. Indeed, as shown in Appendix F, by properly selecting the parameters lρ  and sρ  we 

could completely suppress any specific secondary lobe.  
 
We can generalize the results that we obtained in chapter 4.5.4 if we realize that any BOC 
sub-carrier is indeed a periodic signal and can thus be expressed as a Fourier series: 
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for k odd. Furthermore, since kkk jbcc =− * , if we define the Fourier sum between 1 and 

infinity, the odd coefficients in sine will adopt the following form: 
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while all the cosine terms are zero. 
 
If we simply subtract now to the BOC signal above a sub-carrier of frequency and amplitude 
equal to that of the harmonic we want to suppress, for example the nth harmonic, that 
harmonic of the sub-carrier will be eliminated. This means, a faded harmonic sub-carrier that 
has suppressed the nth harmonic would ideally look as follows: 
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Such a signal would not be practical since it has an infinite number of levels due to the sine 
term on the right. Therefore a rectangular approximation to the sine function is more 
appropriate and instead of subtracting a sinusoid we will subtract another BOC signal with 
frequency and amplitude equal to that of the lobe we want to annulate as shown next: 
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This is shown graphically next. In the example, we have taken BOC(1,1) and we have 
suppressed the 9th and 11th harmonic respectively. These harmonics were selected given their 
proximity to the M-Code. As we can clearly recognize, the spectrum is very close to that of 
the original BOC(1,1) with the only difference that those components of the corresponding 
faded harmonics are lower. As one can expect, this will clearly contribute to reaching a better 
spectral separation with the rest of signals around. Moreover, this effect is more important the 
higher the sub-carrier frequency we want to cancel in the original spectrum. 
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Figure 4.74. Harmonic fading of BOC(1,1) using a 4-level sub-carrier 

 
This is indeed the idea behind the faded-harmonics modulation. As we can also recognize 
from the expression above, the number of harmonics or lobes that are suppressed is directly 
related to the number of levels of the resulting sub-carrier. For exemplification, we show next 
the power spectral density that an even sine-phased BOC signal with suppressed lobes would 
have if only one harmonic is eliminated. Generalizing the result to more signals and with 
more cancelled lobes is trivial. 
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This can also be expressed as follows: 
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where the super index n  indicates that we have suppressed the n–th lobe. It must be noted that 
the lobe n to suppress must be a multiple of the sub-carrier fs of the signal. Another interesting 
comment is that not only the lobe we want to suppress is eliminated but also other secondary 
lobes or harmonics are slightly attenuated. Nonetheless this effect is practically negligible. 
 
As we mentioned above, we can generalize this procedure to more lobes and harmonics to 
suppress. The only problem is that the number of levels grows very quickly as more 
harmonics are eliminated. As we can imagine, this could make the implementation more 
difficult in the end. A solution to this problem has been proposed in chapter 4.5.5 and by     
[L. Ries and J.-L. Issler 2003] based on the principle that completely removing one lobe or a 
few of them is sometimes not absolutely necessary since attenuating them by some dBs might 
be enough. Indeed, if we work with four level signals but do not constrain ourselves to 
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dividing the code chip waveform in equal length segments as done in chapter 4.5, we gain a 
degree of freedom that compensates that one that we lose by fixing the number of possible 
amplitude levels to only four. Let us imagine a four-level signal as depicted below: 

 
Figure 4.75. Four-Level Waveform to realize the fading effect  

 
In spite of being the segments in principle of any arbitrary length, we create however a 
reference framework by dividing the chip in n subchips. To further provide flexibility in the 
location, the parameters 1ρ  and 2ρ  are then introduced.  
 
As we can recognize, the location of the different pieces of the chip waveform is not at 
positions Tc/n but could adopt any imaginable place determined by 1ρ  and 2ρ . To account for 

changes in sign in the general Coded Symbol (CS) sequence, we will further use the general 
notation of chapter 4.2 and define the signal as follows within a sub-chip sc(t). In fact, we can 
define our signal for the general case of faded-harmonic CS of four levels as follows: 
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As we can recognize in the expression above, the code symbols start with a delay nTc  when 

1=i . Thus, an extra shift of half a sub-chip to the left is necessary if we define ( )tp nTc /  
between nTc 2−  and nTc 2 . As we know this is equivalent to multiplying by ( )nTj c 2exp ω . 
Moreover, if we want our time definition to start at zero and define ( )tp nTc /  between 0 and 

nTc , a shift of one whole sub-chip nTc  to the left would be necessary, what in the 
frequency domain is equivalent to multiplying by the factor ( )nTj cωexp . No matter how we 
do, the final result is the factor ( )nTj cωexp  that we have seen in the Appendix. Using the 

symmetric definition around 0, we have: 
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and the Fourier Transform of this generic faded-harmonic CS is thus shown to be 
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where  
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which can be further developed to the following expression 
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or in the frequency domain: 
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Therefore, the power spectral density of any Coded Symbol of four levels as defined above, 
would present the following form 
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or equivalently, 
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where the modulating term on the right is common to the MCS definition and therefore all the 
results that we obtained in the previous chapters can be used here too. Finally, it is interesting 
to see that playing with the parameters ρ1, ρ2 and ϕ, we can select the lobe we want to 
suppress and how much we want to attenuate it. Furthermore, it is trivial to see that this 
technique can be further generalized to more lobes if new parameters are introduced, 
according to the previously discussed scheme. 
 
Regarding the multiplex, it is important to note that, as we will see in chapter 7, we cannot 
apply the Interplex modulation directly since such a signal is not binary and slight changes in 
the multiplex scheme are thus required. Nonetheless, the theory that we will derive in chapter 
7.7.10 on the Modified Interplex could also be applied here too. To show a potential 
application of this modulation, next figure compares different solutions to implement CBCS 
using Faded Harmonics and the Modified Interplex. For more details on Interplex and the 
Modified Interplex, refer to chapter 7.7.9. 
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In-Phase Component 
Code A 1 -1 -1 -1 1 -1 
Code B 1 -1 1 -1 -1 1 

 

 
Figure 4.76. Pseudo-random multiplexing of BCS and BOC using Interplex, Faded 

Harmonics Interplex and modified Interplex for CBCS 
 
As shown in [G.W. Hein et al., 2005], the implementation of any CBCS signal, and in 
particular of CBOC, could have also been performed using the Faded Harmonics (FH) 
Interplex scheme since this one also relies on the sum of two 4-level spread-spectrum signals. 
However, the analysis of FH-Interplex for CBCS put in evidence two important drawbacks: 
 

• The relative power of the Inter-Modulation product is increased, resulting in a loss of 
efficiency 

• The modulation results in significant distortions on the quadrature signals, for example 
the PRS signal. These distortions may induce unacceptable losses on the receiver, as 
well as an increased spreading of the PRS signal in adjacent frequency bands. 
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5. Spectral Separation Coefficient (SSC) 
5.1 Definition 
 
The Spectral Separation Coefficients, or SSCs for short, are a very powerful figure to indicate 
and measure the degree of interference that a signal suffers due to other signals sharing the 
band. This degradation is evaluated in terms of reduction of the Signal to Noise plus 
Interference Ratio (SNIR) of the desired signal, measured at the output of a receiver’s 
correlator that uses an ideal matched filter to receive the navigation signals as described by 
[J.-L. Issler et al., 2003], [J.W. Betz, 2001b] and [A.R. Pratt and J.I.R. Owen, 2003a]. Indeed, 
the methodology to compute the SSCs relies on the idea of measuring the power of the 
desired signal and its reduction due to all the interfering signals, at the correlator’s output. 
This can graphically be shown in the following scheme 

 
Figure 5.1. SSC Correlator Model for the Spectral Separation Coefficients calculations 

 
where sd (t) refers to the desired signal, si (t) to the interfering signal and s*

d (t) is the matched 
spreading waveform of the desired signal. Moreover, the sum module represents the 
integration and dump function. This is the general model that we can find in the literature  
[J.J. Spilker, 1997b]. It is also important to note that this model implies that the receiver does 
not make use of any cancellation technique.  
 
Another interesting interpretation of the SSC is to see it as the mean power of the 
crosscorrelation function between the desired and the interfering signal                       
[J.-L. Issler et al., 2003]. For this reason, also expressions for the crosscorrelation function in 
the frequency and time domain are derived in the next lines. 
 
As shown in [A.R. Pratt and J.I.R. Owen, 2003a], the SSC provides a measure of the noise 
power output by a receiver when certain signals are incident at its input. As one can imagine, 
the better the isolation of a signal with the rest of signals in the band, the lower will be the 
equivalent noise caused by them, resulting thus the concept of cross power spectral density 
here of special interest. 
 
If we take a closer look at Figure 5.1, it is possible to see that the power spectrum at the 
output of the correlator of a filter ( )ωH  matched to the desired signal – being thus ( )ωH  
equal to the conjugate of the desired signal spectrum ( )ω*

dS  – can be expressed as follows: 



Spectral Separation Coefficients  

192 

 
 ( ) ( ) ( ){ } ( ) ( ) ( ){ } ( )ωωωωωωω *

dddiiddiio SSPSPHSPSPS +=+=  (5.1) 
 
where Pi refers to the power level of the interfering signal and Pd that of the desired signal. 
Moreover, in a general case a protection filter can also be included in the expression as shown 
in [A.R. Pratt and J.I.R. Owen, 2003a]. It is also important to see that the spectral definition 
above encompasses both the spreading codes as well as the spreading waveform of the desired 
and interfering signals, being thus valid for the most general case.  
 
The power spectral density can thus be expressed as follows: 
 
 ( ) ( ) ( ) ( ) ( ) ( ){ }{ } ( ) 2*222 Re2 ωωωωωωω ddididdiioo SSSPPSPSPSP ++==   (5.2) 
 
what can be further simplified yielding: 
 
 ( ) ( ) ( ) ( ){ } ( ) ( ) ( )[ ] ( ) 22222 ωωωωωωωω dddiidddiioo SGPGPSSPSPSP +=+==   (5.3) 
 
if we assume that the interfering signal and the desired signal are uncorrelated, averaging thus 
the cross-spectrum term to zero. This can be achieved either by means of the signal structure 
or the code structure being thus this assumption also true even if we work with signals of the 
same family, as long as all the codes are ideally orthogonal. As we can imagine, this is a very 
strong assumption since especially for the case of intra-system interference of signals with 
short codes this approximation could lead to wrong results as we will show in chapter 6.2.2. 
Nonetheless, we will still consider it as valid in this chapter.  
 
Moreover, it is important to note that the functions Gi(ω) and Gd(ω) are both normalized 
Power Spectral Densities as those defined in chapter 4.1.1. Thus, the total power at the output 
of the correlator will be the integral of the output spectrum, expressed as follows: 
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where we can recognize the spectral separation coefficient ddκ of the desired signal with itself 
and between the desired signal and the interfering signal idκ . These are defined as: 

 
( )

( ) ( )∫

∫
∞

∞−

∞

∞−

=

=

ffGfG

ffG

diid

ddd

d

d2

κ

κ
  (5.5) 

where the receiver and transmitter are assumed to have infinite bandwidth. If this is not the 
case, either the integration limits require adjustment or corrections to the SSCs must be made 
to include the effects of the finite bandwidths of receiver and transmitter, as we saw in (4.13).  
 
We can obtain the same expressions reasoning in a different way. If we assume that the 
undesired signal is stochastic and Gaussian with a normalized power spectral density ( )fGi  

and that the desired signal can also be characterized adequately as an independent stochastic 
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process with normalized ( )fGd , then the multiplier output will be Gaussian and it is shown to 

be the convolution of both power spectral densities, according to: 
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such that after the Integrate and Dump (I&D) operator we will have: 
 
 ( ) ( ) 2fHTfS IDIm  (5.7) 
 
where ( ) ( )IID TffH πsinc=  being IT  the coherent integration time. 
 
According to this, if the interference is Additive White Gaussian Noise (AWGN) then the 
I&D output will be ( ) 2

0 fHTN IDI  and thus the correlation sum variance will adopt the 
value ITN0 . On the other hand, for the interesting case of non-white interference the output is 

shown to be: 
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For the case that the multiplier output Power Spectral Density is sufficiently flat across the 
I&D filter, that is for very long pseudorandom noise codes, the computation of the spectral 
separation is shown to approximate to the following expression: 
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where ⊗  represents the convolution operator. Moreover, if we include the effect of the 
filtering at the receiver, the simplified SSC will adopt the following form: 
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where 
• ( )fGi  stands for the normalized power spectral density of the aggregate interference, 
• ( )fGd  is the normalized power spectral density of the desired signal, and 
• ( )fHRX  is the receiver transfer function  

 
This equation is not applicable when the desired signal and aggregate interference are       
line-like. In the next chapters we will work with this approximation but in chapter 6 we will 
analyze the particular case of the C/A code where the short integrations make this 
approximation incorrect. 
 
The inner product is not generally applicable when desired signals and interference have   
line-like spectra. Therefore, for each particular problem we have to see if the multiplier output 
PSD is smooth enough to justify the approximation above. 
 
Furthermore, if we normalize the power spectral densities of the desired and interfering 
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signals as defined in (4.13), the SSC adopts the following form for the case of an infinite 
integration time, as a function of Doppler: 
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where fΔ indicates the Doppler difference at receiver level between the desired signal and the 

interfering signal. In addition, if an ideal filter of amplitude 1 is considered, we can express 
(5.11) also as follows: 
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Once we have derived a general expression for the Spectral Separation Coefficient and found 
useful approximations, we further analyze the cross power spectra terms that we have already 
anticipated in chapter 4. As we have seen in (5.4), there is a fundamental element of the SSC 
that is defined as: 
 ( ) ( ) ( )fGfGfG diid =  (5.13) 
 
This expression is of great interest since it will help us in finding the main interactions 
between the interfering spectrum and the desired signal spectrum by simply observing its 
behaviour in the frequency domain. Moreover, if we expand (5.13) expressing the power 
spectral density of each of the signals in terms of their autocorrelation, we see that: 
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and therefore 
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which is shown [A.R. Pratt and J.I.R. Owen, 2003a] to reduce to the simplified form: 
 
 ( ) ( ) ( ) ( ) ( )ηητηη

dididi ssssss ℜ⊗ℜ=−ℜℜ=ℜ ∫
∞

∞− 111, dττ  (5.16) 
 
In other words, the autocorrelation function of the cross power is the convolution of the 
interfering and desired signals. In addition, applying the Weiner-Kinchine spectrum theorem 
as shown in [A.R. Pratt and J.I.R. Owen, 2003a], yields: 
 
 ( ) ( )∫

∞

∞−
=ℜ ffGη fηj

idss di
de 2

,
π  (5.17) 

 
Using this expression, we can calculate the cross SSC, namely idκ , in the same manner: 
 
 ( ) ( ) ( )∫

∞

∞−
−ℜℜ=ℜ= 111, d0 τ

didi ssssid ττκ  (5.18) 
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5.1.1 SSC between two QPSK signals 
 
The spectral separation coefficient between two signals that we have derived above applies 
for the case that both signals are in-phase. Although this is a common case, many of the 
GNSSes today have also navigation signals that are in quadrature with each other, sharing the 
same frequency. It is thus necessary to find an expression for this important case too. 
Fortunately, the results that were obtained in the previous chapter can be reutilized here. 
Indeed, as shown in Appendix N and by [J.-L. Issler et al., 2003], the SSC between two 
QPSK navigation signals sharing the same frequency can be expressed as the sum of 4 SSCs 
of two BPSK elementary signal components, according to the expression below: 
 
 ( ) ( ) ( ) ( ) ( )D

Q
P
I

P
Q

D
I

P
Q

P
I

D
Q

D
IQI ssssssssss ,SSC,SSC,SSC,SSC,SSC +++=  (5.19) 

where: 
 

• ( )QI ss ,SSC is the SSC between the interfering in-phase signal sI and the quadrature 

signal sQ. 
• ( )D

Q
D
I ss ,SSC  is the SSC between the data component of the interfering signal and the 

data component of the quadrature signal. 
• ( )P

Q
P
I ss ,SSC  is the SSC between the pilot component of the interfering signal and the 

pilot component of the quadrature signal. 
• ( )P

Q
D
I ss ,SSC is the SSC between the data component of the interfering signal and the 

pilot component of the quadrature signal. 
• ( )D

Q
P
I ss ,SSC is the SSC between the pilot component of the interfering signal and the 

data component of the quadrature signal. 
 

5.2 Derivation of analytical expressions 
 
In the next lines analytical expressions for the SSC with an infinite period of integration, and 
thus no Doppler error, will be presented. Moreover, we will further assume ideal code 
properties. Later in chapter 6 we will revisit our assumptions and we will assess the effect of 
real codes on the measured SSC. Equally, the impact of the data on the spectral fine structure 
of the navigation signals will be investigated. 
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5.2.1 SSC between two generic BCS signals 
 
As demonstrated in Appendix O, the Spectral Separation Coefficient between two arbitrary 
BCS signals, namely [ ]( )1,BCS cfr  and [ ]( )2,BCS cfs , can be expressed as follows: 
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  (5.20) 
 
where we have assumed that the receiver integrates for an infinite period of time, there is no 
Doppler error and the receiver has a front-end with infinite bandwidth. The function 

( )'',,,,, 2
2

1
1 ijijnfnf cc −−Ξ  is defined in (O.15) of a Appendix O. Moreover, 1n  is the length of 

the generation vector { }
1

,...,, 21 nrrrr =  of the first BCS signal and 2n  the length of the 
generation vector { }

2
,...,, 21 nssss =  of the second BCS signal. 

 
As we commented in chapter 4.7, during the optimization of the Open and Civil Signals in 
E1/L1, the spectral overlay with the rest of signals sharing the band was one of the most 
important constraints to take into account. Therefore, the spectral separation coefficient of the 
selected MBOC signal with the C/A Code, M-Code and PRS was a figure of major 
importance. Now that we have derived the general expression for the SSC between two BCS 
signals, we will particularize the expression to derive some cases of interest. As one can 
imagine, this reduces time and computation since the function ( )'',,,,, 2

2
1

1 ijijnfnf cc −−Ξ  can 

be saved in tensorial form for all possible input parameters. Then, calculating an SSC would 
be just a matter of reading from the tensor and combining the outputs according to (5.20).  
 

5.2.2 SSC between a generic BCS signal and the M-Code 
 
Before deriving the general expression of the SSC between a generic BCS signal and the     
M-Code, let us begin with the example of the SSC between BOC(1,1) and the GPS M-Code. 
As we know, BOC(1,1) can be expressed as BCS([1 -1],1) and BOC(10,5) as                 
BCS([1 -1 1 -1],5). Moreover, following the matrix notation of chapter 4.3, we can further 
express our signals of study as follows:   

 [ ]( ) { } { }
{ }⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=−+

01
1101

1,12
)1BOC(1,M  (5.21) 

and for the M-Code we have equally: 
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From the matrices above we can extract the following parameters: 
 

 
4MHz115.51]- 1 1- 1[s
2MHz023.11]- 1[s

2
22

1
11

==++=
==+=

nf
nf

c

c   (5.23) 

 
 
and therefore, we can express the SSC between BOC(1,1) and M-Code as follows:  
 ( ) ( )∫
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  (5.25) 
As it can be shown, the theoretical value obtained from the expression above is in this case 

1091.83SSC )5,10()1,1( −=−BOCBOC  dB-Hz. We can graphically show the validity of the result 

obtained above if we numerically compute the SSC between BOC(1,1) and the M-Code 
increasing the bandwidth of integration progressively. As we can see, our analytical value 
matches very well the results of the simulations. 
 

 
Figure 5.2. Spectral Separation Coefficient between BOC(1,1) and M-Code as a function 

of the Integration Bandwidth. It must be noted that the PSD of both signals is 
normalized to 1 W in an infinite bandwidth. The analytical value is shown in red 
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In general, the SSC between an arbitrary signal and the M-Code can be further expressed as 
follows, according to (O.46) in Appendix O: 
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  (5.26) 
 
where ( ) ( )2121 ,,,,,,, llnfnflln ccΞ=Φ  as shown in detail in the Appendix. 
 

5.2.3 Self SSC of a generic BCS signal  
 
After having obtained an analytical expression for the SSC between a BCS signal and the    
M-Code we solve next the case of the SSC of a generic BCS signal with itself. Indeed, this 
spectral separation coefficient is of great importance too as it gives an idea of how robust a 
signal is to interference coming from the same family of signals or from adapted jammers that 
match its power spectral density. 
 
After some manipulation of the original SSC between two arbitrary BCS sequences, it can be 
shown that the self SSC adopts the following form: 
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which is only a function of n, that is the length of the generation vector sr = , and the chip 
form of the particular BCS sequence as we can clearly recognize. Moreover, as shown in 
Appendix O.2, the different sum terms of the SSC simplify to the following expression: 
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  (5.28) 
 
We show in the next figure as an example the value of the self SSC of the C/A Code as a 
function of the integration bandwidth. As we can see, the theoretical prediction matches 
perfectly with the results of the simulations even for narrow receiver bandwidths. 
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Figure 5.3. Self Spectral Separation Coefficient of C/A Code as a function of the 

Integration Bandwidth. The analytical value is shown in red 

5.2.4 SSC between a generic BCS signal and a sine-
phased BOC signal 

As shown in Appendix O.3, the SSC between a generic BCS signal [ ]( )1,BCS cfr  and a    
sine-phased BOC with chip rate 2

cf  and subcarrier frequency 22
2

2
cs fnf =  is:  

 

 

[ ]( )

( )
( ) ( ) ( )

( )[ ] ( )

( )[ ] ( ) ( ) ( )⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧

Ξ−−+

+Ξ+

+Ξ−−+

+Ξ

=

∑ ∑

∑

∑

−

=

−

=

−

=

−

=

=−

1

1

1

1
2

2
1

1
22121

21

1

1
2

2
1

1
2121

21
2

1

1
2

2
1

1
2

21
1

2
2

1
121

21

),
2

(BOC,BCS

1 2

11

1

11

2

2
2

22
sin

1

,,,,,1],,...,[],...,[4

0,,,,,],,...,[],...,[2

,0,,,,12

0,0,,,,

SSC

n

l

n

i
cc

iT
nncc

n

l
cc

T
nncc

n

i
cc

i
cc

cccc

f
fn

ffr

ilnfnfinlrrrrrrff

lnfnflrrrrrrffn

infnfinffn

nfnfffnn

c
c

sc

θ

θ

 (5.29) 

5.2.5 SSC between a generic BCS signal and a cosine-
phased BOC signal 

Equally, the SSC between a generic BCS signal and a cosine-phased BOC is shown to be:  

 

[ ]( )

( )
( ) ( ) ( ) ( ) ( )

( )[ ] ( )

( )[ ]
( ) ( )

( ) ( ) ( )⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Ξ−−+

+−Ξ−
×+

+Ξ+

+⎥
⎦

⎤
⎢
⎣

⎡
Ξ−−+−Ξ−+

+Ξ

=

∑
∑

∑

∑

∑ ∑

−

=
−

=

=

−

=

=

−

=

=−

1

1
12/

1
2

2
1

1
2

2/

1
2

2
1

1

2121
21

1

1
2

2
1

1
2121

21
2

2/

1

12/

1
2

2
1

1
22

2
1

121
1

2
2

1
121

21

),
4

(BOC,BCS

1

2

2

11

1

11

2 2

2
2

22
cos

1

2,,,,,2/12

12,,,,,1
],,...,[],...,[4

0,,,,,],,...,[],...,[2

2,0,,,,2/1212,0,,,,12

0,0,,,,

SSC

n

l
n

i
cc

i

n

i
cc

i

T
nncc

n

l
cc

T
nncc

n

i

n

i
cc

i
cc

i
cc

cccc

f
fn

ffr

ilnfnfin

ilnfnf
lrrrrrrff

lnfnflrrrrrrffn

infnfininfnfffn

nfnfffnn

c
c

sc

θ

θ   

  (5.30) 
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5.2.6 SSC between a generic BCS signal and BPSK 
Finally, the SSC between an arbitrary BCS signal and BPSK simplifies as shown next: 
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5.2.7 MBOC Theoretical SSCs  
 
As shown in chapter 3.7, the selection of MBOC(6,1,1/11) was the result of long research 
works carried out by Working Group A members of the EU and US. Given the importance 
that the spectral separation of MBOC played at that time, we show next the analytical 
expressions for the SSC between an arbitrary BCS signal and MBOC(6,1,1/11). The driver of 
studying this variable is that if a new signal is proposed in the future for this band, the spectral 
separation with the MBOC(6,1,1/11), as well as with the rest of signals, will have to be 
carefully studied to make sure that the new signal would be compatible with the Galileo       
E1 OS and GPS L1C. It is important to note that this potential signal does not necessarily 
have to be from GPS and Galileo, but could be from any other system. 
 
MBOC(6,1,1/11) is a particular case of the MBCS signals analyzed in chapter 3.6.2 and 
represents the multiplexing of BOC(1,1) and BOC(6,1) with 1/11 of power on the high 
frequency BOC component. As we have shown in chapter 4, while the CBOC implementation 
reaches this percentage modifying the amplitude of the modulation in the time domain, 
TMBOC obtains the desired percentage by repeating the BOC(6,1) component in the time 
domain correspondingly. 
 
To calculate the SSC between a given signal and MBOC, we calculate separately the SSC 
with BOC(1,1) and BOC(6,1) given that the multiplexed GPS L1C and Galileo E1 OS signals 
are a lineal combination of both. General expressions were derived in Appendix O. 
 
In the case of BOC(6,1), the BCS vector is shown to be s = [1,-1,1,-1,1,-1,1,-1,1,-1,1,-1] and 
from its M generation matrix, it can be shown that the SSC between an arbitrary BCS signal 

[ ]( )1,BCS cfr  and BOC(6,1) can be expressed as follows: 
 
 [ ]( ) 4321BOC(6,1)f,rBCS

SSCSSCSSCSSCSSC 1
c

+++=
−

 (5.32) 
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where: 
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 (5.33) 
with  

 
12

023.1

2

2

=
=

n
MHzfc  (5.34) 

In a similar way the parameters for the SSC with BOC(1,1) could be derived. 

5.2.8 Analytical Power of a generic BCS signal in a given 
Bandwidth βr 

 
Once we have the general expression for the SSC of any possible combination of signals, we 
concentrate now on another figure: namely the power that falls in a given bandwidth. Indeed, 
sometimes SSCs are not computed in an infinite but in a finite bandwidth and the power 
spectral densities are normalized to the transmission bandwidth. As shown in Appendix O.5, 
the general expression of the power of a BCS signal is shown to be given by: 
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In the next pages the spectral separation coefficients of different signals of interest are shown 
in detail. To calculate them, the general SSC definition as well as the expressions derived in 
previous chapters will be employed to study the effects of filtering and normalization with 
respect to the transmission bandwidth. It must be noted that the bandwidth must be read 
exactly as it appears on the table. Thus 24 MHz must be interpreted as 24.00 MHz. For the 
rest a factor 1.023 is explicitly multiplying. 

5.2.9 Efficiency Parameters 
 
Together with the SSC derivations of previous chapters, we present here some other figures of 
interest that help in understanding the power distribution profile of a particular signal.  
 
As we saw in (4.13), sometimes it is of interest to normalize the power spectral density to the 
transmission bandwidth βT to compensate for the power that goes lost outside the transmission 
bandwidth. As we saw there, to keep the transmitted power constant after applying filtering, 
the power has to be raised by the corresponding factor: 

 ( )∫−
= 2

2

d
T

T
ffG

β

βε  (5.36) 

This parameter indicates how much of the PSD normalized in an infinite bandwidth falls 
within a given bandwidth and thus the correction that must be made to have a normalized 
power spectral density of 1 W within the transmission bandwidth. The more energy the signal 
concentrates at low frequencies, the less significative will be the necessary correction as table 
5.1 next clearly shows for different signals. As we can recognize, the parameter ε is 
equivalent to P in (5.35). 
 
Once we have realized the necessary correction on the normalized PSD to accomplish the 
desired power emission, we can see that in general the receiver bandwidth will be much 
narrower than the emission bandwidth, resulting thus in an additional reduction of power at 
user level versus that emitted by the satellite. This is a figure of great importance for the 
correct design of a system, since as we have seen, all the power specifications are given at 
user level and correspondingly the powers must be adjusted in the satellite. To the object of 
analyzing this effect for different signals, we define an additional efficiency parameter: 
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where  
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This parameter indicates how much power falls within the receiver bandwidth. In the next 
table, the above defined efficiency parameters are calculated for the GPS and Galileo signals 
in E1/L1. For simplicity, the same bandwidths as in [S. Wallner et al., 2005] are assumed. 



Spectral Separation Coefficients  

203 

Table 5.1. Efficiency Parameters of GPS L1 signals 
 

 BPSK(1) BPSK(10) BOC(10,5) BOC(1,1) MBOC 
TX BW [MHz] 30.69 30.69 30.69 30.69 30.69 
RX BW [MHz] 24.00 24.00 24.00 24.00 24.00 

ε -0.0294 -0.3101 -0.8023 -0.0890 -0.1545 
η -0.0077 -0.1216 -0.3727 -0.0222 -0.0207 

 
Table 5.2. Efficiency Parameters of Galileo E1 signals 

 
 BOC(1,1) MBOC BOCcos(15,2.5) 

TX BW [MHz] 40.92 40.92 40.92 
RX BW [MHz] 24.00 24.00 40.92 

ε -0.0665 -0.0989 -1.1069 
η -0.0448 -0.0762 -∞ 

 
As we can recognize, Galileo presents better values than GPS due to the wider transmission 
and receiver bandwidth that we have assumed. These are indeed standard figures that can be 
found today in the hardware specifications of any receiver and signal generator manufacturer. 
Furthermore, for GPS a bandwidth of 30.69 MHz was selected so as to have the main lobe of 
the widest signal inside, namely the M-Code. In the same manner, we have assumed a 
transmission bandwidth of 40.92 for the PRS for at least one of the secondary lobes to fall 
inside. As one can imagine, real emissions will considerably differ from the assumptions of 
previous and next pages. 
 



Spectral Separation Coefficients  

204 

Table 5.3. Spectral Separation Coefficients in E1/L1. The Power Spectral Densities are normalized to the transmission bandwidth and 
integrated in the bandwidth of the receiver 

 

RECEPTION 

GPS Galileo SSC in L1 [dB-Hz]  

BPSK(1) BOC(1,1) MBOC P-Code M-Code BOC(1,1) MBOC PRS 

Tx2 BW 30.69 MHz 30.69 MHz 30.69 MHz 30.69 MHz 30.69 MHz 40.92 MHz 40.92 MHz 40.92 MHz 
 Rx BW

Tx1 BW 
24 MHz 24 MHz 24 MHz 24 MHz 24 MHz 24 MHz 24 MHz 40.92 MHz 

BPSK(1) 30.69 MHz -61.8008 -67.7619 -68.0983 -69.9070 -87.1118 -67.7844 -68.1539 -99.0884 

BOC(1,1) 30.69 MHz -67.7619 -64.6921 -65.0346 -70.1590 -82.2681 -64.7147 -65.0901 -94.3047 

MBOC 30.69 MHz -68.0983 -65.0346 -65.3483 -70.3936 -81.9455 -65.0572 -65.4039 -94.2558 

P-Code 30.69 MHz -69.9070 -70.1590 -70.3936 -71.2521 -79.9042 -70.1816 -70.4492 -86.4481 

G
PS

 

M-Code 30.69 MHz -87.1118 -82.2681 -81.9455 -79.9042 -71.6920 -82.2906 -82.0010 -86.7214 

BOC(1,1) 40.92 MHz -67.7844 -64.7147 -65.0572 -70.1816 -82.2906 -64.7373 -65.1127 -91.6095 

MBOC 40.92 MHz -68.1539 -65.0901 -65.4039 -70.4492 -82.0010 -65.1127 -65.4594 -91.3435 

E
M

IS
SI

O
N

 

G
al

ile
o 

PRS 40.92 MHz -108.6953 -103.1826 -101.4261 -100.5956 -88.8814 -103.2052 -101.4817 -68.4503 
 
As we can recognize from the table above, MBOC presents better spectral separation with the rest of signals in the band, making thus the 
compatibility considerably easier. For instance, the spectral overlapping of the GPS MBOC with the GPS C/A code is approximately 0.34 dB better 
than that of BOC(1,1) and even 0.37 dB in the case of Galileo. In addition, since the Self SSC of MBOC is around 0.7 dB lower than that of 
BOC(1,1) for both GPS and Galileo, resulting in better intrasystem interference figures as the results of chapter 4.7.8 clearly showed. 
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Table 5.4. Spectral Separation Coefficients in E6. The Power Spectral Densities are 
normalized to the transmission bandwidth and integrated in the receiver bandwidth 

 
RECEPTION 

QZSS Galileo SSC in E6 [dB-Hz]  
BPSK(5) BPSK(5) BOCcos(10,5)

Tx2 BW 40.92MHz 40.92 MHz 40.92 MHz 

 
Rx BW

 
Tx1 BW 

24 MHz 24 MHz 40.92 MHz 

QZSS BPSK(5) 40.92 MHz -68.6289 -68.6289 -85.7897 

BPSK(5) 40.92 MHz -68.6289 -68.6289 -85.7897 

E
M

IS
SI

O
N

 

Galileo 
BOCcos(10,5) 40.92 MHz -86.9659 -86.9659 -71.3410 

 
Table 5.5. Spectral Separation Coefficients in E5. The Power Spectral Densities are 
normalized to the transmission bandwidth and integrated in the receiver bandwidth 

 
RECEPTION 

QZSS GPS Galileo SSC in E5 [dB-Hz]  
BPSK(10) BPSK(10) AltBOC(15,10)

Tx2 BW 24 MHz 30.69 MHz 92.07 MHz 

 
Rx BW

 
Tx1 BW 

24 MHz 24 MHz 92.07 MHz 

QZSS BPSK(10) 24 MHz -71.0089 -71.1305 -74.5742 

GPS BPSK(10) 30.69 MHz -71.1305 -71.2521 -74.6958 

E
M

IS
SI

O
N

 

Galileo AltBOC(15,10) 92.07 MHz -74.5742 -74.6851 -75.0696 
 
We repeat now the computation of the SSCs of QZSS, GPS and Galileo signals but this time 
without normalizing at the satellite and thus assuming an infinite transmission bandwidth. The 
purpose of this exercise is to show the difference with respect to the values of the tables 
calculated above. Since analytical expressions have been derived for infinite bandwidth, to 
compute the band-limited versions of the SSCs their analytical counterparts could be 
employed applying the corresponding corrections from the efficiency parameters. As one can 
imagine, this would imply an enormous simplification. We see this more in detail in the next 
tables. 
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Table 5.6. Spectral Separation Coefficients in E1/L1. The PSDs are normalized to infinite bandwidth and integrated in the receiver 
bandwidth 

RECEPTION
GPS GalileoSSC in L1 [dB-Hz]  

BPSK(1) BOC(1,1) MBOC P-Code M-Code BOC(1,1) MBOC PRS 

Tx2 BW ∞ MHz ∞ MHz ∞ MHz ∞ MHz ∞ MHz ∞ MHz ∞ MHz ∞ MHz 
 Rx BW

Tx1 BW 
24 MHz 24 MHz 24 MHz 24 MHz 24 MHz 24 MHz 24 MHz 40.92 MHz 

BPSK(1) ∞ MHz -61.8597 -67.8803 -68.2823 -70.2466 -87.9436 -67.8803 -68.2823 -97.5478 
BOC(1,1) ∞ MHz -67.8803 -64.8702 -65.2781 -70.5581 -83.1594 -64.8702 -65.2781 -92.7828 
MBOC ∞ MHz -68.2823 -65.6573 -65.2781 -70.8582 -82.9023 -65.2781 -65.6573 -92.5493 
P-Code ∞ MHz -70.2466 -70.5581 -70.8582 -71.8723 -81.0166 -70.5581 -70.8582 -85.0854 

G
PS

 

M-Code ∞ MHz -87.9436 -83.1594 -82.9023 -81.0166 -73.2967 -83.1594 -82.9023 -88.3768 
BOC(1,1) ∞ MHz -67.8803 -64.8702 -65.2781 -70.5581 -83.1594 -64.8702 -65.2781 -92.7828 
MBOC ∞ MHz -68.2823 -65.6573 -65.2781 -70.8582 -82.9023 -65.2781 -65.6573 -92.5493 

E
M

IS
SI

O
N

 

G
al

ile
o 

PRS ∞ MHz -109.8317 -104.3785 -102.6875 -102.0126 -90.7907 -104.3785 -102.6875 -70.6641 
 

If we compare now tables 5.3 and 5.6 we can clearly see that the SSCs normalized to the transmission bandwidth and to infinite bandwidth can 
significantly differ from one another being the difference more significant the more power the signal concentrates at higher frequencies. In fact, it is 
trivial to recognize that the SSC that results from normalizing to the transmission bandwidth and integrating in the receiver bandwidth (Table 5.3) 
can be easily obtained from the sum of the non-normalized SSC integrated in infinite bandwidth (Table 5.6) minus the efficiency factors of the 
signals. For example, ( ) ( ) ( )0294.028597.61SSC8008.61SSC ,,, −−−=− ∞ TxBPSKBPSKTxBPSK ε . Equally for the SSC between the C/A Code and 

BOC(1,1) we have ( ) ( ) ( ) ( ) ( ) ( )0890.00294.08803.67SSC7619.67SSC
21

21
,,

,
1,1,

,
1,1, −−−−−=− ∞∞

TxBPSKTxBPSKBOCBPSK
TxTx

BOCBPSK εε . We can express this as follows: 

 
2121
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,
, SSCSSC ssss
TT
ss

xx εε −−= ∞∞  (5.39) 
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Table 5.7. Spectral Separation Coefficients in E6. The PSDs are normalized to infinite 
bandwidth and integrated in the receiver bandwidth 

 
RECEPTION 

QZSS Galileo SSC in E6 [dB-Hz]  
BPSK(5) BPSK(5) BOCcos(10,5)

Tx2 BW ∞ MHz ∞ MHz ∞ MHz 

 
Rx BW
 

Tx1 BW 
24 MHz 24 MHz 40.92 MHz 

QZSS BPSK(5) ∞ MHz -68.8510 -68.8510 -87.0217 

BPSK(5) ∞ MHz -68.8510 -68.8510 -87.0217 

E
M

IS
SI

O
N

 

Galileo 
BOCcos(10,5) ∞ MHz -88.1979 -88.1979 -73.5827 

 
Table 5.8. Spectral Separation Coefficients in E5. The PSDs are normalized to infinite 

bandwidth and integrated in the receiver bandwidth 
 

RECEPTION 
QZSS GPS Galileo SSC in E5 [dB-Hz]  

BPSK(10) BPSK(10) AltBOC(15,10)
Tx2 BW ∞ MHz ∞ MHz ∞ MHz 

 
Rx BW

 
Tx1 BW 

24 MHz 24 MHz 92.07 MHz 

QZSS BPSK(10) ∞ MHz -71.8723 -71.8723 -83.6088 

GPS BPSK(10) ∞ MHz -71.8723 -71.8723 -83.6088 

E
M

IS
SI

O
N

 

Galileo AltBOC(15,10) ∞ MHz -86.0782 -86.0782 -75.4304 

 
We can still go one step further and not only work with non-normalized Power Spectral 
Densities as we did in the previous tables, but also integrate in an infinite bandwidth at 
receiver level. This is of enormous interest because if we find out that there are no significant 
differences in the obtained values, we could apply the analytical expressions derived in this 
chapter to easily calculate the values also for the band-limited case. As we saw, the analytical 
values are only valid for the infinite bandwidth case, but as we will see, this is a very good 
approximation for most of the signals. 
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Table 5.9. Spectral Separation Coefficients in E1/L1. The PSDs are normalized to infinite bandwidth and integrated in an infinite 
bandwidth. The numbers were obtained using the analytical expressions derived in chapter 5.2 

 
RECEPTION

GPS GalileoSSC in L1 [dB-Hz]  
BPSK(1) BOC(1,1) MBOC P-Code M-Code BOC(1,1) MBOC PRS 

Tx2 BW ∞ MHz ∞ MHz ∞ MHz ∞ MHz ∞ MHz ∞ MHz ∞ MHz ∞ MHz 
 Rx BW

Tx1 BW 
∞ MHz ∞ MHz ∞ MHz ∞ MHz ∞ MHz ∞ MHz ∞ MHz ∞ MHz 

BPSK(1) ∞ MHz -61.8597 -67.8803 -68.2821 -70.2460 -87.8803 -67.8803 -68.2821 -97.4229 
BOC(1,1) ∞ MHz -67.8803 -64.8700 -65.2779 -70.5563 -83.1091 -64.8700 -65.2779 -92.6514 
MBOC ∞ MHz -68.2821 -65.2779 -65.6566 -70.8559 -82.8373 -65.2779 -65.6566 -92.4166 
P-Code ∞ MHz -70.2460 -70.5563 -70.8559 -71.8597 -80.8906 -70.5563 -70.8559 -84.9924 

G
PS

 

M-Code ∞ MHz -87.8803 -83.1091 -82.8373 -80.8906 -73.1091 -83.1091 -82.8373 -88.2146 
BOC(1,1) ∞ MHz -67.8803 -64.8700 -65.2779 -70.5563 -83.1091 -64.8700 -65.2779 -92.6514 
MBOC ∞ MHz -68.2821 -65.2779 -65.6566 -70.8559 -82.8373 -65.2779 -65.6566 -92.4166 

E
M

IS
SI

O
N

 

G
al

ile
o 

PRS ∞ MHz -97.4229 -92.6514 -92.4166 -84.9924 -88.2146 -92.6514 -92.4166 -70.5939 
 

If we compare now tables 5.6 and 5.9, we can clearly see that the derived SSCs are practically identical for most of the cases of interest, in particular 
for the Self SSCs. While for the case of the Self C/A Code SSC similar results to those obtained with the analytical expressions are achieved using 
the infinite bandwidth approximation and integrating in 24.00 MHz, for the Self SSC of the PRS the difference is lower than 0.1 dB. For the rest of 
combinations, the differences are normally not higher than 0.25 dB except for the particular case of the PRS. Since this signal concentrates an 
important amount of power at higher frequencies due to its high sub-carrier frequency and cosine phasing, considerable differences are observed 
here. This corresponds to the worst case and thus, unless very accurate figures are required, the derived analytical expressions corrected by the 
efficiency parameters seem to be accurate enough for most of the purposes. Note that the goodness of the approximation will depend on how true 
the approximation is that the receiver bandwidth is large enough compared with the main lobe of the signal.  
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Table 5.10. Spectral Separation Coefficients in E6. The PSDs are normalized to infinite 
bandwidth and integrated in an infinite bandwidth. The figures were obtained using the 

analytical expressions derived in chapter 5.2 
 

RECEPTION 
QZSS Galileo SSC in E6 [dB-Hz]  

BPSK(5) BPSK(5) BOCcos(10,5)
Tx2 BW ∞ MHz ∞ MHz ∞ MHz 

 
Rx BW
 

Tx1 BW 
∞ MHz ∞ MHz ∞ MHz 

QZSS BPSK(5) ∞ MHz -68.8494 -68.8494 -86.9112 

BPSK(5) ∞ MHz -68.8494 -68.8494 -86.9112 

E
M

IS
SI

O
N

 

Galileo 
 BOCcos(10,5) ∞ MHz -86.9112 -86.9112 -73.4870 

 
Table 5.11. Spectral Separation Coefficients in E5. The PSDs are normalized to infinite 
bandwidth and integrated in an infinite bandwidth. The figures were obtained using the 

analytical expressions derived in chapter 5.2 
 

RECEPTION 
QZSS GPS Galileo SSC in E5 [dB-Hz]  

BPSK(10) BPSK(10) AltBOC(15,10)
Tx2 BW ∞ MHz ∞ MHz ∞ MHz 

 
Rx BW

 
Tx1 BW 

∞ MHz ∞ MHz ∞ MHz 

QZSS BPSK(10) ∞ MHz -71.8597 -71.8597 -84.0291 

GPS BPSK(10) ∞ MHz -71.8597 -71.8597 -84.0291 

E
M

IS
SI

O
N

 

Galileo AltBOC(15,10) ∞ MHz -84.0291 -84.0291 -76.2645 
 

For E5 and E6 we can see that again the analytical approximation corrected by the efficiency 
parameters are a good approximation except for the case of the cosine-phase BOC(10,5) and 
AltBOC. 

 
Now that we have calculated the SSCs of some of the GPS, Galileo and QZSS signals, we 
analyze next the particular case of GLONASS. As we thoroughly described in chapter 2.5, 
GLONASS makes use of FDMA instead of CDMA yet. Let us see the robustness of the 
approach in regards to the Spectral Separation Coefficients. For exemplification, the Self SSC 
of the GLONASS L1 C/A Code and P-Code for SVNs with indexes from -7 to -1 are 
presented in the following tables: 
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Table 5.12. L1 GLONASS C/A Code Self SSCs. The PSDs are normalized to the main 
lobe of the C/A Code and integrated in a receiver with infinite bandwidth 

GLONASS C/A Code SSC [dB-Hz] 
SVN -7 -6 -5 -4 -3 -2 -1 

-7 -57.9700 -69.5604 -∞ -∞ -∞ -∞ -∞ 
-6 -69.5604 -57.9700 -69.5604 -∞ -∞ -∞ -∞ 
-5 -∞ -69.5604 -57.9700 -69.5604 -∞ -∞ -∞ 
-4 -∞ -∞ -69.5604 -57.9700 -69.5604 -∞ -∞ 
-3 -∞ -∞ -∞ -69.5604 -57.9700 -69.5604 -∞ 
-2 -∞ -∞ -∞ -∞ -69.5604 -57.9700 -69.5604 
-1 -∞ -∞ -∞ -∞ -∞ -69.5604 -57.9700 

 
In the same manner, the Self SSCs of the L1 GLONASS P-Code signals for SVNs with index 
ranging between -7 to -1 are shown next: 
 
Table 5.13. L1 GLONASS P-Code Self SSCs. The PSDs are normalized to the main lobe 

of the P-Code and integrated in a receiver with infinite bandwidth 
GLONASS P-Code SSC [dB-Hz] 

SVN -7 -6 -5 -4 -3 -2 -1 
-7 -67.9700 -68.0732 -68.3840 -68.9060 -69.6454 -70.6122 -71.8202 
-6 -68.0732 -67.9700 -68.0732 -68.3840 -68.9060 -69.6454 -70.6122 
-5 -68.3840 -68.0732 -67.9700 -68.0732 -68.3840 -68.9060 -69.6454 
-4 -68.9060 -68.3840 -68.0732 -67.9700 -68.0732 -68.3840 -68.9060 
-3 -69.6454 -68.9060 -68.3840 -68.0732 -67.9700 -68.0732 -68.3840 
-2 -70.6122 -69.6454 -68.9060 -68.3840 -68.0732 -67.9700 -68.0732 
-1 -71.8202 -70.6122 -69.6454 -68.9060 -68.3840 -68.0732 -67.9700 

 
As we can see from the tables above, the FDMA concept that GLONASS employs does not 
really bring alone a clear improvement of the spectral isolation among signals. In fact, the 
figures are in the same order of magnitude of the Self SSCs of the CDMA signals we have 
analyzed in previous pages. CDMA provides the capability to introduce an additional 
isolation among signals of the same family and other family by means of well selected codes 
while GLONASS uses the same code for all the satellites. The final superiority .of CDMA 
considering also the effect of the codes would be thus in the order of 20 dB or even more. 
 
To have an idea of how GLONASS interferes with other systems in the vicinity, the next table 
presents the SSC between Galileo E6 and GLONASS L3 (option 2) for the different 
GLONASS SVNs. For more details on the signal definition, refer to chapter 2.5.3. As we saw 
there, this option has BPSK(8) for the I channel and BPSK(2) for the quadrature channel. In 
addition, for completeness not only the SSC between the GLONASS L3 signals and the 
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whole Galileo AltBOC modulation are shown, but also separately between GLONASS and 
E5a on the one side and between GLONASS and E5b on the other side. In this case, the 
assumption is that the receiver will correlate each of the main lobes of the AltBOC signal with 
a BPSK(10) replica. As we mentioned already in chapter 4.3.2.4, AltBOC signals can be 
processed as BPSK signals if only the main lobes are used. For the simulations, the 
GLONASS PSDs were normalized to the main lobe while the Galileo signals were 
normalized to a transmission bandwidth of 92.07 MHz, that 90 x 1.023 MHz. In addition, the 
assumed receiver bandwidth was of 92.07 MHz for the AltBOC receiver while for the E5a 
and E5b receivers a bandwidth of 40.92 MHz was assumed.   
 

    Table 5.14. SSC between Galileo E5 and GLONASS L3  
 

SSC [dB-Hz] between Galileo E5 and GLONASS L3 
Phase L3 I L3 Q L3 I L3 Q L3 I L3 Q 
SVN AltBOC receiver E5a receiver E5b receiver 

-7 -81.4014 -86.2399 -95.3234 -138.3102 -78.5145 -83.7132 
-6 -80.7037 -84.4147 -96.6860 -∞ -77.7527 -81.8166 
-5 -80.0278 -82.8656 -98.1793 -∞ -77.0261 -80.1968 
-4 -79.3815 -81.5332 -99.8186 -∞ -76.3387 -78.7953 
-3 -78.7700 -80.3744 -101.6237 -∞ -75.6925 -77.5702 
-2 -78.1961 -79.3582 -103.6194 -∞ -75.0887 -76.4908 
-1 -77.6614 -78.4619 -105.8386 -∞ -74.5273 -75.5348 
0 -77.1666 -77.6685 -108.3247 -∞ -74.0081 -74.6854 

+1 -76.7116 -76.9651 -111.1382 -∞ -73.5306 -73.9297 
+2 -76.2961 -76.3416 -114.3651 -∞ -73.0940 -73.2577 
+3 -75.9195 -75.7903 -118.1350 -∞ -72.6975 -72.6616 
+4 -75.5811 -75.3050 -122.6559 -∞ -72.3403 -72.1349 
+5 -75.2802 -74.8807 -128.2930 -∞ -72.0217 -71.6728 
+6 -75.0162 -74.5135 -135.7847 -∞ -71.7409 -71.2710 
+7 -74.7883 -74.2001 -147.0266 -∞ -71.4972 -70.9264 
+8 -74.5960 -73.9381 -170.6288 -∞ -71.2900 -70.6362 

 
As we can recognize, an important overlapping can be observed between the Galileo signals 
and GLONASS L3 for some particular combinations, making thus the compatibility of both 
systems more difficult. The final decision on the GLONASS final signal selection is still open 
and subject to discussion. 
 
To conclude it is important to recall the definition of SSC that we presented at the beginning 
of this chapter. As we saw there, the SSC can be seen as the mean power of the 
crosscorrelation function between the desired and the interfering signals. We have repeatedly 
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seen in the preceding lines that in reality the signal coming from the satellite is filtered to 
avoid interference with other services around. This was reflected by the efficiency parameter 
ε. But on the side of the replica generation at receiver level the issue is not so unambiguous. 
While in our previous tables it was assumed that the Power Spectral Density of the desired 
signal was also normalized to the transmission bandwidth of the receiver, we could have also 
assumed that the replica signal at receiver level is generated with no significant filtering 
effects. The corresponding SSC would adopt the following form: 
 
 ( ) ( ) ( )∫−

=
2/

2/

2
RX dr

r

ffHfGfG diid

β

β
κ  (5.40) 

 
where we can recognize that only the interfering signal is normalized this time. The idea 
behind this SSC notation is in fact that the receiver generates the desired replica signal 
digitally while the interfering incoming signal will present in reality filtered values. To see the 
effect of considering the desired signal without normalization, some SSCs are calculated in 
the next table for comparison.  
 
Table 5.15. Spectral Separation Coefficients of some signals of interest when the Power 
Spectral Density of the replica signal is normalized to the TX Bandwidth and when it is 

not (Infinite Bandwidth). All the indicated bandwidths are assumed to be in MHz 
Des. Signal BPSK(1) BOC(1,1) MBOC 

Tx2 BW 30.69 ∞ 30.69 ∞ 30.69 ∞ 
SSC 

[dB-Hz] 

Int. Signal 
Rx BW 

Tx1 BW 
24 24 24 24 24 24 

BPSK(1) 30.69 -61.8008 -61.8303 -67.7619 -67.8509 -68.0983 -68.2528
BOC(1,1) 30.69 -67.7619 -67.7913 -64.6921 -64.7812 -65.0346 -65.1891
MBOC 30.69 -68.0983 -68.1278 -65.0346 -65.1236 -65.3483 -65.5028

 
As we can see, slight differences can be observed depending on the notation that is followed. 
These differences are more notable the more energy is concentrated on higher frequencies 
being even higher than 1 dB in the case of the SSC between GPS M-Code and Galileo PRS.  
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6. Spectral Separation Coefficients with data 
and non ideal codes 

 
So far we have derived expressions for the Spectral Separation Coefficients between two 
signals when ideal codes are assumed. In this chapter we will derive expressions for the case 
when the data is also considered and we will study the effect of non-ideal codes on the 
resulting spectra. 
 
As we have seen above, the analytical expressions for the spectral separation coefficients 
(SSC) and power spectral densities (PSD) that we have derived above are valid under the 
assumption that the chip waveform is modulated by ideal random codes which behave like 
noise and that we integrate for a infinite period of time. This implies that ( ) ( )ffH ID δ→ . 
 
If we recall now (5.9) again, 
 

 ( ) ( ) ( ) ( ) ( )∫∫
∞

∞−=

∞

∞−
≈⊗≈Ψ ffGfGffHfGfGT sk

f
IDskks dd

0

2  (6.1) 

we can clearly see that depending on the integration in the receiver and the properties of the 
codes, the results could differ much from those expected from assuming ideal random codes. 
Experimental results on the goodness of the Galileo and GPS codes have been presented in  
[S. Wallner et al., 2006a]. 
 
The question that arises now is how true the assumptions on ideal random codes are for real 
receiver implementations and the effect that non-idealities in the codes have on the final 
power spectral density and, correspondingly, on the SSC values. We concentrate first on the 
effect of the data bits and the non ideality of the codes on the spectra of the signals to  study 
later the effect of having limited integration times versus infinite integrations as assumed in 
chapter 5. 
 

6.1 Analytical expressions when data is present 
 

Until now the effect of the data bits has not been considered yet, but as we know well, GPS 
and Galileo will both have data channels. This will affect on the shape of the spectrum. 
 
As we know from theory, when the chip waveform of a signal is modulated with a non-ideal 
PRN code, and ideal random data is placed on top of the signal, the power spectral density of 
the resulting modulated signal is obtained by replacing every spike of the code by a sinc of 
bandwidth equal to the bit data rate. Indeed, this is equivalent to the convolution of the data 
sinc with the non continuous line-like spectrum of the non-ideal primary code. 
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For the case of the GPS C/A code, the BPSK(1) waveform is modulated by a Gold code of 
length 1023 and the bit data rate is of 50 symbols per second (sps) resulting thus in the 
repetition of 20 code sequences within every data bit. Thus, the analytical way of computing 
the PSD would be to obtain first the spectrum of the sequence of 1 millisecond and substitute 
every spike by a sinc of 50 Hz. In fact, the code is 1 millisecond of duration and repeats 20 
times. Moreover, since the GPS C/A primary code has a length of 1 ms, the spectral lines will 
present a separation with each other of 1 kHz. 
 
Figure 6.1 next shows the PSD that would result from modulating our original signal with 
data on top. For our analysis a one-sided bandwidth of 15.345 MHz was assumed and thus a 
sampling frequency of 30.69 MHz was employed for the simulations. As a result, every chip 
is sampled with 30 values. No filtering is employed in the simulation and for exemplification 
only the spectrum of SVN 1 is shown. Moreover, the smooth spectrum of the C/A Code with 
ideal random codes is also shown in red for comparison. 
 

 
Figure 6.1. Power spectral density of GPS C/A code SVN 1 with data for a bandwidth of 

30.69 MHz versus ideal PSD of a BPSK(1) modulated with an ideal random code 
 

If we look now into the fine structure of the spectrum, we can recognize the data sincs 
separated by 1 kHz with respect to each other that we can predict from theory. 

 
Figure 6.2. Power spectral density of GPS C/A code SVN 1 with data at low frequencies. 

A transmission bandwidth of 30.69 MHz was assumed 
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Now that we have derived the analytical expression for the power spectral density of a signal 
waveform modulated with ideal random data and non-ideal codes, we analyze the difference 
with respect to the ideal case when the signal waveform is modulated with ideal codes. 
 
As we have seen, if data is supposed to be ideally random, the spectrum of the modulated 
signal with data results from the convolution of both power spectral densities, what is 
equivalent to substituting every spike by a sinc of the form: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

dd f
f

f
sinc1  (6.2) 

where fd refers to the data rate. As a result, the spikes of the code are spread over a wider 
bandwidth, increasing the amplitude as Figure 6.1 has shown. For the case of GPS C/A code 
with a data rate of 50 sps, this increase in the amplitude with respect to the ideal smooth 
spectrum is of ( ) 1750log10 10 ≈ dB. 
 
If we plot now the product of the ideal PSDs of SVN 1 and SVN 2 with data and 0 Hz offset 
and compare it with the product of the ideal PSDs without data, we can recognize that in the 
ideal smooth case the product lies around 34 dB below. This is due to the fact that each PSD 
is 17 dB below with respect to the case with data as we saw above. Indeed, this is the reason 
that the SSCs, result of the integrate of both spectra with data, are around 12 dB higher than 
for the ideal case that we calculated in chapter 5 (-61.8597 dB-Hz). 

 
Figure 6.3. Product of C/A Code Spectra modulated with codes SVN 1 and SVN 2 with 

and without data 
In the next table we present for comparison the SSCs of different GNSS signals when there is 
data and when an ideal spectrum is assumed. 

Table 6.1. Spectral Separation Coefficients with and without data 

SSC [dB-Hz] 
Ideal SSC 

without data 
Ideal SSC with 
random data 

TX Bandwidth Rx Bandwidth 

BPSK(1) -61.8008 -50.5460 30.69 30.69 
BOC(1,1) -64.6920 -64.6920 30.69 30.69 

MBOC(6,1,1/11) -65.3070 -65.3070 24.5520 24.5520 
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Once we have studied the problematic of calculating spectra when data or non-ideal codes are 
accounted, it is time to make a classification of the different types of spectra depending on the 
fine structure that they present. Indeed, we distinguish the following three classes according to 
[F. Soualle and T. Burger, 2002]: 
 

• Type 1: Signals with smooth power spectral density (non periodical codes) 
• Type 2: Signals with periodic codes and no data modulation (pilot signals) 
• Type 3: Signals with periodic codes and data modulation. 

 
As we will show next, the SSCs differ in value depending on the type of signals that are 
considered and the data rate. Moreover, it can be shown that if one of the signals is of type 1 
(non periodical code) and the other one of type 2 or 3 the value of the spectral separation 
coefficient is similar to that of considering both signals of type 1. 
 
We show an example now. The following figure depicts the product of the Power Spectral 
Densities of the M-Code and BOC(1,1) assuming ideal random codes and ideal random data 
for the M-Code (thus smooth spectrum) while for the BOC(1,1) we have smooth spectrum in 
one case (type 1) and the effect of ideal random data in the other case (type 3). 

 
Figure 6.4. Product of BOC(1,1) Code Spectrum modulated with SVN 1 and M-Code 
smooth spectrum. In blue the effect of the data on BOC(1,1) is considered while in red 

ideal smooth fine structure is assumed 
 
We can see the difference between both curves in detail in the next figure:  

 
Figure 6.5.  Comparison of the product of PSDs between BOC(1,1) and M-Code when 

data modulation is present or not 
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If we measure now the resulting SSCs between the M-Code and BOC(1,1) when no data is 
considered and when data is considered, we obtain the following results:  
 

Table 6.2. Spectral Separation Coefficients between BOC(1,1) and M-Code with and 
without data 

SSC [dB-Hz] Data 
-82.6566 Yes 
-83.1241 No 

 
If we sum up now the difference of Figure 6.5 and divide by the interference coefficient with 
data and without data, we obtain a value of approximately -9.9113 dB and -9.4437 dB 
respectively, confirming thus that the interference coefficient or SSC is about of the same 
order of magnitude as when we consider two non-periodical PSDs (SSC = -83.1241 dB-Hz), 
and when only the non periodic properties of BOC(1,1) are taken into account                    
(SSC = -82.6566 dB-Hz). While this is true for these types of signals, others like the C/A 
Code require special attention since the fine structure is considerably affected by the code 
structure. 

6.2 Computation of non-ideal Spectral Separation 
Coefficients  

 
Once we have derived the ideal PSD that a signal with a non-ideal pseudorandom code but 
completely random data will have, it is important to revisit the assumptions that we have 
made. Indeed, assuming that the data is completely random is equivalent to saying that our 
receiver integrates over an infinite period of time, what is of course impossible. 
 
This means that the integration time for the computation of the SSC plays an outstanding role 
in the estimation of the power spectral density. Indeed, even though our signal were ideally 
modulated with random data, since our observation window is limited, the partial integration 
of the data will result in a non-ideal partial correlation different to the ideal Dirac delta. This 
is deeply connected with the ideas gathered in [G.W. Hein et al., 2006c] where the concept of 
random codes was discussed concluding that time-limited codes and ideal random noise are 
contradictory per se. 
 
In order to see the effect that the number of bits taken into account in the integration plays in 
the composition of the spectrum at receiver level, simulations were run for different 
integration times, averaging the resulting spectra over all possible bit combinations to derive 
general consequences from the results of the computations. Indeed, for n bits, 2n possible bit 
combinations are possible, of which only a few have to be considered due to existing 
symmetries. Furthermore, (6.1) was employed to compute the SSC, not accounting thus for 
the filtering effect of the time-windowing. Additionally, it was assumed that the DLL behaves 
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as a filter and thus the power spectral density that is formed could be seen as the average of 
preceding bit combinations. Following these ideas, non ideal SSCs have been computed in 
this chapter and compared with the SSCs that would result from using the ideal power spectral 
density of chapter 4. This process was repeated for different bandwidths and for each of them 
the results are shown next. As we can see, for every considered receiver bandwidth, averaging 
over all data combinations results in mean SSCs that are virtually equal to those obtained 
using ideal PSDs. However, if we take a closer look into the fine structure (see Figure 6.6) we 
can recognize that the spectra are slightly different.  
 

 
Figure 6.6. Averaged PSD of GPS C/A code SVN 1 that results from averaging all 

possible code sequences with 5 data bits 
 

For the particular case of the C/A Code, we can recognize the 50 Hz sinc with already 100 
milliseconds of coherent integration. However, the amplitude of the side lobes is lower in the 
case of the spectra estimated from simulations. Nevertheless, the amplitude of the main lobes 
is approximately equal in both ideal and simulated power spectral densities, and since this part 
of the spectrum is the main contributor to the SSC, the difference is considered negligible. 

 

 
Figure 6.7. Comparison between the ideal PSD of BPSK(1) with random data at 50 sps 

and the averaged PSD that results from taking all combinations of 5 data bits 



Spectral Separation Coefficients with data and non ideal codes  

 

219 

Moreover, if we take a look now at the fine structure that results from averaging the spectra of 
all possible combinations of five bits and compare it with the ideal spectrum with ideal data, 
we obtain the following figure: 
 

 
Figure 6.8. Low frequencies comparison between the ideal PSD of BPSK(1) with data at 

50 sps and the averaged PSD of all 5 data bit combinations 
 

Table 6.3. BPSK(1) SSC [dB-Hz] computed between the averaged spectra of SVN 1 and 
SVN 2 for a data rate of 50 sps. A spectral resolution of 5 Hz was assumed 

 
Signal BPSK(1) 

Double-Sided Bandwidth [MHz] 30.69 4.092 2.046 
Self SSC with ideal primary random codes and no data -61.8008 -61.4155 -60.9845 
SSC with ideal primary random codes and ideal data -50.5460 -50.1607 -49.7297 
SSC with SVN 1-SVN 2 primary codes and ideal data -50.3370 -49.8988 -49.4649 

1 bit -51.1024 -50.9993 -50.6490 
2 bits -50.9997 -51.1065 -50.7282 
3 bits -50.3370 -50.2056 -49.8273 
4 bits -50.8283 -50.6059 -50.2275 
5 bits -50.3370 -50.2056 -49.8273 
10 bits -50.3370 -50.2056 -49.8273 

 
It must be noted that the SSCs are normalized and integrated to the same bandwidth. That 
means that for the 30.69 MHz column, the normalization of the PSD is done to 30.69 MHz 
and the SSC computation integrates equally in 30.69 MHz.  
 
The interest of these results lies in the fact that no matter what the actual code selected for the 
simulation is, the values will not vary significantly in reality. Thus we could easily estimate 
the SSCs between two C/A codes by just adding a constant offset of approximately 11.25 dB 
to the smooth spectrum SSC since this is the difference between the constant value SSC 
(smooth spectrum, random codes, no data) and the peak of the repetitive codes (random or 
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selected data sequences). Keep in mind that the average of the SSC values for C/A codes over 
all possible Doppler values leads to the smooth SSC. Moreover, using the previous figures, 
one does not require to know the exact data sequence or satellite interfering since the results 
are an average of all cases. As one can imagine, this can simplify computations enormously 
what is of great interest for example with interference computations. 
 
Furthermore, if we work with the spectrum normalized to 30.69 MHz and integrate it within a 
narrow bandwidth of 4.092 MHz, only 95.05% of the power falls within the considered 
bandwidth, and a correction of 0.2203 dB would be necessary in the PSD. To compare the 
results, this corresponds approximately to the difference of 0.4429 dB that we can observe 
between the ideal SSC for 30.69 MHz and that with 4.092 MHz. For narrower bandwidths 
like 2.046 MHz a larger correction of 0.8862 dB should be applied following the reasoning 
above. This value is very close to that obtained from the simulations. As a conclusion, the 
narrower the bandwidth, the higher the power spectral density and the higher will be the SSC 
as we can observe in Table 6.3. 
 
Additionally, we can see from the table above that when a wide bandwidth is considered, 
already 5 bits, thus 100 ms, seem to be sufficient in average to estimate correctly the PSD of 
the signal with data. In other words, 5 bits seem to be enough to consider the ideal spectrum 
as a good approximation. However, for narrower bandwidths more bits have to be considered 
to correctly estimate the SSC. 
 
This is important because many analyses on interference are highly dependant on the SSCs 
between the interfering and the desired signals. In fact, if a brute force approach were 
followed and all the possible SSCs for all possible combinations of satellites, data and 
receiver implementations had to be computed, the computational load would be unaffordable.  
 
As a conclusion, if we compare the results that come from assuming ideal PSD with random 
data and those obtained from the simulations for a relatively low number of chips, we can see 
that the difference in dB is always smaller than 1 dB.  
 
As we mentioned above and the previous figure for the combination of 5 data bits shows in 
detail, a close look into the fine structure reveals that the spectra are only slightly different. 
Indeed, the amplitude of the main lobes of the data sinc are nearly equal in both ideal and 
simulated power spectral densities, being the main difference the amplitude of the secondary 
lobes of the data sinc. It is also interesting to note that if the number of considered bits is 
increased from 5 to 10, the shape of the estimated PSD does not significantly change and the 
difference still remains. Furthermore, the previous figures were calculated for a bandwidth of 
30.69 MHz but similar can be obtained for the case of 2.046 MHz. The results are the same 
except for the fact that the ideal spectrum and the averaged spectrum are higher by 0.55 dB 
due to the normalization of the power in a narrower bandwidth. 
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It is also interesting to compare the estimated PSDs that result from integrating for very short 
periods with the ideal PSD with ideal data. Indeed, as next figure shows, if only 1 data bit is 
considered, although the peaks in steps of 1 kHz can already be localized, the side lobes 
cannot be distinguished yet. Moreover, the amplitude of the peaks is something different to 
that of the ideal PSD, what explains the difference in the SSCs. 
 

 
Figure 6.9.  Power Spectral Density of GPS C/A Code SVN 1 with data and different 

number of bits considered 
 
The figures that have been shown above correspond to the average of all the possible 
spectrum combinations of 5 bits of data. As we can clearly see, the spectrum is already very 
smooth. However, for this short coherent integration, if a specific combination of bits is 
considered, the resulting spectrum is in the general case relatively spiky. 
  

 
Figure 6.10. PSD of GPS C/A code SVN 1 that results from taking the 5 bits combination 

[1 1 1 1 -1] at low frequencies 
 
We conclude that although the average of 25 bit combinations results in a pretty smooth 
estimation of the PSD, when we analyze a specific data sequence, the spectrum will present in 
the general case a pretty abrupt shape.  
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Once we have graphically shown the results for the C/A Code, we repeat next the analysis for 
other signals of interest and for different bandwidths. We begin with BOC(1,1). The results 
are summarized in Table 6.4.  

 
Figure 6.11. Averaged PSD of GPS C/A code and BOC(1,1) with SVN 1 that results from 

averaging all possible combinations of 5 bits 
 

For the case of BOC(1,1), 5 bits of integration correspond to a different total integration time 
than for the GPS C/A Code. Indeed, while for GPS C/A code 5 bits correspond to 100 ms, for 
the Galileo E1 OS these correspond to only 20 ms. For a correct comparison, the estimated 
Power Spectral Densities were normalized to have unity power in the corresponding time 
frame of the simulation. 
 
Table 6.4. BOC(1,1) SSC [dB-Hz] computed between the averaged spectra of SVN 1 and 

SVN 2 for a data rate of 250 sps. A spectral resolution of 5 Hz was assumed  
Signal BOC(1,1) 

Double-Sided Bandwidth [MHz] 30.69 24.5520 4.092 2.046 
SSC with ideal primary random 

codes and no data 
-64.6920 -64.6477 -63.5526 -61.8483 

SSC with ideal primary random 
codes and ideal random data 

-64.6920 -64.6477 -63.5526 -61.8483 

SSC with SVN 1-SVN 2 primary 
codes and ideal data 

-64.8997 -64.8863 -63.7495 -61.4179 

1 bit -64.9102 -64.9446 -63.8386 -61.5051 
2 bits -64.9721 -67.9954 -63.7993 -64.3390 
3 bits -64.9886 -64.8525 -64.3102 -61.9844 
4 bits -65.1495 -64.7102 -63.9080 -61.6450 
5 bits -64.9000 -64.7954 -63.7208 -61.5104 
10 bits -64.9253 -64.9313 -63.7977 -61.4719 

 
It is important to note that as we also did with BPSK(1) in Table 6.3 and unlike in the tables 
of chapter 5, the SSCs are integrated and normalized in the same bandwidth. 
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An interesting conclusion that results from comparing Table 6.3 and Table 6.4 is that, while 
the ideal PSDs of the GPS C/A Code and BOC(1,1) in the case of ideal codes and no data 
have only a difference of approximately 3 dB, the PSD of the GPS C/A Code grows more 
than that of BOC(1,1) when non random codes are considered and data is modulated on top. 
As a result, much higher SSCs are obtained for the GPS C/A Code as the simulations of the 
tables above clearly show. Indeed, for Galileo E1 OS it seems that the smooth spectrum 
approach is a good approximation while for the C/A Code this is not the case. This is due to 
the fact that the data rate of the C/A Code is significantly lower than that of BOC(1,1). 
Furthermore, we can also recognize that BOC(1,1) presents similar SSCs to those of ideal 
spectrum when ideal random codes are considered no matter whether the data is present or 
not. On the contrary, we saw in Table 6.4 for BPSK(1) that the SSC with ideal random codes 
and no data and the SSC for ideal random codes with data can differ by even 11 dB. 
 
Another interesting result from the comparison between the structure of BPSK(1) and 
BOC(1,1) with data comes from analyzing the fine structure. As an example, the low 
frequency region of Figure 6.11 is shown next. 
 

 
 

Figure 6.12.  Comparison between the averaged (all combinations of 5 bits) PSD of GPS 
C/A code and BOC(1,1) with SVN 1 at low frequencies. For completeness also the 

smooth BPSK(1) and BOC(1,1) spectra are depicted 
 

As we can recognize, the low frequency region until 10 kHz shows that while the GPS C/A 
Code has sincs of width 50 Hz every 1 kHz, Galileo presents sincs of 250 Hz every 250 Hz as 
predicted in theory. This is shown more in detail in the next figure. If we take a closer look 
into the fine structure of the ideal PSD of Galileo E1 OS for SVN 1 with data, we can observe 
the interesting effect that even though the sincs of 250 Hz are located in steps of 250 Hz, in 
general the local maxima are not necessarily situated at multiples of the data rate. 
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Figure 6.13. Averaged (5 bits) PSD of BOC(1,1) with SVN 1 at low frequencies 

 
As an example of this, there is a local maximum at 125 Hz which is caused by the particular 
spectral characteristics of the Galileo E1 OS code number 1. For this particular sequence, the 
second harmonic is higher than the first, so that the first secondary left lobe of the sinc at    
500 Hz (located at 125 Hz) summed up with the tails of other sincs around is higher than the 
main lobe of the sinc at 250 Hz. Such effects can be observed for Galileo E1OS spectra but 
not so easily for GPS C/A code because the Galileo E1 OS codes are first longer and secondly 
posses a higher data rate. 
 
In fact, the spectrum of the Galileo E1 OS code number 1 takes the following values for the 
first harmonics: 

Table 6.5. Galileo E1 OS SVN 1 first harmonics 
Harmonic 0 1 2 3 4 

Amplitude [x10-11] 0 0.013 0.052 0.030 0.419 
 
where we can see that the second harmonic at 500 Hz is nearly five times higher 
(approximately 7 dB higher) than the first at 250 Hz. Furthermore, we know from theory that 
a sinc of 250 Hz has a main lobe that is 13.4648 dB higher than the first secondary lobe, 
17.9018 dB higher than the second secondary lobe and 20.8244 dB higher than the third 
secondary lobe. Considering the code structure and the properties of the sinc together, one can 
derive in theory all relative amplitudes. 
 
Finally, we present in the next lines similar SSC analyses for the case of MBOC. 
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Table 6.6. Data MBOC(6,1,1/11) SSC [dB-Hz] between the averaged spectra of SVN 1 
and SVN 2 for a data rate of 250 sps. A spectral resolution of 5 Hz was assumed 

 

Signal 
MBOC(6,1,1/11) data 

( ''+ ) 
Double-Sided Bandwidth [MHz] 24.5520 12.2760 

SSC with ideal primary random codes and no data -65.3070 -64.8149 
SSC with ideal primary random codes and ideal data -65.3070 -64.8149 
SSC with SVN 1-SVN 2 primary codes and ideal data -65.3214 -65.1860 

1 bit -65.3794 -65.2440 
2 bits -65.3695 -65.2343 
3 bits -65.2749 -65.1783 
4 bits -65.1700 -65.7362 
5 bits -65.3133 -65.2934 
10 bits -65.3721 -65.2328 

 
As we can recognize in the table above, only the in-phase channel (data ''+ ) was shown. 
However, simulations were run for the pilot channel too. Indeed, as explained in           
chapter 3.6.2, MBOC will be implemented by Galileo as a CBOC signal which is a four level 
sequence according to the definition of chapter 3.6.2. Furthermore, a power split of 50/50 
between data and pilot was considered as well as equal power for the open signals (E1 OS) 
and the protected signals (PRS). We show the spectra of the in-phase and anti-phase 
components in the following figure: 
 

 
Figure 6.14. Averaged PSDs of MBOC(6,1,1/11) in phase and anti-phase channels with 

SVN 1 that result from taking 10 data bits into account 
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If we take a look now at the previous figure, we can clearly see that neither the data channel 
nor the pilot channel fulfil completely the MBOC spectrum as defined in (4.149) if considered 
independently. Actually we can recognize that the phase signal (data) places power at 
frequencies where the pilot (anti-phase) does not. Similarly, the pilot concentrates power at 
frequencies where the data does not. This is especially evident in the small lobes around   
4.092 and 8.184 MHz, which actually merge into broader lobes when data and pilot are 
computed together. If we add now the data and pilot spectra of the previous figures, we have: 
 

 
Figure 6.15. Averaged SVN 1 PSD of MBOC(6,1,1/11) – Data + Pilot  – that results from 

taking 10 bits into account. For comparison the smooth spectrum is shown in red 
 
When data and pilot are added, we can clearly recognize the MBOC theoretical shape of 
(4.149). It must be noted that this is only an approximation to prove that the sum of data and 
pilot results in the agreed MBOC PSD. Indeed, for a correct calculation of the total MBOC 
PSD, the pilot channel should be computed using only the secondary code and no data on top. 
Then we would have to sum them up as we have also done here. However, since the Galileo 
E1 OS secondary code of the pilot component has a length of 25 bits, the effect is very much 
like that of random data and therefore the resulting PSD is approximately similar to the one 
that we have calculated above. In the previous figures we have considered the average of all 
combinations of 10 bits but no big qualitative difference can be observed. For correctness 
though, the anti-phase signal with the pilot should be modulated with the unique sequence of 
25 bits as defined in [Galileo SIS ICD, 2008]. 
 
Additionally, to be more accurate, the effect of the signal structure and the multiplex should 
be taken into account considering the theory of chapter 7.7. 
 
The main objective of this chapter was to see and analyze how many data bits must be taken 
into account to consider the analytical approach as a good approximation. As shown in 
previous pages, the figures derived above could help in developing simplified average models 
to assess the compatibility among different systems. 
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6.2.1 Spectral Separation Coefficients for quasi ideal 
codes 

In the previous chapter we have computed the SSCs that result from using the real codes of 
GPS and Galileo. Now we want to go one step further and compare the results obtained above 
with those we would observe in the case that we would use ideal codes of a given length. It 
must be noted that there exist no ideal codes of finite length as this is impossible per 
definition. Indeed, random codes require an infinite length to have ideal properties. 
 
Codes are digital sequences that, in order to behave ideally, must be as long and as random as 
possible. That is equivalent to saying that they must appear as noise-like as possible. Only 
then the spreading and dispreading operations will work optimally [G.W. Hein et al., 2006c]. 
However, the codes must remain reproducible. Otherwise, the receiver would not be able to 
extract the message that was sent. This is the reason why these sequences are said to be nearly 
random or pseudo-random. As [J. Von Neumann et al., 1951] memorably stated referring to 
the possibility of generating codes with finite machines, ”Anyone who considers arithmetical 
methods of producing random digits is, of course, in a state of sin.”  
 
Now that we have seen the limitations of our approach, we can set up the model with which 
we will assess the effects of the ideal line structure of a code on the SSCs. In this chapter we 
will use what we describe as ideal code of a given length. This consists basically in using the 
desired properties of the spreading sequence of that length in the frequency domain. The code 
sequence power spectral density will represent then the average of all possible code sequence 
spectra for the chosen repetition interval.   

6.2.1.1 Signal Model with ideal codes 
 
If we recall the model that we defined in chapter 4.1.1, a DSSS signal that is stationary in 
wide sense can be expressed as follows: 
 
 ( ) ( )tptckTtpcts

k
ck ⊗=−= ∑ )()(  (6.3) 

where the code sequence waveform s(t) can be seen as the convolution of the PRN code 
( )tc with the spreading symbol waveform ( )tp . Moreover, the spreading symbol waveform 

p(t) is defined over a specific finite time period Ts, normally equal to the code duration Tc 
(even case). In the same manner, the code kc  is composed of N elements and repeats in reality 

every Tp units of time, so that each code element has a duration tΔ of 

 
N
T

t p=Δ  (6.4) 

The spreading symbol is normally designed to have the duration of exactly one code element 
tΔ , so that in general p (t) = 0 for [ )tt Δ∉ ,0 . However, if we take a close look at the model 

defined by (6.3), the general spreading symbol waveform covers also the case where the 
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support of the function extends beyond the duration of a single code element and beyond a 
single repetition of the code sequence. This effect is known as Inter-Symbol Interference (ISI) 
and can be observed when the real effects of the satellite transmission filters are considered. 
The principal effect of finite bandwidth is that the effective impulse response of the spreading 
symbol extends to durations longer than tΔ . This is in fact what happens when a finite 
impulse response filter (FIR) is used in the spreading symbol generator. 
 
On the other hand, the PRN code is assumed to be binary with { }1,1 +−∈kc being 

[ ]1,0 −∈ Nk and repetitive with N code elements. Thus: 
 

 lcc
tktctc

klNk

kk

integer  allfor    
)()(

=
Δ−=

+

δ
 (6.5) 

 
As we can recognize, the PRN code is separated from the chipping waveform in the previous 
expressions. In conclusion, the Fourier Transform of equation (6.3) is shown to be  
 
 ( ) ( )fPfCfS k=)(  (6.6) 
 
and its power spectral density adopts the following form 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 22*** )()( fPfCfPfPfCfCfSfSf kkk ===Γ  (6.7) 
 
If we normalize for the total power to integrate to one,  
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where the following relationship must remain valid: 
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The formula derived above is of enormous interest because by expressing the satellite signal 
generator function as a function of the power spectral density, the requirement for specific 
code families can be bypassed. In fact, we just have to substitute the code spectrum by its 
ideal representation in the frequency domain, no matter whether this is realizable or not. 
 
Once the expressions for the power spectral density of a signal waveform modulated with an 
ideal code have been derived, it is time to compute the spectrum of the spreading symbol and 
of the ideal spreading code sequence of length N.  
 
For simplicity we will use in the next lines the BPSK signal for exemplification. As can be 
seen in Appendix O, its normalized power spectral density is shown to be: 
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which has the well known spectrum of the figure below for a chip rate of 1.023 MHz: 

 
Figure 6.16. Power Spectral Density of the BPSK(1) modulation 

 
As we mentioned above, we will avoid the use of specific codes in our analysis by taking the 
properties that an ideal code of a given length will present. Indeed, an idealized version of the 
aperiodic code sequence auto-correlation function would present the following form: 

 
Figure 6.17. ACF of an ideal code of finite length 

 
It is important to note that while the idealized autocorrelation can not be shown to be the 
average of all possible code sequence choices, except for specific code families, it is 
representative of the expectation for the behaviour of specific code families. Moreover, this is 
true for any code length in general, although there exist lengths where there is no set of codes 
that would fulfil the desired properties shown above. 

 
In order to account for the continuous repetition of the code sequence, we will employ the 
circular autocorrelation function in the next lines. This provides the correct result if the data 
or pseudodata are of the same phase as is the case in the even autocorrelation. On the 
contrary, when the data sequence flips its elements, the resulting ACF is then called odd.  The 
odd correlation is more difficult to compute since it depends on the particular data. 

 
As shown by [F. Soualle et al., 2005] the data modulation can cause the chip values over the 
integration time to flip resulting thus in the mentioned difference between the even and odd 
correlation. If we further assume that the Doppler shift was perfectly eliminated and there is 
no data flip, the even crosscorrelation between two codes 1c  and 2c  is then shown to be: 
 
 ( ) ( ) ( )NCCCC e −+= τττ 2,12,1  (6.11) 
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Equally, for the odd case when the data changes during the coherent integration, the 
correlation adopts the following expression: 
 
 ( ) ( ) ( )NCCCC o −−= τττ 2,12,1  (6.12) 
 
where in both cases ( )τ2,1C  represents the aperiodic correlation function defined as: 
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We can see the difference of both in the following figure: 

 
Figure 6.18. Difference between the even and odd ACFs (Courtesy of Stefan Wallner) 

6.2.1.2 Even Autocorrelation Function of Quasi Ideal Codes 
 
The normalized periodic even autocorrelation function ACF is shown to be  
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where circ stands for circular. We can recognize that the integration in the numerator is taken 
as circular (auto) correlation over an interval of Tc given the repetitive nature of )(tci . 

Moreover we can see that this integration time tends to infinity. Since in reality the integration 
intervals are longer than the code period but not infinite, we propose an alternative version of 
the autocorrelation function. For the even case, this can be expressed as follows: 

 cT
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where for simplicity a total coherent integration equal to a multiple M of the code repetition 
interval was assumed. Additionally, since now the code sequence is only defined in the 
observation interval MTc, no circular correlation is needed any more.  
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Following the thoughts of previous chapter, let us assume now an ideal random code of length 
Tc (or in a relaxed form, the average of the codes of the set). The linear autocorrelation 
sequence in this case is not periodic and adopts the following form:  
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This is shown graphically in the next figure for the specific case that the code repeats 20 times 
within one data chip as is the case with the GPS C/A Code. 
 

 
Figure 6.19. GPS C/A Code Autocorrelation Function 

 
Since the power spectral density is the Fourier Transform of the autocorrelation, we have: 
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This expression can be further expanded into three parts since the integral above can be 
evaluated at values of cnT=τ , including 0=n , as follows: 
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  (6.19) 
where we have assumed positive values of n with Mn ≤ . It is important to note that when the 
code rate and the data rate are equal, M =1 and the code spectrum is flat. 
 
If we take a closer look at equation (6.19), we can clearly recognize that the function )(ωM

evenΓ  

is not square integrable and would thus be difficult to use alone. As we know, a real or 
complex function is square-integrable if the integral of the square of its absolute value over 
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the interval is finite and thus belongs to the Hilbert space L2. This is a necessary condition to 
apply the Fourier theory with correctness. Accordingly )(ωM

evenΓ  can not, on its own, represent 

a PSD since the integral over frequency is not finite.  However, as we will see next, used in 
combination with other functions offering appropriate frequency behaviour, we will be 
allowed to use it. 
 
The origin of this effect lies in the definition of the ACF for periodic functions.  There are 
ways to circumvent this problem using, for example, the ACF of m-sequences. Indeed, these 
can be taken as an approach to purely random sequences since the ACF could be arranged to 
have an integrated value of zero, that is 1 in phase and -1/n out of phase. This could also be 
arranged for the periodic ACF by ensuring that the average of the ACF over all delays is 
exactly 0 and there is thus no DC component. The result would be then a function that would 
be square integrable but the conclusions would remain unaffected. 
 
The power spectral density for ( )ωM

evenΓ  with 20=M , is shown in the next figure. It must be 

noted that it is not normalized and thus the maxima have a value of 10log10(20). 
 

 
Figure 6.20. Power Spectral Density (not normalized) of an ideal code sequence that 

repeats 20 times within one data bit 
 

It is interesting to note that the obtained power spectral density is the result of convoluting a 
Dirac comb with separation 1 kHz, with a sinc of 50=df Hz. Indeed, equation (6.19) can be 

rewritten as shown next: 
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being fΔ the separation of the deltas of the Dirac comb or 1 kHz in our particular example. 

Next, the Dirac comb is shown in detail. 
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Figure 6.21. Power spectral Density for ideal code sequence with M=20 

 
As we can see, the frequency components repeat at intervals of 1/Tc, being 1=cT  ms since 

this is the period of the C/A code. As it is trivial to show, this Dirac frequency comb is the 
Fourier transformation of a similar comb in the time domain according to the following 
expression: 
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More important even, the magnitude of each line component is the same, unlike in actual C/A 
sequences where the magnitude of the lines can be larger or smaller than the average value 
due to specific non-zero values of the autocorrelation function for 0≠τ .  
 
A very important conclusion can also be obtained from Figure 6.21. In fact, The Dirac comb 
with separation Tc, being Tc the duration of the C/A code and thus 1 millisecond, results from 
the convolution of the linear autocorrelation function of Figure 6.19 with a train of Dirac 
deltas separated by 20 milliseconds. This value comes from the fact that M=20 is the number 
of times that the C/A code repeats within one data bit. This is shown in the next figure: 
 

 
Figure 6.22. Convolution between the linear even correlation and the even train of Dirac 

pulses to form the even periodic correlation 
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Since this function is the key to form the PSD of the signal modulated with data and a short 
code in the even correlation case, it is important to remember it when we work with its odd 
counterpart. Moreover, since the train of Dirac deltas in the case of the odd correlation will be 
slightly different, we denote this train in the even case as even train of Dirac deltas. 
 
In addition, although for both even and odd correlations we have to work with periodic 
correlations, we have shown in previous lines that the linear correlation in conjunction with 
the particular train of Dirac deltas contains all the necessary information to derive the 
correlation that is seen by the receiver at the output. Indeed, the previous Figure 6.22 reflects 
nothing else than the following mathematical identity: 
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being thus the result of the convolution a constant discrete function with pulses separated 1 
millisecond. As in previous chapters, the operator ⊗  refers to the convolution. 
 

6.2.1.3 Odd Autocorrelation Function of Quasi Ideal Codes 
 
As we have seen in Figure 6.18, the even correlation occurs when the data bits do not change 
of sign during the integration, while the odd corresponds to the case that the bits flip during 
the coherent integration. This case would happen indeed, when the data bits are not perfectly 
aligned at receiver level.  
 
In the previous pages we have shown that the even correlation can be expressed by means of 
the linear correlation of the code sequence that results from replicating the primary code 
twenty times one after each other with the same data sign. This is so because the interfering 
signal is assumed not to flip any of its data bits during the correlation integration as the 
correlation is even.  
 
Now, for the case of the odd correlation, the situation is similar but additional care has to be 
paid since the odd correlation implies by definition that the data bit flips within the integration 
time. Given the fact that the primary C/A code repeats twenty times within one data bit, the 
position of the data flip can adopt in principle any of the twenty possible positions. 
Accordingly, the linear correlation can also adopt twenty different shapes. As a conclusion, 
since the distribution of the data flip over the 20 possible locations p is uniformly distributed, 
the odd linear correlation will be the average of the 20 linear correlations that are possible 
depending on where the data flip actually occurs. 
 
The twenty possible cases are summarized in the following table: 
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Table 6.7. Relative position of the data flip of the interfering signal with respect to the 
desired replica 

p 

Delay τ 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

s (τ = 1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

s (τ = 2) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 

s (τ = 3) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 

s (τ = 4) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 

s (τ = 5) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 

s (τ = 6) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 

s (τ = 7) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 

s (τ = 8) 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 

s (τ = 9) 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 

s (τ = 10) 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

s (τ = 11) 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

s (τ = 12) 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

s (τ = 13) 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

s (τ = 14) 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

s (τ = 15) 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

s (τ = 16) 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

s (τ = 17) 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

s (τ = 18) 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

s (τ = 19) 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

s (τ = 20) 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

 
where s denotes the data sequence of the interfering signal. As we can see, τ =1 denotes that 
the flip transition takes place in the very last primary code and consequently the sequence s 
consists of only 1s. 
 
As we can recognize from the previous table, we can make use of symmetry properties to 
simplify the number of linear autocorrelations that we have to consider. In fact, there are only 
9+2 different linear autocorrelations since it is trivial to prove that 
 

 
( ){ } ( ){ }121 +==−= isACFisACF linearlinear ττ  (6.23) 

 
with ( )9,...,2,1∈i . Moreover, ( ){ }1=τsACFlinear  and ( ){ }11=τsACFlinear

 
repeat only one time. 

Taking this into account, it can be shown that the average autocorrelation function for the odd 
case adopts the following form: 
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Figure 6.23. Average odd linear autocorrelation 

 
Once we have the average linear autocorrelation for the odd case in all its possible cases, we 
can follow the same logic as for the even case. To do so, we correlate next the average linear 
odd autocorrelation with the odd train of Dirac pulses. As we remember, the even train of 
Dirac pulses was characterized by having all pulses of the same normalized amplitude +1 
since there was no change in data bit. The odd case, however, is actually characterized by the 
fact that the data bit alternates from one bit to the other in order to always have odd 
correlation. Accordingly, the odd train of Dirac pulses adopts the following form: 
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such that pulses of amplitude +1 and -1 alternate in a separation of M=20 milliseconds. As a 
result, the convolution between the odd train of Dirac pulses and the average odd correlation 
adopts the following form: 

 
Figure 6.24. Convolution between the linear odd correlation and the odd train of Dirac 

pulses to form the odd periodic correlation 
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As a result, the convoluted function adopts the following form: 

 
Figure 6.25. Normalized periodic odd correlation with M=20 

 
If we calculate now the Fourier transform of this signal, we can observe that while the 
spectrum of the even correlation allocates all its power around frequencies multiple of 1 kHz, 
most of the power is concentrated in the case of the odd correlation at 50±  Hz around 
frequencies multiple of 1 kHz. We can also recognize that the Odd Code Spectrum also has 
power at other frequencies k50±  with [ ]10,...2±=k but of considerably lower amount. 

Indeed, the spectral lines at 50±  Hz amount slightly more than 81% of the total power, being 
the rest distributed among the other spectral lines. Accordingly, we can state that while the 
Even Code spectrum places all its power at multiples of 1 kHz, the Odd concentrates most of 
it at 50±  Hz around frequencies multiple of 1 kHz.  
 

 
Figure 6.26. Normalized Even and Odd Code Power spectral Density for M=20 

 
The spectral coefficients of the previous figure can be easily obtained if we recall that the odd 
autocorrelation function for GPS C/A is periodic with period T0 = 40Tc, being Tc the period of 
the primary code, that is 1 millisecond for the C/A code. Indeed, the odd autocorrelation can 
be expressed by means of a Fourier series as shown next: 
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where cTT 202 00 ππω == since cTT 400 = . Accordingly, the complex coefficients of the 

Fourier series are shown to adopt the following form: 
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Since the odd autocorrelation function is shown to be expressed as follows: 
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with M = 20, the spectral coefficients are then further shown to simplify to: 
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for odd values of k, where k adopts values between -19 and 19, with ak = a-k. In general: 
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It is also trivial to show that all the even coefficients are of value 0. Normalizing now the 
coefficients to the total power of the signal, 
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we obtain the normalized spectrum. For a generic value M, this expression is shown to adopt 
the following form: 
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Convoluting now the previous odd code spectrum with the ideal data sinc of 50 Hz, we obtain 
the following shape for the odd code spectrum with data: 

 
Figure 6.27. Odd Power Spectral Density [dB] of an ideal code sequence that repeats 20 

times in one data bit  
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6.2.1.4 Combined Spreading Waveform PSD 
 
Now that we have obtained the expressions for the chip waveform PSD and for the code 
spectrum, the PSD of a BPSK(fc) with ideal PRN codes will be: 
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where we have seen that: 
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6.2.2 Spectral Separation coefficients for short PRN 
codes 

 
As we have seen at the beginning of this chapter, the approximation of using the inner product 
to calculate the spectral separation coefficient is only valid if the code modulating the signal is 
sufficiently long to smooth the spectrum. Otherwise, the correct definition to use should be 
the one derived in (5.8). We recall it to help the understanding in the next pages: 
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where the filter function is given by: 
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Moreover we have assumed a perfect windowing of the incoming signal by means of the 
rectangular function w(t), defined as follows: 
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Graphically, the filter function adopts the following form: 
 

 
Figure 6.28. Power Spectral Density Convolution of the integration filter function 

 
Equally, we show in the next figure the result of convoluting two BOC(1,1) signals with  
SVN 1 and SVN 2. 

 
Figure 6.29. Power Spectral Density Convolution of two BOC(1,1) signals modulated 

respectively by SVN 1 and SVN 2 
 
In addition, if we plot the convolution density function together with the filter function of 1 
second of coherent integration, we obtain a sinc function with a frequency rate of 1 Hz as 
shown in the next figure. As we can recognize, the bandwidth of this last signal compared 
with that of the convolution function is significantly narrower.  
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Figure 6.30. Power Spectral Density of the Convolution of two BOC(1,1) signals with 

SVN 1 and SVN 2 and a receiver filter function of 1 ms of coherent integration 
 
Furthermore, if we integrate the product of the convolution function shown above and the 
integration filter of 250 Hz (4 ms of integration), we obtain an SSC value of  -64.9505  dB-Hz 
which is very close to the one that we would obtain applying the SSC simplified model of 
(6.38). Indeed, when we integrate for relatively long periods of time, the filter function gets 
narrower tending to a Dirac delta. Accordingly, (6.35) converges to the value we would obtain 
if we would take the value of the convolution at zero offset. In such a case, the SSC general 
definition from above simplifies to the well known expression that we used in chapter 5: 
 

 ( ) ( ) ( ) ( ) ( )∫∫
∞

∞−=

∞

∞−
=≈Ψ ffGfGffHfGfGT di

f
IDdiIid

I

dd
0

2  (6.38) 
 
Equally, for the C/A code we show in the next figure the convolution density function 
together with the filter transfer function for an integration of 1 second. As we can recognize, 
the sinc function is already very narrow and (6.38) is a good approximation to the real SSC 
computed using (6.35).  In fact, the real SSC takes a value of -61.5915 dB-Hz while the 
approximation of (6.38) yields -61.8597 dB-Hz. It is important to note that no normalization 
was made. The result of convoluting two C/A Code spectra with different codes is shown in 
the following figure together with the filter transfer function: 
 

 
Figure 6.31. Power Spectral Density Convolution of two BPSK(1) signals modulated 

respectively by SVN 1 and SVN 2 and receiver filter function 
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The C/A Code is a particular case due to its low data rate. If we now account for the effect of 
the data, similar figures can be obtained: 

 
Figure 6.32. Power Spectral Density Convolution of two BPSK(1) signals modulated 

respectively by SVN 1 and SVN 2 with ideal random data on top 
 
If we use now a filter of 1 kHz (integration of 1 ms instead of 1 s), the resulting spectral 
separation coefficient of (6.35) seems to deliver results close to those of the SSC 
approximation of (6.38). We conclude that even for very short integrations, the approximation 
seems to remain valid. Moreover, the transfer filter has to be multiplied by the factor TI 
because otherwise the filter would amplify or attenuate. 
 
Now that we have already studied the effect of data, non-ideal codes and coherent integration 
on the power spectral densities, it is time to assess the effect of the Doppler shift between the 
desired signal and the interfering signal on the Spectral Separation Coefficients. To begin we 
show in the next figure the self SSC of the C/A Code (SVN 1 and SVN 2) as a function of 
Doppler when a data stream of 50 sps is considered. As we can see, the worst cases occur at 
shifts multiple of 1 kHz. 
 

 
Figure 6.33. C/A Code Self SSC between SVN 1 and SVN 2 as a function of Doppler. For 

comparison the ideal smooth spectrum SSC is shown in red 
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As we can see, the value of the Self SSC at Doppler shifts multiple of 1 kHz is not always 
equal since it depends on the particular two codes of the example. Nevertheless, the difference 
is negligible and proves that the high Self SSC value of the C/A Code is actually due to the 
low data rate and not to the C/A Code structure. In fact, as we can see in the next figure there 
is no significant difference to note if we use the approach of quasi ideal codes as defined in 
chapter 6.2.1: 

 
Figure 6.34. C/A Code Self SSC with quasi ideal codes as a function of Doppler. For 

comparison the ideal smooth spectrum SSC is also shown in red 
 

As we can see, the maxima of the SSC (located every multiple of 1 kHz) are constant in this 
case. To generalize our results, we calculate in the next figure the Self SSC of BOC(1,1) as a 
function of the Doppler offset, when two codes are considered and when ideal code properties 
are assumed. It must be noted that the spectra of the codes were normalized to 24 MHz and 
not to 40.92 MHz as done in chapter 5. Moreover the SSC were integrated in 24 MHz. If the 
correct normalization to the transmission bandwidth were done, the result would be a shift of 
the curves but from a qualitative point of view there would be no difference. 
 

 
Figure 6.35. BOC(1,1) Self SSC between SVN 1 and SVN 2 as a function of Doppler 
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It is interesting to see now, that if we repeat the previous computation for quasi ideal codes, 
the SSC presents the following smooth structure: 
 

 
Figure 6.36. BOC(1,1) Self SSC with quasi ideal codes as a function of Doppler 

 
As we can clearly recognize, the variation of the self SSC of BOC(1,1) with data on top 
hardly varies within the Doppler range that we have studied, showing that the smooth 
spectrum approach is a good approximation when the data rate is high enough. Indeed, for the 
C/A code, even with quasi ideal codes, the low data rate was responsible for the important 
variation of the SSC over the Doppler range. To conclude it is important to mention that 
similar conclusions can be drawn for the case of MBOC. 
 
6.2.3 Final comments on the SSCs 
 
As we know from [J.W. Betz, 2000b] and [J.W. Betz and K.R. Kolodziejski, 2000], the 
effective 0NC of a desired signal subject to interference is shown to be: 
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where 
• βr is the two-sided bandwidth of the front-end filter, 
• 0N is the Power Spectral Density of the thermal noise, 
• dC  and ( )fGd  are respectively the power and the PSD of the desired signals, 

normalized to the transmission bandwidth of the satellite, 
• kiC ,  and ( )fG ki,  are respectively the power and the PSD of the interfering signals, 

normalized equally to the transmission bandwidth. These interfering signals can be 
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from the same system or from another system in the band. In the case of  
kiC , and ( )fG ki, , the interference comes from the same system as that of the desired 

signal. Moreover ginterferin
intraN refers to the number of interfering signals from the same 

system that can be seen in the receiver. 
• Finally, liC , and ( )fG li,  are respectively the power and the PSD of interfering signals 

from another GNSS interfering system, being ginterferin
interN the number of interfering 

signals from another GNSS system that can be seen in the receiver. 
 
As we can clearly recognize in the expression above, the impact of the interference onto  the 

eff0N
C is directly related to the Spectral Separation Coefficient (SSC), as defined at the 

beginning of this chapter. Moreover, the expressions above refer to acquisition and data 
demodulation. Thus we can say that the SSC as defined in this chapter is an acquisition 
Spectral Separation Coefficient, or SSCacq for short. 
 
The SSC indicates the degree of degradation that a desired signal suffers during acquisition 
due to the interference of other signals present in the band, no matter whether this comes from 
the same system or from another system. 
 
Similarly to the acquisition SSC, it is equally possible to propose an effective 

eff0NC  for the 

tracking performance [F. Soualle et al., 2007]. This equivalent figure is computed by 
estimating the equivalent new noise level 

eff0N that leads to the same jitter that would be 

obtained in the presence of an equivalent pure thermal noise level. Furthermore, we can 
distinguish between the coherent and non-coherent DLL cases. As we saw in chapter 4, the 
tracking error of the EMLP discriminator with only noise is shown to be (4.188): 
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  (6.40) 
If we further develop this idea, it can be shown that an equivalent figure to the SSC is present 
in the expressions of the degradation of the tracking performance of the desired signal. 
Moreover, since this figure is very similar in its form to the SSCacq but applies only for 
tracking, we will call it tracking SSC. The tracking SSC is shown to adopt the following form 
[F. Soualle et al., 2007]: 
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If we recall now the expression of the acquisition SSC for comparison: 
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We can recognize that except for the squared sine function multiplying the power spectral 
density, both figures are nearly identical. We show them now in the next figure as a function 
of the spacing: 

  
Figure 6.37. Variation of the Acquisition SSC and Tracking SSC with the spacing 

 
Similar figures can be equally derived for MBOC as shown in the following figure 
 

 
Figure 6.38. Acquisition SSC and Tracking SSC as a function of the spacing 

 
To conclude, it is important to mention that the squared sine function that we have seen in the 
lines above converges to 21 f when the spacing tends to zero according to (4.153). This is 

indeed deeply related to the ideas that were gathered in chapter 4.7 on MBOC where we 
mentioned that a signal whose spectrum envelope decays with 21 f would be optimum in 

terms of tracking performance. As we saw, MBOC follows this pattern too. 
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7. Signal Multiplex Techniques for GNSS 
7.1 Introduction 
 
As we have seen in chapter 2, all the existing and planned Global Satellite Navigation 
Systems will be transmitting more than two services in each transmission band.  
 

• In E1/L1 
o GPS plans to transmit at least four signals: The old C/A Code and P(Y) Code, 

the modernized military M-Code and the new L1 Civil signal (L1C). 
o Similarly, Galileo will provide on E1 the Public Regulated Service (PRS) and 

the  E1 OS data and pilot signals. 
o GLONASS transmits the C/A Code and P-Code, and plans new CDMA signals 
o and Compass plans to provide two additional signals with services that are still 

to be specified. 
• In L2 

o GPS will be transmitting the L2 Civil Signal (L2C) together with the          
P(Y) Code and M-Code, 

o and  GLONASS transmits the C/A Code and P-Code. 
• In E5/L5 

o GPS L5 will provide data and pilot signals, while 
o Galileo plans to transmit four signals using the Alt-BOC modulation, 
o GLONASS plans to transmit new open CDMA signals in the L5 band, 
o and Compass plans to provide two additional signals with services that are still 

to be specified. 
• In E6 

o Galileo plans to transmit the Public Regulated  Service (PRS) and a 
Commercial Service (CS) with improved characteristics with respect to the 
free Open Service (OS), 

o and Compass plans to provide two additional signals with services that are still 
to be specified. 

• Finally in L3  
o GLONASS will also transmit one civil signal (C/A Code) and the military     

P-Code. 
 
The availability of spectrum allocations is a limited resource as we have seen in previous 
chapters and thus the existing bands have to be reused. As new services are demanded, new 
signals are also required to fulfil needs that did not exist previously. Moreover it is highly 
desirable and of greatest importance that the new navigation signals that are introduced do not 
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cause significant distortion on other signals sharing the frequency. In other words, they have 
to be compatible with the already existing ones. Additional constraints are that we can 
transmit the new signals through the same High Power Amplifier (HPA), to be able to 
accommodate new data messages and new Pseudo Random Noise (PRN) code families, to 
have spectral isolation with the rest of signals in the band and to be capable of providing 
flexibility to control the distribution of power between the signals in and outside of the 
allocated band. 
 
If we take a look at all these constraints, we can clearly recognize the importance of 
developing good signal multiplex techniques based on a high efficiency constant-envelope. 
Multiplexing aims at providing a multiplicity of signals that must coexist on the same carrier 
without mutual interference [A.R. Pratt and J.I.R. Owen, 2005]. Moreover, we cannot ignore 
that there are clear constraints to fulfil at payload level and that the multiplex technique must 
therefore be carefully selected to avoid undesirable sources of degradation. In this chapter we 
will study the characteristics of current and future multiplexing techniques and the recently 
proposed modifications for GPS and Galileo in order to be capable of accommodating the 
optimized MBOC signal modulation.  
 
Finally, it is interesting to note that, as shown in [A.R. Pratt and J.I.R. Owen, 2005], 
alternative multiplexing methods to those discussed in this chapter could be used. In fact, 
separate antenna and amplifier chains (that is separate aperture) which allow for signal 
combination in the far field of the satellite antenna system could be employed. In addition, 
different signals could be multiplexed on the carrier frequency on several different antenna 
beams as suggested in [G.L. Cangiani, 2005]. Nevertheless, the extra complexity that the 
spacecraft payload would have to deal with would be of consideration and the antenna design 
would suffer from poor efficiency and important cost and weight drawbacks. Moreover, the 
more challenging problem of transmitting these signals would be the development of a 
general modulation approach with a single modulator, up-converter, power amplifier chain 
and antenna aperture [P.A. Dafesh et al., 2006].  

7.2 Multiplexing Schemes 
 
The first multiplexing technique used in navigation (GPS) was employed to send the          
C/A Code and the P(Y) Code providing two bi-phase signals on the same carrier frequency in 
phase quadrature (QPSK). Demultiplexing was relatively simple. However, the need to have 
more navigation signals has made this multiplexing scheme obsolete for future modernized 
implementations. In fact, the possible solution of adding another signal slightly offset in 
frequency would give rise to a non-constant envelope with the consequent distortion after 
passing through the High Power Amplifier (HPA). The following multiplexing techniques 
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will be studied in the next pages: 
 

• Linear Modulation (Spatial Combining) 
o Tri-code Hexaphase Modulation 

• Majority signal voting 
• Hard Limiting 
• Quadrature Product Sub-carrier Modulation (QPSM) 

o Interplex and CASM  
o Modified Interplex Modulation  

• Intervoting 
 
In spite of the important advances realized in the past years, the research field on signal 
multiplex is still subject to active studies as shown in [T. Fan et al, 2005]. Out of all the 
multiplex techniques presented above, the Linear Modulation and the Tri-code Hexaphase 
Modulation have maximum efficiencies limited to roughly seventy-one percent                
[P.A. Dafesh et al., 2006], what is an important disadvantage. Moreover, they are limited to 
multiplexing only binary signals. The rest of multiplex techniques offer a superior 
performance as we will see in next chapters. The efficiency is defined as the sum of the 
effective transmitted power usefulP  plus any band limiting losses, divided by the total 
transmitted power totalP .  

 
total

useful

P
P

=η  (7.1) 

We describe next all the techniques in detail. 
 

7.3 Linear Modulation (Spatial Combining) 
 
The Linear Modulation, also known as additive or spatial modulation, basically consists in the 
addition of a new  ranging signal to either the I or Q phases of a carrier where already at least 
other two signals are present. A well documented case in navigation is that of the GPS IIR 
Modernization or GPS IIR-M  [P.A. Dafesh et al., 1999a] and [P.A. Dafesh et al., 2000]. In 
fact, GPS investigated at some point during its modernization the possibility of adding the   
M-Code in phase with the C/A Code or the P(Y) Code using this technique as shown by       
[J. W. Betz, 1999] and [S. H. Raghavan et al., 1997].  
 
Let as suppose that we want to linearly add a new binary signal ( )tsN  to a baseband 
waveform modulated with other two binary signals ( )ts I

O  and ( )tsQ
O , where the subindex N 

refers to the new signal, O indicates the old signals that were already on the carrier in 
quadrature (QPSK) and I and Q are the respective phase. The In-phase and Quadrature 
components of the new multiplexed signal may be represented by 
 
 ( ) ( ) ( ) ( ) ( )tftQtftIts cc ππ 2sin2cos −=  (7.2) 
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where the In-phase and quadrature components of the carrier, that is ( )tI  and ( )tQ , are 

defined as follows: 
 ( ) ( ) ( )tsPtsPtI NN

I
O

I
O 22 +=  (7.3) 

and,  
 ( ) ( )tsPtQ Q

O
Q

O2=  (7.4) 
 
As we can recognize, the new signal has been added in-phase without loss of generality. If we 
define now the total power of the signal as 
 
 N

Q
O

I
OT PPPP ++=  (7.5) 

 
it can be shown that the envelope of the composite signal will adopt the following form:  
 

 ( ) ( ) ( )tstsPPPtA N
I
ON

I
OT 42 +=  (7.6) 

 
which is not constant due to the presence of a time-varying component in addition to the 
constant TP2 . This is in principle negative because the result is AM-to-AM and AM-to-PM 

distortions when the signal is filtered through a nonlinear High Power Amplifier (HPA) 
unless we work in the linear region, far away from saturation. If this were the case, the 
operating point of the amplifier would be backed off from its saturation point to the linear 
region of the amplifier, making in principle this multiplexing approach a suitable alternative.  
 
However, such a back-off is not of interest most of the times due to the high power 
inefficiency that results. Indeed, as early GPS modernization studies have clearly shown, the 
back-off functioning of an amplifier working in the linear region can result in several dB of 
power losses. We will show this in the next section with a particular example of the Linear 
Modulation, namely the Tri-code Hexaphase Modulation.  
 
Last but not the least, it is important to mention that a Linear modulation is equivalent to 
spatially combining the signals to multiplex, where a separate amplifier chain and antenna 
aperture are used to modulate the existing signals and the new signals. This so-called separate 
aperture implementation results in a significant loss of overall power efficiency since a 
second power amplifier would be required for the new signals to be modulated. 
  

7.3.1 Tri-code Hexaphase Modulation 
 
The tri-code Hexaphase modulation is a particular implementation of the Linear Modulation 
described above. Let us assume as an example that the GPS M-Code and P(Y) Code would 
have the same power level, being this half of that of the C/A Code. [P.A. Dafesh et al., 2000] 
have shown that as a result of applying the Linear Modulation, the envelope of the 
multiplexed signal would not be constant. This is shown in the following figure, where the 
constellation diagram is depicted. 
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Figure 7.1. Constellation diagram for the Linear Modulation 

 
As we can clearly see, the plot presents two distinct amplitudes since the constellation points 
lie on two different constant circles. This results in an hexaphase modulation as the name well 
indicates. In this particular example, the new M-Code was added to the P(Y) Code in-phase 
(vertical axis in the figure) following the mathematical scheme of (7.3).  
 
Let us assume now a GPS transmission bandwidth of 30.69 MHz. This results in a filtering 
loss of approximately 0.03 dB for the C/A Code, 0.31 dB for the P(Y) Code and 0.80 dB for 
the M-Code. If we further assume same transmission powers as [P.A. Dafesh et al., 2000], the 
power efficiency of the linear modulation applied to GPS would adopt a value of 
approximately 93.23 %. This is indeed very close to the figure of the 92.80 % derived by 
[P.A. Dafesh et al., 2000] under similar assumptions.  
 

Table 7.1. Power Efficiency of Linear Modulation 
Signal and 

Carrier Phase 
Percentage of Power before 

filtering and combining 
Filtering 
Loss (dB) 

Transmitted Power 
after filtering (dBW) 

C/A (Q) 46.88 % -0.03 -155 
P(Y) Code (I) 25.06 % -0.31 -158 
M-Code (I) 28.06 % -0.80 -158 

Total 100 %  -151.6 
 
This means a 0.30 dB power loss in the total signal power due to filtering and the Linear 
modulation. Although this might seem a good number in principle, the fact is that the overall 
power efficiency is in reality significantly reduced due to the amplifier back-off operation 
(unless we employ a separate power amplifier and work with a separate aperture) required to 
amplify the linearly modulated signals without causing AM-AM or AM-PM distortions. In 
fact, the 93.23 % power efficiency obtained in the previous analysis does not include the 
modulator inefficiency that amplifiers present in real world. 
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In order to avoid the disadvantages of this modulation, constant envelope solutions have been 
proposed to at least reduce the degradation effects that result from the High Power Amplifier  
as shown in the patent of [P.A. Dafesh et al., 2006]. We describe them in following chapters.  
 

7.4 Majority Signal Voting 
7.4.1 History of Majority Voting 
 
The majority combining technique dates back to those days when communication engineers 
relied on increased power levels and redundancy to improve the reliability of a 
communication link. The basic form of redundancy consisted in transmitting each data 
symbol an odd number of times, demodulating each symbol individually and deciding in 
favour of the symbol value that occurred more frequently [R. S. Orr and B. Veytsman, 2002]. 
In fact, this is the simplest implementation of the majority vote multiplex as we will discuss in 
the next chapters. It is important to note however that while the majority voting that we will 
describe in the following chapters is realized at the transmitter, the combination that we 
referred to in the previous lines is carried out at the receiver. 
 
The type of redundancy that we have mentioned has long been introduced in most of the 
digital circuits today. As a good example of it the Triple Modular Redundancy (TMR) is a 
standard design practice in systems where stringent availability and tolerance are required. 
Other systems with even higher requirements such as manned space missions use accordingly 
a higher level of redundancy. 
 
As shown by [R. S. Orr and B. Veytsman, 2002], another field where majority voting has 
attracted the interest of researchers in the past has been that of using the combination of 
binary codes for ranging applications. References dating to as early as 1962 can be found in 
works from [M. F. Easterling, 1962], [D.J. Braverman, 1963], [R.C. Tausworthe, 1971] and 
[J.J. Spilker, 1977]. These works describe how long codes with particularly well selected 
properties can be developed on the basis of shorter codes that are combined in an intelligent 
way. As it is well known, long codes are desirable to obtain good auto- and cross-correlation 
properties. However, for acquisition, shorter codes are preferred to accelerate the process. 
Majority voting provides an efficient way to multiplex several short codes into a long code 
with good properties. The interest of this technique is that although the code presents a 
majority voted length that is in general by far longer than that of the individual codes it 
consists of, there exists a substructure that can be used to quickly acquire one of the codes. 
This principle is in fact described by [M. F. Easterling, 1962]. In this work it is shown how 
several Pseudo Random Noise (PRN) sequences with prime periods can be majority voted to 
form a code with period the product of the individual components. This longer code presents 
improved correlation characteristics but still preserves the substructure of the individual codes 
of shorter length, facilitating thus the acquisition.  
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It seems that, as shown in [A.R. Pratt and J.I.R. Owen, 2005], the majority voting 
multiplexing technique has not been implemented yet in any real navigation system. 
Nonetheless we can find patents where this technique is employed combined with more 
sophisticated schemes such as the Interplex [G.L. Cangiani et al., 2004]. We will refer to 
these in chapter 7.8. Majority voting could play indeed an important role in the future, not 
only for navigation, but also for terrestrial networks. The transmission of voice and data at 
higher rates than those that are possible today could be reality someday. As described by     
[R. S. Orr and B. Veytsman, 2002], the idea would be to transmit more than one code per 
service in such a way that different code channels could be assigned to different functions 
such as pilot, paging, synchronization, control and traffic. In addition, different power 
allocations could be assigned to different services to avoid the dominance of one or a few.  
 
In addition, not only more services or channels could be transmitted multiplexed by the 
majority voted signal. In fact, different codes could be used too to transmit the same one 
service, enabling the operation of this service at higher data rates by splitting its data across 
the different codes as shown by [R. S. Orr and B. Veytsman, 2002]. Indeed, if N codes are 
used to transmit the same service, each code could carry part of the data message and the total 
data rate would increase. Of course care has to be taken in making the code sufficiently long. 
The reason for this is that by having several codes running in parallel multiplexed within the 
majority voted signal, each code will suffer a slight degradation that will make the 
demodulation more complicated. However, this is by far compensated by the increase of the 
data rate that can be achieved and by the fact that the correlation losses of any individual 
channel are limited even when the number of signals to multiplex increases. 
 
Another interesting application that derives from the previous discussion could be the use of 
majority voting to transmit different codes with different lengths from the same satellite. The 
different codes could have prime lengths and would be selected in such a way that they would 
be optimum to serve specific applications. One can think, for example, of an indoor code, an 
urban-canyon code, codes with good acquisition properties or with good tracking 
characteristics. They would all be sent from the same satellite in an unique majority voted 
code. From the receiver point of view, the particular user would only have to care about the 
particular family of codes of interest being the rest of codes sent in the majority voted signal 
invisible to him. For example, indoor receivers would have to correlate in the receiver with 
the particular indoor codes of the constellation. These should be optimized in terms of 
correlation properties. In the end, an indoor receiver working on indoor codes would not see 
the effect of the other codes transmitted on the same satellite, except for a correlation loss of 
never more than 1.96 dB as we will show next. 
 
To conclude, it is of interest to mention that another highly desirable property of the subject 
multiplex method is its transparency to the receiver equipment in the sense that this does not 
need to care about how the multiplex of the different signals looks like.   
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7.4.2 Definition of Majority Voting 
 
The Majority Voting modulation, also known as Majority Combining, is a constant-envelope 
multiplex technique based on majority-vote logic [J.J. Spilker Jr. and R.S. Orr, 1998]. The 
majority vote approach is basically a time-multiplexing of either the I or Q phases (scalar) or 
of both of them (vectorial) at the same time, where multiple signals are transmitted in a single 
constant envelope. The basic idea is that the time-multiplexed signal to transmit is selected 
following a particular logic based on the input signals. In its simplest form, namely the 
uniform weighting scalar distribution or equal weighting that will be described in         
chapter 7.4.4, the number of signals to multiplex must be odd to ensure majority in all 
possible cases. In this approach, the majority vote logic produces a multiplex where each 
component signal is equally weighted. In its most general form, namely the Generalized 
Majority Voting (GMV), any odd and even number of signals can be multiplexed in principle 
with any possible weighting. 
 
Majority voting is a non-linear multiplex technique that provides a convenient and flexible 
method to multiplex several signals into one constant envelope without multiplexing losses 
[J.J. Spilker Jr. and R.S. Orr, 1998]. Moreover, it elegantly circumvents the peak versus 
average power trade that the lossless linear superposition presents when applied through a 
common aperture, as we showed in previous chapter 7.3. The Majority Voting technique is 
also of particular interest to secure acquisition of codes such as the M-Code where the 
insertion of particularly well selected sequences would accelerate its detection. In the next 
chapters, the true relevance of majority voting will be underlined by comparing this 
multiplexing scheme with other better known techniques.  
 
7.4.3 Theory on Majority Voting 
 
Let an odd number of binary spread spectrum codes be multiplexed as proposed by            
[J.J. Spilker Jr. and R.S. Orr, 1998]. Majority logic operates on the principle that at a given 
time point the value to transmit is that of the majority of the codes. For this reason, the 
number of component codes must be odd. According to this, if the codes share a common 
chip rate, the majority voting operation will be done once per chip, while for the case that the 
rates differ, the majority combination will occur at their least common multiple.  
 
If we think about the functioning of the majority logic, we can see that the majority 
combination rule is equivalent to computing the numerical sum of the code chips and taking 
its algebraic sign as shown by [J.J. Spilker Jr. and R.S. Orr, 1998]. Indeed, for the 
combination of three binary codes (c1, c2 and c3) the majority code, cMaj, can be as: 
 

 
2

321321
Maj

ccccccc −++
=  (7.7) 
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Of course similar expressions can be derived for more codes, but the complexity increases 
with the number of signals to multiplex. Furthermore, it is interesting to note that the previous 
equation can be used to derive the autocorrelation function of the majority voted signal and 
correspondingly the total spectrum as a function of the individual PSDs. 
 
The case that we have described in the previous lines is the simplest implementation of the 
majority voting logic. A generalization can be easily accomplished by means of interlacing, 
which is the insertion of chips of one or more of the component codes into the output chip 
stream as replacement for the corresponding majority chips as explained by                       
[J.J. Spilker Jr. and R.S. Orr, 1998]. Interlacing is an intelligent way to achieve non-uniform 
effective power distribution among the codes as we will see in the next chapters. 
 
7.4.4 Majority Voting: Scalar Combination with Uniform 

Weighting  
 
Let us assume, as we also did in previous lines, that we want to multiplex an odd number of 
2N+1 statistically independent binary signals using majority logic. Furthermore, let us assume 
that the codes are statistically balanced, so that the chip values can be modelled as 
independent, identically distributed binary random variables. According to this, the majority 
voted signal that will result of multiplexing the 2N+1 individual signals can be expressed as: 
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where the Majority operator Maj indicates the sign of the majority of the signals. This signal 
receives the name of majority voted signal and is the one that will be transmitted instead of 
the 2N+1 signals. As one can imagine, in order the correlation losses not to be very high, the 
majority vote signal should somehow represent each of the 2N+1 individual signals that form 
it. To measure how true this assumption is, the correlation between the majority voted signal 

Majc  and a particular reference code has to be calculated.  
 
The result of a single chip correlation, denoted χ  in the following lines, equals +1 or -1 

depending on the coincidence of the majority voting chip and the replica chip of the particular 
code we correlate with, assuming perfect alignment. In fact, the majority chip matches the 
reference chip (thus 1+=χ ) if and only if at least N chips from the other remaining 2N codes 

also match it [J.J. Spilker Jr. and R.S. Orr, 1998]. Otherwise the correlation will be -1. 
According to this, the average correlation between any particular code ic  and the majority 
voting signal Majc will be 
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what can also be expressed as follows: 
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We assume that 
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Furthermore, it is trivial to see that   
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where ( )12 +N

Np  is the probability that exactly N codes out of 2N adopt the value +1. As it can 

be shown, this probability is also equal to that of having N codes out of 2N with value -1 and 
adopts the following form: 
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being thus the following identity true: 
 
 ( ) ( )1111 MajMaj −=−==+=+= ii ccppccp  (7.14) 
 
In the same manner, it can be shown that: 
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If we further develope (7.10), we can see that the mean correlation χ  between any particular 
code ic  and the majority voting code Majc  simplifies to: 
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or equivalently 
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This expression can be further simplified using an approximation based on the Stirling bounds 
of the factorial function as shown by [W. Feller, 1957]: 
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which is a good approximation even for low values of N. 
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If we normalize now the amplitude of the majority code to the summed power of the 
component codes, that is 12 +N , the normalized mean correlation ρ  between any particular 
code ic  and the majority voting code Majc will be 
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N N
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The problem of this implementation of the majority voting is that since all the signals are 
equally weighted in power, there appear relatively large majority combining losses per signal, 
resulting in relatively poor overall power efficiencies. In fact, for the case of three transmitted 
signals, the majority vote multiplexing is shown to result in a 1.25 dB multiplexing loss (what 
corresponds to an efficiency of approximately 75 %). It is important to keep in mind that 
when three signal are majority voted, N adopts the value 1 in the previous equations 
( 1123 +⋅= ). Next table exemplifies the possible chip combinations for majority combining 
of three codes and the correlation between each of the three codes and the majority voted code  

Table 7.2. Chip combinations and correlation for majority combining of three codes  
Code 1 + + + + - - - - 
Code 2 + + - - + + - - 
Code 3 + - + - + - + - 

Majority Voting Code + + + - + - - - 
χ  Code 1 – MV Code + + + - - + + + 
χ  Code 2 – MV Code + + - + + - + + 
χ  Code 3 – MV Code + - + + + + - + 

 
As we can see, the unnormalized mean correlation between any particular code and the 
majority voting code adopts the value + in 18 cases and – in 6 cases. Probabilistically 
speaking, this implies that: 
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so that the unnormalized mean correlation will be 21=χ , resulting in an apparent loss of 
6.02 dB. If we consider now the power of the three codes, the total loss will be 23=ρ  

which corresponds to the 1.25 dB we mentioned some lines above. This result coincides 
perfectly with the predictions of the theory developed in previous equations. 
 
The correlation power loss factor L(N) is defined by [J.J. Spilker Jr. and R.S. Orr, 1998] as the 
fraction of power of any code in the majority voted signal measured at the correlator output 
and is shown to adopt the following form: 
 
 ( ) 2ρ=NL  (7.21) 
or expressed in dB, 
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It is interesting to analyze this equation when the number of equal-weighted inputs increases. 
In fact, when ∞→N , (7.19) shows that the achievable per-code correlation asymptotically 
approaches π2 , so that the correlation losses will increase as the number of signals to 

multiplex increases, but will never be higher than 1.96 dB.  In fact, when the receiver 
performs a correlation among all the possibilities, some of the received chips will be wrong 
but limited in number according to the above derived expressions. The following figure shows 
the losses as a function of the number of multiplexed signals. To compute the curve, the exact 
formula of the majority losses was employed. However, the difference with respect to the 
Stirling approximation is minimum even for low numbers of signals. 

 
Figure 7.2. Majority voting losses 

Another important drawback of this simple implementation of the majority vote multiplexing 
is that it is difficult to control the relative power levels between the different multiplexed 
signals without incurring in additional losses as shown in [P.A. Dafesh et al., 2006]. Indeed, 
in the previous derivations all codes or signals are assigned the same power levels. 
Furthermore, this multiplexing technique does not provide sufficient spectral separation and 
has limited inherent flexibility in adjusting the amplitude of generated harmonics, being all 
these great disadvantages. 
 
A way to achieve an arbitrary weighting of the power of the signals to multiplex is using a 
statistical mix of majority vote rules operating on appropriately chosen subsets of the input 
chips of each signal [P.A. Dafesh et al., 2006]. Here, the power distribution is realised playing 
with the relative frequency of use of the various majority vote rules. As we can imagine, a 
particular power distribution can be accomplished with different majority vote rules and thus 
the optimum of all the possible solutions will be that one with the smallest multiplexing 
losses. This will be further clarified in the next chapters. 
 
To conclude this chapter it is important to mention that the correlation loss can also be 
interpreted as the additional fraction of transmit power PΔ  that is required to neutralize the 
receiver performance loss, so that it can be defined as follows: 
 1−=Δ LP  (7.23) 
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7.4.5 Majority Voting: Scalar Combination with Non-
Uniform Weighting  

 
In the previous chapter we have analyzed the simplest realization of the majority voting 
technique, namely the uniformly weighted version, where all the signals contribute with the 
same power to the majority voted signal. As we saw there, this solution presents limitations 
with respect to the flexibility to meet the power requirements in normal GNSS systems. To 
cope with this, this chapter describes the non-uniform solution. 
 
The non-uniform weighting can be likened to shareholder voting as graphically described by 
[R. S. Orr and B. Veytsman, 2002]. In fact, based on a targeted power allocation, each of the 
signals to multiplex is allocated a number of votes, which may be fractional in the most 
general case. Then, at each chip epoch, the transmitted majority voted value is selected by 
taking the sign of the sum of the weighted chips of each individual code. Without loss of 
generality, the codes or channels are assumed to be binary. This is shown in the expression 
next proposed by [R. S. Orr and B. Veytsman, 2002]: 
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where iλ  is the number of votes allocated to the i-th of the N signals, ic  represents the chip 
value of the i-th signal and Majc  is the majority voted chip value. As we can see in the 

expression above, this generalized form of majority voting also includes the particular case of 
(7.8) where all the weights are equal. Moreover, it is easy to recognize that this adaptation of 
majority logic enables a constant-envelope multiplexing of an arbitrary distribution of chip-
synchronous CDMA signals. In addition, there is no constraint on the number of signals that 
can be multiplexed so that also an even number of codes could be majority voted using this 
general approach. One final comment on the previous equation is that the weighting factors 
must be selected in such a way that the summation is different than zero at any time.  
 
As we can read from (7.24), the key to achieve an efficient multiplexing is the correct 
selection of the weighting factors so that the resulting composite signal does indeed reflect the 
desired power distribution among the various user signals. As shown by                       
[R. S. Orr and B. Veytsman, 2002], if all the chips of the signals to multiplex were weighted 
as in a linear multiplexer in proportion to the square root of their power allocation, (7.24) 
would not reflect in general the desired power distribution. In fact, those signals with small 
amounts of power could become suppressed relative to more powerful codes. 
 
Let us assume that we want to majority vote two signals with power ratios 20 % and 80 % of 
the total power respectively. This means that one signal will be four times stronger than the 
other one. As we mentioned in the previous lines, a linear multiplexer would assign 
coefficients 1 and 2 to the weak and strong signals according to:  
 21Maj 2 ccc ⋅+=  (7.25) 



Signal Multiplex Techniques for GNSS  

260 

If we show now the possible chip combinations of this scheme and the correlation between 
each of the two codes and the majority voted code, we have: 
 

Table 7.3. Chip combinations and correlation for linear majority combining of  the 
majority rule 21Maj 2 ccc ⋅+=   

Code 1 + + - - 
Code 2 + - + - 

Majority Voting Code + - + - 
χ  Code 1 – MV Code + - - + 
χ  Code 2 – MV Code + + + + 

 
As we can recognize, while the mean correlation of code 1 with the majority voting signal is 
zero, code 2 presents a perfect correlation of 100 %.  
 
As we can see, the weakest signal is not reflected at all in the majority voted signal at the end 
as the information from code 1 has gone lost in the majority voted signal. This small signal 
suppression or capture is a well known result of non-linear signal processing operation and 
reflects indeed the fact that no coalition of minority stockholders can ever outvote a 51 % 
majority interest as graphically expressed by [R. S. Orr and B. Veytsman, 2002].  
 
With the previous example, we have demonstrated that a faithful representation of a 
commanded power distribution can not be achieved in the most general case using a linear 
multiplexer. Indeed, the signal weight cannot be the square root of the power allocation unless 
the signals to multiplex were Gaussian distributed. 
 
[R. S. Orr and B. Veytsman, 2002] have derived a set of equations that give an elegant 
solution to this problem. According to the algorithm presented in their work, the cross-
correlation between the majority voted code and a particular component code is constraint by 
a set of equations in such as way that the power allocated to the particular signal is equal to 
the square of the value of the corresponding correlation between this signal and the majority 
vote signal. In addition, a coefficient of proportionality is also introduced in the model in 
order to control the efficiency or multiplexing losses common to each code. The solution of 
the equations provides the appropriate weighting of each signal maximizing the efficiency for 
the desired power ratio. The model is extremely non-linear and therefore, to minimize the 
resolution of the algorithm, [R. S. Orr and B. Veytsman, 2002] propose to assign each of the 
component codes to one of two groups, designated as Gaussian and non-Gaussian.  
 
The components assigned to the Gaussian group G are typically small in power but numerous 
in number. As one can imagine, the division between Gaussian and not Gaussian (NG) is not 
always so straightforward. Normally, the criterion to define a group of signals as Gaussian is 
that the weighted sum of their chips, with the weight being proportional to the square root of 
the power allocation, will have a power that is less than a specified fraction of the total power, 
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typically 5 % to 10 %. It must be underlined that, in spite of existing well defined statistical 
tests to decide on the Gaussianness of a group of signals, the determination of this decision 
threshold is relatively flexible and up to the designer. Indeed, the threshold value for this test 
is a parameter that permits some flexibility. [R. S. Orr and B. Veytsman, 2002] have shown 
that still in cases where the Gaussian group does not ideally behave as it should according to 
theory, the algorithm delivers good solutions.  
 
Taking (7.24), the majority voted signal will be formed in this case as follows: 
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where G  refers to the Gaussian group of signals, NG  to the non-Gaussian group and GN  
and NGN are respectively the number of Gaussian and non-Gaussian signals.  
 
The commanded power distribution is described by a set of non-decreasing ratios { }iR with 

NGNi ≤≤0 , where the lowest ratio, 0R , describes the power of the Gaussian group and is 

normalized to 1 as shown by [R. S. Orr and B. Veytsman, 2002]. Accordingly, the remaining 
signals NGNi ≤≤1  will represent the non-Gaussian group. Following this notation, iR would 
indicate that the non-Gaussian signal ic  has a power iR times that of the Gaussian group.  
 
The Gaussian group signals have assigned weighting factors that are equal to the root square 
of the power allocation. Therefore, if all the GN signals had the same power and given that 
the whole power of the Gaussian group is normalized to unity, each code of the group would 
be allocated a power GN1 being consequently the weighting factor of all the signals in the 

Gaussian group GN1 . The composite Gaussian group GS  is normalized to have power 1 

and mean zero being therefore its probability density function defined as follows.  
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Since in the next lines the probability of GS to be in an arbitrary region xSx G <<−  will 
appear relatively often, it is worth to recall the value of this probability  

 ( ) ( )
( )

( ) G
x

SGx

x

S
Gx

x

G
S

G SSSSfxSxp
G

G

G ′===<<− ∫∫∫ ′−

−

−

−
de2de

2
1d 2

0
2

2

2

ππ
 (7.28) 

 
This result can be further simplified, at least regarding the notation, if we express it in terms 
of the mathematical error function, which is defined as follows: 
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According to this, the probability that the Gaussian group variable GS  is between –x and x 
can also be expressed as follows: 
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As we have emphasized in previous lines, the collective power ratio R0 of the Gaussian signal 
codes must be unity. This means that the commanded distribution power allocations of the 
Gaussian signals G

N
GG

GPPP ,...,, 21  must be normalized as follows: 
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and the corresponding weighting coefficients will thus adopt the following form: 
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For the non-Gaussian group codes, the power ratios of the NGN non-Gaussian signal codes are 
equally determined as shown next [R. S. Orr and B. Veytsman, 2002]: 
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As we can see, the ratio iR  indicates the relative power between the non-Gaussian code i and 

the power of the Gaussian group.  
 
In line with the derivations of chapter 7.4.4, we have to derive now the correlation equations 
to find the optimum weighting factors. Indeed, the power allocated to each non-Gaussian 
signal should be the square of the correlation between that code and the majority voted signal.  
 
Since each chip in the multiplex can adopt two values, there is a total of 

NGN2 possibilities at 
any time for the NGN  non-Gaussian chips [R. S. Orr and B. Veytsman, 2002]. Let us define 

NGc as a combination of NGN  non-Gaussian chips such that  
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and ( )NGNG

i cS  equals (7.34) except for the exclusion of the i-th chip, 
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If we recall (7.24), the Majority Vote (MV) signal in its general form is shown to be: 
 
 ( ) ( )[ ] ( )[ ]NGNGGNGNGGG cSScScSc +=+= signsignMaj  (7.36) 
 
If we have a look at a particular non-Gaussian code NG

ic , the value of the sum ( )NGNGG cSS +  

can adopt the two following values: 
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being thus the correlation between the replica desired signal NG
ic and Majc  as follows: 
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where ( )[ ]NGNG

i cSp  indicates the probability that the Non-Gaussian sum adopts a particular 

value determined by NGc . Furthermore, the sign function is defined as: 
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It is important to note, that the coefficients must be selected such that the sum of all the 
weighted signals is never zero. Moreover, the probability to have a specific combination of 
Non-Gaussian codes is shown to adopt the following form: 
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If we further develope (7.38), we have a mean correlation: 
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which can also be expressed as: 
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If we have a look now at the next figure representing the probability density function of the 
Gaussian group,  

 
Figure 7.3. Probability density function of the Gaussian sum GS  
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it is clear to recognize that  
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and 
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Therefore, the mean correlation can be simplified to: 
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The expression derived above corresponds to a particular combination of 1−NGN  non-
Gaussian chips NG

ic where all non-Gaussian codes, except for code NG
ic , were considered. To 

extend the result to all the code combinations and have thus the mean correlation for any 
component signal, we only have to sum over NG

ic as shown next: 
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This expression can be further simplified if we recall that integrating (7.45) over NG
ic and 

NGc (that is over all code combinations including that of code i) will be similar except for a 

factor 2. In fact, it can be shown that 
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 (7.47) 

As we can see, the last line of the previous equation integrates over NGc and not NG
ic . 

 
In the same manner, the correlation between the Gaussian group and the majority voted signal 
can be approximated as follows: 
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An example confirming the validity of the previous expression is briefly depicted in the next 
lines. Let us imagine that our majority voting signal adopts the following form: 
 
 ( ) ( )21Maj 105signsign ccSSSc GNGG ⋅+⋅+=+=  (7.49) 
 
As we can recognize, the majority voted multiplexed signal consists of the Gaussian group 
and two non-Gaussian codes 1c  and 2c  weighted with 5 and 10 respectively. We analyze next 

all possible cases: 
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For the particular combination ( ) ( )1,1, 21 −−=cc , the mean value of the sum of the Gaussian 

and non-Gaussian signals NGG SS +  will be -15 adopting the probability density function the 
following form: 

 
Figure 7.4. Probability density function of NGG SS +  for ( ) ( )1,1, 21 −−=cc  

 
where the area in red indicates the value of the mean correlation for this particular 
combination of non-Gaussian codes. Indeed, the mean correlation in this case is shown to 
adopt the following value: 
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where ( ) ( )xx erf1erfc −=  This can also be expressed as a function of the weightings: 
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As one can observe, this is the unnormalized correlation between the Gaussian group and the 
majority voted signal for this particular combination of non-Gaussian codes. To normalize the 
expression, we only have to multiply by 21 λλ ++  resulting thus 
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In the same manner, for the combination of non-Gaussian codes ( ) ( )1,1, 21 +−=cc , the mean 

value of the sum of the Gaussian and non-Gaussian signals NGG SS +  will be 5 in this case, 
yielding the mean unnormalized correlation:  
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or again for any arbitrary two weighting factors: 
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so that the normalized expression will be: 
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In the same manner, the mean normalized correlation for the code combination 
( ) ( )1,1, 21 −+=cc  will be: 
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and for ( ) ( )1,1, 21 ++=cc ,  
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Grouping now all the previous normalized correlations, the mean value will be then: 
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where 21 105 ccS NG ⋅+⋅=  in this particular example. Moreover, the erfc function can be well 

approximated as follows when the argument is higher than 3 (as it is the case in Majority Vote 
combinations) [M. Abramovitz and I.A. Stegun, 1965]: 
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For our particular case, this implies that the correlation between the Gaussian group and the 
majority voted signal can be approximated for any generic non-Gaussian code combination 

NGc as follows: 
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which is the expression presented in (7.48).  
 
Dividing now (7.47) by (7.60) and squaring, the power ratio of code NG

ic will adopt the 

following form: 
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which coincides with the formula derived by [R. S. Orr and B. Veytsman, 2002]. Once we 
have the ratio of the power of any code NG

ic of the non-Gaussian group with respect to the 

Gaussian group, the power loss factor of all the signals multiplexed can be expressed in terms 
of the losses of the Gaussian group multiplied by the total power of the signal since all the 
power ratios are normalized to the power of the Gaussian group: 
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or simplified: 
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which also coincides with the expression derived by [R. S. Orr and B. Veytsman, 2002].  
 
Once we have derived the general expressions for the losses of the majority vote multiplex 
and thus the efficiency of the modulation for a targeted power distribution, the next step is to 
find the optimum weighting factors. This problem is basically a minimization exercise that 
consists in finding the weighting factors that minimize the total losses subject to the envisaged 
power division between the different signals. This can be expressed as follows: 
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and 
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[R. S. Orr and B. Veytsman, 2002] have proposed an efficient way to solve this problem 
where the set of weighting factors { }NG

iλ  is efficiently calculated.  
 
7.4.6 Generalized Majority Voting (GMV):  

Cyclostationary Solutions  
 
In the previous chapter different majority vote solutions have been derived for the case that 
the weighting rule applied to each instantaneous set of component channels is constant over 
time. Furthermore, theory was presented to derive the weighting factors required to obtain a 
desired power distribution. However, as shown by [R. S. Orr and B. Veytsman, 2002], not 
always the targeted power allocation of the different services can be accomplished on the 
basis of an stationary approach and a cyclostationary solution is required then. In this case, 
the weighted majority voting rules exhibit time variation varying the weighting coefficients 
over time. The time variation is applied periodically over the largest available processing 
interval as shown by [R. S. Orr and B. Veytsman, 2002], being this interval normally the 
shortest data symbol of any of the component codes of the multiplexing. The cyclostationary 
power allocation can be further tuned by averaging different weighting schemes over time. 
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7.4.7 Generalized Majority Voting (GMV): Sub-Majority 
Voting 

 
As shown by [R. S. Orr and B. Veytsman, 2002], the stationary solutions that result from 
applying the theory of previous chapters to the commanded powers of the majority voted 
signal present a quantized behaviour in the sense that the achieved gains do not automatically 
change when sufficiently small changes in the vote allocation are realized. Indeed, a break 
point only occurs when a slight change in the vote allocation permits some coalition of votes 
to dominate in a situation when they previously could not. In this sense, if an accurate 
allocation of the powers on the different signals is required, this can only be achieved on the 
basis of a cyclostationary solution as introduced in the previous lines. 
 
Based on this idea, a simple way of decreasing the effective power allocated to a particular 
channel is to omit this code from a certain number of majority votes resulting in the so-called 
sub-majority voting. When this occurs, certain codes or signals do not participate in the sub-
majority voting, changing thus the weightings of the different codes or channels over the time 
(thus a cyclostationary solution). It must be noted that while the weighting might change 
relatively often, it will however be constant for a relatively long period of time, in the order of 
the length of a bit. This can also be understood as time-multiplexing different signals 
according to a predefined scheme. In the following lines we analyze the implementation 
proposed by [G. L. Cangiani et al., 2002]. To illustrate the functioning of this cyclostationary 
solution, we take as an example the case when three signal codes are majority voted.  
 
As shown by [G. L. Cangiani et al., 2002], when three signals are combined using 
Generalized Majority Voting (GMV) on a sub-majority voting basis, there are four possible 
elements to consider: the majority vote of the three chips and the three individual chips 
themselves. As it can be demonstrated, if one of the codes is smaller than the other two, the 
transmission of solo chips from that code will never result in an efficient solution. According 
to this, if the targeted power distribution is { }321 ,, GGG , being the gains listed in non-
decreasing order, the majority vote { }321 ,,Maj ccc and the solo chips 2c  and 3c should be 

transmitted the following fractions of time [R. S. Orr and B. Veytsman, 2002]: 
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 (7.67) 

where the three time fractions sum to unity as one could expect. The resulting signal with 
interlacing of the majority vote of 21 ,cc and 3c  and the solo chips 2c  and 3c will be referred to 
as ( ){ }32321 ,,,,Maj ccccc  in following chapters. 
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The interpretation of the time fractions is as follows. Let us assume that each data bit contains 
100 chips and that the commanded power distribution is { } { }9,4,1,, 321 =GGG . According to 
(7.67), the fraction of time values will be { } { }52,51,52,,

32Maj =cc ttt . This means that out of 
the 100 chips of a bit, 40 of them will directly correspond to the highest gain code 3c . In the 
same manner other 20 will be devoted to the medium gain code 2c  and the final 40 chips are 

determined following the true majority vote of the chips of the three codes as described in 
chapters 7.4.4 and 7.4.5. 
 
As shown by [G. L. Cangiani et al., 2002], the interest of this approach is that the combining 
losses are distributed uniformly over the three original signals in such a way that all the 
signals will suffer the same percentage loss of power at the end. The efficiency of the three-
code multiplex is shown to adopt the following form: 
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which can also be expressed as follows taking as power reference the signal with the lowest 
gain, namely 1c  
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Next figure depicts the efficiency of the majority vote as a function of the power ratios 

12 GG  and 13 GG : 
 

 
Figure 7.5. Majority Vote Efficiency for three codes 1c , 2c  and 3c  
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As we can recognize in the previous figure, when the power of one of the codes is much 
larger than that of either of the other two, the multiplex efficiency approaches 100 %. 
However, in the case that one code is much smaller that the other two, the efficiency 
deteriorates to approximately 50 %. If the three codes are of similar power levels, the 
efficiency is then close to 75 %. Although the previous values are only valid for the three-
code multiplexing case, similar behaviours are found when the number of codes to multiplex 
increases. Indeed, majority voting presents the great inconvenience that in presence of a few 
codes monopolizing the total power, the efficiency reduces considerably.  
 
In the previous three-code case, the solution for the time fraction of each individual code or 
majority voted code was unique. Indeed, the number of target parameters was two (since the 
three power ratios sum to unity there are only two free ratios) and the number of free variables 
was also two (since the three time fractions also sum to unity, only two are free). However 
this is not the case always. Indeed, when the number of signals to multiplex increases, so does 
also increase the number of possible solutions of the fractions of time that deliver the targeted 
power ratios. As an example, in the five-code case, the Generalized Majority Vote (GMV) 
signal could consist of the following signals [G. L. Cangiani et al., 2002]: 

• One five majority-vote code 

• ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
5

three-way code combinations  

• Four solo chips. It must be noted that the weakest code is not used as shown above 

• ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
4
5

four-way code combinations where one of the codes is weighted twice. 

If we consider all the potential components of the GMV signal described above, there are a 
total of 20 elements to consider. Nevertheless, since the fraction times must sum to unity, the 
real number of free variables is actually 19. This number is however by far greater than the 
commanded powers (four in the case of five multiplexed signals) so that at the end the most 
efficient multiplex can only be discovered by a search technique of all potential combinations. 
 
Last but not the least, it is important to mention that the cyclostationary solutions depicted in 
previous lines also fall in the general mathematical description given by (7.24). In fact, 
recalling the general equation of GMV, the majority voted code will adopt the following form 
 

 ( ) ( ) ( )⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

N

i
ii kckkc

1
Maj sign λ  (7.70) 

 
taking on the sub-majority vote factors ( )kiλ  values of 0 or 1 in this case. It is important to 

mention here that while in the approach of previous lines the weighting was achieved by 
averaging over the time, in chapter 7.4.5 this effect was mainly reached by selecting a proper 
weighting factor. 
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7.5 Hard Limiting 
 
As we have already mentioned in previous chapters, during the design of the GPS M-Code 
different multiplexing options were considered to achieve a constant envelope                  
[P.A. Dafesh et al., 2006]. Together with the majority voting that we saw above, hard-limiting 
of the C/A Code, P(Y) Code and M-Code signals was another considered option.  
 
The hard-limiting approach basically forces the non-constant envelope of the sum of C/A 
Code and M-Code on one phase and P(Y) on the orthogonal phase (assuming we want to 
place the M-Code on the same phase as the C/A Code) to be constant by limiting the variation 
of the amplitude to its minimum value. The problem though is that the C/A Code and M-Code 
suffer from significant power losses and distortions. Indeed, the total efficiency of the hard-
limiting modulation is roughly of 83 % as shown in [P.A. Dafesh et al., 2006], what 
corresponds to approximately 0.8 dB of overall combining losses. Moreover, as also 
described in this paper, the power split between the different signals is not easy to achieve. 
 

7.6 Quadrature Product Sub-carrier Modulation 
 
The quadrature product sub-carrier modulation (QPSM) enables the transmission of a 
quadrature multiplexed carrier modulation with one or more sub-carrier signals in the same 
constant envelope waveform as shown in [P.A. Dafesh, 1999] and [P.A. Dafesh et al., 2006]. 
Moreover, in its generalized form, QPSM is capable of applying sub-carrier modulation to 
already existing systems with Quadrature Phase Shift Keying (QPSK) or Minimum Shift 
Keying (MSK). In fact, one of its main advantages is that it can easily introduce new 
additional spread signals with excellent spectral isolation to those already in the band, using 
the same transmitter power amplifier. This is accomplished using multiple rate product codes 
that cause minimal interference to the existing ones. Finally, the power control and energy 
distribution between the carrier and sub-carrier signals can be accomplished selecting the 
desired modulation index. 
 
In the next lines we show how the QPSM modulation can be represented mathematically. 
However, let us begin first with a simplified model. Let us assume a pair of quadrature 
components I0 and Q0 onto a carrier signal as follows, 
 
 ( ) ( ) ( ) ( ) ( )tftQtftIts cc ππ 2sin2cos 00 −=  (7.71) 
 
where fc denotes the carrier frequency. As we can clearly recognize, the magnitude is constant 
and can be expressed as follows [S. Butman and U. Timor, 1972]: 
 
 ( ) ( ) ( )[ ]ttftAts c φπ += 2cos0  (7.72) 
where  
 ( ) ( ) ( )tQtItA 2

0
2
00 +=  (7.73) 
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and 

 ( ) ( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

tI
tQt

0

0arctanφ  (7.74) 

From the equations above we can recognize that the resulting composite signal has a constant 
magnitude A0 and does not depend on time as long as ( )tI 2

0  and ( )tQ 2
0  do not vary, what is 

always satisfied if  I0 and Q0 are binary sequences. 
 
Indeed this is the basic idea of the QPSM modulation. If we generalize now this principle, we 
can further add new signals modulating the phase part according to the following approach  
[S. Butman and U. Timor, 1972]: 
 
 ( ) ( ) ( )[ ] ( ) ( )[ ]ttftQttftIts scsc φπφπ +−+= 2sin2cos 00  (7.75) 
with  
 ( ) ( ) ( )∑=

j
jjjs ttsmt ϕφ  (7.76) 

where  
• mj is the modulation index of the j-th signal. It determines the power allocation of each 

component, 
• ( )ts j  is the j-th signal to modulate. It can be expressed as the product of the respective 

data message and the PRN code. 
• and ( )tjϕ  is the periodic sub-carrier, which may be any regular signal as for example 

sine, square or triangular, for example. 
 
It is trivial to see that the envelope also remains constant in this modulated carrier signal. 
Moreover, the sub-carrier signal can be made up of many components being the limit only the 
phase noise that appears when the states of the constellation come too close to each other, as 
we will see later. Furthermore, the model is not only valid for binary sequences. In fact, the 
periodic sub-carrier could adopt any form in principle as long as it is regular. This is very 
important, because as we saw in chapter 4.6.1, the CBCS and CBOC signals are not binary. 
 
The conventional sub-carrier modulation presents so-called cross-product inter-modulation 
components which can be considered as signal losses, resulting thus in a loss of efficiency. 
The conventional constant envelope Sub-carrier Modulation is used today on the Space 
Ground Link Subsystem (SGLS) and other terrestrial and space systems as shown by        
[P.A. Dafesh et al., 1999a], [Philco-Ford Corp., 1968], [J.K. Holmes, 1982] and                  
[M. M. Shihabbi et al., 1994]. A generalization of the Sub-carrier modulation that has gained 
in interest over the past years is the Coherent Adaptive Sub-Carrier, which is presented in the 
following chapter. 
 
Finally, it is important to note that the spectral separation of the different signals to modulate 
depends on the sub-carrier signal in particular allowing thus for spectral control as desired. 
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7.7 Coherent Adaptive Sub-Carrier Modulation 
(CASM) and Interplex 

7.7.1 Origins of CASM and Interplex 
 
The CASM Modulation is very similar to Interplex [S. Butman and U. Timor, 1972]. It 
receives also the name of Modified Tri-code Hexaphase modulation since it can be seen as a 
constant envelope modification of the Tri-code Hexaphase modulation described in chapter 
7.3.1. CASM was first proposed in [M. Ananda et al., 1993] and later patented by             
[P.A. Dafesh, 2002] while Interplex was patented by [G.L. Cangiani, 2005].  
 
In spite of CASM and Interplex being mathematically very similar, an important distinction 
must be made regarding the implementation. In fact, while Interplex uses exclusively additive 
methods to multiplex the signals, CASM employs a combination of angle modulation and 
additive methods. In the end, both of these techniques require the addition of an Inter-
Modulation (IM) component that is necessary to maintain constant carrier magnitude          
[A. R. Pratt and J. I. R. Owen, 2007]. It is therefore important to keep in mind that while in 
the next pages we will refer indistinctly to CASM and Interplex since they are very similar 
from the mathematical point of view, they are realized and implemented in two very different 
ways, with two associated patents. In fact, CASM is described in [P.A. Dafesh, 2002], while 
Interplex was presented later by [G.L. Cangiani, 2005]. The slight differences between both 
implementations are also reflected in the performance during the amplification, where CASM 
is more subject to non desired effects. 
 
CASM and Interplex are constant envelope modulations with added sub-carriers that do not 
distort the existing ones when the composite signal is passed through a high-power amplifier 
operating close to saturation. Moreover, they provide additional control on the power and the 
spectral separation of the different quadrature multiplexed signals through the use of different 
sub-carrier frequencies, a particular sub-carrier code rate and a sub-carrier modulation index. 
As we have emphasized in the previous chapters, this is especially interesting when a high 
number of signals must be transmitted on the same band. In addition, the modulation of 
orthogonal pairs of sub-carrier signals on the I and Q phases is also possible with reduced 
distortion and losses.  
 
The CASM and Interplex implementations provide a means to multiplex all the signals that is 
equivalent to the spatially combined transmitter implementation that we described in chapter 
7.3, where the Linear Modulation was described. In fact, CASM and Interplex have only 
slightly higher modulation losses than the Linear Modulation, but can work in saturation 
achieving thus in the end a superior efficiency for the same total required power. It is also 
important to keep in mind that although using a separate aperture would in principle provide 
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the cleanest transmission of all the signals, the simplification in the modulator design that 
using an unique constant envelope allows is more than offset by the impact on the satellite of 
adding an independent antenna and amplifier. 
  
Finally, it is interesting to note that as stated in the CASM patent [P.A. Dafesh, 2002] the 
Inter-Modulation (IM) signals could be used as additional ranging or communication signals, 
transmitting thus additional information to that of the data channels. This is indeed the point 
where some people make another difference between CASM and Interplex. According to this, 
CASM would use the Inter-Modulation signals as another useful signal to transmit, while the 
Interplex implementation would allocate such a low power on this component that can be seen 
as lost power. Finally it is important to underline that the patent of [G.L. Cangiani, 2005] 
incorporates CASM but it is actually directed to a multi-beam/multi-antenna invention. 

7.7.2 CASM, Interplex and Modified Tri-Code 
Hexaphase 

 
CASM and Interplex can be seen as particular cases of the QPSM modulation or as an 
evolution of the conventional constant-envelope sub-carrier modulation that we saw in 
chapter 7.7. It is important to stress again that while Interplex uses exclusively additive 
methods to multiplex the signals, CASM employs a combination of angle modulation and 
additive methods. Moreover, CASM can utilize the cross-product inter-modulation (IM) terms 
as an additional useful signal. These terms can be considered as new ranging communication 
signals in some applications and not only as noise in the most general case. Nevertheless, for 
our navigation applications these terms will not be desired.  
 
This modulation is extremely flexible and efficient, offering additionally the possibility to 
provide modes of operation with civilian and military signals together. This makes the 
approach of great interest. In addition, CASM and Interplex provide high efficiency with 
values greater than 90 % and inherent flexibility to fine tune the modulation architecture 
maintaining an ability to provide backward compatibility with current signals                   
[G.L. Cangiani, 2005]. Also of great interest is that they may be generated using both square-
wave and sine-wave sub-carriers although employing square-wave signals is normally 
preferred.  
 
As shown in [A.R. Pratt and J.I.R. Owen, 2005] and [G.L. Cangiani, 2005], the CASM and 
Interplex techniques  are able to support altogether more complex solutions than any of the 
techniques studied so far. In fact, if we work with equation (7.71) derived above for the 
general QPSM case, and assume that there is a single sub-carrier, the expression can be 
rewritten as follows: 
  
 ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]ttsmtftQttsmtftIts sccscc ϕπϕπ +−+= 2sin2cos 00  (7.77) 
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where m is the modulation index of the multiplex, ( )tsc  the modulating signal and ( )tsϕ  the 

periodic sub-carrier. This expression can be further developed as follows: 
 

 ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( )
( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( )⎩

⎨
⎧

−−
−

=
tfttsmtQttsmtftQ

tfttsmtIttsmtftI
ts

cscscc

cscscc

πϕϕπ
πϕϕπ

2cossincos2sin
2sinsincos2cos

00

00  (7.78) 

 
yielding: 
 

 ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]{ } ( )
( ) ( ) ( )[ ] ( ) ( ) ( )[ ]{ } ( )⎩

⎨
⎧

+−
−

=
tfttsmtQttsmtI

tfttsmtQttsmtI
ts

cscsc

cscsc

πϕϕ
πϕϕ
2sincossin

2cossincos

00

00  (7.79) 

 
This can also be expressed in a simplified form as follows: 
 
 ( ) ( ) ( ) ( ) ( )tftQtftIts cc ππ 2sin2cos −=  (7.80) 
with  

 
( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]ttsmtQttsmtItQ

ttsmtQttsmtItI

scsc

scsc

ϕϕ
ϕϕ

cossin
sincos

00

00

+=
−=

 (7.81) 

 
where the in-phase and quadrature components have been isolated. Moreover, if we carefully 
look at the equation above, we can recognize that the envelope is constant, as it could not be 
different since the single sub-carrier case is a particular case of the general QPSM modulation 
where we have shown that this is true.  
 
In navigation the in-phase I0 and quadrature Q0 signals are modulated with data and 
pseudorandom codes as we saw in chapter 4. The signal modulated with data and code is 
called data channel while the other one has only code and is thus known as data-less or pilot 
channel. According to this, we have: 
 

 
( ) ( ) ( )
( ) ( ) ( )tctdPtQ

tctdPtI

QQQ

III

2

2

0

0

=

=
 (7.82) 

 
In addition, the sub-carrier modulating signal ( )tsc  can be considered to contain data ds(t) and 

spreading code cs(t). Moreover, this signal is further modulated by the so-called data and code 
partitioning functions αd(t) and βc(t) correspondingly [A.R. Pratt and J.I.R. Owen, 2005], 
depending on whether the term modulates the data or the code. We can write thus: 
 
 ( ) ( ) ( )[ ] ( ) ( )[ ]ttcttdts csdsc βα=  (7.83) 
 
These two partitioning functions are of great importance since they control the type of QPSM 
modulation that we will have, as shown in [P.A. Dafesh, 1999 and P.A. Dafesh, 1999b]. If we 
assume, a square-wave sub-carrier we have then: 
 
 ( ) ( )[ ]tft ss πϕ 2sinsign=  (7.84) 
 
where we have to note that the square-wave works with a frequency fs. In addition, if the 
signal sc(t) is binary, we can simplify for this particular case as follows: 
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( ) ( )[ ] ( )
( ) ( )[ ] ( ) ( ) ( )[ ]tftsmttsm

mttsm

scsc

sc

πϕ
ϕ

2sinsignsinsin
coscos

=
=

 (7.85) 

 
If we substitute now in (7.80) we have then: 
 

 ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )[ ][ ] ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ][ ] ( )⎪⎩

⎪
⎨
⎧

−−

−
=

tftftctdmPtctdmP

tftftctdmPtctdmP
ts

csISISIQQQ

csQSQSQIII

ππ

ππ

2sin2sinsign sin2cos2

2cos2sinsignsin2cos2
  

  (7.86) 
where 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )ttctctc

ttctctc

ttdtdtd
ttdtdtd

cSQQS

cSIIS

dSQQS

dSIIS

β
β

α
α

=
=

=
=

 (7.87) 

 
As we have already commented above, depending on the values that the functions ( )tdα  and 

( )tcβ  adopt, we will have the different QPSM options identified by                       

[A.R. Pratt and J.I.R. Owen, 2005] and [P.A. Dafesh et al., 2006]. If we take a closer look at 
the equations, we can recognize the desired in-phase and quadrature components of s(t) 
multiplied by cos(m) while the additional non-desired components added by the sub-carrier 
modulation appear multiplying sin(m). We have assumed from the very beginning that the 
data and code spreading codes are binary, and thus a useful multiplex option is shown to be 
the one that results from further assuming the following values for the partitioning functions: 
 

 
( ) ( )
( ) ( )tct

tdt

Ic

Id

=
=

β
α

 (7.88) 

 
These partitioning functions make use of the binary characteristics of the codes and data to 
separate them. In fact, substituting in (7.86), we obtain the following identities: 
 

 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )tctctctc

tctc

tdtdtdtd
tdtd

SQIQS

SIS

SQIQS

SIS

=
=

=
=

 (7.89) 

 
Moreover, assuming that the codes ( )tcI and ( )tcQ  are optimized to be orthogonal with each 

other, as it is the case, and that the I and Q data signals are also independent and thus ideally 
orthogonal, we can rename the terms ( )tcQS and ( )tdQS as ( )tcS IM,  and ( )td S IM,  

correspondingly, where the term IM denotes the Inter-Modulation signal. Finally, applying the 
changes described above, our multiplexed signal s(t) can be expressed as follows: 
 

 ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )[ ][ ] ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ][ ] ( )⎪⎩

⎪
⎨
⎧

−−

−
=

tftftctdmPtctdmP

tftftctdmPtctdmP
ts

csSSIQQQ

csSIMSQIII

ππ

ππ

2sin2sinsignsin2cos2

2cos2sinsignsin2cos2 IM,,
 

  (7.90) 
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It is interesting to note from the expression above that the original quadrature product 
components are reduced by a factor cos(m). We recall that these quadrature product 
components could correspond to two already existing orthogonal signals as could be the C/A 
Code and the P(Y) Code in GPS (CASM implementation) before the M-Code was introduced. 
But also Galileo with Interplex follows a similar pattern with the OS signals in-phase and the 
PRS in quadrature. In addition, we can see a new sub-carrier component with a BOC 
modulation and data ( )tdS  and code ( )tcS . Finally, we can equally recognize a fourth 
component with the codes and data signals ( )tcS IM,  and ( )td S IM, . Since this last signal does 

not transmit any useful information in the general case as it is modulated by the cross-
correlation of two codes that are ideally orthogonal and two data streams that in an ideal case 
are also independent, this term is further called inter-modulation component. Nonetheless, it 
must be noted that if an appropriate structure were found for the 3 spreading codes ( )tcI , 

( )tcQ  and ( )tcS , this could be used as a fourth channel to transmit an additional signal. 
 
In summary, CASM and Interplex offer a QPSK signal and an additional BOC, all of them 
forming a constant envelope multiplexed signal. The phase constellation diagram is given by 
the following 8 points: 

 ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
±±±=

I

Q

P
P

mm arctanπθ  (7.91) 

and the power of the different channels is thus: 
 

Table 7.4. Power Distribution of the CASM and Interplex multiplexing 
 

I Channel PI  cos2(m) 
Q Channel PQ  cos2(m) 
S Channel PI  sin2(m) 

IM Channel PQ  sin2(m) 
 
We can further analyze the equations if we recall again the equation that we derived above: 
 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )[ ][ ] ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ][ ] ( )⎪⎩

⎪
⎨
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−−

−
=
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ts

csISISIQQQ

csQSQSQIII

ππ

ππ

2sin2sinsignsin2cos2

2cos2sinsignsin2cos2
 (7.92) 

where 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )ttctctc

ttctctc

ttdtdtd
ttdtdtd

cSQQS
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 (7.93) 

 
We can further project the amplitudes of each of the signals on the I and Q axes, such that: 
 

 
( )
( )β

β

sin22

cos22

PP

PP

Q

I

=

=
 (7.94) 
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where P is the total power of the signal and β  an additional variable to link the I and Q 
powers, IP  and QP  respectively. Furthermore, we rename the variables β  and m  as follows:  

 
( ) ( )
( ) ( )

m=
⎩
⎨
⎧

=
−=

⇒−=

3

2

2
2 sincos

cossin
2

β
ββ
ββπββ

 (7.95) 

and redefine the signals as follows: 
 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ttctcttdtdtctdts

tctdts

tctdts

cSQdSQQSQS
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βα==
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=

3

2
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 (7.96) 

 
We can show that then: 
 ( ) ( ) ( ) ( ) ( ) ( )ttcttdtsts cSdS βα=32  (7.97) 
yielding thus, 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ttctcttdtdtctd cSIdSIISIS βα=  (7.98) 
 
which can be further simplified to: 
 
 
 ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )tstststtcttdtctdtctd cSdSIIISIS 321== βα  (7.99) 
 
If we introduce these expressions in (7.92), we have then: 
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c

c

πββββ

πββββ

2sinsinsin2coscos2
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32132132

332232  (7.100) 

 
which coincides with the form derived by [E. Rebeyrol et al., 2005]. In fact, it is not difficult 
to show that after some math this expression can be further simplified to: 
 

 ( ) ( ) ( ) ( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ ++−= tstststststfPts c 31321212
2cos2 ββππ  (7.101) 

 
where the factor multiplying the signal s1(t), namely β1, is equal to 2π− so that this signal is 

in quadrature with the other two we want to modulate, namely s2(t) and s3(t). Moreover, the 
normalized powers of the different signals can be expressed as follows: 
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 (7.102) 

 
According to this, the modulated signal could be generated following the scheme shown in 
[G.L. Cangiani and  J.A. Rajan, 2002]:  
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Figure 7.6. Interplex schematic generation 

 
The generation scheme presented above is conceptually useful to derive the theoretical 
expressions of this chapter but presents a series of limitations in a real implementation as 
identified by [G. L. Cangiani et al., 2002]. 
 
While common practice in the design of the architecture dictates generating the entire 
composite signal at baseband first to further up-convert it later to the desired carrier 
frequency, for the frequencies of interest in GNSS (microwave systems) this is a problem. In 
fact, the baseband frequency is too low to avoid harmonic and intermodulation interference 
with the desired output during the up-conversion. Moreover, the time jitter of the           
Digital-to-Analog Converters (DAC) adds phase noise onto the desired output signal and the 
up-conversion process requires band-pass filters at each mixing stage that destroy the original 
constant envelope of the signal. 
 
A solution to this problem is the implementation proposed by [G. L. Cangiani et al., 2002] 
where the Interplex signal at the desired carrier frequency is generated as depicted in the 
following figure. 

 
Figure 7.7. Alternative Interplex scheme proposed by [G. L. Cangiani et al., 2002] 

 
As an example, the variation of the signal power of s1 as a function of the two interplex 
modulation angles 2β  and 3β  is shown in the following figure: 
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Figure 7.8. Variation of the P1 power of the signal s1 as a function of β2 and β 3 

 
As we can see, the optimum combination of 2β  and 3β  depends on how much power we 

want to place on each of the desired signals. In fact, the principle is to minimize the amount of 
power of the IM channel since this does not bring any information. 
 
It must be noted that the equations derived above do not make use of the data and code 
partitioning functions. We express now the equivalent form for baseband as follows:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤
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−++= tststs
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As we can recognize, the equations derived above are based on the assumption of binary data 
and spreading codes, and a square-wave sub-carrier signal (BOC). Accordingly, the results 
are not valid for the most general case but can be easily generalized to other types of signal 
waveforms at the extent of some extra terms in the final expressions. Indeed, as we will show 
next, adapting this multiplexing to include the CBOC implementation of the MBOC signal is 
trivial. Furthermore, the derived expressions are only valid for infinite bandwidth, being thus 
the real power split among all the signals slightly different after filtering. 
 
If we further normalize (7.103)  to have unit power, the previous expression adopts the 
following form: 
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which can be further simplified as follows: 
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For simplicity we refer next all the powers to 3P . In fact, to define uniquely the multiplex 

with three signals, two power ratios are necessary if the powers are referred to a third signal 
and the total power sums to unity. According to this, the three-signal interplex is defined by:  
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being the efficiency of the interplex modulation as follows: 
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This is the percentage of power with respect to the total transmitted power that is employed 
for the useful signal. 
 
Finally, it is important to mention that additional signals can be incorporated into the CASM 
and Interplex schemes because the desirable constant envelope characteristic remains 
unchanged independent from the shape of the sub-carrier modulation. The drawback is the 
extra complexity that is needed to separate spectrally the additional signals, as pointed out in 
[A.R. Pratt and J.I.R. Owen, 2005] and developed in [T. Fan et al, 2005]. A particular 
realization with non-binary sub-carriers is discussed in the next chapter, where a sinewave 
sub-carrier is employed instead of the usual square-wave version. 
 

7.7.3 Single Sinewave Sub-carrier CASM 
 
The Single Sinewave Sub-carrier version was originally proposed as a constant-envelope 
Multi-Mode Spread-Spectrum Sub-carrier Modulation (MMSSS) for GPS                       
[P.A. Dafesh et al., 1999a]. This sub-carrier is shown to adopt the following form: 
 
 ( ) ( )tft ss πϕ 2sin=  (7.108) 
 
If we introduce now the sine-wave sub-carrier in equations (7.75) and (7.76) the multiplexed 
signal is shown to approximate to the following [P.A. Dafesh et al., 1999a]: 
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where Jn(m) is the Bessel function of order n and m the modulation index of the signal. As we 
can recognize, the previous expression is only approximate as an infinite number of carrier 
harmonics (J0, J2, J4,…) and sub-carrier harmonics (J1, J3, J5, …) would be required to define 
the multiplexed signal completely. However, only the first carrier and sub-carrier harmonics 
need to be considered if 2π≤m . This will be assumed in the following lines. Furthermore, 

for this range of modulation index the sinewave CASM approach presents a high efficiency of 
approximately 95 % as shown in [P.A. Dafesh et al., 1999a]. 
 
We can further develop the previous expression if we realize the same transformation as in 
(7.93). In fact, after some math (7.109) is shown to simplify to [P.A. Dafesh, 1999]: 
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It is interesting to note that by appropriately selecting the sub-carrier and code partitioning 
functions we may employ ( )tcIS and ( )tcQS  as coherently military acquisition and tracking 

signals as suggested by [P.A. Dafesh et al., 1999a]. Moreover, if different partitioning 
functions are selected, the I/Q phasing of these military signals can be reversed. 
 
7.7.4 Generalization to any number of Sub-carriers 
 
In the previous chapter, general expressions were derived for CASM and Interplex with only 
three ranging signals. However, they can be easily extended to any number  n of signals in the 
most general case. Furthermore, the sub-carriers do not necessarily have to be square-wave 
but could also be sinewaves as shown by [P.A. Dafesh et al., 1999a]. In fact, if we recall the 
general expression: 
 ( ) ( )[ ]ttfPts scT φπ += 2cos2  (7.111) 
with  

 ( ) ( ) ( ) ( ) ( ) ( )∑
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=
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i
ij

i
c

i
diis ttstttdmt

1
ϕβαφ  (7.112) 

we can see that the number of sub-carriers n that can be multiplexed is in principle unlimited. 
As we can recognize from the previous expression, 
 

• im  indicates the modulation index of the i-th sub-carrier, 
• ( )tdi  is the data sequence of the i-th multiplexed sub-carrier, 
• ( )ti

dα  is the data partition function of the i-th multiplexed sub-carrier, 
• ( )ti

cβ  is the code partition function of the i-th multiplexed sub-carrier and 
• ( )tiϕ  is the i-th sub-carrier. 
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After appropriate selection of the data and code partition functions, (7.112) can be further 
modified and expressed as follows for the case of square-wave sub-carriers: 

 ( ) ( ) ( ) ( )∑
=

+=
n

i
iis tstsmtsmt

2
111φ  (7.113) 

with 
 ( ) ( ) ( ) ( )ttdtcts iiii ϕ=  (7.114) 
being 
 

• ( )tiϕ  the square-wave sub-carrier, 
• ( )tdi  is the data message of the i-th signal to multiplex, and  
• ( )tci  is the spreading code of the i-th multiplexed signal. 

 
As we can recognize, this is the same notation that we followed in (7.101) for the particular 
case of only three signals to multiplex. 
 
Once we have described CASM and Interplex, it is the right moment to talk a little bit more 
on the Galileo multiplex needs. Indeed, sometimes we are not free to choose how we want our 
system to be and in the case of Galileo there were clear requirements and constraints on how 
the signals should interact with each other. As we will see, this determines already to a high 
degree the multiplex scheme to choose.  
 
To conclude, it is important to mention that the names Interplex and CASM are ambiguously 
used to define a similar idea. Nonetheless, we can find slight differentiations in addition to the 
implementation aspects we have mentioned. In [E. Rebeyrol et al., 2006], for example, we can 
see CASM defined as a three components Interplex modulation with a particular and optimal 
choice of the modulation indexes. However, nothing is said about what signals are in phase or 
in quadrature. In fact, although [P.A. Dafesh et al., 1999] and [P.A. Dafesh et al., 2000] 
proposed to have the C/A Code and M-Code in phase with the P(Y) Code in quadrature, other 
works have explored alternative configurations [G.H. Wang et al., 2004]. The same applies to 
Galileo as we see next. 

7.7.5 Galileo Multiplex Needs 
 
As shown in [A.R. Pratt and J.I.R. Owen, 2005], Galileo has to use an additive multiplexing 
technique that produces a constant envelope by means of an inter-modulation signal. We have 
shown that this is possible with the Interplex or CASM techniques provided that the 
modulating signals remain binary. Moreover, as we saw in chapter 2.4.1, the Galileo system 
aims at having the following signals on E1, for example: 
 

• E1 OS data signal, 
• E1 OS pilot signal, 
• E1 Public Regulated Service (PRS), and 
• an Inter-Modulation (IM) signal. 
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Interplex fulfils these requirements and it is in fact the multiplex baseline for the Galileo 
signals transmitted on E1 as shown in [G.W. Hein et al., 2002] and [G.H. Wang et al., 2004]. 
 
The Interplex modulation consists of one In-phase and one quadrature signal. In the particular 
case of Galileo:  
 

• The In-phase signal is the linear sum of the two Open Signal components, OSD and 
OSP where D stands for data and P for pilot.   

• The quadrature signal carries the Public Regulated Service (PRS) signal and an 
additional signal, named inter-modulation product, whose role is to provide the 
modulation with a constant envelope. 

Moreover, according to [Galileo SIS ICD, 2008], the power split of the OSD, OSP and PRS 
must be 25 %, 25 % and 50 % respectively. 
 

As we have seen in chapter 4.6.1, the mathematical expression of the interplex modulation for 
the old BOC(1,1) baseline of 2004, it is shown to be :  
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where, 

• A0 is the amplitude of the modulation envelope, 
• 0θ  is the angle of four of the six phase states of the 6-PSK modulation. It corresponds 

to half the angular distance between 2 states across the real axis, 
• ( ) ( )ts 1,1BOC  represents the BOC(1,1) modulation, 

• ( )tsPRS is the PRS BOCcos(15,2.5) modulation, 

• sIM (t) is the Inter-Modulation product, used to keep the amplitude constant, and 
• ( )tcD  and ( )tcP  are the codes for the E1 OS data and pilot channels respectively. 

 

The baseband equations above can also be expressed as follows for the particular case of the 
Galileo signals on E1: 
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Here the coefficients α, β and γ  play the same role as the phase angles 0θ  and the amplitude 

A0 in the equations of previous chapters. Moreover, D stands for data, P for pilot, d(t) is the 
data signal, c(t) is the PRN code and s(t) is the modulated signal. As it can be shown, the 
resulting modulation is a 6-PSK or Hexaphase modulation with constant envelope, also 
known as Modified Hexaphase for this reason. Next figure shows the phase plot: 

 
Figure 7.9. Modified Hexaphase modulation with BOC(1,1) 

 
where the angle 0θ  is chosen so as to provide the appropriate power ratio as described in the 

Appendix J. In our case, in order to have the power ratios given in [Galileo SIS ICD, 2008], 
the value must be of: 
 
 3399.01082.00 == πθ  radians (7.119) 
 
To have a better understanding on the location of the phase states, we show next the different 
probabilities of the constellation phase points by means of the following truth table. It must be 
noted that the amplitudes were not corrected to account for the loss of efficiency that results 
from the inter-modulation signal IM. 
 
Table 7.5. Phase states of the Interplex modulation as a function of code and data inputs 

 
{E1 OSD, E1 OSP, PRS} E1 OSD+E1 OSP Phase state Inter-Modulation 

+1,+1,+2 +2 1 -0.5 
+1,-1,+2 0 2 +0.5 
-1,-1,+2 -2 3 -0.5 
-1,+1,+2 0 2 +0.5 
+1,+1,-2 +2 6 +0.5 
+1,-1,-2 0 5 -0.5 
-1,-1,-2 -2 4 +0.5 
-1,+1,-2 0 5 -0.5 

 
We can graphically see this also as follows: 
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Figure 7.10. Modified Hexaphase modulation 

 
As we can see from the figure and table above, states 2 and 5 occur each with a probability of 
25 %. As a result, the OS channel transmits no signal 50 % of the time. Moreover, binary 
codes were assumed with values {+1,-1} of equal probability. In addition, the PRS has 3 dB 
more power than the OS signals in consonance with [Galileo SIS ICD, 2008]. As we can see, 
the mission of the Inter-Modulation signal IM is to bring the phase points back to the circle as 
depicted by the arrows of the figure above. 
 
The final power distribution inside the modulation takes thus the following values for the 
baseline of 2004 (see chapter 3.5 for more details): 
 

Table 7.6. Power distribution of Interplex with OS and PRS 
 

BOC(1,1) OSA OSB PRS IM 

2/9 2/9 4/9 1/9 Relative 
Power -6.53 dB -6.53 dB -3.53 dB -9.54 dB 

 
As we can observe, the IM term has a power level of -9.54 dB with respect to the total 
transmitted power and 6 dB below the PRS. It is important to note that in a real application 
the values derived above should be further compensated to account for the different losses of 
every signal through the satellite filter. 
 
Moreover, the amplitude of the envelope, A0, must be modified to compensate the loss of 
efficiency of the modulation due to the presence of the Inter-Modulation product. In the 
present case, A0 is set to 0607.189 = . After applying the amplitude compensation, the 

power distribution adopts the following form: 
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Table 7.7. Compensated power distribution to match the baseline values 
 

BOC(1,1) OSA OSB PRS IM 

1/4 1/4 1/2 1/8 
Relative Power 

-6 dB -6 dB -3 dB -9.04 dB 

 
Finally, it is interesting to note that the power split between the OS and PRS channels can be 
easily modified playing with the parameters A0 and 0θ  . In terms of phase states, the effect 
would be a movement of the phase angle 0θ  within the circle of the constellation. 
 

7.7.6 Power Spectral Density of CASM and Interplex  
 
Although CASM and Interplex correspond to two different implementations, the simplified 
mathematical description is very similar, being only the Inter-Modulation components slightly 
different. As we have seen in the lines above, the baseband expression can be expressed as: 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]tststsPtsPjtsPtsPts 321IM113322BB −++=

 (7.120) 

where  
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32
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Moreover, as shown in [E. Rebeyrol et al., 2006], 
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such that: 
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2
1

BB
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As shown in Appendix I, the autocorrelation of the baseband signal adopts the form: 
 
 ( ) ( ) ( ){ }ττ −=ℜ tstsEs BBBBBB

 (7.124) 
 
If we further assume ideal codes, the expression for the autocorrelation function will be: 
 
 ( ) ( ) ( ) ( ) ( )τττττ

IM321BB IM321 sssss PPPP ℜ+ℜ+ℜ+ℜ=ℜ  (7.125) 
 
In addition, since the power spectral density is the Fourier Transform of the autocorrelation 
function, we have: 
 
 ( ) ( ){ } ( ) ( ) ( ) ( )fGPfGPfGPfGPFTfG ssssss IM321BBBB IM321 +++=ℜ= τ  (7.126) 
 
Equally, for the whole signal including carrier frequency, we would have: 

 ( ) ( ) ( )cscs ffGffGfG ++−=
BBBB 4

1
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7.7.7 CASM Modulation in GPS 
 
As we saw in chapter 7.7, if we apply CASM to all the GPS signals except for GPS L1C, the 
Power Spectral Density is shown to adopt the following form: 
 
 
 ( ) ( ) ( ) ( )( ) ( ) ( )fGPfGPfGPfGPfGs IMIMCodeMCodeMYPYPC/AC/A

GPS
BB

+++= −−  (7.128) 
 
where the power spectral densities of the C/A Code, P(Y) Code and M-Code were already 
shown in chapter 4.3.2. In the case of the IM component, the signal presents the spectrum of a 
BOC(10,10) modulation. In fact, as we have already seen, the Inter-Modulation signal is 
formed by multiplying the three signals we want to modulate. In this case, ( )ts1  is BPSK(1), 

( )ts2  is BPSK(10) and ( )ts3  is BOC(10,5). Since the three signals are binary, the product of 
them will be a sine or cosine-phased ( )cs ff ,BOC  modulation with fs the highest offset carrier 

frequency of the three and with code rate fc the highest of the three. In this particular case the 
chipping rate of the P(Y) code and the offset carrier frequency of the M-Code. 
 
Moreover, as presented in [P.A. Dafesh et al., 2000], the GPS CASM modulation defines its 
angle 2β  as follows: 
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being thus the only variable to play with the angle 3β  which is renamed as m in this particular 

case. Consequently, in line with the derivations of chapter 7.7.2, the power of each particular 
signal depends only on m: 
 

 

( ) ( )
( ) ( )
( ) ( )

( ) ( )mPmP

mPmP

mPmP

mPmP

IIM

Q

I

Q

2

2
3

2
2

2
1

sin

sin

cos

cos

=

=

=

=

 (7.130) 

so that  
 QIIM PPPPPPP +=+++= 321  (7.131) 
 
As a conclusion, the CASM GPS signal can thus be expressed as follows: 
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As we can see, the desired powers and relationships between the different signals, can be well 
adjusted by appropriately selecting the values of 2β  and m. The corresponding diagram of the 

modulation constellation is shown in the following figure from [E. Rebeyrol et al., 2006]. 
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Figure 7.11. GPS CASM modulation constellation 

 
As we can recognize from equation (7.132), the phase rotation of the sub-carrier signal onto 
the carrier can be implemented in very different ways. Apart from implementations of 
proprietary nature, two main realizations of the CASM modulation have been identified for 
GPS as identified in [P.A. Dafesh et al., 2000]: 
 

• The most straightforward approach is to process the sub-carrier signal in baseband. 
According to this, the new signal to add in the multiplexing  produces a digital rotation 
of the phase of the carrier as shown in Figure 7.12 below: 

 
Figure 7.12. Flexible digital CASM modulator implementation [P.A. Dafesh et al., 2000] 

 
• An alternative implementation is to phase modulate the local oscillator as described in 

[P.A. Dafesh, 1999b]. This approach is very similar to that followed on the Space 
Ground Link Subsystem (SGLS. In this case we would only need an additional bi-
phase modulator to modulate the cross-term. It must be noted that depending on the 
sub-carrier frequency of the new signal to multiplex one approach or the other will be 
more appropriate. 
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In the previous lines a CASM implementation was applied to multiplex all the GPS baseline 
signals except for the new GPS L1C. However, the original CASM modulation method for 
GPS pursued the transmission of not only one military signal, but actually two. In fact, the 
CASM technique proposed by [P.A. Dafesh et al., 1999a] was applicable to the transmission 
of Military Acquisition (MA) and Military Tracking (MT) signals in a flexible and efficient 
manner. The high efficiency approach presented there for combined aperture, that is C/A, 
P(Y), MA and MT sent through the same upconverter amplifier chain and antenna, was 
shown to be equivalent to that of the separate aperture, where MA and MT would be 
transmitted with a separate upconverter, amplifier and antenna from that of C/A and P(Y).  
 
One final point to discuss is the power efficiency of the resulting multiplex. As an example, 
we show the case of the C/A Code, P(Y) Code and M-Code signals and assume that the Inter-
Modulation signal is 2 dB lower power than the M-Code and the P(Y) Code as also done in 
[P.A. Dafesh et al., 2000]. Furthermore, if we recall the filtering losses derived in Table 7.1, 
the power efficiency of CASM in GPS will be: 

Table 7.8. Power Efficiency of CASM 
Signal and 

Carrier Phase 
Percentage of Power before 

filtering and combining 
Filtering 
Loss (dB) 

Transmitted Power 
after filtering (dBW) 

C/A (Q) 39.96 % -0.03 -156 
P(Y) Code (I) 21.36 % -0.31 -159 
M-Code (I) 23.91 % -0.80 -159 

IM (10,10) (Q) 14.78 % -0.71 -161 
Total 100 %  -152.0 

 
As we can see, the total transmitted power is approximately the same as that of the Linear 
Modulation in chapter 7.3.1 (-151.6 dBW). However, here the result of applying CASM to 
GPS results in a final efficiency of approximately 79.45 %, or 0.99 dB loss in total power due 
to the CASM Multiplexing and filtering of the IM signal when only the useful signals are 
considered. That results in 0.69 dB higher losses than in the case of the Linear Modulation, 
which had 0.30 dB losses or 93.23 % power efficiency. The efficiency of the CASM approach 
can be further improved if the Inter-Modulation signal is tracked reaching then a final 
efficiency of approximately 92 %, or 0.36 dB losses. This means only 0.06 dB higher losses 
than in the case of the Linear Modulation. 
 
We can conclude that the CASM implementation of GPS presents slightly higher modulation 
losses than the Linear Modulation in general. However, the overall power efficiency when all 
the contributions are taken into account is significantly greater for CASM than for the Linear 
Modulation since in this case it is not required that the amplifier works at back-off or that a 
separate high power amplifier chain is used.  
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It is important to note that the conclusion from the example above results from a very 
simplified approach as it is not possible to complete all the modulation at baseband and have 
just one up-conversion to the transmission frequency. As a result of distributed signal 
filtering, in reality there are differences in the signal trajectory between the phase plane plots, 
what has a significant effect on the requirement for HPA back-off.  Ideally, a desirable feature 
would be that all transients lie along the unit circle. However, this does not happen in real 
implementations in any case. 

7.7.8 Interplex Modulation for Galileo: BOC(1,1) + 
BOCcos(15,2.5) 

 
If we apply the Interplex Modulation to the Galileo signals baseline of 2004 as described in 
chapter 2.4.2, the general expression of the Power Spectral Density is shown to adopt the 
following expression: 
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+++=  (7.133) 
 
where the power spectral densities of the OS and PRS signals were derived in chapter 4.3.2. 
Moreover, the IM signal will have the same spectrum as the PRS BOCcos(15,2.5) as shown by 
[E. Rebeyrol et al., 2006] . It must be noted that these expressions are only valid for the case 
of having BOC(1,1) as open signal, since as we have repeatedly mentioned in this chapter, the 
standard Interplex equations are not valid when we consider the CBOC implementation of 
MBOC, as this is not binary. 
 
As stated in [Galileo SIS ICD, 2008], the total power of the Galileo E1 signals should be 
equally divided between the in-phase and quadrature components. Furthermore, the power of 
the data and pilot channels should be equal. Using (7.102), this leads to the following 
relationship:  
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For the Galileo Interplex modulation with BOC(1,1) and BOCcos(15,2.5), that is the old 
baseline of 2004, the modulation index m adopts the value π1959.0=m  and the expression 
of the transmitted signal is shown to be [E. Rebeyrol et al., 2006]: 
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  (7.135) 
where 

• P  is the total power of the signal, 
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• ( )( )ts 5.2,15BOCcos
 represents the cosine-phased BOCcos(15,2.5) signal waveform of the 

Public Regulated Service (PRS), 
• ( )( )ts 1,1BOC  is the BOC(1,1) modulation that was used for the data and pilot Open 

Service in the baseline of 2004, and 
• ( )( ) ( )( ) ( )( )tststs 1,1BOC1,1BOC5.2,15BOCcos

 is the Inter-Modulation term that keeps the constant 

envelope of the multiplexed signal. 
 
According to this: 
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Equation (7.135) can be further simplified if we employ the general notation of equations 
(7.111) and (7.113) as shown next: 
 

 ( ) ( ) ( ) ( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ −+−= tstsmtstsmtstfPts c 312112
2cos2 ππ  (7.137) 

The resulting diagram of the modulation constellation is shown in the next figure: 
 

 
Figure 7.13. Galileo Interplex phase constellation for the Galileo baseline of 2004          

[E. Rebeyrol et al., 2006] 
 
7.7.9 Modified Interplex and Modified CASM 
 
As a result of the changes proposed in [G.W. Hein et al., 2005], slight modifications had to be 
made to the multiplex schemes presented above in order to be able to transmit the CBOC 
signal for the Galileo E1 OS service. As we have seen in detail in chapter 4.6.4, the CBOC 
modulation was selected due to its great multipath mitigation potential and spectral 
compatibility with the rest of signals in the band, among other characteristics of interest. The 
data and pilot channels are in anti-phase and the difference or additive components are not 
binary. Indeed, CBOC in particular and CBCS in general, are formed by adding BOC(1,1) 
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with a new sub-carrier, sBOC(6,1)(t) for CBOC and sBCS(t) in general, of relative amplitude μ . 

This means that the Inter-Modulation component does not obey to the equations that we saw 
in the previous lines for Interplex and CASM. However, the Interplex and CASM analytical 
expressions can be easily modified to account for the new signal waveform. In fact, the 
composite multiplexed signal should present for CBOC the following form: 
 
 ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( )tftststftststs EEEEEEE

PD
1111111 2sin2cos

IMPRSOSOS πγβπα −−−=   

  (7.138) 
being 
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As we can clearly recognize from the equations above, this modulation scheme is generally 
more efficient. Indeed, as we saw in chapter 4.6.1, the OS channel is in this case transmitting 
signal all the time and not only 50 % of the time as was the case with the BOC(1,1) signal. 
The equation above can be further expressed as follows: 
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where the emission of BOC(1,1) and the BOC(6,1) signal are shown separately. As it is trivial 
to recognize, the two emissions are time disjoint and satisfy the requirement to be orthogonal. 
Another important observation is that now we have 8 phase points instead of only 6. From a 
quick inspection of the phase diagram one might find analogies with the CASM and Interplex 
schemes that we saw above. Nonetheless, the CASM and Interplex cannot be applied directly 
since we do not have binary signals any more.  
 
Finally, it is important to mention that the more signals are multiplexed in the general scheme, 
the more phase constellation points are needed to achieve the constant envelope. This raises 
some concerns on the complexity of the signal generator and the identification of the phase 
points as shown in [A.R. Pratt and J.I.R. Owen, 2005]. Indeed, after filtering at the receiver 
some phase states might be difficult to distinguish if they are too close to each other. 
 
For more details on the modified interplex modulation, refer to Appendix J where all the 
analytical expressions for the general CBCS modulation and CBOC are derived. 
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7.7.10 Interesting Aspects of the Modified Interplex 
 
In all the modulations studied so far, the most typical case was to multiplex binary signals. 
Nevertheless, there are cases of interest that cannot be described by the original version of the 
Interplex modulation unless slight modifications are made. In fact, CBOC has data and pilot 
in anti-phase. This results in an additive/subtractive combination of BOC(1,1) and BOC(6,1) 
that is not binary any more. Nonetheless, a careful look into the equations shows that for these 
cases, the inter-modulation still remains binary and thus, except for the amplitude, it can be 
predicted with the Interplex equations as shown in [G.W. Hein et al., 2005].  
 
As we saw in chapter 4.7.3, CBOC requires to form the sum and difference of the data and 
pilot channels. The conditions for the BOC(1,1) and BOC(6,1) can be stated as follows: 
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where the BOC(1,1) and BOC(6,1) channels are time disjoint and could be thus separately 
decoded. The equation above is subject to further interesting interpretations. In fact, since two 
time multiplexed channels are created, one could use the difference channel to carry 
additional signals or services as proposed in [A.R. Pratt and J.I.R. Owen, 2005]. If we assume 
that 20 % of the total signal power is on the BCS channel and 80 % on the BOC(1,1) channel, 
this makes a difference of 6 dB in power. For the bit error rate not to be affected with these 
power levels, the reduced power of the difference channel BOC(6,1) could be compensated by 
a reduction of the data rate from 250 symbols per second to 50 as shown next: 
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being 
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which is very similar to the expressions derived in previous chapters, but with the slight 
difference that in this case an additional signal with information ( )td E1

Diff  accompanies 

BOC(6,1). This additional signal has no effect on the time-multiplexing as we can see, since 
the phase inversion of this data does only cause a change of the sign of the BOC(6,1) signal at 
every data symbol transition of the difference channel. Finally, it must be noted that as 
commented in [A.R. Pratt and J.I.R. Owen, 2005], the presence of a data signal on the 
difference channel, namely BOC(6,1), definitely has an effect on the global signal 
characteristics equalizing the average spectra, the multipath sensitivity envelope and the DLL 
tracking characteristics. A method for modulating data for the BOC(6,1) signal and to 
dispread this data message have been proposed in [A.R. Pratt and J.I.R. Owen, 2005]. 
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7.8 Intervoting (Interplex + Majority Voting) 
 
In chapter 7.4 we saw that majority voting presents interesting characteristics with respect to 
current known multiplexing techniques, being majority voting an extremely efficient 
technique when the number of signals to multiplex increases. On the other hand, it can be 
shown that while the number of signals to multiplex is not higher than three, interplex is 
optimum in the sense of presenting minimum multiplex losses, especially when the power 
distribution of the different signals varies considerably. For more than three signals, however, 
majority voting is shown to outperform interplex. 
 
When both multiplex techniques are compared, one comes to the natural question of whether 
it would not be possible to have the best of both techniques in one single multiplexing. The 
answer to this is that it is in fact possible. Such a modulation receives the name of Intervoting 
(Interplex + Majority Voting). We dedicate this chapter to study its mathematical properties. 
 

7.8.1 Origins of Intervoting 
 
[G. L. Cangiani et al., 2002] have proved that the interplex modulation can be further 
exploited and generalized to the intervote multiplex, where elementary majority voting 
techniques are combined with the interplex modulation. Next figure shows schematically how 
the intervoting modulation works. 
 

 
Figure 7.14. Scheme of the intervote multiplex 

 
As we can recognize, an intervote modulator includes a majority voting logic unit and an 
interplex modulator. The majority voting logic receives as input a number of signal codes 
with the commanded power ratios and delivers as output three signals that result from 
majority voting the inputs. In a particular implementation, two of the original input signals 
remain unchanged and are directly output, being the third output signal the majority vote of 
the rest of input signals. The majority vote signal and the other two uncombined signals are 
then fed into the interplex modulator as signals s1, s2 and s3 to form the in-phase and 
quadrature components of the final composite signal.   
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7.8.2 Theory on Intervoting 
 
The intervoting multiplex takes advantage of the positive aspects of both interplex and 
majority voting while it gives a solution to the disadvantages that both present separately. In 
fact, while majority voting degrades its performance when the power difference between the 
different signals is considerable (this is the so-called small signal suppression problem that we 
saw in chapter 7.4.5), interplex reduces its efficiency as the number of signals increases. The 
combination of both techniques, is capable of elegantly coping with the drawbacks of the two 
multiplexing schemes, providing an efficient modulation for any number of signals and any 
arbitrary power distribution. 
 
The particular intervoting multiplex that we analyze in this chapter combines five different 
signals, being three of them previously multiplexed using Majority Voting. It is important to 
mention that intervote could in principle be constructed with an interplex scheme that could 
accommodate more than three signals. Moreover, the total number of signals to multiplex 
could be in principle also higher. Without loss of generality, we will concentrate however in 
the following on this particular case given its simplicity and optimum combination of 
performance and flexibility.  
 
As we can recognize from Figure 7.14, three of the signals are aggregated using majority 
voting and the resulting majority voted signal is then further multiplexed with the other two 
uncombined codes using interplex. This solution is especially optimum if the commanded 
power distribution could change during operation or would adopt any arbitrary set of values 
not necessarily fixed at the beginning. It is important to note that for a particular power 
distribution, a particular five signal interplex solution could possibly outperform intervote. 
Nevertheless, intervote will result in general in an improved efficiency for the majority of 
power distributions, bringing an additional flexibility in the design. 
 
Let us assume five binary signals { }54321 ,,,, ccccc  with target commanded power 
distribution{ }54321 ,,,, ggggg , being the gains defined in non-decreasing order such that 

nn gg ≥+1 . As graphically depicted in Figure 7.14, each time there is a change in the target 

gains of the different signals, the majority voting logic of the intervote multiplexer has to 
determine which of the five signals is to be mapped [G. L. Cangiani et al., 2002] to which of 
the three interplex modulator inputs 1s , 2s  or 3s  during the period in which the particular 

targeted gains apply. Furthermore, the intervote logic has to decide which three codes are 
majority voted and where the two remaining codes input the interplex multiplexer such as to 
obtain the maximum global efficiency. 
 
Since intervote bases on interplex to combine all the signals, we recall the general expression 
of the interplex multiplexing for the I and Q channels as presented in (7.106) of chapter 7.7.2: 
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where ( )ts1 , ( )ts2  and ( )ts3  are the input interplex components and the powers are all 
expressed in terms of 3P  with 13 =P . Furthermore, the efficiency of the interplex modulation 

was shown to be: 
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As we mentioned above, all the permutations of five codes and all locations of the majority 
vote have to be tested to find the best global efficiency. Indeed, analysis shows that although a 
particular three-code combination could result in an optimum GMV solution for three 
particular codes, it is not always true that placing these three codes as input of the interplex 
and the other two uncombined in the other two interplex inputs would result in the best global 
intervote efficiency. This means in other words, that all possible 120!5 = combinations have to 
be tried to select the optimum configuration. 
 
Fortunately, the number of efficiency evaluations significantly reduces if symmetry 
considerations are taken into account. In fact, a careful look at (7.144) reveals that only three 
logical possibilities for the majority vote placement are to be considered, namely 1s , 2s  or 3s . 

In this manner, the number of combinations to try is of only 30
3
5

3 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
. Moreover, positions 

2s  and 3s  are interchangeable so that the order does not affect the efficiency formulas as we 

will also prove next. According to this, only two placement options are possible for the 
majority vote signal: 
 

• Majority Vote on I: As we have mentioned, placing the majority vote signal on either 
2s  or 3s  is arbitrary in terms of the total efficiency. Therefore, the default majority 

vote signal will be taken to be 2s  in the following pages. 
• Majority Vote on Q: In this case, the majority vote signal will be 1s . 

 

7.8.3 Intervoting with Majority Vote on I 
 
In the case that the majority voted signal is placed on I, the generic transmitted binary signals 
{ }54321 ,,,, ccccc  can be assigned as follows [G. L. Cangiani et al., 2002]: 
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where the majority vote was arbitrarily placed on 2s  as we discussed above. Furthermore, the 
notation ( ){ }323212 ,,,,Maj cccccs = indicates that 2s  is an interlace of the majority vote of 

21 ,cc and 3c  with solo chips of 2c and 3c , as described in chapter 7.4.7. 
 
We further assume that the code set { }54321 ,,,, ccccc  has as target commanded power 
distribution{ }54321 ,,,, ggggg  . According to this, the normalized interplex gain of 1s  and 3s  
should be then 4g  and 5g  respectively. Taking now (7.144) into consideration this implies: 
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so that 
 541 ggP =  (7.148) 

Recalling the efficiency expression of the general interplex modulation as given in (7.107), 
the total efficiency of Intervoting with majority vote on I will be then as follows: 
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It is important to note that this expression is slightly different to that presented in (7.107) for 
the general interplex case. Indeed, the power allocated on the signal 2s  in the numerator has 

been corrected by the efficiency of the majority vote multiplex as not all the power allocated 
on 2s  corresponds in reality to the useful binary signals 1c , 2c  and 3c . In fact, as shown in 

(7.68), part of the power goes lost in the majority voting reducing the efficiency from 1 to 
GMVη . For the denominator, however, the whole power allocated on 2s  has to be considered 

including also the non-desired multiplex losses. 
 
As we have mentioned above, signal 2s  is the majority vote of 1c , 2c  and 3c . According to 
this, for the targeted power gains 1g , 2g  and 3g , the power gain of 2s should be 
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or equivalently, 
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This can be further simplified if we recall that 
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Consequently,  
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or in a similar form 
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Using now equations (7.149), (7.148), (7.154) and (7.151) together, the total intervote 
efficiency when the majority vote is placed on I will be:  
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which can be further simplified and perfectly coincides with the expression shown by                     
[G. L. Cangiani et al., 2002]: 
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It is interesting to note from the expression above that the position of 2s  and 3s  is 

insignificant what reinforces the comments we made in chapter 7.8.2 as we anticipated that 
positions 2s  and 3s  are arbitrarily interchangeable. This is also valid for the case of 

Intervoting with Majority Vote on Q as we show next. 
 

7.8.4 Intervoting with Majority Vote on Q 
 
In the previous lines we have derived the analytical expression for the intervote efficiency 
when the majority vote signal is placed on I. In this chapter, we will repeat the same exercise 
for the case that the majority signal is placed on Q. 
 
In this case, the transmitted signals can be assigned as follows [G. L. Cangiani et al., 2002]: 
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Since the code set { }54321 ,,,, ccccc  has as target commanded power distribution 
{ }54321 ,,,, ggggg  , the normalized interplex gain of 2s and 3s  should be then 4g  and 5g  

respectively. Taking (7.144) into consideration, this implies: 
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so that 
 542 ggP =  (7.159) 

Recalling now the expression for the efficiency of the intervote multiplex on I, the total 
efficiency with majority vote on Q adopts a slightly different form: 
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As we can recognize, the power allocated on signal 1s  in the numerator has been corrected by 

the efficiency of the majority vote multiplex following the same logic as in the case of 
majority vote on I. On the other hand, the whole power allocated on 1s  is considered for the 

denominator including also the non-desired multiplex losses as explained in previous chapter.  
 
Signal 1s  is the majority vote of 1c , 2c  and 3c . According to this, for the targeted power gains 

1g , 2g  and 3g , the power gain of 1s will be: 
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or 
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This can be further simplified as follows: 
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or equivalently 
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Putting now (7.160), (7.159), (7.151) and (7.154) together, the total intervote efficiency when 
the majority vote is placed on Q will be then:  
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which can be simplified coinciding with the expression of [G. L. Cangiani et al., 2002]: 
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In the previous lines we have derived the efficiency of the intervote multiplex for the case that 
the majority vote signal is either on I or on Q for a particular code set { }54321 ,,,, ccccc  with 
target commanded power distribution{ }54321 ,,,, ggggg . However, as we mentioned in 

chapter 7.8.2, to find the optimum code allocation it would be necessary to evaluate (7.149) 
and (7.160) for all the possible permutations.  
 
Fortunately, since the gains of the different codes are defined in non-decreasing order and the 
signal with the lowest power 1c will never have solo chips in the majority vote signal, the 

number of permutations to assess reduces to ten for the case that we multiplex five signals. 
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The ten standard permutations, as defined by [G. L. Cangiani et al., 2002] are presented next: 
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where { } { }5432154321 ,,,,,,,, GGGGGggggg =  is the particular case that we covered in the 

previous two chapters. As underlined by [G. L. Cangiani et al., 2002], the indexes are 
increasing in positions 1, 2 and 3 of (7.167) in order to assure that the majority vote will never 
transmit the signal with the lowest power as solo chip. However, the situation for positions 4 
and 5 is definitely different since here the order is significant. Indeed, depending on which 
signal occupies positions 4 and 5, this signal could be on I and Q resulting thus in different 
efficiency values as we have shown. According to this, twenty permutations are to be 
evaluated: the ten given by (7.167) plus another ten with positions four and five interchanged. 
 
Once the previous equations determine with code set results in the optimum total efficiency, 
we would only have to form the majority vote of the three selected signals according to the 
theory presented in chapter 7.4.7. In a next step, the resulting majority vote signal would be 
further interplex-multiplexed with the other two uncombined signals. 
 
Last but not the least, it is important to mention that in principle any interplex solution could 
be employed in the intervote scheme to multiplex all the signals as defended and emphasized 
by [G. L. Cangiani et al., 2002]. In the particular but illustrating case of previous pages five 
signals were intervote-multiplexed using a three-input interplex. Nevertheless, as one can 
imagine, when the signals to multiplex increase, other interplex solutions could also be used. 
However, three seems to be a good compromise as then interplex behaves optimally.  
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7.9 FDMA vs. CDMA 
 
We have seen in chapter 2 that GPS, Galileo and Compass are or will be using CDMA while 
GLONASS is the only one that still employs FDMA for the transmission of its navigation 
signals. However, as we have seen in chapter 2.5.3 it seems that the Russian Navigation 
System is moving in the direction of achieving higher interoperability with the American, 
European and Chinese systems as GLONASS is already taking the first steps to CDMA.  
 
In spite of the promising benefits that this change would bring, the main reasons that the 
Russian GLONASS has used as argument in the past against CDMA are summarized next: 
 

• Existence of single point of failure if all signals are located at E1/L1,  
• FDMA offers improved security protection (not any more true as we explain next), 
• The issue of paying for the new civil signal design, 
• The historical reasons that lead to FDMA 

 
The improved robustness of FDMA versus CDMA has usually been justified by the improved 
SSCs that FDMA can achieve. If we take as an example the C/A Codes of GPS and 
GLONASS, we can see that the Self SSC of the GLONASS C/A Code is of approximately     
-57.9700 dB-Hz while for GPS we obtain -61.8008 dB-Hz. The favourable difference for the 
GPS C/A Code comes from the different employed transmission filters and the lower code 
rate of the GLONASS C/A Code. However, if we take a look at the SSC between spectral 
adjacent GLONASS C/A Codes, we can recognize than the spectral separation improves to    
-69.5604 dB-Hz, providing thus nearly 12 dB of additional protection with respect to CDMA. 
Moreover, if we take a look at non-adjacent spectra the theoretical isolation is infinite and 
thus the average of the adjacent SSCs would be of -80.6999 dB-Hz or nearly 22 dB better 
(considering 14 frequency slots).  
 
CDMA achieves higher protection by means of the cross-correlation of the employed codes. 
These provide in the case of the GPS C/A Gold Codes an additional protection of 24 dB when 
no Doppler is considered and of approximately 21 dB when also Doppler is taken into 
account. In the case of FDMA there is only one code and thus we have to talk about auto-
correlation instead of cross-correlation. Nonetheless, although all the GLONASS satellites 
employ the same code for all the satellites, since the relative Doppler and delay among them 
can be considered as random, the final autocorrelation value that two FDMA satellites present 
is that of the secondary peaks of the ACF, also in the order of 21 dB with respect to the main 
peak, and thus close to the cross-correlation of GPS C/A Codes. The randomization effect 
through Doppler is similar to the principle of Doppler Division Multiple Access (DDMA). 
 
If we consider now the spectral separation and code separation effects together, we can see 
that from this point of view FDMA would provide an additional protection of 22 dB with 
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respect to the CDMA approach. This has been indeed the main argument used by GLONASS 
experts until now. As we can recognize, the implicit assumption behind is that the jammers 
are narrowband. 
 
While the protection against jammers was at the beginning of GNSS of particular importance 
and drove most of the decisions that Russia and the USA took to build their respective 
satellite navigation systems, nowadays it is possible to build very wideband jammers. Thus, 
the protection that FDMA was supposed to offer against narrowband interferers is not any 
more an advantage against CDMA. 
 
We can imagine it with a simple example. If we jam a satellite in a CDMA system with a 
narrowband interferer, we automatically jam all the other satellites since they are on the same 
carrier. On the contrary, in an FDMA system the other satellites would result in principle 
unaffected. Wideband jammers are however not an issue or at least not as they were at the 
beginning when GLONASS argued the FDMA goodness on the basis of its superior jamming 
protection. As a result, unless the different satellites used carriers very separated in frequency, 
with today’s technology one could jam all the FDMA signals at the same time disabling the 
extra protection that FDMA was supposed to bring.  
 
In addition, FDMA is a clear show-stopper for mass market applications since having 
different carriers for each satellite poses an important challenge in the design of the receivers. 
As one can imagine, this makes FDMA less competitive than its CDMA competitor. 
Moreover, filter design and other synchronization aspects difficult the design of an FDMA 
receiver. Although the problem can be solved as many manufacturers have shown in the past 
years, there is no doubt that if GLONASS wants to really provide mass-market signals, its 
civil signals will have to slowly migrate to CDMA. 
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8. Conclusions and Recommendations 
 
In this last chapter, the conclusions from the research work of this thesis are presented. 
Furthermore, recommendations for future work activities are proposed. 

8.1 Conclusions 
 
This thesis provides a theoretical framework to describe analytically the characteristics of any 
generic navigation signal waveform. Generalized expressions have been derived and 
fundamental theoretical concepts have been proposed to represent a signal waveform in both 
the time and frequency domains. The analyzed theory on Multilevel Coded Symbols (MCS) 
provides a powerful means to mathematically model any of the current navigation signals and, 
what is of even greater interest, of potential alternative signal schemes that could be proposed 
in the future.  
 
The thesis starts with a complete description of all existing and planned Global, Regional and 
Augmentation Satellite Navigation Systems. Special attention has been paid to all the aspects 
related to signal structure with particular focus on the European Galileo system. The evolution 
of the Galileo frequency and signal plan was a case of intensive study given its novelty. 
 
The main relevant parameters in the signal design of any navigation system have been further 
discussed and generally valid formulas have been obtained. A family of generalized 
waveforms has been proposed and investigated in detail. Furthermore, potential applications 
and the performance of alternative solutions were studied and compared with other well 
known solutions.  
 
Given the fact that the number of navigation systems sharing the currently available       
Radio-Navigation frequency bands is dramatically increasing, this thesis has discussed the 
relevant aspects related to the spectral compatibility and interoperability among signals. To 
achieve this objective, the Spectral Separation Coefficients were object of profound analysis. 
Building on generalized theoretical models to describe any chipping waveform, analytical 
expressions have been derived for the case of smooth spectra. In addition, the effect of non 
idealities related to the imperfections of the Pseudo Random Noise (PRN) codes and the 
existence of data were also modelled in detail. Simulations have shown that numerical 
computations deliver exactly the same results predicted by the analytical formulas. 
 
To conclude, the different signals introduced in this thesis have been briefly analyzed 
regarding their implementation in the payload. Here, already implemented and new 
multiplexing techniques were presented and studied in light of their feasibility to 
accommodate optimized signal waveforms in the future. This is a field which is expected to 
attract attention in coming years.     
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8.2 Recommendations for Future Work 
 
This thesis has provided the theory and mathematical tools with which any present and future 
navigation signal could be represented. The present work should serve as fundament for 
future research activities in the field signal design. As this thesis has shown, payload 
limitations practically reduce today the number of palette signals to binary solutions. 
However, other families of signals could become reality in the coming years.  
 
In order to guarantee a peaceful coexistence of all existing, planned and potential future 
signals a correct understanding of compatibility and interoperability is a fundamental 
requirement. This thesis provides the analytical models and expressions required to support 
future studies in the field. This work has shown that backward compatibility with other 
existing signals is possible if some constraints are introduced in the signal design. This 
concept has proved to work as it has been recently demonstrated with the design of MBOC in 
E1/L1 and should be further exploited using the models of this thesis. 
 
While this work provides the fundamental models and theory required to design a signal plan 
from the point of view of the signal waveforms. Further research is found necessary in several 
other fields of comparable relevance. Next lines describe those aspects of the signal design 
where further work is recommended in the future: 
 

• New frequency allocations for navigation services: The efforts invested by all 
Satellite Navigation Systems have mainly concentrated on placing new services in the 
very few frequency bands that are already allocated to Radio-Navigation Satellite 
Services (RNSS) today. However, the present RNSS bands are scarce and 
overcrowded. Moreover, they provide very limited physical performance given the 
relatively narrow band they possess. Future efforts should be dedicated to finding new 
frequency resources with the required protection to provide any potential service. 

• RNSS C-band and S-band for navigation: In consonance with the previous 
paragraph and keeping in mind that these two bands are already accepted as RNSS 
either on a global or a regional basis, they should be further explored in coming years: 

 
o The C-band range from 5000 MHz to 5030 MHz is an RNSS band in the 

whole world and could provide improved navigation services given its higher 
carrier frequency. The main contributions to the error budget, namely 
ionospheric errors and multipath, are in this band considerably lower. This 
band could give answer to those limitations that the L-band shows today. 
However, the technology in C-band poses important challenges that are still to 
be well understood. 
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o The S-band range from 2483.5 MHz to 2500 MHz is already a navigation band 
in many Asian countries (ITU Region 3). In fact, The Chinese Beidou GEO 
satellites use as carrier frequency 2491 MHz and the Japanese Engineering 
Test Satellite Number 8 (ETS/8) too. In addition, the Indian IRNSS system 
also plans navigation signals in this band for the near future as we have seen in 
chapter 2.8.2. For this band to be used for a global satellite navigation service 
further work is required in understanding the advantages and limitations of this 
frequency allocation. Given its proximity to communication services, 
important synergies are to be expected. Further work could use this thesis as 
fundament to understand the potential of this band. 

 
• New signal waveforms for navigation: While the BOC, AltBOC and MBOC 

modulations have represented important innovations in the signal design, this thesis 
has shown that there are still other signal options of great interest, not necessarily 
binary, that should be further investigated in the future. The current payload 
limitations to have binary signals will soon be overcome and future work is thus 
required to identify new signals. This thesis offers the mathematical framework under 
which these new signals could be investigated. 

• Relative reduction in the importance of backward compatibility: In the design and 
modernization of all current navigation systems, backward compatibility with legacy 
signals has played an outstanding role. However, as software receivers gain in 
importance, this constraint could lose part of its weight in future decisions. New and 
more powerful signals could thus be designed. Future work should also be carried out 
using the guidelines proposed in this thesis. 

• Need of improved multiplexing techniques: As the number of signals increases, new 
techniques will be required in the future to accommodate new services and targeted 
applications. Today, the same navigation signal serves completely different users. 
However, as suggested in this thesis, several signals optimized to particular users of 
interest could be multiplexed using advanced multiplexing techniques already present 
today in the literature. Further work is found to be required in coming years to give an 
answer to the ever increasing needs of the different user communities. In particular for 
services that require improved robustness, combinations of CDMA with frequency 
hopping and Orthogonal Frequency Division Multiplexing (OFDM) could provide 
promising solutions. 

• New code families: Significant progress has been made in the field of code theory 
over the past years. However, much of these developments have not yet been applied 
to satellite navigation. While the modernized GPS and Galileo will make use of new 
code concepts, it is clear that further research will still be required in the future. In 
addition, new encryption methods should be further explored to give an answer to the 
needs of certain services. 
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• Modernized Message Structure: Message structure is one of the aspects in the signal 
design that has less evolved in the past years. While GPS III will introduce some slight 
modifications to the actual designs, it is clear that still further improvements can be 
achieved. Fundamental research should thus be realized in coming years to elaborate 
optimized message designs for new satellite navigation signals. The use of dynamic 
messages with data rates that change depending on the needs of the system is a field 
where future work is required. Some of these ideas could be well answered using the 
theory presented in this thesis, exploiting the multiplexing characteristics. 

• Compatibility and Interoperability: This thesis has underlined the importance of the 
signal design to achieve compatibility. Future work will be required in coming years 
to understand how the coexistence between all the different services of the various 
Global and Regional Satellite Navigation Systems could be guaranteed as new 
systems come into play. 

• Interoperable Integrity: In line with the previous paragraph, interoperability in the 
integrity concept of the different navigation systems should equally be further 
investigated. The user will only be capable of really profiting from the different 
integrity concepts that exist today if harmonized statistical models are developed. 
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A Appendix. PSD of BPSK signals 
 
As shown in chapter 4.3.1, BPSK is a particular case of MCS. Thus, the power spectral 
density of a generic BPSK(fc) can be described using the theory on MCS signals as follows: 
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In this Appendix we will show that after some math this expression leads to the well known 
form of the BPSK Power Spectral Density that can be found in the literature. To do so, we 
will concentrate on the term in the brackets, namely the modulating factor. For simplicity in 
the manipulations we will express the cosine as a function of complex exponentials using the 
Euler´s formula. According to this, the modulating term to simplify is as follows: 
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As we can recognize from the expression above, the problem to solve reduces to calculating 
the following sum: 
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Let us define the following function: 
 

 ( ) ( )
1e
eeee

1

1

1

1 −
−

=== ∑∑
−

=

−

=
A

AAnn

i

iA
n

i

iAAf  (A.4) 

which shows the interesting property that 
 

 ( ) ∑
−

=

=
1

1
e

d
d n

i

iAi
A
Af  (A.5) 

From (A.4) we can also see that  
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Using the previous results, we define now the function ( )AΦ  as follows: 
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Combining now (A.4) and (A.6) according to (A.7) yields then: 
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We can further express the original expression of (A.2) as follows in terms of ( )AΦ : 
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This can be simplified after extracting the common factor Ane  and An−e  respectively and 
forming squares, as shown next: 
 

 ( )( )

( )( )[ ] ( )( )

( ) ( )

( )( )[ ]2

2

2222

2

BPSK
Mod

1e1e

eeeeee46

ee241e1e

−−

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++−+−

−+−+−−

=
−

−−−

−−

AA

AnAn
AA

AA

AAAA

f

nn

nn

fG c  (A.10) 

Moreover, since A can also be expressed as A=jB, the modulating term simplifies to  
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resulting in the next expression: 
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Now that we have the BCS modulating factor of BPSK(fc), it can be shown that the power 
spectral density is the well known expression we saw in chapter 4.3.1: 
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B Appendix. PSD of sine-phased BOC signals 
 
As we saw in chapter 4.3.2.1 the power spectral density of any BOC(fs , fc) in sine phasing can 
be expressed using the theory on MCS signals as follows: 
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where the superindex e indicates the even case. Moreover, the modulating factor for the even 
case presents the following form:  
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As we can see, the problem to calculate can be reduced into an easier one by means of the 
following auxiliary function ( )AΦ : 
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and also with the auxiliary function ( )Af , defined as follows: 
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where we have made the change 
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The interesting property about the above defined function ( )Af  is shown in the next 

relationship: 
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In fact, taking (B.4) we can see that  
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Thus (B.3) can be rewritten as follows 
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Combining now (B.4) and (B.6) according to (B.8) we obtain the following expression: 
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And the modulating function simplifies thus to: 
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where we have also taken into account that according to the definition of the BOC modulation 
in terms of a BCS vector, n is even in the even version. Additionally, since A can also be 
expressed as A=jB the expression above simplifies to  
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Once a simplified form has been derived for the BCS modulating factor of BOC(fs, fc), we 
substitute in (B.1) yielding the well known expression for the Power Spectral Density that we 
saw in chapter 4.3.2.1: 
 

 
( ) ( )

2

2
2

2

2

2

2

2

,
2

BOC
cos

sinsin
tan

sin

cos

sinsin

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ =

c

cc
c

c

c
c

c

cc
c

f
nf

f

nf
ff

nf
f

f
f

f
nf

f
f

f
f

f

nf
f

f
f

f
nf

f

fG
c

c
s ππ

ππ
π

π

π

π

π

π

π

 

  (B.12) 
Moreover, in chapter 4.3.2.1 we also saw that cs ffn 2= so that (B.12) can also be expressed 

as follows: 
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This is the well known expression that we find everywhere in the literature. Now that we have 
solved the case of the even BOC modulation in sine phasing, we calculate next its odd 
counterpart. For the case of the odd BOC modulation in sine phasing, we have to derive first a 
general expression for any odd n. We will proceed by generalizing over n. 
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For n = 3, BOCsin(fs , fc) can also be expressed as BCS([+1,-1,+1], fc), such that the generation 
matrix will adopt the following form: 
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Thus, the odd modulating term yields this time: 
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where o indicates the odd case, and 
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In the same manner, for 5=n , BOCsin(fs, fc)= BOCsin(2fc, fc) what can also be defined as in 
the general form BCS([+1,-1,+1,-1,+1], fc) with generation matrix given by: 
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Thus, for the case of 5=n , we will have: 
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If we continue by induction we can find the expression for any odd n: 
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As we can recognize, (B.19) is equal to (B.2) except that n is odd now with { },...7,5,3∈n  
Moreover, it can be shown that for the odd cs ffn 2= is still valid. For simplicity, we 

express the modulating factor above using its exponential equivalent expression: 
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Using now the expressions derived above for the sum term ( )AΦ , it can be shown that: 
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Again, this expression is similar to that obtained for the even case, but with a slight 
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difference. Indeed, since n is odd, the second summand in the numerator has a changed sign 
with respect to (B.9). The modulating function is thus shown to present the following form: 
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Additionally, since A can also be expressed as A=jB, (B.22) simplifies to  
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Once we have the BCS modulating factor of an arbitrary odd BOC(fs ,fc) it can be shown that 
the power spectral density is the well known expression we saw in chapter 4.3.2.1: 
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which coincides perfectly with the expressions found in the literature [J. W. Betz, 1999], 
[A.R. Pratt and J.I.R. Owen, 2003a] and [E. Rebeyrol et al., 2005]. 
  
Furthermore, since cs ffn 2= , the previous expression can also be shown as follows: 
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C Appendix. PSD of cosine-phased BOC 
signals 

 
The derivation of the power spectral density of the BOC modulation in cosine phasing is a 
little bit more complicated, but it can be accomplished in a similar way as we have done with 
its sine-phased counterpart. If we recall (4.54), the Power Spectral Density of the even   
cosine-phased BOC is shown to be: 
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or equivalently, 
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where { }...16,12,8,4∈n .  In order to use the results obtained in the previous Appendixes, we 
will expand the modulation term ( )( )fG cc fnf
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cos  in the brackets using the Euler´s formula: 
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According to this, ( )( )fG cc fnf ,4BOC
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cos  can be expressed as follows: 
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or equivalently, 
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what can also be expressed as: 
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Decomposing the different terms of the sum, we have: 
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where, 
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As we can observe, ( ) ( )AA −Φ=Φ +−

11  remaining this identity true also for the other two 
summands ( )A−Φ2  and ( )A−Φ3 . Furthermore, if we look in detail at (C.9), we can see that it 

can be simplified again using the methodology of previous Appendixes. Indeed, 
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what can also be expressed as follows: 
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It must be noted, that according to the definition of the BOC modulation in cosine phasing as 
a BCS signal, { },...12,8,4∈n  and the term ( ) 121 +− n can be further simplified since 12 +n  will 

always be odd. In the same manner:  
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and consequently, 
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Furthermore, ( )A2Φ  is shown to simplify to:  
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or equivalently, 
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For the third sum term, namely Φ3(A), we have to solve first the following intermediate 
problem: 
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To do so, we define the following auxiliary function: 
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Since n/2 is even, we can further simplify the expression above as follows:  
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being the derivative of ( )Af  the function ( )A+Φ3  as shown next: 
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In an analogue way, substituting A by -A in (C.19) we can see that  
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and therefore, 
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what can be further simplified according to: 
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Now that we have calculated all the sum terms ( )A1Φ , ( )A2Φ  and ( )A3Φ , we can have a 

simplified expression for the modulating term of the power spectral density of the          
cosine-phased BOC modulation. In fact,  
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If we further develop it, we obtain: 
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or equivalently, 
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Finally, since A=jB, we can simplify this expression as follows: 
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so that the power spectral density of BOCcos( ccs fnff ,4= ) is shown to be: 
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Finally since cs ffn 4= , it is trivial to see that the expression of the Power Spectral Density 

of an arbitrary cosine-phased BOC reduces in the even case to: 
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Once we have obtained the expression for the even BOC modulation in cosine phasing, we 
calculate its odd counterpart next. 
 
For the case of the odd BOC modulation in cosine phasing, we have to derive a general 
expression for any n. As done in previous chapters, we will generalize over n. As in (C.2), the 
general expression for the odd case will be: 
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We begin with 632 =⋅=n , where BOCcos(fs, fc)= BOCcos(fc, fc) can also be expressed as             
BCS([+1,-1,-1,+1,+1,-1], fc), being the generation matrix as follows: 
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In this case, the modulating term will adopt the following form, 
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while 
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In the same manner, for 1052 =⋅=n , BOCcos(fs, fc)= BOCcos(2fc, fc) what can also be defined 
in the general form as BCS([+1,-1,-1,+1,+1,-1,-1,+1,+1,-1], fc). Thus 
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if we continue by induction we can see that the expression for any n adopts the form: 
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  (C. 34) 
with { },...18,14,10,6∈n and cs ffn 2= . Again, the modulating factor can be expressed as: 
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which is indeed the same expression we obtained in (C.7). However, since n is now twice an 
odd number, the results will vary slightly. Indeed it can be shown that: 
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since { },...18,14,10,6∈n  and 12 +n  will always be even. Thus we can simplify (C.37) as 

follows: 
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Therefore: 
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We can proceed in a similar way with ( )A2Φ  and ( )A3Φ . To do so, we will use the already 
derived expressions for the even case and take into account that this time { },...18,14,10,6∈n . 

According to this, 
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which can be further simplified to: 
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Similarly, to calculate now ( )A3Φ  we will make use of the function ( )Af  defined above. 

Nevertheless, since now n/2 is always odd, the expression simplifies as follows: 
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and thus, for the odd case ( )A3Φ  is shown to be: 
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Once we have calculated all the sum terms, it is time to obtain the expression for the 
modulating term of the power spectral density of the odd cosine-phased BOC modulation: 
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or equivalently: 
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The modulation term can also be expressed as follows: 
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In addition, since A=jB, we can simplify this expression as follows: 
 

 ( ) ( )
( )[ ]

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−=

= c

cc

nf
fB

fnf
o

nf
f

nf
f

f
f

B

BjBn

fG

c

cc

π

ππ

π

2cos

sincos4

cos2
2

sin2
2

cos2

2

22

2

2

22

,4BOC
Mod,

cos  (C.48) 

 
Thus the power spectral density of BOCcos(fs=nfc/4, fc) is shown to be in the odd case: 
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and since cs ffn 4= , we can also express it as follows: 
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As a conclusion, the normalized power spectral density of the cosine-phased BOC modulation 
is shown to be for n even: 
 

 ( )

( )

2

2

22

42

,BOC

2
cos

4
sinsin2

2
cos

4
sinsin

4
cos

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

s

sc
c

s

sc
cff

f
ff

f
f

f
f

f

f
ff

f
f

f
f

fG
cs ππ

ππ

ππ

ππ

 (C.51) 

and for n odd, 
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Now that we have derived the expressions of the power spectral density of the sine and 
cosine-phased BOC modulations, it is interesting to note the following relationship: 
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that allows us to go from the sine-phased expression to the other one. We show in the next 
figure the sine-phased BOC modulation together with its cosine-phased counterpart and the 
inverse tangent term of the expression above that relates both. For simplicity a sub-carrier 
frequency fs of 1.023 MHz and a carrier frequency fc of 1.023 MHz were assumed. 

 
Figure C.1. Power Spectral Density of Sine-phased, Cosine-phased and Inverse Tangent 

Function of BOC(10,5) 
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D Appendix. PSD of TCS Signals 
 
The TCS signal waveform has been introduced in chapter 4.5.1. In the next lines we will 
derive the power spectral density of an arbitrary TCS(fs, fc,ρ) with ρ allocated symmetrically 
around the borders of the sub-chip. To facilitate the understanding, refer to Figure 4.25 in 
chapter 4.5.1. 
 
For the most general case, the Fourier transform of the signal is shown to be: 
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or in the frequency domain  
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Thus, the general expression for the power spectral density of the TCS adopts the following 
form: 
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As we can recognize from (D.3), the modulating term on the right is common to the MCS 
definition and therefore all the results that we obtained in the previous Appendixes apply here 
too. This will allow us derive general expression for all possible cases of TCS signals. Indeed, 
the PSD of the TCS modulation can also be expressed as: 
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Since TOC([s], fc) is a particular case of TCS, we can distinguish the following cases: 
 

• Even TOCsin([s], fc): In this case the modulating term coincides with that of    
BOCsin(fs , fc) for the even case, which was already shown in (B.11) and thus: 
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• Odd TOCsin([s], fc): In this case the modulating term coincides with that of       

BOCsin(fs , fc) for the odd case, which was already shown in (B.23). Thus: 
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• Even TOCcos([s], fc): In this case the modulating term coincides with that of    

BOCcos(fs , fc) for n even. This was already shown in (C.26). Accordingly, 
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• Odd TOCcos([s], fc): In this case the modulating term coincides with that of     
BOCcos(fs , fc) for n odd which was already shown in (C.48). As a result: 
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which coincides with the well known expressions that can be found in the literature. 
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E Appendix. PSD of UTCS Signals 
 
A sub-carrier waveform of great interest to model a generic signal is studied in this Appendix. 
In the next lines we will derive the power spectral density of an arbitrary Unilateral       
TCS(fs, fc, ρ) or UTCS for short. Unlike the TCS case that we studied in Appendix D, here the 
zero support is only on one of the sides of the sub-chips and not symmetrically placed. 
 

 
Figure E.1. Chip waveform of the UTCS modulation 

 
According to the figure above, the Fourier transform of the signal is shown to be: 
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and in the frequency domain  
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Thus, the general expression for the power spectral density of a generic UTCS signal will be: 
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It must be noted that in the definition of the unilateral tertiary coded symbols, the parameter ρ 
represents the period of time with no zero dwell as was the case of the TCS. Again, we can 
recognize from (E.3) that the Power Spectral Density can be separated in the two usual terms, 
namely the pulse term and the modulation term: 
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This expression is very convenient, since all the modulating terms derived in previous 
Appendixes can also be applied here. 
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F Appendix. PSD of 8-PSK sine-phased 
BOC Signals 

 
In this Appendix we will derive the power spectral density of an 8-PSK signal in sine phasing. 
As we will see, the same expression derived by [A.R. Pratt and J.I.R. Owen, 2003] is obtained 
here using the more general definition of MCS that we have presented in this thesis. 
 
As we saw in chapter 4.5.5.1 the Fourier transform of an arbitrary 8-PSK BOCsin can be 
expressed as follows: 
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This function is graphically shown next: 

 
Figure F.1. Signal waveform of the sine-phased 8-PSK BOC(fs, fc) modulation 

 
As we can recognize, the different amplitudes of the signal waveform correspond to the phase 
states of an 8-PSK modulation according to the next figure. Moreover, all the states of the 
constellation present the same probability of occurrence. 
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Figure F.2. Constellation points of the sine-phased 8-PSK BOC(fs,fc) modulation 

 
Furthermore, the time series of the 8-PSK modulation can be expressed as the sum of the 
following two functions: 

 
Figure F.3. Long Chip ( )lcs ffS ρ,,TOCsin

 Function required to form 8-PSK BOCsin(fs, fc) 

 
Figure F.4. Short Chip ( )scs ffS ρ,,TOCsin

 Function required to form 8-PSK BOCsin(fs, fc) 
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For simplicity, we recall again the Fourier transform of the arbitrary TCS(fs, fc,δ ):  
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Particularizing now (F.2) in (F.3), we obtain the following expression for the Fourier 
transform of the 8-PSK BOC modulation in sine phasing. As we can see, we have made use 
of the long and short chip functions ( )lcs ffS ρ,,TOCsin

 and ( )scs ffS ρ,,TOCsin
, defined above. 
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As a result, the power spectral density of the sine-phased BOC8(fs,fc) will be: 
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or equivalently: 
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where we have used the results of Appendix B for the modulating term. Indeed, the square of 
the absolute value of the sum term is common to the usual BOC modulation in sine phasing. 
This term was derived in (B.11) for the even case. Additionally, the correction factor ρ’ is 
shown to be: 

 5.0
2

=
+

=′ sl ρρ
ρ  (F.7) 

According to this, 
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and since in the case of the sine-phased TOC modulation cs ffn 2= , we can also express it 

as follows: 
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which can be further simplified as:  
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For the case of the odd sine-phased BOC8(fs,fc) modulation, only the modulating term changes 
with respect to the above derived expression. Thus, since this is common to that of any 
BOCsin modulation with n odd, the general expression is shown to be: 
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These expressions coincide perfectly with equivalent expressions that can be found in      
[A.R. Pratt and J.I.R. Owen, 2003]. 

 



Power Spectral Density of 8-PSK cosine-phased BOC signals  

331 

G Appendix. PSD of 8-PSK cosine-phased 
BOC Signals 

 
We derive in this Appendix the power spectral density of a generic 8-PSK BOC modulation 
with cosine phasing in an analogue way as we have done with its sine-phased counterpart. 
Indeed any 8-PSK signal can be expressed as a linear combination of TCS signals in the 
domain of the Fourier Transform as we have seen in Appendix F. This will be of course also 
the case for the  8-PSK BOC cosine-phased modulation, although as we will see next, the 
linear combination to build here is a little bit more complex since we need UTCS. 
 
As we have seen in Appendix F, any sine-phased 8-PSK BOC modulation can be expressed as 
the sum of two sine-phased TOC signals. For the case of the cosine-phased 8-PSK BOC 
modulation however, five UPSK functions are needed. UPSK is the unilateral version of 
TPSK, which is a particular case of UTCS with BPSK-like shape. Indeed, an arbitrary           
8-PSK BOCcos can be defined as: 
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being the chip waveform for the even case as follows: 

 
Figure G.1. Signal waveform of the cosine-phased 8-PSK BOC(fs, fc) modulation 

 
Using now the general expression of the Fourier transform of an UTCS signal as given by 
(E.1), since ( )cs ff ,BOC8

cos  can be expressed as the linear combination of UTCS signals, its 

Fourier transform will adopt the following form: 
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yielding the power spectral density of the cosine-phased BOC8(fs,fc) thus: 
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This can be further simplified as shown next: 
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since the square of the absolute value of the sum term, namely the modulating factor, is 
common to the even sine-phased BOC modulation, whose expression was derived in (B.11). 
Additionally, the correction factor ρ′  is shown to be this time 21  too. Consequently, 
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Moreover, since cs ffn 2= , the previous expression can be further simplified as follows: 
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We can further simplify this expression a little bit more yielding finally: 
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Once we have obtained the expression for the even 8-PSK cosine-phased BOC modulation, 
we can easily derive the form for the odd one too using the results from other parts of this 
thesis. Indeed, the main advantage of expressing our signal as a linear combination of UTCS 
is that we can also derive the odd version using a modulating factor as suggested in this work.  
 
Recalling thus the definition of even and odd in chapter 4.3.2, if for the even form we had a 
vector [-1,+1,+1,-1] for the odd case we should have [-1,1,1,-1,-1,1]. However, since we are 
expressing our signal with a sine-phased function whose generating vector is [-1,1], for the 
odd case we should then take [-1,1,-1]. Therefore, to calculate the expression for n odd, we 
simply have to look at the modulating term of the odd sine-phased BOC modulation. 
Additionally, since the sine-phased is a linear combination of sine-phased TOC modulations, 
n will adopt the value cs ffn 2= . Taking into account all these considerations, the power 
spectral density of ( )( )fG

cs ff ,BOC8
cos

for n odd is shown to adopt the following form: 
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H Appendix. Equivalent C/N0 in presence of 
Interference 

 
This Appendix derives some expressions of interest for the Equivalent Carrier to Noise Ratio 
in presence of RF interference. As we know, one of the main effects of RF interference is to 
reduce the 0NCd  of the desired signal d, as shown next: 
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where the subindex i refers to the interfering signal and d to the desired signal. We can further 
simplify this expression if we assume that all the power of the desired satellite fits into the 
bandwidth of the receiver, simplifying the effective 0NCd to: 
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We can classify RF interference sources into narrowband interference and wideband 
interference. For the case of narrowband interference, the power spectral density of the 
interfering signal can be approximated as rectangular, such that:  
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Furthermore, if we assume that the whole interfering narrowband signal is in-band, then the 
effective 0NCd will be: 
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In addition, since the PSD is even,  

 )
2

()
2

( lu
d

lu
d

ffGffG +
−=

+  (H.5) 

and assuming that the narrowband interference has a low frequency relative to the chip rate, 
we can use the following approximation for the particular case of BPSK(fc): 
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Finally, as shown in [P. Ward, 1994], the effective 0NCd will be for the case of a 

narrowband interferer: 
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On the other hand, for the case of a wideband interferer, the expression to apply is the 
following: 
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where we can recognize the spectral separation coefficient (SSC) in the denominator as 
defined in chapter 5. In fact, the lower the value the SSC adopts, the more robust will be the 
signal against wideband and narrowband interferers as shown in the expressions above. 
 
Using again the example of a BPSK signal, the multiple access interference will adopt the 
following form: 
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where for the particular case of the intra-system interference or for the case of an interferer 
matching the spectrum of the desired signal, BPSK in our example,  we have: 

 
( )2

2sin
)()(

f
f
f

ffGfG c
cdi π

π
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

==  (H.10) 

As we can recognize, this term appears in the denominator of (H.8). Moreover, if we assume a 
large processing gain, the multiple access interference will only be significant around zero as 
we have shown in chapter 5 simplifying the interference to the following [J.J. Spilker, 1997a]: 

 ( )
( ) c

ic
cima f

Cf
f

f
f

fCI
3
2d

sin
0

0

2

2

2

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

≈ ∫
∞

π

π

 (H.11) 

As we expected, if we express now cf32 in dB for a chip rate of 1.023 MHz, we obtain the 

famous figure of -61.8597 for the C/A Code Self SSC that we obtained in the simulations of 
chapter 5. 
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I Appendix. PSD of the AltBOC 
Modulation 

 
In the next lines the power spectral density of the AltBOC modulation will be derived. We 
will analyze the most general expressions that apply when data and pilot are considered, using 
thus four different codes. First the expressions with no constant envelope are obtained and 
then the modified constant envelope version is studied and compared with that derived in    
[E. Rebeyrol et al., 2005]. 
 
As we have done in previous chapters and Appendixes, we will assume that the AltBOC 
signal is stationary in wide sense and that the PRN codes are ideal. As we saw in chapter 
4.3.2, a slight modification of the codes is necessary to consider that the sub-carrier is 
included in the chip waveform when the ratio cs ff2=Φ . Since Galileo will be transmitting 

AltBOC(15,10) in E5 and thus the ratio Φ is odd, we will pay special attention to this 
particular case deriving the expressions of AltBOC for both the  even and odd cases. 
 
The AltBOC modulation can be defined as follows [E. Rebeyrol et al., 2005]: 
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Using now the expressions above, the autocorrelation of AltBOC yields: 
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If we assume now again that the crosscorrelation between the different codes is equal to zero 
and that the complex crosscorrelations cancel each other out, the power spectral density of the 
AltBOC modulation is then shown to be:   
 ( ) ( ) ( ) ( ) ( )[ ]fGfGfBffAffG BAcc +=+= 444 22

AltBOC  (I.6) 
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where ( )fA  and ( )fB  are the Fourier Transforms of ( )[ ]tf sπ2cossign  and ( )[ ]tf sπ2sinsign  
within a chip of length Tc. This means in other words that ( )fGA  and ( )fGB  are the power 

spectral densities of the cosine-phased and sine-phased BOC modulations that we have 
derived in Appendixes B and C. As we know, the expression of ( )fGA  and ( )fGB  depends 

on whether the ratio Φ is even or odd and thus to have the general expression of the AltBOC 
signal we also have to distinguish between these two cases.  
 
If we recall now the results of (C.51) and (C.52) in Appendix C, for the ratio Φ even the 
normalized power spectral density of the cosine-phased BOC modulation was shown to be:  
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and for Φ odd 
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Equally, from Appendix B we know that for Φ even the normalized power spectral density of 
the sine-phased BOC modulation is shown to be: 
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and for Φ odd 
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Using these results, the normalized power spectral density of the AltBOC modulation is then 
shown to adopt the following expression for Φ even: 
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which can be further simplified as follows: 
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which coincides perfectly with the expression derived in [E. Rebeyrol et al., 2005]. If we do 
the same now for the odd case, we obtain the following expression:  
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or equivalently, 
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Once we have derived the general AltBOC expressions for the case of non-constant envelope, 
we concentrate now on the modified AltBOC modulation with constant envelope. In order to 
distinguish it from the general form, we will write the superindex c for constant envelope. As 
we have shown in chapter 4.8.1 the modified AltBOC signal waveform with constant 
envelope can be expressed as follows: 
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where the superindex indicates constant envelope. Furthermore, sT  is the in inverse of the 
sub-carrier frequency. According to this expression, )(AltBOC ts can be further expanded as 
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where  
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and the data and pilot sub-carriers can be expressed as: 
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To facilitate now the analyses in the next lines let us rename the following signals in line with 
the approach followed in [E. Rebeyrol et al., 2005]. Thus:  
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If we calculate now the autocorrelation function of )(AltBOC τcℜ , we can clearly recognize that 

most of the terms cancel out since we have assumed that the codes are ideally orthogonal with 
each other. Additionally, the cross-correlation between the data and pilot sub-carriers, namely 
scd and scp, will also be zero. In addition, the cross-correlations of each data and pilot         
sub-carrier correlates to zero with a delayed version of themselves by Ts / 4 (and actually also 
with 3Ts / 4). As a result, )(AltBOC τcℜ will simplify as follows: 
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Since all the codes are of the same length and they do ideally correlate as expected from ideal 
random codes, the power spectral density of the modified constant envelope AltBOC 
modulation can be expressed as shown next: 
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where )(* fSCd , )(** fSCd , )(* fSCp and )(** fSCp are the Fourier Transforms of *
dsc , **

dsc , *
psc  

and **
psc  respectively and consequently )(* fGd , )(** fGd , )(* fGp  and )(** fGp  are the respective 

power spectral densities. We recall that the subindexes d and p indicate whether we refer to 
the data or pilot carrier and the super-index whether we work with the prompt or the delayed 
version. To make progress in our derivations it is necessary to calculate first the Fourier 
Transforms of the data and pilot sub-carriers. Let us begin now with the calculation of the 
Fourier Transform of *

dsc  over [0, Tc]. To facilitate the understanding, we show again the 

shape of the AltBOC sub-carriers in the next figures: 

 
Figure I.1. Shapes of data and pilot sub-carriers 

 
We can define now the prompt data sub-carrier piecewise as follows: 
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It is important to remember that depending on whether the number of times that m fits in n 
(see previous Figure) is even or odd we will have the even version of the constant envelope 
AltBOC modulation or the odd version. Indeed, we can employ here again the figure 

cs ff2=Φ to make this distinction, where Φ can be seen as the number of half periods 

within a chip. 
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To obtain the Fourier Transform of the prompt data sub-carrier, we derive first the Fourier 
Transform of the auxiliary signal 2/sTμ . This is shown to be: 
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which can be expanded as follows: 
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Fortunately this complex expression can be further simplified and adopts the following form:  
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  (I.28) 
As a result, the Fourier Transform of the prompt data sub-carrier can be expressed in terms of 
the equation above as: 
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As we can immediately recognize, the sum term will be different depending on whether Φ is 
even or odd. In order to have first the most general expression of the constant envelope 
AltBOC modulation we will not develop this expression any further until all the terms 
contributing to the computation of AltBOC are obtained. 
 
Summarizing, the power spectral density of the prompt data sub-carrier can be expressed for 
the general case as follows:  
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It is interesting to note that a similar formulation is obtained using the MCS definitions of 
chapter 4.2.1. If we repeat now for the delayed data sub-carrier )(** tscd  we have then: 
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where in this case the 2/sTμ  function is defined as follows: 
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so that,  
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and therefore  
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As we can see, the sum term of the expression above is similar to that of the prompt data    
sub-carrier adopting the power spectral density of the delayed data sub-carrier the following 
form in the general case: 
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We repeat now for the prompt pilot sub-carrier )(* tsc p in a similar way: 
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According to this, the Fourier Transform can be obtained from: 
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yielding thus: 
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As we can recognize, the sum term is fortunately again the same and thus the power spectral 
density will be: 
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Finally, we calculate the Fourier Transform of the delayed pilot sub-carrier. This can be 
defined as follows: 
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being its Fourier Transform defined as follows: 

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−−=

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −

−
−

4
sin2

2
sine

2
e

2
2

2
2

2/
ss

T
fj

T
fmj

s
T

T
fj

T
fj

fj
T

mtFT
s

s

s
ππ

π
μ

π
π

 (I.43) 

such that: 
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Once again, the sum term is the same as that of the previous derivations and we can easily 
express the power spectral density for the general case as: 
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Once we have obtained the individual elements that form the constant envelope AltBOC 
modulation, we can express the power spectral density for the general case as follows: 
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or equivalently, 
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what can be further simplified to:  
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Until now, all the derived expressions are valid for both the even and odd case. However, as 
we can immediately recognize from the expression derived above, the common sum term will 
be different depending on whether Φ is even or odd. In order to have a clearer view of the two 
cases to analyze, we present in the next figures how one could integrate the sub-carrier in the 
chip waveform for the two cases of Φ.  

 
Figure I.2. Relationship between the sub-carrier frequency and the code frequency for 

the even AltBOC 
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Figure I.3. Relationship between the sub-carrier frequency and the code frequency for 

the odd AltBOC 
 
As we can see, for both cases the following relationship remains true:  
 cs ffn 2=  (I.49) 
 
If we solve the sum term first for Φ even we have: 
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since (-1)n for n even is always 1. We can further simplify the expression above if we recall 
the relationship between the sub-carrier and the code frequency. In fact, the square of the 
absolute value adopts the following form if Φ is even: 

 ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=−∑
−

=

−

s

c
n

m

T
fmjm

f
f

f
f

s

2
cos

sin
e1

2

2
2

1

0

2
2

π

π
π

 (I.51) 

Equally, for the case of Φ odd we have: 
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since (-1)n for n odd is always -1. Moreover, since the relationship cs ffn 2= is also valid 

when Φ is odd, we can further simplify the previous expression as shown next:  
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If we now put all the partial results of the lines above together, we can express the power 
spectral density of the modified even constant envelope AltBOC modulation as follows: 
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while for the odd case we will have: 
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which is the well known expression of the normalized power spectral density of the constant 
envelope AltBOC modulation when Φ is odd. In the next figure we show the two analyzed 
versions of the AltBOC modulation, namely the general expression and the constant envelope 
modified version with a sub-carrier frequency of 15.345 MHz and a code frequency of    
10.23 MHz. 

 
Figure I.4. Power Spectral Density of the general AltBOC(15,10) and the modified 

constant envelope AltBOC(15,10) 
 

Equally, for an AltBOC(10,10) – thus with Φ even – the difference between the general 

AltBOC and the constant envelope solution is shown to be minimum: 
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Figure I.5. Power Spectral Density of the general AltBOC(10,10) and the modified 

constant envelope AltBOC(10,10) 
 
 
It is interesting to note that the power spectral densities of the general AltBOC modulation 
and the modified constant envelope AltBOC have similar shapes and only minor differences 
can be observed in the high order lobes. Indeed, the main and first side lobes are nearly 
identical being the differences lower than 1 dB. The only differences can be observed in the 
high frequency components and come from the extra terms that are needed to achieve 
constant envelope. Nonetheless in real implementations these would be filtered after 
amplification and thus for most of the bandwidths of interest we can state that there is no 
qualitative difference between both solutions regarding the spectrum. In terms of 
implementation, however, it is clear that the constant envelope solution is superior. 
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J Appendix. PSD of the CBCS modulation 
 
In the next lines the power spectral density of the CBCS modulation will be derived. CBCS is 
a specific implementation of the MBOC modulation which receives for this particular case the 
name of CBOC. Thus, all the derivations of this chapter also apply for the CBOC 
implementation of MBOC that Galileo has selected for the E1 Open Service (OS). 
 
The Composite Binary Coded Symbols modulation, or CBCS for short, is defined as the 
superposition of a BOC signal with a BCS by means of a modified and optimized Interplex 
scheme. This last sentence is of great importance because while CBCS specifies the way the 
signals are multiplexed at payload level, MBOC is more generic and does not say anything 
about how the time stream should look like. 
 
In the most general case, CBCS([s], fc, ρ) represents the superposition of a BOC(fc, fc) with a 
BCS([s], fc) in such a way that the BCS component has a percentage ρ  of power with respect 
to the total power of the multiplexed signal. Furthermore, the vector [s] indicates the symbols 
that constitute the subchips of the BCS signal. Next figure depicts schematically the principle: 
 

 
Figure J.1. CBCS chip waveform as a superposition of a BOC signal and a BCS signal 

 
Unlike BPSK, BOC or BCS, the CBCS signal is formed by 4-level sub-carriers. As we have 
shown in chapter 4.8.4, other multiplex techniques such as the FH-Interplex could have also 
performed CBCS. However, with important drawbacks. In order to avoid them, a new scheme 
was proposed in [CNES, 2005]. This has been analyzed in chapter 7.7.9. For facility in the 
derivations we recall again the mathematical definition of CBCS in the time domain: 
 

 

( )[ ]

( )[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+⎟
⎠
⎞

⎜
⎝
⎛ +

+

+−+

++

=

)(
2

sinsin)(           

 ))(cos)(cos
2

)(

)(cos)(cos
2

)(

)(

IM
21

PRS

)],([BCS2,BOC1

)],([BCS2,BOC1

1

tstsj

tststc

tststc

Ats
ccc

ccc

fsff
P

fsff
D

θθ

θθ

θθ

  

  (J.1) 



Power Spectral Density of the CBCS Modulation  

350 

 ⎟
⎠
⎞

⎜
⎝
⎛ −

−=
2

sinsin)()()()( 21
PRSIM

θθtstctcjts PD  (J.2) 

where, 
 

• A1 is the amplitude of the modulation envelope, sum of the OS data and pilot signals, 
PRS and the Inter-Modulation product IM,  

• 1θ  and 2θ  describe the angular distance between the points of the 8-PSK modulation 

as depicted in Figure J.2, 
• ( ) )(,BOC ts

cc ff represents the BOC(1,1) modulation with a chip rate cf ,  
• )()],([BCS ts

cfs represents the BCS([s],1) modulation with subchips vector given by [s] 
and chip rate cf ,  

• )(PRS ts  is the PRS modulation BOCcos(15,2.5), 
• )(IM ts  is the Inter-Modulation product signal, and 
• )(tcD and )(tcP  are the PRN codes for the data and pilot channel of the OS. 

 
The equation above is graphically shown in the figure below. We can recognize that 
compared with the BOC(1,1) Interplex baseline, two new phase states have appeared to 
account for the new BCS modulation waveform. Moreover, the quadrature component, 
namely PRS in the case of Galileo, presents a PSD that is not affected by the waveforms 
transmitted on the in-phase component.  

 
Figure J.2. Oscillation of the BOC and BCS signals in CBCS 

 
It is also of interest to note that thanks to the introduction of the additional BCS, there will 
always be OS signal being emitted at any time for any combination of code chips. This makes 
the modulation more efficient and reduces the IM power consequently. 
 
Let us now look at the data and pilot channels of the Open Service in detail. In fact, recalling 
the CBCS time definition, we can easily separate the data and pilot channels as follows: 
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As we have shown in the introduction of chapter 4.1.1, the autocorrelation of a signal that is 
stationary in wide sense adopts the following form: 
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According to this, if we use the notation of chapter 4, the autocorrelation function of the data 
channel can be expressed as  
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where ),(BOC cc

c

ff
Tp  and )],([BCS c

c

fs
Tp  represent the chip waveforms of BOC(fc, fc) and BCS([s], fc) 

correspondingly, following the notation of chapter 4.1. This formulation can be further 
developed if the expectation operator is expressed in integral form as shown next:  
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or equivalently:  
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If we further assume that the data codes show ideal properties, then ( ) ( )mm

Dc δ=ℜ  and the 

autocorrelation of the data channel yields then: 
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We can repeat now the same steps for the pilot channel and arrive to a similar expression for 
the pilot autocorrelation: 
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Comparing the autocorrelation of the pilot OS with that of the data channel, we can recognize 
that there is only a sign difference in the cross-correlation term, which is in phase for the data 
channel and in anti-phase for the pilot channel. Now that we have derived the expressions for 
the data and pilot autocorrelations of the Open Service, the Power Spectral Densities of both 
channels can be obtained in the following form: 
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which can be simplified as shown next: 
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or equivalently: 
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According to this, the power of the data channel will be 
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where, the cross-correlation between BOC(fc, fc) and BCS([s], fc) is defined as follows:  
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If we solve now for the pilot channel, it can be shown that the power spectral density of the 
pilot OS will be: 
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or expressed in terms of the power spectral density,  
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such that 
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If we sum up now the power spectral densities of the data and pilot channels as given by 
(J.12) and (J.16), we obtain the general power expression for the power of the composite OS: 
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Thus, the total power of the OS signal, with data and pilot together, will be: 
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adopting the normalized expression of the OS power spectral density the following form:  
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Since the phase states are sitting on the circle and the power spectral densities of the data and 
pilot channels are normalized to infinite bandwidth, we can express the normalized power 
spectral density of the OS signal as follows: 
 

 
( ) ( ) ( ) ( )

( ) ( )2
2

1
2

)],([BCS2
2

),(BOC1
2

OSOS coscos
coscos

)(
θθ
θθ

+
+

=+

fGfG
fG ccc

PD

fsff  (J.21) 

 
If we have a close look at the expression above, we can see that we can express the percentage 
of power that falls on the BCS signal as follows: 
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Thus, 
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This means, that the total OS power spectral density can be defined as the linear combination 
of the PSDs of the two waveforms composing the CBCS signal, namely BOC(fc, fc) and 
BCS([s], fc), weighted by the percentage ρ of power that is put on the BCS component.  
 
If we divide now the expressions of the data and pilot power spectral densities given in (J.12) 
and (J.16) by the integrated data and pilot power, we obtain the normalized expressions: 
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where r indicates the correlation between BOC(fc, fc) and BCS([s], fc) for zero offset. Equally, 
for the pilot channel we would have: 
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Another expression of interest is the power spectral density of the data and pilot channels with 
respect to the total OS power. Equally interesting is also to obtain the power of the        
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BOC(fc, fc) and BCS([s], fc) component with respect to the total OS power. We derive next the 
corresponding expressions. 
 
Let us study first the power of the data channel with respect to the total OS channel. Indeed, if 
we divide (J.13) by (J.18), we obtain the next relationship:  
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Equally, the percentage of pilot OS power with respect to the total OS power is:  
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To calculate the total power on the BOC(fc, fc) signal, we can use the equation (J.1) and thus,  
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so that the percentage of BOC(fc, fc) power with respect to the total OS power will adopt the 
following form: 
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If we repeat now for the BCS component, 
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and normalizing (J.30) to the total OS power, we have the percentage ρ of power on the BCS 
component: 
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In the same manner, the useful power of the PRS for the quadrature signal can be easily 
obtained from the signal definition shown at the beginning of the Appendix. In fact: 
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Equally, for the Inter-Modulation Product we can derive a similar expression: 
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Finally, if we sum up the power of all the desired signals plus the Inter-Modulation term, we 
find as expected that the CBCS modulation has constant envelope of amplitude A1: 
 2

1IMPRSOS APPP =++  (J.34) 
 
It is interesting to note that while for the BOC(fc, fc) Interplex the inter-modulation power 
only depends on one modulation index, namely m, in the case of CBCS both indexes 1θ  and 
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2θ  have to be considered. This means in other words that fixing the IM power is easier with 

CBCS than it would be if only a BOC(fc, fc) were transmitted. The result is thus a more 
efficient control of the IM power since we have more degrees of freedom to play. 
  
One final but important comment is that Interplex with only BOC(fc, fc) can be easily 
described taking 2θ  equal to π/2. 
 
Once the most important equations describing CBCS have been derived, we study next how 
to calculate the multiplex parameters when we fix the percentage of power on the BCS 
component, the power split between data and pilot and the power split between the different 
signals. Moreover, it is important to note that the expressions derived above were obtained for 
infinite bandwidth differing thus the results slightly when filtering effects are considered. 
 
According to the [Galileo SIS ICD, 2008] the power split between the OS data and pilot 
signals shall be 50/50 while the open signals and PRS should have the same power levels. The 
resulting equations system to solve is then: 
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where the first equation indicates the amount of power that is moved from BOC(fc, fc) to the 
BCS signal and the second and third equations represent the power ratios between the 
different signals. We can also observe that the equations above do not depend on the specific 
BCS vector [s] since they only account for power relationships. Nonetheless, as it could be 
expected, the real BCS vector plays indirectly an outstanding role in assessing if one signal is 
compatible with the rest of signals in the band or not. In fact, depending on how the specific 
BCS sequence looks like, the spectral overlapping with the other signals around will be 
different, determining thus the maximum amount of power ρ that can be put on its BCS part 
in order not to interfere. 
 
Until now we have analyzed the case when the BCS signal is on both the data and pilot 
channels as this is the baseline of Galileo for the OS. Nevertheless, for some specific 
applications, allocating the high frequency components (thus the BCS signal) only on the pilot 
channel could be of interest. Indeed, the GPS implementation of MBOC, namely TMBOC, 
goes in this direction.  
 
In order to have all the power of the BCS signal only on the pilot channel and still maintain 
constant envelope, the expression of the CBCS modulation has to be generalized. 
Accordingly, (J.1) and (J.2) can be slightly modified as shown next: 
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where the constants 1k , 2k , 3k  and 4k  are calculated from  
 

• the power split between data and pilot,  
• the relationship of powers between OS and PRS,  
• the percentage of power on the BCS signal with respect to the total OS power under 

the constraint that the phase points are on the unit circle, and  
• accounting for the different filter losses of the signals due to bandlimiting.  

 
Mathematically, all these conditions can be expressed as follows 
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where: 
• ρ  is the percentage of power on the BCS signal, 
• ξ  indicates the percentage of power that falls onto the pilot channel with respect to 

the data channel. Thus, if we have a power split of 50/50, 1=ξ  and for 75/25, 3=ξ ,   
• and β  indicates the power difference between PRS and OS in dB, accounting for the 

different filter losses of both signals due to satellite bandlimiting.  
 
It should be noted that this calculation ignores the effect of the correlation between the 
BOC(fc, fc) and BCS([s], fc), which is introduced by virtue of the satellite bandlimiting. 
Additionally, since all the phase points have to be on the unit circle, we have: 
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since the real component of the signal takes 8 values with equal probability, given as shown 
in the following table: 
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Table J.1. Value of the signal s(t) as a function of the different code inputs 
 

)(tCD  )(tDD  )(tCP  { })(Re ts  

+1 +1 +1 321 kkk ++  

+1 +1 -1 321 kkk −+  

+1 -1 +1 321 kkk +−  

+1 -1 -1 321 kkk −−  

-1 +1 +1 321 kkk ++−  

-1 +1 -1 321 kkk −+−  

-1 -1 +1 321 kkk +−−  

-1 -1 -1 321 kkk −−−  
 
Additionally, the IM component { }821 IM,...,IM,IMIM =  must take the appropriate value to 

bring the phase plots to the unit circle. Note that this is true independently of the BCS 
component is in phase or in anti-phase. Finally, an extra constraint comes from the necessary 
condition that the Inter-Modulation signal has zero mean:    
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If we put all the conditions together, we can see that we have totally twelve equations, namely  
(J.37), (J.38) and (J.39), and twelve unknowns to find, namely IM , 1k , 2k , 3k  and 4k . 

Unfortunately, while (J.36) covers more cases than (J.1) and (J.2), in general it is not possible 
to find an explicit expression for the coefficients 1k , 2k , 3k  and 4k .  

 
We show next with an example how the parameters of the CBCS multiplex could be obtained 
for the hypothetical case that the CBOC implementation of MBOC would allocate the whole 
BOC(6,1) component on the pilot OS signal. As shown in chapter 4.7, the power ratio 
between the BCS signal, in this particular case BOC(6,1), and the total OS power is 1/11 at 
generation. This means that in reality the power after filtering in the satellite will be slightly 
lower on BOC(6,1). Moreover, let us assume that the PRS power would be 2 dB above the OS 
power at user level and that the effect of filtering in the satellite is also taken into account. 
This assumption is different from the baseline when OS and PRS have the same power. 

 
If we solve now for CBOC(6,1,1/11) with all the BOC(6,1) power on the pilot channel, with 
equal power for pilot and data, with 1/11 of the OS power in the BOC(6,1) before 
bandlimiting, the composite signal may be defined by  
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where the signal sIM (t) is given by:  
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ci iTtatsc 8/rect
8
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adopting 
8ia  the following values: 

 
Table J.2. Values of the Inter-Modulation Signal (IM) to achieve a constant envelope 

 
i a 
0 -4.0614.10-1 
1 1.9393.10-2 
2 1.8690.10-1 
3 1.9985.10-1 
4 1.9985.10-1 
5 1.8690.10-1 
6 1.9393.10-2 
7 -4.0614.10-1 

 
We show the Inter-Modulation signal next graphically:  

 
Figure J.3. Inter-Modulation Signal necessary to have a constant envelope when 

BOC(6,1) is only on the pilot channel  
The phase states of the constellation are equally shown in the next figure. As we can see, the 
main effect is that the number of states has duplicated, what is of course a clear drawback. In 
addition, it is important to realize that this implementation of CBOC is not compliant with the 
MBOC spectrum definition since a cross term appears as shown in chapter 4.7.5.4. 

 
Figure J.4. CBOC 16-PSK modulation that results when all the BOC(6,1) component is 

placed on the pilot channel 
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K Appendix. Cramér Rao Lower Bound 
 
The mean-squared error for any estimate of a nonrandom parameter has a lower bound, 
known in the literature as the Cramér-Rao lower bound or CRLB in short                        
[J.-A. Avila-Rodriguez et al., 2006a].  The Cramér-Rao lower bound defines the ultimate 
accuracy of any estimation and shows the minimum code pseudorange variance we would 
have with the best possible receiver implementation. Indeed, the Cramér-Rao lower bound is 
nothing else than a different way of expressing the Gabor bandwidth which sets the physical 
limit of a signal for a given bandwidth. This last one is also known in the literature as the root 
mean square bandwidth.  
 
In our particular case, we are interested in finding the bound of the matrix: 
 

 [ ] ( )( ) ⎥⎦
⎤

⎢⎣
⎡ −−=

TT EE θθθθεε ˆˆ  (K.1) 

being ε  the code delay error, θ  the real code delay value and θ̂  its estimation. As it can be 
shown, the Cramér-Rao lower bound is deeply related to the Fisher information matrix F in 
the following form: 
 
 [ ] ( ) ( ) ( )[ ] ( )[ ]TTT bIFbIbbE θθθθεε ∇+∇++≥ −1  (K.2) 
 
where b(θ) is the bias of the estimate θ  and F is the already mentioned Fisher matrix defined 
by means of the Hessian matrix as follows 
 
 ( )[ ][ ]{ }θθθ /,ln yxPEF T∇∇−=  (K.3) 
 
It must be noted that according to this general definition, the Cramér-Rao lower bound also 
applies for the case of biased estimates in contrast to the way it is widely used in the general 
literature where the Cramér-Rao lower bound is understood as the minimum unbiased 
variance estimate bound. 
 
Looking now at the bound of every parameter in particular, the Cramér-Rao lower bound can 
be expressed as follows: 

 ( ) ( ) ( )[ ] ( )[ ]{ }ii
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and for the case the estimator is unbiased, the bound simplifies then to  

 ( ) [ ]iiFE 12ˆ −≥⎥⎦
⎤

⎢⎣
⎡ −θθ  (K.5) 

The most important conclusion that can be drawn from observing the equation above is that 
for the unbiased case, the estimator is not necessary for the computation of the bound. In fact, 
we only need the Fisher matrix to compute the CRLB, which only depends on the logarithm 
of the likelihood function. In other words, only in the case of unbiased estimators the Cramér-
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Rao lower bound is independent of the used estimator. Accordingly, using the unbiased 
Cramér-Rao lower bound when the estimator is biased can lead to wrong conclusions.  
 
Indeed, due to its simplicity, the unbiased Cramér-Rao lower bound is frequently used to 
assess performance limits. Nevertheless, we must keep in mind that when multipath is present 
the exact form of the estimator´s bias explicitly enters the computation of the bound. As a 
consequence, the use of the unbiased Cramér-Rao has to be actually understood as a desperate 
try to give a lower bound to a problem which is in reality so complicated and nonlinear that 
computing the bias is nearly impossible. 
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K.1 Appendix. Single-Path Maximum Likelihood 
Estimator 

 
The single-path case (ML-1P) occurs when only the direct signal is present, thus no multipath 
is considered, and can be modelled as follows: 
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j +=+−= τφ  (K.6) 
 
where we have assumed that the signal has been Doppler-compensated and striped of the data. 
Moreover, A denotes the amplitude, φ  the phase offset and τ  the code delay. For simplicity, 

we will separate z(t) into its real component x(t) and imaginary component y(t) according to: 
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where nx(t) and ny(t) are assumed to be independent real-valued zero-mean Gaussian-
distributed variables. The real and imaginary signals are sampled on [0,T] and thus we can 
also express our problem in the discrete domain as follows 
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The Maximum Likelihood (ML) estimates of the populational parameters θ = (A,φ,τ) are 
shown to be obtained by maximizing the probability density function of the observables 

{ }Nxxxx ,...,, 21=  and { }Nyyyy ,...,, 21=  conditioned to the real values of the parameters of 

the model: 
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where σ2 is the noise variance of x(t) and y(t). In other words, the ML estimates will 
maximize the probability to have a set of observables for a given unknown set of multipath 
parameters.  
 
Before calculating the partial derivatives with respect to the parameters of the model, it is 
worth it to derive some expressions of interest. We define, 

 
( ) ( ) ( )

( ) ( ) ( )∫

∫

Δ−=Δ

Δ−=Δ

Tmm

Txm

dttmtm
T

R

dttmtx
T

R

ττ

ττ

1

1

 (K.10) 

and we will assume that the integration time is a multiple of the period of the signal.  
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As we saw above, for the case the estimators are unbiased, the Cramer Rao lower Bound of θ, 
namelyθ̂  can be expressed by means of the Fisher information matrix F. In the case of the 
ML-1P problem, the Fisher matrix can be simplified and expressed only as a function of the 
autocorrelation function of m(t) if we take into account the constraints that result from solving 
the minimization problem. Indeed, the Fisher Hessian matrix simplifies to: 
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which can be further simplified if we recall the definition of the model in (K.7), and correlate 
with the estimated path delay τ̂ . According to this, it can be shown that: 
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If we derivate now two times with respect toτ̂ , we have: 
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And substituting now these expressions into the Fisher matrix results in 
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As it can be shown, the estimates of A,φ and τ are unbiased and thus we can express the 
Fisher matrix of the ML-1P estimator as follows: 
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where Rmm(0)=1 if we work with the C/N0 defined after the filtering. Thus, the Cramér-Rao 
lower Bound of the estimates can be correspondingly expressed as: 
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For the particular case of the estimation of the path delay, the Cramer Rao Lower Bound of 
the error will be therefore 
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And since N0=BLσ2 with BL=1/2T and 2A2N = 2PN = 2E = C, 
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which is the well known expression that we can find in the literature. It is interesting to note 
that although the phase φ was considered in our derivation for completeness, same results 
would have been obtained for the simplified case with φ=0. 
 
The Cramér Rao lower Bound can also be derived if we consider our problem of estimating 
the amplitude and delay of the direct signal as a fitting exercise where only noise is present. 
Indeed, recalling again the first equation in (K.7), we have: 
 
 ( ) ( ) ( )tntAmtx x+−= τ  (K.19) 
 
If we define now f(A,τ)=Am(t-τ) we can linearize our problem and obtain the estimates and 
variance using the minimum least squares approach. Indeed both approaches result in the 
same solution when the noise follows a normal distribution. For simplicity this is the 
approach we will adopt next for the case that one multipath signal is present (ML-2P). 
 
Once we have calculated the expression of the ML-1P estimator, it is important to note that 
this estimator will not be optimal when multipath is actually present since the CRLB cannot 
be used. The alternative would be to use the Minimum Mean-Square Error (MMSE) 
estimator, optimum in this case, but it presents the problem that its calculation requires an 
enormous computational power. A solution to this problem is the Multipath Mitigation 
Technology (MMT) which reduces enormously the computational power needed to solve the 
2P-ML problem. We analyze it more in detail in the next chapter. 
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K.2 Appendix. Two-Path Maximum Likelihood 
Estimator 

 
For the case that one multipath signal is present, we can express the Doppler-compensated 
baseband signal model (ML-2P) as follows 
 
 ( ) ( ) ( ) ( ) ( ) ( )tjytxtntmeAtmeAtz c

jj +=+−+−= 2211
21 ττ φφ  (K.20) 

 
As done in the case of the ML-1P problem above, we separate the real and imaginary 
components as follows 
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or after sampling, the equivalent discrete problem is shown to be: 
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Now, in order to apply the Least Mean Squares  (LMS) approach, we linearize the multipath 
model equations defined in (K.21) as follows:  
 
 ( ) ( ) ( ) ( ) ( ) ( )tntmAtmAtmAtmAtx x+−′−−+−′−−≈ 2222211111 ττττττ  (K.23) 
 
According to this, the discrete matrix problem to solve will be in this case 
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  (K.24) 
what we can express by means of matrices as follows 
 
 NMX +′= β  (K.25) 
 
Since the variance of the LMS estimator of M is shown to be ( ) 21

ˆ2 σσ −′= MMM , we need to 

calculate the matrix M’M which, after some math, is shown to simplify to 
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where Δτ=τ2-τ1. As we can see, M’M is a function of the multipath delay and thus we will be 
able to represent the standard deviation (equivalent to the root mean square in this case since 
all the estimates are unbiased) as a function of the delay of the multipath signal.  
 
Now that we have calculated the matrix M’M, the variance of the estimates is shown to be 
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The result coincides perfectly with that we would have obtained if we would have maximized 
the probability density function since the noise is Gaussian distributed. 
 
The expression of the inverse matrix of F looks a little bit complicated but to study the 
characteristics of the ML estimates we just have to look at the determinant, since after the 
inversion this is in the denominator. Thus, evaluating the determinant when Δτ tends to zero 
we can study the behaviour of the bound. This can be expressed as follows: 
 
 ( ) ( ) ( ) ( ) ( )[ ] ( )[ ] ( ) ( )[ ]{ }0102 222242

2
2
1 mmmmmmmmmmmmmmmm RRRRRRRRAAMM ′′−Δ′′−Δ+ΔΔ′′−′′Δ′+Δ′=′ ττττττ  

  (K.28) 
 
It is interesting to note that although all the estimates are unbiased, what is a good property in 
principle, when the separation of the direct and delayed multipath paths Δτ approaches to 
zero, the determinant of M’M makes the variance of the error tend to infinity.  
 
This is a very important characteristic of any unconstraint ML estimate in presence of 
multipath. In fact, unbiased estimators are preferred in principle but their quality degrades 
considerably for small path separations since the standard deviation increases when Δτ tends 
to zero.  
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K.3 Appendix. Multiple-Path Maximum 
Likelihood Estimator 

 
Once we have solved the case of one multipath signal present (ML with 2 paths), it is 
straightforward to generalize the results to any number of multipath signals. In fact, for three 
paths, one direct signal and two multipath signals, the linearized problem to solve is 
 

 ( ) ( ) ( ) ( )tntmAtmAtx x
i
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=

3

1
τττ  (K.29) 

And the variance of the estimates is shown to be: 
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  (K.30) 
 
As we did in the case there is only one multipath signal present, we could calculate the 
determinant of the matrix to be inverted above, in order to study the stability of the variance 
of the estimates when the multipath delays approach to zero. Although the exact expression 
does not look very friendly, it can be shown that when Δτ1 and Δτ2 tend to zero, the 
determinant also approaches to zero and thus the standard deviation also increases to infinity 
like in the non constraint ML-2P case. Once again, we can see that the use of biased 
estimators seems to be a better solution to some problems. 
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L Appendix. Antisymmetric Sequences 
 
MBOC is the result of multiplexing BOC(1,1) and BOC(6,1). In the long process of finding 
an alternative to BOC(1,1), experts of the STF of the EC realized that some specific BCS 
sequences seemed to be of special interest for satellite navigation. We have shown in chapter 
5 that CBCS presented the problem of having a tracking bias when correlated with a pure 
BOC(1,1) receiver, what lead to further investigations on alternative BCS sequences with 
particular symmetry properties. These receive the name of antisymmetric sequences and have 
been studied in [A.R. Pratt et al., 2006]. In the next lines the most important characteristics 
are underlined. 
 
Let the binary sequence S={si} of length n define a reversed sequence ∗S  such that: 
 

 1)-..(0for   }{ 1 nisS in ∈= −−
∗  (L 1) 

 
It is important to note that this sequence S can be any generic BCS signal in principle. A 
sequence is defined to be symmetric if SS =∗ , so that: 
 
 1)-0..( allfor   1 niss ini ∈= −−  (L.2) 
 
As we can see, such a definition allows solutions for both n even or odd.  Furthermore, a 
binary sequence is defined as antisymmetric if SS −=∗ , that is: 
 
 1)-0..( allfor   1 niss ini ∈−= −−  (L.3) 
 
As we can see, antisymmetric sequences may only be composed with even values of n, since 
there cannot be a central element, x(n-1)/2 which is self inverse. 
 
Another important characteristic of any generic BCS sequence is the balance. As shown in 
[A.R. Pratt et al., 2006], the balance of a symmetric binary sequence can be determined 
through a consideration of the sum of the elements.  Let S={si} be a symmetric binary 
sequence of length n, then the sum )(SΣ of the element values is: 
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Moreover, assuming that the sequence is binary and n even, it can also be shown that  

 4 mod    2)(
2

2

0

nsS

n

i
i ==Σ ∑

−

=

 (L.5) 

Equally, when n is odd, the sum of the elements of S adopts the following form: 

 4 mod  1  2)(
2

1

2
3

02
1 −+=+=Σ −

−

=
− ∑ n

n

i
in snssS  (L.6) 

As we can recognize, all antisymmetric binary sequences with even n are balanced because of 
their particular construction. Moreover as a consequence of (L.5), the sequence balance, that 
means ( ) 0=Σ S , can only be achieved for symmetric binary sequences whose lengths are 
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multiples of 4. This is a necessary condition for the existence of some zero sum sequences, 
but not sufficient.   
 
We further define the properties of a product sequence Z={zi} constructed  from 2 binary 
sequences, X and Y. Z will also have length n and element values {+1,-1}. In principle, X and 
Y are restricted to be either symmetric or antisymmetric sequences.  Z is derived by forming 
the inner product from the two seed sequences, X and Y, as follows: 
    1)-0..(for  }.{ niyxz iii ∈=  (L.7) 
 
The sequence, Z={zi}, may be balanced or unbalanced, as described above, or may be 
symmetric or antisymmetric.  If, for example, the sequences X and Y are both symmetric so 
will also be Z. If both X and Y are antisymmetric, Z results to be a symmetric sequence. This 
is shown next: 
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In addition if one of X or Y is antisymmetric, and the other is symmetric, Z will be 
antisymmetric. In fact, the class of sequences X, Y which can form sequences Z with 
symmetric properties is wider than the class with seed sequences which are symmetric or 
antisymmetric.   
 
As shown in [A.R. Pratt et al., 2006], the circular crosscorrelation between two binary 
sequences, X and Y, of length n, is defined as: 
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where ( ) nrik  mod  += . This operation corresponds to the formation of another type of 

derived sequence, Z={zi}, where the family members are determined through circular shifts of 
the original sequence members. In fact, 
 
 nrikyxz kii

r  mod     where +==  (L.10) 
 
As we can see, the cross-correlation ( )rRc

yx,  is then the balance, ( )rZΣ  of the sequence rZ .  
 
In the following lines some examples of antisymmetric sequences are given for various 
lengths n. For length 4=n , it can be shown that there are two distinct antisymmetric 
sequences: 
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For 6=n , there are 3 distinct sequences, while for 8=n  we can find 6. In the same manner, 
for 10=n  we have 10 and for 12=n  there are 20 such sequences. These were tabulated in 
chapter 4.7.2 with their cross-correlation values at zero offset. 
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M Appendix. Interference Model  
 
In this Appendix we present the most important expressions that are necessary to assess the 
degradation that a signal causes on another signal in the shared band. As we have shown in 
chapter 4.7.8, the methodology is based on the idea of measuring the degradation of a desired 
signal in terms of the reduction of its effective C/N0. This figure was also analyzed in 
Appendix H. This can be caused by either the background noise where all the non GNSS 
signals are included or by another interfering signal of the same or similar nature. To this 
group belong all the types of interference from other GNSS signals. We can further 
distinguish the different GNSS interference sources following this classification: 
 

• IIntra: This type of interference is commonly known as intra-system interference and is 
due to the signals coming from satellites that belong to the same system as the desired 
signal.  

• IInterop: This type of interference corresponds to the equivalent noise introduced in the 
receiver by an interfering signal coming from a satellite of a different constellation but 
with the same signal structure as that of the desired signal. 

• IInter: This type of interference comes from signals with a different signal structure no 
matter whether the signal belong to the same system or a different one. 

 
If we put now all the GNSS sources of interference together, we have as interfering power: 

 
 InteropInterIntraTotal IIII ++=  (M.1) 

 
Moreover, we define the equivalent noise power density of each of the interfering signals as: 
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where 
• X defines the type of interference according to the definitions above, 
• NX  represents the number of satellites, 
• Cj is the received power of satellite j, 
• βr is the receiver bandwidth, 
• Gd is the power spectral density of the desired signal s, 
• 

s
fdop is the doppler frequency offset of the desired signal s, 

• jsκ  is the spectral separation coefficient between signal j and the desired signal s. As 

we saw in chapter 5, this is defined as follows: 
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where, 
• ( )fGi

j  is the power spectral density of the interfering signal j 
• 

j
fdop is the doppler frequency offset of the desired signal j. 

  
The GNSS receiver of our model is supposed to stay stationary at the earth’s surface so that 
only the motion of the satellites will be responsible for the Doppler offsets observed at user 
level. Moreover, we know that while for GPS the absolute Doppler frequency offset does not 
exceed 4.4 kHz, the range is narrower for Galileo, being the maximum value of 3.3 kHz in the 
E1/L1 band as shown in Figure M.1 next [S. Wallner et al., 2005]: 

 
Figure M.1. Histogram of the Doppler Frequency Offsets for GPS and Galileo E1/L1 

 
Once we have defined mathematically the shape of the different sources of interference, we 
can now compute the degradation suffered by a receiver due to other signals. As we said at 
the beginning, the interference of one system onto another one is given by the reduction of the 
effective 0NC , which can be expressed as follows: 

 
Total0eff0 IN

C
N
C

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 (M.4) 

where N0 refers to the noise floor. Furthermore, we assume a noise value of -201.5 dBW/Hz 
for all the purposes. In addition, the degradation of the effective 0NC due to intra-system 

interference can be thus expressed as follows: 
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Equally, for the case of the degradation caused by the inter-system interference we have the 
following expression:  
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Now that we have the necessary mathematical expressions to calculate the degradation 
suffered by a receiver according to this simplified model, we only need to obtain the power of 
the desired and interfering signals at each point of the earth. To do that, we have to simulate 
the satellite positions and movements and account for the attenuations of the signal from the 
satellite to the receiver. Indeed, once we know the minimum received powers as given in 
[Galileo SIS ICD, 2008], [GPS ICD 200], [GPS ICD-705, 2005] and  [GPS ICD-800, 2006] 
we obtain the transmission power Pj of each satellite as done by  [S. Wallner et al., 2005] and 
we can derive the power received at user level at every point of the earth according to: 
 
 userpolatmdist GAAAGPC jjj +−−−+=  (M.7) 
where 

• Pj  depicts the transmission power from satellite j, 
• Gj  is the satellite antenna gain, 
• Adist is the attenuation due to the distance between the satellite and the user, 
• Apol  is the attenuation of the signal due to the mismatch losses in the polarization, 
• Aatm  is the attenuation of the signal due to the atmosphere, and 
• Guser is the receiver antenna gain. 

 
The satellite antenna gain Gj is a function of the Off-Boresight Angle α as defined next: 

 
Figure M.2. Definition of Off-Boresight Angle 

 
being the typical satellite antenna gain as shown in the following figure: 

 
Figure M.3. Assumed Typical Satellite Antenna Gain 

 
Additionally, the signal attenuation due to the free-space losses Adist is given by: 
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where, 
• c is the speed of light 
• d is the distance between the satellite and the user 
• and fc is the carrier frequency 
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N Appendix. SSC between two QPSK 
signals 

 
In the next lines the SSC between two QPSK signals is derived. Let us assume for simplicity 
that the desired QPSK signal adopts the following form  [J.-L. Issler et al., 2003]: 
 
 ( ) ( ) ( )[ ]tcjtctdP P

d
D
ddd +  (N.1) 

where, 
• dP is the amplitude of the desired useful signal, 
• )(tdd is the data modulating the useful  PRN data-code in phase, 
• )(tc D

c is the useful data-code, and 
• )(tc P

d is the PRN code of the useful pilot-channel. 

Moreover, let us assume the following receiver model as done by [J.-L. Issler et al., 2003]: 
 

 
Figure N.1. SSC Receiver Model 

 
And that the interfering received QPSK signal presents the following form: 
 
 ( ) ( ) ( )[ ]tcjtctdP P

i
D
iii +  (N.2) 

with: 
• iP is the amplitude of the interfering signal, 
• )(tdi is the data modulating the interfering data-code, 
• )(tc D

i  is the interfering data-code, 
• )(tc P

i  is the  PN code of the interfering pilot-channel. 
 
As we can see, the replica signals generated by the receiver will be: 
 )()( ττ Δ−−Δ− tcjtc P
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and               
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where 
 

• )( τΔ−tcD
d is the PRN code replica of the data-channel, 

• and )( τΔ−tcP
d  the PRN code replica of the pilot-channel. 

 
Furthermore, the phase shift between the desired signal and the replica is given by ϕje while 
the phase shift with the interfering signal is θje  with θ = 2 π fd t + θ0, where fd is the Doppler 
frequency shift. Equally, if the power ratio between the interfering signal and the desired 
signal is expressed as follows: 
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the value of the signal ( )ts1  at point 1 can thus be expressed as follows: 
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with ϕθ jjj eee =Ω . Moreover, if we integrate (N.6), the signal at the output of the correlator at 
point 2 will be then:  
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what can be further simplified to: 
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As we can see, we have assumed that we integrate over the duration of the data bits and thus 
the bits have no impact on the SSC computation. We can also express equation (N.8) as: 
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In addition, since the SSC can also be interpreted as the mean power of the cross-correlation 
function as defined in chapter 5.1.1, and we are interested in the SSC between the interfering 
signal and the desired signal, we have: 
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or equivalently: 
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where the two integral terms are shown to be much smaller than the others. As a conclusion, 
we can simplify as follows [J.-L. Issler et al., 2003]: 
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which is the expression suggested in chapter 5.1.1. 
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O Appendix. Analytical expressions to 
compute SSCs 

In the next lines we derive analytical expressions to compute the Spectral Separation 
Coefficients (SSC) between two generic BCS signals using the theory derived in chapters 4 
and 5. Later, particular expressions of interest will be obtained.  

O.1 Appendix. SSC between two generic BCS 
signals 

As we have seen in chapter 5.1, the Spectral Separation Coefficient (SSC) between two BCS 
signals can be approximated when the integration time tends to infinity: 
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where the power spectral density of each MCS signal was derived in (4.23) for the most 
general case. If we further assume that we work with binary sequences, the expression can be 
further simplified as follows: 
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and thus the product of the two power spectral densities will adopt the following form 
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Moreover, we can further expand this expression as follows: 
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After integrating in the receiver bandwidth we can express our SSC as sum of other four 
terms yielding: 
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Finally, 
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  (O.9) 
Furthermore, it can be shown that an analytical expression can be found for the four 
integrations above when ∞→rβ . In this case, the explicit expressions for the different SSC 

components adopt the following form: 
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where the Ξ function is defined as follows: 
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which is shown to simplify to the following analytical expression:  
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Next we show some particularized expressions of the function above since they appear 
relatively often in the description of the SSC between some of the signals of interest studied 
in chapter 5.1.1. Moreover, for simplicity and to avoid confusion in the notation, the 
following change of notation is proposed: 
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In fact, it can be shown that  
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Equally, the following identity is shown to be also true:  
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and its symmetric version: 
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It is interesting to note the symmetry that (O.18) and (O.19) present, since the one expression 
can be expressed in terms of the other by just inverting the role of fc,1 and n1 with that of fc,2 
and n2. Finally, the general analytical expression for the SSC between two BCS sequences can 
be expressed as follows: 
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O.2 Appendix. Self SSC of a generic BCS signal 
 
As we have seen in chapter 5.2.3, the self SSC of a generic BCS sequence is shown to be: 
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where the fourth term of the SSC sum can be further expanded as follows: 
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or equally: 
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This expression can be further simplified using the scalar and shift operator θ. Indeed: 
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where the operator θ  indicates a linear shift of the vector s by l elements to the right 
according to the following notation: 
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or in its expanded form: 
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Summarizing, the different terms of the Self SSC of a BCS signal can also be expressed as: 
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Thus, grouping all the contributions of the SSC and since ],...,[],...,[ 2121 nn sssrrr =  we can 
express the Self SSC of an arbitrary BCS signal as follows: 
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or equivalently: 
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  (O.30) 
Moreover, to simplify the notation a little bit more we will do ],...,[ 21 nssss =  and assuming a 
particular code frequency, we do the change ( ) ( )2121 ,,,,,,, llnfnflln ccΞ=Ψ . According to this, 

we can simplify the notation as follows, for a particular chip rate fc: 
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O.3 Appendix. SSC between a generic BCS and an 
arbitrary BOC or BPSK 

The general expression for the SSC between a generic BCS signal and a sine or cosine-phased 
BOC modulation adopts a similar form to the expressions derived in the previous chapters. 
Indeed, this SSC is a particular case of the general SSC derived in (O.20). Interestingly, the 
SSC between a generic BCS and an arbitrary BOC signal shares SSC1 and SSC3 with the Self 
SSC of that BCS signal, being only different by the terms SSC2 and SSC4. 
 
Indeed, for the case of the sine-phased modulation these are shown to adopt the general: 
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Grouping together all the terms we have then:  
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where the fourth term SSC4 resembles the expressions that we saw in Appendix B for the 
derivation of the power spectral density of the sine-phased BOC modulation. Furthermore, it 
can be shown that the SSC between an arbitrary BCS signal and an arbitrary cosine-phased 
BOC adopts the following form: 
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Equally, the SSC between an arbitrary BCS signal with code rate 1
cf and a BPSK with code 

rate 2
cf  is shown to be: 
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O.4 Appendix. SSC between a generic BCS signal 
and the M-Code 

 
Once we have derived the analytical expression for the SSC between two generic BCS signals 
in Appendix O.1, we show next some particular expressions. For exemplification the SSC 
between an arbitrary [ ]( )1,rBCS cf  and the M-Code is presented next. This SSC is shown to 

be given by: 
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where: 
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As we can recognize, the first sum term is only a variable of n1 and 1

cf , if we assume that 2
cf  

and n2 are given. In fact, since the second signal is the M-Code BOC(10,5), we can simplify 
(O.37) and express the total SSC exclusively as a function only of n1 and 1

cf  as shown next. 

Let us begin with the first term of the SSC1:  
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Similarly, if we observe now the second sum term SSC2, we see that once the chip form of the 
second signal has been fixed, this term only depends on the variable n1. In order to accelerate 
the computation of SSCs we can calculate in advance this term as a function of n1 given that 
the second signal is BOC-like, according to the following expression: 
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where we can easily recognize that the coefficients of the terms in brackets, namely -3, +2 and 
-1, correspond to the values of the generation matrix of BOC(10,5) shown in (5.22) 
 
The third sum term, namely SSC3, depends on the signal structure of the first signal. Thus, for 
every ijk −=1  and every n1 we will compute the value as a function of  k1 and n1. We 

develop now this term to find an expression with which we can calculate everything more 
easily in a numerical way: 
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Indeed, 
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  (O.41) 
As we can see, we can express the double sum of (O.40) as the single sum of n1-1 terms, what 
for the numerical calculations simplifies significantly the problem. As a conclusion, the third 
term of the SSC is only a function of n1. Moreover, we can further simplify as follows: 
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  (O.42) 
In a similar way, making use of the operator θ , we can now develop the fourth SSC term to 
have a more compact expression as follows:  
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or equivalently: 
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  (O.44) 
If we recall now all the expressions derived in the preceding lines and group them together, 
we can see that the SSC between a generic BCS signal and the M-Code will be: 
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 (O.45) 
In order to simplify the notation a little bit more, we can do ( ) ( )2121 ,,,,,,, llnfnflln ccΞ=Φ  

and we can further simplify the expression as follows: 
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O.5 Appendix. Power of a generic BCS signal 
within a Bandwidth βr 

In this Appendix analytical expressions for the power that falls within a bandwidth βr are 
derived. Recalling (4.26), the power spectral density of a generic BCS signal is defined as:  
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  (O.47) 
and integrating the PSD of a generic BCS in a bandwidth βr, the total power that comes 
through the filter can be expressed as follows: 
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or equivalently: 
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where the first integration, namely 1P , is shown to converge to the following expression: 
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with  
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Moreover, it can also be shown that in the limit, when the integration bandwidth tends to 
infinity, (O.50) simplifies to: 
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In fact,  
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where using partial integration, it can be shown that: 
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for two generic integration limits. Moreover, since  
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and given the fact that using complex integration we have 
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the integration limit can be simplified as follows 
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since only the integral term of (O.54) is different than zero when 0→a  and ∞→b . 
 
Equally, we can find an explicit expression for the second integration of (O.49): 
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which can be further simplified as follows: 
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where the change ijk −=  was made for simplicity in the notation. If we calculate now the 

limit when the bandwidth of integration tends to infinity, we obtain the simplified expression: 
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Moreover, since 1≥k  always, it can be shown that the following relationship for P2 is valid 
for any k in the limit when βr tends to infinity: 
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Finally, combining now (O.50) and (O.59) above, we have the following analytical 
expressions for the integration of the PSD of a BCS in a finite bandwidth βr: 
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and thus: 
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Combining now (O.52) and (O.60) for the infinite bandwidth case we have: 
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As we expected since the definition of the PSD is normalized to infinite bandwidth. 
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