
A Generic Approach to the Recognition and Analysis
of Sketched Diagrams Using Context Information

Dissertation
zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

vorgelegt von
Dipl.-Inf. Florian Brieler

am 25. Juni 2009

Vorsitzender der Kommission: Prof. Dr. Peter Hertling
Betreuer und 1. Berichterstatter: Prof. Dr.-Ing. Mark Minas

2. Berichterstatter: Prof. Gennaro Costagliola
1. Prüfer: Prof. Dr. Gunnar Teege
2. Prüfer: Prof. Klaus Buchenrieder, Ph.D.

Tag der mündlichen Prüfung: 08. Februar 2010

Universität der Bundeswehr München
Fakultät für Informatik

Abstract

Recent decades have shown the rise of diagrammatic representation of informa-
tion. In computer sciences, for example, general purpose diagrammatic notations
like the UML are an everyday tool nowadays, and can even be considered as com-
mon knowledge. Also the advent of domain-specific languages (DSLs) can be
observed. On the other hand, the research field of sketching is becoming pop-
ular, due to advances in processing speed and input hardware. Also, fields of
application are evident, e.g. drawing of diagrams. The term sketching means to
have a user draw something and have the computer interpret the drawing in some
appropriate way. The advantage of sketching over traditional WIMP-based user
interfaces (window, icon, menu, pointing device) is a more natural and intuitive
way of interaction with the computer.

This thesis presents DSKETCH, an approach to sketching of diagrams. The
idea is that the user first draws a diagram, and then DSKETCH derives the syntac-
tic and semantic information conveyed in the drawing. The semantic information
can be used for subsequent processing. The approach is fully generic, i.e., it is not
tailored to a specific diagram language. There is a prototypically implemented
system which serves as proof-of-concept. As an example, the user draws a class
diagram from the UML. The system then derives the semantics of the diagram,
and creates skeleton class files. The user can subsequently create an actual imple-
mentation with these skeletons.

Reaching this goal depends on two subsequent stages, applied after the user
is finished drawing. The first is recognition, which means to identify the single
shapes that make the complete diagram. The other step is analysis, which means
to inspect each shape in the context of other shapes, thus being able to derive a
syntactical structure first, and the semantics afterward. Recognition is subject to
much current research in the field of sketching. Still, no satisfying solution could
be found yet. State-of-the-art approaches mostly constrain the user and impose
restrictions regarding how to draw. Thus, the task of recognition is simplified to
a point where it becomes bearable, but the user is forced to concentrate on his
drawing style. Analysis, on the other hand, is rarely discussed in publications
on sketching. However, analysis should be an important aspect of approaches to

iii

iv

sketching, as the user is usually not interested in recognized shapes, but in the
semantics of the diagram.

The approach presented in this thesis marks improvements, both for recog-
nition and for analysis. The core idea of the recognition is to avoid a feature-
based approach for high-level recognition, as features impose severe restrictions
on which drawings can be recognized. Instead, a set of independent models is cre-
ated, all of which contain information gained from low-level processing. Further-
more, multiple representations of the same stroke in different models are possible.
This has a positive effect on recognition, because it removes the task of low-level
processing to decide for a suitable representation without any context knowledge.
High-level recognition itself is then based on composition of primitives to com-
plete shapes. In general, the presented approach to recognition does not constrain
the user in the ways shown by previous work in the field.

Analysis builds upon the DIAGEN framework, which allows for generation of
WIMP-based diagram editors from specifications. The generated editors allow for
checking syntax and semantics of the diagrams created by the user. The concept of
DIAGEN is based on the formal approach of graph transformation, which results
in a powerful and reliable diagram analysis.

In this thesis it is shown how this approach can be transferred to sketching.
The most distinct result is that ambiguities can be reliably solved by extensive use
of context information gained from syntax checking. Ambiguities naturally arise
from hand-drawing, which is inevitably sloppy and imprecise. Furthermore, it
has proven valuable to explicitly model ambiguities in the analysis process. Also,
diagram language-specific output can be generated as a result from the analysis as
motivated above with the example of class diagrams.

The prototypical implementation is applied to six different diagram languages,
all of which exhibit different characteristics regarding visual appearance, syntax,
and semantics. Among the six languages there are statecharts from the UML, and
a GUI builder as a representative of DSLs. Many further diagram languages are
conceivable as well. An empirical user study evaluates recognition rates and per-
formance of the prototype. It proves that the system is both accurate and powerful.

The contribution of this thesis lies both in the recognizer and the analysis.
The recognizer allows for multiple representations of the same stroke at the same
time, and is capable of identifying shapes from a complete drawing without prior
assignment of strokes to shapes. The analysis is based on a formal approach. Am-
biguities are solved automatically based on the syntactic structure of the diagram
language. Therefore, ambiguities are explicitly modeled for the analysis.

Contents

Abstract iii

Contents v

List of Figures ix

List of Algorithms xiii

List of Acronyms xv

1 Introduction 1
1.1 Key Aspects of Sketching . 4
1.2 Concept of the Proposed Approach 9
1.3 Main Scientific Contributions . 18
1.4 Outline . 19

2 Diagram Languages 21
2.1 Petri Nets . 22
2.2 Nassi-Shneiderman Diagrams 23
2.3 GUI Builder . 25
2.4 Statecharts . 26
2.5 Boolean Logic Diagrams . 27
2.6 Tic-tac-toe . 28
2.7 Application Range of the Proposed Approach 28

3 Related Work 31
3.1 GRANDMA . 32
3.2 LADDER . 32
3.3 Sketch Grammars . 35
3.4 InkKit . 37
3.5 Other Approaches . 39
3.6 Comparison . 42

v

vi CONTENTS

4 Preprocessing 47
4.1 Concept . 48
4.2 Lines . 50
4.3 Arcs . 52
4.4 Links . 55
4.5 Circles . 57
4.6 Text . 60
4.7 Future Work . 61
4.8 Summary . 62

5 Recognition 63
5.1 Constraints and the Specification of Shapes 64
5.2 Search Plan . 66
5.3 Querying the Models . 71
5.4 Recognition of Shapes . 73
5.5 Assigning Ratings to Shapes . 78
5.6 Future Work . 80
5.7 Summary . 81

6 Postprocessing 83
6.1 Elimination of Duplicates . 83
6.2 Identification of Conflicts . 86
6.3 Suppression of Shapes Containing Other Shapes 86
6.4 Summary . 88

7 Modeler 89
7.1 Attachment Areas . 90
7.2 Relations . 94
7.3 Hypergraphs . 95
7.4 Creating the Hypergraph Model 96
7.5 Summary . 99

8 Reducer 101
8.1 Graph Transformation . 101
8.2 Reduction Rules . 103
8.3 Conflicts and Negative Application Conditions 107
8.4 Future Work . 112
8.5 Summary . 112

CONTENTS vii

9 Parser 113
9.1 Production Rules . 114
9.2 Terminal and Nonterminal Production Rules 118
9.3 Set Production Rules . 119
9.4 Embedding Production Rules . 123
9.5 A Larger Example . 125
9.6 Attribute Evaluation . 127
9.7 Summary . 128

10 Evaluation 129
10.1 Processing Time . 131
10.2 Recognition Rates . 135
10.3 Effect of the Elimination of Duplicates 136
10.4 Effect of the Suppression of Shapes Containing Other Shapes . . . 137
10.5 Conclusion . 139

11 Summary and Conclusion 141

A Specification of Diagram Languages 147
A.1 Petri Nets . 148
A.2 Nassi-Shneiderman Diagrams 153
A.3 GUI Builder . 159
A.4 Statecharts . 166
A.5 Boolean Logic Diagrams . 174
A.6 Tic-tac-toe . 180

B The Complete Concept 185

C Detailed Example 187
C.1 Recognition Stage . 188
C.2 Analysis Stage . 191

Bibliography 195

viii CONTENTS

List of Figures

1.1 Example of a sketched Petri net. 5
1.2 Example of two strokes which have to be segmented and clustered. 6
1.3 Conceptual overview of the full approach. 13
1.4 Conceptual overview of the recognition stage and analysis stage. . 14
1.5 Examples of shapes, and how they are composed of primitives. . . 16
1.6 Influence of the specification on the sketching editor. 18

2.1 Overview of classes of diagram languages. 22
2.2 Example of a Petri net. 23
2.3 Example of a Nassi-Shneiderman diagram. 24
2.4 Example of a hand-drawn dialog box. 25
2.5 Example of a statechart. 26
2.6 Example of a Boolean logic diagram. 27
2.7 Example of a Tic-tac-toe game. 28

3.1 Architecture of the LADDER system [48]. 34
3.2 Architecture of the SkG system [24]. 37
3.3 Architecture of the InkKit recognizer [79]. 38
3.4 Two example sketches for the limitations of LADDER. 45

4.1 Conceptual overview of the preprocessing step. 49
4.2 A sketch and the four stroke models. 50
4.3 Possible angles between three consecutive samples that are too

close to each other. 52
4.4 Processing of a stroke by the arc transformer. 54
4.5 Fitting an arc in a sub-stroke. 54
4.6 An arrow drawn in one stroke. 56
4.7 Different cases of two strokes being close to each other. 56
4.8 Examples of a stroke and accumulated angle γ. 58
4.9 Strokes and superimposed circles. 58
4.10 Preprocessing stage if a divider would be used. 61

ix

x LIST OF FIGURES

5.1 Examples of shapes which are not connected. 64
5.2 An intended arrow and examples of arrows which fail to satisfy

the constraints. 65
5.3 Examples of shapes. 66
5.4 Example of an unconnected shape and its constraints. 67
5.5 A rectangle and many vertical lines hampering the recognition. . . 67
5.6 An example for shared primitives among the shapes of NSD. . . . 68
5.7 An optimal search plan for NSD. 69
5.8 Two different search plans for the same shape. 70
5.9 A line model and an arc model. 72
5.10 Conceptual overview of the assembler. 74
5.11 Extract from the search process for a statement in a drawing. . . . 77
5.12 Two drawings and their corresponding line models. 78

6.1 A drawing of a rectangle made with one stroke, the corresponding
line model, and two rectangles which are no duplicates. 84

6.2 NSDs and examples of false positives. 87

7.1 Architecture of an editor generated by DIAGEN. 90
7.2 Examples of shapes and their attachment areas. 91
7.3 Examples of deformations due to hand-drawing. 92
7.4 The grid as an example where additional points have to be computed. 93
7.5 Different cases of two related circles. 94
7.6 A hypergraph consisting of seven edges and four nodes. 96
7.7 A hand-drawn Petri net and internal models. 98

8.1 A graph transformation rule and its application to a graph. 102
8.2 Two applications of reduction rules and the resulting RHM. 104
8.3 Reduction rules for Petri nets. 105
8.4 The RHM for the HM shown in Figure 7.7(b). 106
8.5 Two alternative reduction rules for Petri nets. 107
8.6 A sketched Petri net and HM and RHM created from the sketch. . 108
8.7 A sketched Petri net and its HM if places and transitions may

overlap. 111

9.1 Production rules for Petri nets. 115
9.2 Set production rules for Petri nets. 116
9.3 Embedding production rules for Petri nets. 117
9.4 Exemplary derivation tree. 120
9.5 Exemplary derivation tree after some conflicts are solved. 121
9.6 Graph G where the largest clique is searched for. 122
9.7 A sketch and the generated RHM and derivation DAG. 124

LIST OF FIGURES xi

9.8 RHM, derivation DAG, ratings and weighted ratings for Figure 7.7. 126

10.1 The six diagrams used as masters for the user study. 130
10.2 A GUI builder sketch from the user study in three copies. 131
10.3 Total processing time for different diagram languages. 133
10.4 Fraction of recognition and analysis stages of total processing time. 134
10.5 Average recognition rates. 136
10.6 Total processing time with and without removal of duplicates. . . 137
10.7 Average total processing time for NSD with and without removal

of shapes containing other shapes. 138

C.1 A simple Petri net used as running example in Appendix C. 187
C.2 Contents of the models generated for the sketch shown in Figure C.1.188
C.3 17 of the 26 shapes recognized from the models in Figure C.2. . . 189
C.4 The 13 shapes left after removal of duplicates. 190
C.5 The HM for the sketch shown in Figure C.1. 191
C.6 The RHM for the HM shown in Figure C.5. 192
C.7 The DAG created by the parser for the RHM shown in Figure C.6. 193

xii LIST OF FIGURES

List of Algorithms

1 Transformation of a stroke into straight lines. 51
2 Filtering of samples from a stroke which are too close to each other. 53
3 Transformation of a stroke into a circle. 59
4 Computation of a search plan from a set of shapes. 71
5 Recognition of all shapes from scratch. 75

xiii

xiv LIST OF ALGORITHMS

List of Acronyms

BLD Boolean logic diagram

CNF Chomsky normal form

CYK Cocke-Younger-Kasami (parser)

DAG directed acyclic graph

DSL domain-specific language

EPR embedding production rule

GUI Graphical user interface

HCI Human-computer interaction

HM hypergraph model

HMM Hidden Markov Model

LHS left-hand side

MDA Model Driven Architecture (http://www.omg.org/mda)

NAC negative application condition

NPR nonterminal production rule

NSD Nassi-Shneiderman diagram

OMG Object Management Group (http://www.omg.org/)

RHM reduced hypergraph model

RHS right-hand side

SPR set production rule

xv

http://www.omg.org/mda
http://www.omg.org/

xvi LIST OF ALGORITHMS

TPR terminal production rule

UML Unified Modeling Language (http://www.omg.org/uml)

WIMP window, icon, menu, pointing device

http://www.omg.org/uml

Chapter 1

Introduction

Diagrams are widespread in computer sciences, as well as in other disciplines.
Everybody uses diagrams: architects, engineers, sales people, and designers. This
is no surprise, since a diagram naturally allows for representing information in a
visual manner. This makes it easy to grasp its meaning. Perception of informa-
tion which is clearly arranged graphically is mostly more convenient and quicker
than that of a textual representation. Especially for very complex issues, using
diagrams cannot be abstained from. Complex software could not be build without
the use of diagrams, devices based on micro-electronics like mobile phones could
not, cars could not, constructions like buildings or bridges could not.

Many popular and well-known types of diagrams are used in computer sci-
ences today, although their use in other fields outnumber the usage in computer
sciences by far. Common to all diagrams is that they have a certain meaning.
In computer sciences this meaning is usually described (more) formally, as this
discipline has the means necessary at hand. Similar to textual languages which
can be described by string grammars, diagrams are related to diagram languages,
which can be described formally as well. For example, in version 2 of the UML
the OMG defined the meaning of respective diagrams more formally and clearly
as before, which fosters using and understanding of UML diagrams.

Having a clear understanding of diagrams is essential to the processing of the
contained information. Based on the UML, the OMG thus could establish MDA
as a new paradigm to the production of software, which is – in its basic idea –
completely based on models. These models are usually represented graphically
as diagrams. This whole concept would fail if diagrams could not be formally
described.

Of course, not every visual representation of information is a diagram. In this
thesis, we understand a diagram always in the context of its diagram language.
The language, as said before, describes a set of diagrams. Part of this description
is syntax and semantics of the diagrams, no matter whether it is given formally or

1

2 CHAPTER 1. INTRODUCTION

not. If there is no language, we do not speak of diagrams.
Creating a diagram can serve two purposes. First, an already established cir-

cumstance should be illustrated. This is often the case, for example, when an
author writes a book and uses diagrams to convey information or foster under-
standing, or when a software engineer documents the architecture or structure of
software which is already built.

The other application of diagramming – to create and use diagrams – is to
support the creative process which is inevitable when something new is to be cre-
ated [63]. For example, designers of software usually start building the software
by working with drafts first, and refining them until they meet certain criteria of
quality or content. Only then the software is actually implemented.

For both purposes there exist countless tools, both commercially available and
in academia. Examples of the former are Borland Together, or IBM Rational
Rose. Examples from academia are DIAGEN [69], DiaMeta [71], VLDesk [26],
AToM3 [34], Fujaba [37], Tiger [36], Pounamu [105] and Marama [45]. All of
these tools allow for creating diagrams and processing them in some way. The
processing is especially useful when the information described by the diagrams is
to be used in subsequent steps of a complex process. For example, much source
code can be generated from UML diagrams, which is, by the way, the basic con-
cept of MDA.

Although commercial tools are usually much more mature, they usually have a
similar user interface like the research prototypes. Using the mouse and an empty
canvas, diagram components can be placed on the canvas by a matter of clicking
buttons. The user is greatly supported in this process by features like cut-copy-
paste, undo and redo, saving and loading, automatic layout of diagrams, and much
more. However, such interfaces still remain artificial in some way, and are more
dictated by technical aspects rather than by the users’ needs.

It is well known that many designers prefer to use pen and paper in early stages
of design, and not a computer. This has several reasons. First of all, it is easier.
The paper does not need an explicit user interface, and it provides the user with
much flexibility. This again fosters creativity, as no time and effort has to be spent
in using pen and paper. Even more, when a computer is used, people tend to get
distracted from their actual task, concentrating on minor aspects like a nice layout.
Sketches made on paper look informal and unfinished, which clearly indicates that
they are subject to change. A neat computer-generated layout has the opposite
effect. People are more reluctant to change such diagrams [14, 63, 30, 79].

Designers usually begin with some informal sketches to talk about the design
of a new car, for instance, and so do software engineers. Alone or in a group,
the basic architecture is often developed in terms of informal sketches, which
is simply more convenient. Of course, when using sketches in the first place this
means that at some point they have to be transferred to a computer, often manually,

3

to gain further value [40]. Unfortunately, this process is both cumbersome and
error-prone. Furthermore it is usually irreversible [42] as updates to the transferred
diagrams can hardly be reflected in the sketches.

The research topic of sketching now deals with exactly this situation. Users
are allowed to draw (or sketch) on a computer, and the machine interprets this
input in some way. This interpretation is crucial and states the difference to bare
drawing tools. The basic idea is to get the best from both worlds: a very simple
and natural user interface as known from pen and paper [91, 38, 53, 4, 48, 30], but
also capabilities to understand the sketches, plus comfortable editing commands
as mentioned above (load, save, selection, versioning, etc.).

Because a mouse is no suitable replacement for a pen (nor is a touch pad like
most notebooks are equipped with), special hardware is required for sketching.
Examples are smart boards which can be used with the finger or any other suitable
object, computers and notebooks with touch-sensitive displays where mostly a
special stylus is required, and pen tablets which have no own display. According
to this broad range of hardware, prices also span a wide range, starting from less
than 100C for simple tablets like the Wacom Bamboo1, up to more than 10.000C
for smart boards like the SMART Technologies 2000i2.

Such hardware is increasingly popular, and is more and more widespread
[76, 81]. The underlying technology enables a completely different paradigm
of interaction with computers, compared to classical user interfaces relying on a
mouse, also known as WIMP (window, icon, menu, pointing device). Accord-
ingly, using such hardware also requires dedicated applications which fully sup-
port and utilize their special capabilities [93, 80]. A touch-sensitive display, for
example, is nothing more than a nice gadget if there is no software which benefits
from the stylus. Understanding of hand-writing is such an application, where the
user really benefits from the stylus. Sketching is another. It is reported that users
prefer to use a whiteboard or a tablet PC rather than a traditional tool [99].

In the last two decades, much progress has been achieved in the field of sketch-
ing. Complete systems have been developed, and dedicated solutions to special
issues have been proposed. However, the recognition of sketches is still not solved
satisfactorily, and is constantly regarded as a difficult task, if not the hardest chal-
lenge in the field of sketching [11, 43, 91, 4, 98, 16, 79]. Recognition means to
identify single shapes, or entities, from the sketch. Also, reasoning about sketches,
i.e., further processing of the information conveyed in a sketch, is in its infancy,
and is not considered in many publications. In the next section and in Chapter 3
a reasonable selection of this previous work is addressed and discussed in more
detail.

1see http://www.wacom.com/
2see http://smarttech.com/

http://www.wacom.com/
http://smarttech.com/

4 CHAPTER 1. INTRODUCTION

In this thesis we present a novel approach to the understanding of sketched di-
agrams, called DSKETCH (diagram sketching). New solutions to both the recog-
nition and the reasoning are given, which depend on each other, but could also be
used in combination with other approaches. For the recognition, we rely on a new
concept that avoids by design common problems of other approaches. For the rea-
soning, we rely on an existing framework for diagram analysis, which we adopted
to the special characteristics of sketching. The basic concept of DSKETCH is ex-
plained in Section 1.2. Before, Section 1.1 defines basic terms and aspects of
sketching, and describes some of the current issues. DSKETCH is briefly summa-
rized in Section 1.3, and its major scientific contributions are highlighted. The
final Section 1.4 outlines this thesis by summarizing each upcoming chapter.

1.1 Key Aspects of Sketching
In this section the general terms and definitions are discussed which have evolved
for the field of sketching. The design space for an approach to sketching is ex-
plained. As briefly mentioned before, sketching means the understanding of a
hand drawing.

The central term in sketching is that of a stroke. A stroke begins with the
stylus put on the surface of the screen, and ends with the lifting of the stylus.
Just like a mouse, the computer tracks the movement of the stylus by capturing
the events generated from its driver. Technically, a stroke is a finite list of tuples
(x, y, t) (called samples) where x and y are a pair of coordinates reflecting the
screen position where the stylus was, and t is the time elapsed since the beginning
of the stroke, usually measured in milliseconds. Some approaches even consider
the pressure exercised with the stylus on the screen [72] to improve recognition
accuracy, but not every hardware is capable of measuring this value. Mostly,
pressure is only used to adjust how strokes are displayed - the thicker the more
pressure there was exercised [74]. The least common denominator are x, y and t.
These values can always be captured, and are assumed by virtually any approach.

The main issue in a sketching system is recognition, which means to identify
from the strokes drawn by the user the single shapes a sketch is composed of. For
that purpose it must be specified in advance what shapes are to be recognized. A
shape is a basic building block of a sketch that depends on the domain and cannot
be broken into sub-parts. In our case, as we assume diagram languages, the set
of relevant shapes is always known. For Petri nets, for example, there are only
four kinds of shapes which have to be recognized from the drawing: places, to-
kens, transitions and arrows. Text can be used in order to augment the sketch,
in the case of Petri nets by defining weights of arrows and capacities of tokens.
Sometimes, recognition is broken down into two levels, low-level recognition or

1.1. KEY ASPECTS OF SKETCHING 5

Figure 1.1: Example of a sketched Petri net.

low-level (pre)processing, and high-level recognition. The former means to ex-
tract intermediate information from the strokes drawn by the user, and the latter
to use that intermediate information to identify shapes.

For various reasons recognition is very difficult. Consider the simple Petri
net in Figure 1.1, for example. If 10 persons are asked to copy this diagram,
the outcome will be 10 different results which are all sketches of the same Petri
net. For example, one person draws precisely and neat, while another person
draws imprecisely and sloppily. Or one person draws every shape in one stroke,
while another uses two or more strokes. Another person heavily overtraces his
own strokes. Even more so, if the same person is asked to produce 10 copies of
the diagram, the outcome will still be 10 different sketches, because there is so
much variation in hand-drawing. The bottom line is that the same diagram can be
sketched in many different ways. This makes it very hard to develop approaches
that reliably handle all of these different sketches properly.

Since the recognition of just a set of shapes is only the first step toward under-
standing of a sketch, a second stage should follow the recognition. This stage is
the reasoning or analysis. Its exact task depends on the sketching approach and
the domain. For example, analysis may relate the shapes to each other (e.g., which
place contains which token), and process the resulting information.

Having strokes, the task of a sketching system is to assign a meaning to a
given set of strokes by first recognizing shapes, and then reason about them. This
is called on-line recognition, resp. an on-line approach. If no strokes are given, but
a raster image, this is referred to as off-line recognition. Most current approaches
rely on on-line recognition. Having information about individual strokes greatly
aids in recognition, as it means more information compared to a raster image. If
off-line information is available only, approaches like [81] can be used to extract
information about strokes from the raster image.

The different approaches to recognition all rely on particular assumptions;
some approaches assume more, others less. Obviously, depending on the assump-
tions, recognition can be simplified a lot. Approaches like [83] require each stroke
to represent exactly one shape, for example. This way, two very difficult issues are
avoided: clustering and segmentation. Clustering (also referred to as grouping)

6 CHAPTER 1. INTRODUCTION

segment here

cluster here
Sketch Exploded view

Figure 1.2: Example of two strokes which have to be segmented and clustered to
yield shapes.

is the question which strokes have to be grouped in order to represent a shape,
while segmentation (or fragmentation) concerns to split strokes if they contribute
to more than one shape. The difficulty of both clustering and segmentation is that
actually the recognized shapes are required to decide about them, but they are
required to recognize the shapes; a typical chicken-and-egg problem. It is even
possible that some strokes have to be clustered, while others have to be segmented
in order to identify one shape. An example is given in Figure 1.2. The sketch com-
prises two strokes; circle and arrow shaft are drawn in the first stroke, while the
arrow head is drawn in the second one. The exploded view shows how the first
stroke must be segmented to separate the shaft from the circle, and how the shaft
and the second stroke must be clustered to yield the arrow.

A gesture is understood as one stroke that follows a certain, predefined path.
Gestures can be used to invoke commands, like erasing some part of a sketch, or
selecting something. Although sometimes the case, gestures are not well-suited
as replacement for shapes, as the look of a gesture often is quite artificial and does
not look like the intended shape.

The publication Specifying gestures by example by Dean Rubine [83] ap-
proaches gestures by a feature-based recognition approach. It is of special im-
portance, as it is often cited and has a great impact on the field. The basic idea
is very straightforward and follows the classical methodology of pattern recogni-
tion. It is adopted by other approaches, which also use it for shape recognition.
The central idea of feature-based recognition approaches is to train the system by
drawing each shape that should be recognized one or more times. Rubine assumes
exactly one stroke per shape. For each training stroke some features are computed
and stored, e.g., the length of the stroke, the size of the bounding box, the average
speed of the stylus, or the number of bends. If the same shape is trained more
than once, the feature values can be averaged, for example. Rubine used 13 fea-
tures; nowadays much more features are known in literature [87]. When the actual
sketch is drawn, for each stroke the same features are computed as for the training
strokes. Then, using a classification scheme, the system compares the feature val-

1.1. KEY ASPECTS OF SKETCHING 7

ues gained from training to those computed from the strokes in the drawing, and
decides which gesture (or shape) is best represented by a stroke.

For example, in order to distinguish small circles from large circles, the stroke
length can be considered as the only feature. For training, circles from both groups
are drawn, and the respective stroke lengths are averaged. Then, for each stroke
in the drawing, its length is computed, and it is classified to be a member of
that group (small or large) where the average stroke length is closer to the one
computed for the stroke in the drawing. While this approach is very simple, it is
not sufficient in practice; more features should be used, as the stroke length alone
is not sufficient to decide whether a stroke forms a circle at all, for example.

The advantage of feature-based approaches is that they can be easily imple-
mented and work quite fast. The recognition rate, i.e., the number of strokes
that are recognized correctly compared to the number of strokes that are drawn,
depends very much on the features and on the classifier. Various further publica-
tions by other authors pick up this approach [79] and improve it in some ways,
e.g., by computing other features [38, 76, 77]. It is also tried to get rid of the
severe limitation that a shape has to be drawn in one stroke, which means that at
least clustering is possible. However, many approaches are not very sophisticated
in doing so, but rather rely on very simple rules to detect when the drawing of one
shape has finished and the drawing of another begins. For example, a constant
time threshold can be used, as in [6, 43, 14]. Whenever the time passed between
the drawing of two consecutive strokes exceeds this threshold value, the strokes
are considered to contribute to different shapes. Although simple to understand,
[99] suggests that it is difficult setting the threshold value to a value that pleases
different users. In [15] the user has to explicitly tell the system that a shape is
completely drawn by pressing a button shown in the UI.

In general, for feature-based approaches clustering and segmentation are very
hard problems. Even more, the classical approach by Rubine requires the user to
draw the same stroke each time to be correctly recognized. For example, if the
training strokes for a rectangle each begin in the upper left corner of the rectangle,
and draw the shape clockwise, each later stroke that is supposed to be recognized
as a rectangle must follow this rule exactly. This is a severe restriction in terms of
how shapes are allowed to be drawn, and is unrealistic [64]. The same behavior
can also be observed with Graffiti used to recognize hand-writing gestures for de-
vices by Palm3. Work published which suggests that this limitation can be relaxed
is usually based on more complex features like high curvature [76], or on contin-
uous data like pen speed [40]. Overcoming these limitations is crucial, as [53, 74]
argue that people indeed draw more than one object with one stroke, and that one
object is not always drawn with a sequence of consecutive strokes.

3see http://www.palm.com/

http://www.palm.com/

8 CHAPTER 1. INTRODUCTION

The insight gained from feature-based approaches reveals two characteristics
of sketching systems. First, they can be distinguished according to the number
and kind of restrictions that are imposed on the user. Second, and closely related,
recognizers are said to be either single-stroke or multi-stroke to indicate their ca-
pability to cluster strokes.

Inevitable for hand-drawing is a lack of precision. Many shapes are drawn
somewhat messy, when the user is not very keen to produce an exact drawing.
This imprecision naturally leads to ambiguity, i.e., the recognizer identifies dif-
ferent competing shapes which cannot exist in parallel. Feature-based approaches
are usually more forgiving with sloppy sketches, which is a big advantage. How-
ever, even here ambiguities may arise. Mankoff et al. discuss how to overcome
ambiguities, e.g., by providing the user with a list of possible alternatives and let
him decide, or by having the user repeat the input [67]. However, an automatic
decision would be better, so that the user does not have to be bothered by the
shortcoming of the system to make the decision on its own. Automatic resolution
of ambiguities usually involves examining the context of a shape, i.e., other shapes
close to the ambiguous shape. Given that there are some basic rules how shapes
can be connected to each other, some (or even all except one) ambiguous alterna-
tives can be excluded. As an example, consider Petri nets again. If there is a shape
that could either be a place or a transition, by examining the context it may turn
out that this shape is connected to a transition by an arrow. Hence the ambiguous
shape must be a place, because no two transitions must be connected by an arrow
in a Petri net. As already mentioned, imprecision and sloppiness is also the reason
why recognition is so difficult. If a hundred people are asked to draw a rectangle,
it is highly unlikely that there are even two identical strokes (or sets of strokes, in
the case of multi-stroke recognition). However, each of the hundred rectangles is
expected to be correctly recognized, in spite of the large variance of input.

Another design alternative for sketching systems is whether to start recogni-
tion after every stroke (eager recognition), or to require the user to explicitly start
recognition (lazy recognition). The former requires a very fast recognition, and is
common for many feature-based approaches. The advantage is that the user may
be given immediate feedback, which helps him to correct input that has not been
recognized as intended. Also, editing of the sketch can become easier if shapes
are already known [7]. On the other hand, it is reported that immediate feed-
back like beautification distracts the user from his actual task of drawing a sketch
[3, 4, 39] (beautification describes the task of replacing the user-drawn shapes by
neat computer-generated ones). Furthermore, as described above, the context of a
shape may be required to solve ambiguities. Starting recognition after every stroke
obviously means that no context is present for the shapes drawn first. The results
of this recognition are not likely to be valid. Yet another issue, that of incremental
recognition, is linked to eager recognition. Recognizing the whole sketch each

1.2. CONCEPT OF THE PROPOSED APPROACH 9

time from scratch degrades performance and hinders eager recognition. However,
with incremental recognition available, eager recognition becomes possible.

Regarding user interfaces there is a clear distinction between mode-less and
mode-based approaches. Other tasks than sketching itself, e.g., editing a diagram,
can be performed at any time in a mode-less environment. For example, shapes
can be erased at any time by scribbling zigzag lines over them. On the other hand,
in mode-based approaches there is the need to explicitly change the current mode
first, for example from sketching to editing. Only then a shape can be erased.
When the user has finished erasing, he must switch back to the sketching mode
prior to continue drawing. While this seems more complicated, it avoids any am-
biguities involved in whether a stroke is supposed to contribute to the sketch itself,
or if it represents an editing operation. Generally, modes are to be avoided [85],
although they simplify recognition.

Regarding text, which is very important in many diagram languages, there is
either the option to allow for writing directly on the canvas, which is easy and
natural, or to require the user to indicate writing, which again is mode-based.
Direct writing, however, involves the difficult task of distinguishing between text
and graphics, which is still an open issue [75, 10, 79].

1.2 Concept of the Proposed Approach
The approach to sketching, DSKETCH, discussed in this thesis follows two main
goals. All design decisions and key features originate from and can be motivated
by these two goals. The first is to create a sketching system for the understanding
of hand-drawn diagrams. The importance of diagrams and diagrammatic repre-
sentation, especially in the context of domain-specific languages (DSLs), has al-
ready been highlighted above. Therefore we think that understanding hand-drawn
diagrams is a valuable task that warrants research effort. The second major goal of
DSKETCH is to allow for natural and unrestricted drawing. Sketching is, by itself,
a natural input metaphor. This key attribute must not be violated or compromised
by artificial restrictions; otherwise the whole idea of sketching is undermined. As
mentioned before, the major issue of sketching is that of recognition. To tackle
this challenge, all existing approaches make assumptions about certain aspects of
the sketching process. If these assumptions go too far, or are unrealistic, they be-
come restrictions or even limitations. The user interface no longer feels natural,
and the user has to focus on his style of drawing, rather than on the drawing itself.
This also prevents sketching systems from being used as mainstream technology
[76]. As a consequence, there must be made a careful trade-off between the as-
sumptions and recognition capabilities [4]. Other authors also admit the need for
drawing in an unrestricted manner [91].

10 CHAPTER 1. INTRODUCTION

Based on these two major goals of DSKETCH, the remainder of this section
first examines their implications on the overall design of the approach, and then
outlines our solution as presented in this thesis.

There are two related issues which are neither solved nor discussed in this the-
sis. The first concerns the GUI of a sketching editor. In order to support the natural
way of interaction introduced by sketching, the GUI should provide the user with
respective functionality which seamlessly integrates with this way of interaction.
For example, there should not be any gap for the user between sketching and in-
voking commands like load and save, or editing capabilities. In general, designing
a good UI is difficult [12], and is research topic of the HCI community. The de-
sign and evaluation of a GUI is not discussed in this thesis. The second issue is
the separation of text from graphics. In the ideal case, the user can write text right
on his sketch. Then the system automatically distinguishes strokes representing
text from strokes representing graphics. However, this task is very difficult, and
not solved satisfactorily yet, as described above. We assume that text and graphics
are already separated by some way, e.g., by a mode-based GUI.

Implications by the major goals

This subsection first discusses the implications of the major goal of understanding
hand-draw diagrams, and then does so for the other goal of natural, unrestricted
drawing.

The first implication of having hand-drawn diagrams is to use on-line recog-
nition. The goal is to replace traditional widget-based editors and their point-and-
click input metaphor by a sketching approach. Accordingly, the user’s strokes can
be directly captured, and information on individual strokes and timing is present.

The second implication is to design an approach that is fully generic. The
advent of DSLs is a central motivation, so the approach must be capable of under-
standing diagrams from different domains. Furthermore, for the field of classical
diagram languages like the UML, or other examples mentioned above, only a
generic approach can be used in order to understand the very different diagrams
these languages entail.

The third implication also lies in the nature of diagramming. Nobody draws
diagrams for its own sake; there is always the desire to convey information with a
diagram. The power of diagrammatic representation stems from the information
contained in diagrams [42]. Even more, when a computer is used as drawing tool,
there is usually the intention to make the computer understand the diagram, and
use the contained information for some task. For example, when drawing a Petri
net on a computer, the user may want to execute the net to see if it matches his
understanding of the problem he modeled. Accordingly, using DSKETCH it must
be possible to compute a domain-dependent output as the result of processing a

1.2. CONCEPT OF THE PROPOSED APPROACH 11

hand-drawn diagram. The need for a flexible output is also mentioned in [79].
These three implications are due to the goal of understanding sketched dia-

grams. The next four implications result from the other major goal, natural and
unrestricted drawing.

The fourth implication is to support multi-stroke shapes. Depending on the
diagram language, shapes may have a complex visual appearance, where it is
bothersome to draw such shapes in one stroke. Besides, even if the shapes are
simple, it is more convenient to draw them in as many strokes as one desires.

The fifth implication regards the technique used for recognition. The previous
section has discussed the pros and cons of feature-based recognition. It can be
easily implemented, but usually makes certain assumptions on the user’s style of
drawing. Accordingly, we believe that such approaches should be abstained from,
at least in general. For special cases, however, feature-based recognition may be
useful and should be considered.

A central issue of feature-based recognition is that clustering, and even more
so segmentation, are very hard challenges. However, both must be possible for
a sketching approach in order to not restrict the user while drawing. Therefore,
the sixth implication is to allow for automatic clustering and segmentation of the
user’s strokes.

The seventh and final implication is to solve ambiguities automatically. Am-
biguities cannot be avoided, so they must be dealt with. If this involves the user,
e.g., by asking for the correct interpretation of an ambiguous shape, naturalness is
lost, and the interface becomes more cumbersome and artificial.

In order to conclude this subsection, the following enumeration lists all seven
design implications. Keep in mind that the first three are due to the goal of un-
derstanding hand-drawn diagrams, while the last four are due to the goal of unre-
stricted sketching.

(i) on-line recognition

(ii) a generic approach

(iii) domain-specific results

(iv) multi-stroke recognition

(v) no dependency on a feature-based approach in general

(vi) automatic clustering and segmentation

(vii) automatic resolution of ambiguities

The next subsection discusses the design of DSKETCH in order to meet these
implications.

12 CHAPTER 1. INTRODUCTION

Deriving design from the implications

This subsection gives a conceptual overview of DSKETCH. The approach itself is
designed in a way that all implications outlined above are considered.

Implication (ii) requires designing an approach that is generic, i.e., not tailored
to a specific diagram language. Instead, it must be possible to customize the
approach in order to adapt it to a diagram language. This customization, which
has to be done by a language designer, must be specified in some way. So the
key to a generic approach is to have specifications that describe all necessary
customization. Of course, the approach must also be equipped with an interface
where the specification is entered. More details on specifications are discussed in
a subsection below.

Implications (iv) through (vi) demand multi-stroke recognition, no depen-
dency on features, and support for automatic clustering and segmentation. All
of these issues concern the recognizer. On the other hand, ambiguities (vii) can-
not be solved until all shapes are recognized, and a processing result (iii) cannot be
computed before all shapes are known. Both tasks can be summarized by the term
analysis. Consequently, there must be a second stage following the recognition
which performs this analysis.

Figure 1.3 shows the bisection into recognition stage and analysis stage, and
the specification. Processing steps are shown as rectangular boxes, data structures
are shown as rounded boxes. Solid arrows denote flow of information; the dashed
arrow denotes the influence of the specification. From the user’s perspective, there
is a sketching editor that provides a GUI where he can draw the sketch, while
the output of the editor is the domain-dependent result (iii). Internally, the GUI
captures the strokes drawn by the user, as required by implication (i), and captures
the text written on the canvas, and feeds the recognition with the strokes and text.
Then, the recognition stage identifies all shapes represented by the strokes and
text, and the analysis stage computes the final result based on the shapes. The full
process is customized by the specification.

Recognition and analysis

For the recognition we propose an architecture that does not solely rely on fea-
tures. Instead, a different architecture is used, as shown in Figure 1.4. Whenever
a stroke is drawn on the canvas, it is unknown what this stroke is supposed to
represent. Also, segmentation and clustering are unknown. To account for this
uncertainty, all strokes (and text) are first fed into transformers, which perform
low-level preprocessing. The reason for having more than one transformer will be
explained below.

The results of the transformers are stored in models. Each transformer is as-

1.2. CONCEPT OF THE PROPOSED APPROACH 13

Sketching Editor

interacts with captures

is provided to

User

Result
(domain-dependent)

Specification

RecognitionGUI

Shapes

Strokes/Text

Analysis

Figure 1.3: Conceptual overview of the full approach.

signed to one model. The models contain information abstracted from the strokes.
All transformers are independent of each other, which allows for different inter-
pretations of the same stroke in parallel. The assembler, the heart of the recog-
nition stage, then derives a set of preliminary shapes from the models. The key
idea to reach implications (iv) and (vi) is to abstract all strokes to a point where
the contents of the models no longer represent individual strokes. Then, the actual
recognition performed by the assembler is inherently multi-stroke, and performs
clustering and segmentation on the fly. Furthermore, the transformers are imple-
mented in a way that they do not rely on feature-based recognition in general (v).
Finally, the set of preliminary shapes yielded by the assembler is postprocessed.
The result of the postprocessing is again a set of (altered) shapes. The main task
of postprocessing is to reduce the number of shapes that are passed to the analysis
stage, which saves processing time of this stage.

As mentioned in Section 1.1, ambiguities naturally arise in sketching because
of sloppy user input. Either the user can select the appropriate interpretation in
case of ambiguity, or the system can make this decision on its own. According to
implication (vii) we apply the second alternative, as it results in less distraction
of the user, and enables a smoother flow of interaction which feels more natural.
The idea of the analysis stage is to use the context of an ambiguous shape in order
to determine the correct interpretation. This is the same behavior as shown by
humans [38]. Context is given by other shapes spatially close to the ambiguous
shape. In our case, as we deal with the understanding of diagrams, valid contexts
of a shape are defined by syntactical rules describing the diagram language.

As there are powerful frameworks to reason about syntax and semantics of
diagrams, we decided to use such a framework as basis for our analysis stage,
as opposed to creating a new solution from scratch. For this purpose we have
decided for DIAGEN [69, 68], which allows for generation of diagram editors

14 CHAPTER 1. INTRODUCTION

Analysis

Result

Hypergraph

Model

Reducer
Reduced

Model
Parser

Recognition

Text

Preliminary

Shapes

Shapes

Strokes

Postprocessing

Specification

TransformersTransformersTransformers
ModelsModelsModels Assembler

Modeler

Figure 1.4: Conceptual overview of the recognition stage and analysis stage. All
individual steps are shown. This figure refines Figure 1.3, user and GUI are not
shown. The specification affects each of the six steps.

based on specifications. The generated editors internally use hypergraph models
and allow for very efficient graph parsing of the diagrams to generate a derivation
structure that reflects the syntactical structure of the diagram. Furthermore, and
indispensable to DSKETCH, the diagrams can be created by free-hand editing,
which means that all diagram components can be freely arranged on the canvas.
The alternative to free-hand editing is structured editing, which means to edit
diagrams by predefined editing operations. However, this alternative does not
correspond to sketching.

The analysis stage is composed of three steps (cf. Figure 1.4), all of which are
based on DIAGEN, but adapted to the needs implied by our application to sketch-
ing. Each of the three steps is guided by the specification. First, the modeler cre-
ates a graph structure that represents all shapes and spatial relations between these
shapes. Examples for spatial relations can be seen in Figure 1.1, e.g., the token
that is contained in the place. Due to its nature, this graph model is called hyper-
graph model (HM). In the second step of the analysis stage the reducer takes the
HM and creates another graph model called reduced hypergraph model (RHM).
The idea is to reduce the size of the HM, and to filter out invalid patterns, e.g., an
arrow in a Petri net that connects two places. Finally, in the third step the parser

1.2. CONCEPT OF THE PROPOSED APPROACH 15

performs bottom-up hypergraph parsing, using the edges in the RHM as terminal
symbols. The task of the parser is to identify a syntactically and semantically
correct subset of all shapes identified by the recognizer. The derivation structures
obtained by the parsing process are used to compute the final result of diagram
processing, described by implication (iii). Hypergraphs are used by DIAGEN as
data structure, as they are very suitable for the purpose and allow for an easy, in-
tuitive modeling of diagrams. Accordingly, both the reducer and the parser are
controlled by rules, and work similar to existing graph transformation systems.

The existence of an analysis stage suggests abstaining from eager recogni-
tion; instead, lazy recognition should be preferred. The analysis heavily exploits
context information, thus it is not meaningful to start processing a sketch before
drawing has finished. Only the user knows when this is the case, so he is the one
to decide about when to process his sketch. A similar approach is taken by [42].

Specifying a diagram language

As mentioned above, DSKETCH is not limited to a specific diagram language
or domain. Instead, it is generic and can be customized using a specification of a
diagram language to understand exactly this language. The specification is written
by a language designer. It contains all the information required to understand a
sketch. This includes the visual appearance of shapes, how they can be related
to each other, and further information describing syntax and semantics, which is
required by DIAGEN. Syntax is described by reduction rules for the reducer, and
production rules for the parser, while semantics are specified by rules for attribute
evaluation applied to the derivation structure obtained by the parser.

When processing a sketch, shapes are recognized first, and then analyzed.
Each of these two stages is comprised of three steps. Thereby, the specification
only describes how the individual processing steps are applied, but not if they are
applied. Fact is, each processing step is always applied, and never left out.

The visual appearance of shapes is a central issue for DSKETCH. Since the
whole concept is generic, there is also a need for a generic framework that allows
for specifying shapes from different domains. The basic idea, similar to other ap-
proaches, is to construct shapes from primitives. Primitives are the basic building
blocks for shapes. They do not depend on any diagram language or domain. In
order to identify a reasonable set of primitives we have examined various diagram
languages, e.g., the UML. We found out that a broad range of shapes can be bro-
ken down to a small set of primitives. These must be kept very simple in order
to be not too specific. In total we identified four different primitives suiting our
purpose. These are straight lines, arcs, links and text. Examples of shapes and
primitives are shown in Figure 1.5.

Straight lines are the most often used primitive. A rectangle, for example,

16 CHAPTER 1. INTRODUCTION

4 arcs

link (shaft)

2 lines (head)

4 lines

4 arcs (head)

2 lines (body)

2 lines (arms)

2 lines (legs)

4 lines

+

4 arcs

6 lines

junction point

simple point

Figure 1.5: Examples of shapes, and how they are composed of primitives. Junc-
tion points are shown as filled circles, simple points are shown as unfilled circles.

consists of four straight lines, which are connected at the corners. Straight lines
(or simply lines) can be distinguished by their orientation, i.e., horizontal, verti-
cal, diagonal ascending, or diagonal descending. For example, an axially parallel
rectangle consists of two vertical and two horizontal lines. The legs of an UML
actor symbol are given by two diagonal lines. Sometimes it is even necessary to
allow an arbitrary orientation for a line, e.g., when a rectangle is specified that
should not be restricted to be axially parallel.

By arcs we assume quarters of circles or ellipses which are located in one
quadrant of the coordinate space only, for example, from 12 o’clock to 3 o’clock.
Accordingly, there are four different arcs we distinguish, as there are four quad-
rants. A circle, for example, is made of four arcs. A rectangle with rounded
corners consists of four straight lines for the four sides, and four arcs for the four
corners.

Links connect two points by an arbitrarily shaped line, which may be bent
or exhibit curves, and which may also be straight. For example, an arrow head
may consist of two straight lines, whereas the shaft may be a link. Similarly, all
kinds of associations between classes in UML class diagrams can be made of links
to allow for more flexibility in drawing. While the line primitive describes only
straight lines, and the arc primitives describes only arcs located in one quadrant,

1.2. CONCEPT OF THE PROPOSED APPROACH 17

the link primitive does not describe such restrictions, but is more general.
These three primitives have in common that they each connect two points.

This is an important observation for the specification of shapes. For the rectangle,
each of the four corners is a point that is connected to two other points by two
lines. The tip of the arrow is a point where both the lines for the arrow head begin,
and where the shaft begins. We call such points that are connected to other points
by at least two primitives junction points to indicate that two (or more) primitives
are joint at these points. Figure 1.5 shows examples of shapes and how they are
composed of primitives. Junction points are shown as filled circles. Points which
are no junction points are shown as unfilled circles. We call these points simple
points.

Of course, primitives alone are not sufficient to specify shapes. Using con-
straints we can further specify primitives. For example, the arrow head has to be
constrained in such a manner that not every two lines and one link connected at
one junction point (the arrow tip) form an arrow, but only if the angles enclosed
by the lines of the head and the shaft are not too large, and if the lines of the head
have the same length, and if the shaft is considerably longer than the lines of the
head.

The fourth primitive, text, represents text strings that have been written on the
canvas. Internally, the text primitive is characterized by the string itself and the
bounding box describing where the text is located on the canvas. To specify how
the text primitive is related to other primitives, the bounding box of the text is
related to junction points and simple points of these other primitives.

Since text conveys part of the meaning of a sketch, it is often restricted in
its content. For example, the capacity of a place in a Petri net is described by
a number, and not by letters (cf. Figure 1.1). Therefore, for an implementation
it may be useful to provide means to describe the contents of a text, e.g., by a
dictionary, a string grammar, or a regular expression.

Due to these four primitives we propose to use different transformers in the
recognition stage. This way, each transformer can process strokes from a different
point of view. One transformer only looks for straight lines, another only for arcs,
and yet another for links. This allows for separation of concerns; however, there is
no need for a one-to-one correspondent between primitives and models. Finally,
further transformers can be integrated, e.g., to improve low-level recognition by
applying different algorithms.

A different point of view

The concept of DSKETCH can be illustrated from a different point of view than the
one taken in Figure 1.3. Instead of focusing on the concept of the approach, the
technique to include the specification can be highlighted. It works in the following

18 CHAPTER 1. INTRODUCTION

User

Sketching Editor

Framework

Designer

writes

DSKETCH

Implementation

Specification

Generator

Generated

Code

Figure 1.6: Influence of the specification on the sketching editor.

way. From the specification delivered by a language designer, source code is
generated. This source code, together with the framework described in this thesis,
constitutes the sketching editor, which the user operates to sketch diagrams. This
concept is shown in Figure 1.6. We have created a prototypical implementation
of DSKETCH which is used to validate and evaluate the presented ideas. Both the
framework and the generator are part of this implementation.

1.3 Main Scientific Contributions
In this thesis an approach to sketching is presented. Based on the specification
of a diagram language, a sketching editor is generated. The editor consists of
a GUI and processing capabilities. A sketch is processed in two steps. First,
there is recognition, and then follows analysis. Analysis resolves the inevitable
ambiguity of recognition outcome. The full approach is designed along two major
goals: understanding of diagrams and preservation of the natural input metaphor
of sketching.

The goal of this section is to outline the major scientific contributions of the ap-
proach presented in this thesis. Due to the large body of related work that exists in
the field of sketching, there are many approaches capable of recognition. Accord-
ingly, the contribution of a new approach is characterized by its unique features,
which make the difference to previous work. Related work itself will be discussed
in Chapter 3. A comparison to related approaches is drawn in Section 3.6, which
is necessary in order to highlight the importance of our contribution.

The two major design goals and their seven implications, as identified in the
previous section, represent a unique combination of features which cannot be
found at any other approach. The seven implications are on-line recognition, a

1.4. OUTLINE 19

generic approach, domain-specific results, multi-stroke recognition, no depen-
dency on a feature-based recognition in general, automatic clustering and seg-
mentation, and automatic resolution of ambiguities.

The overall contribution of this thesis is manifold. All of the following benefits
have been achieved with the proposed approach. They are explained in detail
throughout the thesis:

• The recognition process uses a new, powerful architecture. It relies on in-
dependent transformers and models, which allow for parallel interpretation
of the same stroke. An automatically computed search plan determines the
search order in which individual shapes are identified and assembled.

• The proposed recognizer is modular. Its design allows for easy integration
of new primitives and constraints.

• There is a clear distinction between low-level recognition and high-level
recognition. Low-level recognizers from other research groups can be inte-
grated.

• There is an analysis stage, which uses rules given by the specification to
automatically resolve ambiguities in a reliable and robust way. For this
purpose, ambiguities are explicitly modeled in the analysis stage.

• The analysis stage is based on graph transformation, which has proven to
be very useful for this purpose. There is no other generic approach we are
aware of that does so.

• Both the recognition stage and the analysis stage comprise efficient algo-
rithms, leading to a good performance of the full approach.

• The actual recognition rates of the approach are good, even for sketches
from different domains.

1.4 Outline
The structure of this thesis is imposed by the two stages of diagram processing we
have established, as shown in Figure 1.4. The six steps involved are discussed in
Chapters 4 through 9.

In Chapter 2 some examples of diagram languages are given: Petri nets, Nassi-
Shneiderman diagrams, a GUI builder, Boolean logic diagrams, Tic-tac-toe, and
statecharts. All of these diagram languages have been specified and tested with
DSKETCH. Furthermore, the chapter characterizes diagram languages DSKETCH

can be applied to.

20 CHAPTER 1. INTRODUCTION

An in-depth discussion of related work is given in Chapter 3. A selection of
closely related approaches is illustrated in more detail: the work of Hammond et
al. (LADDER), Costagliola et al. (Sketch Grammars), and Plimmer et al. (InkKit)
is discussed. Further approaches are addressed as well. A comparison of the
approach presented in this thesis and the three explicitly mentioned related ap-
proaches is given.

The three steps involved in the recognition stage are illustrated in Chapters 4
through 6. Chapter 4 discusses the low-level processing which is performed. Here,
strokes and text are processed by transformers, resulting in independent models.
Chapter 5 explains the actual search process by the assembler, used in order to
identify shapes. The search plan, which determines the search order, is explained
in detail. This step is followed by postprocessing described in Chapter 6, where
the results from the previous step are filtered and some extra information is added
regarding ambiguities.

The analysis stage is also composed of three steps, discussed in Chapters 7
through 9. Chapter 7 deals with the creation of the hypergraph model from the
shapes identified by the recognizer. In this step, spatial relations between shapes
are established. Processing of the hypergraph model by the reducer is illustrated
in Chapter 8. Its purpose is to reduce the number of edges and nodes in the graph
model, and to discard invalid patterns. Finally, Chapter 9 explains the parser,
which verifies syntax and establishes semantics based on the derivation structure,
and generates the final result of diagram processing.

Chapter 10 discusses lessons learned from several case studies conducted with
DSKETCH, and evaluates both the performance (processing time) and the recog-
nition rate by means of a user study. The thesis is concluded with a summary in
Chapter 11.

Appendix A gives the complete specifications of the example diagram lan-
guages from Chapter 2. Appendix B shows a figure containing all processing steps
and data structures of the complete sketch understanding process. Appendix C il-
lustrates a complete example of the processing of a diagram, using real-life data
taken from the implementation.

Chapter 2

Diagram Languages

This chapter discusses some examples of diagram languages, all of which can be
specified in and processed by DSKETCH. This means that the visual appearance
of the shapes, the syntax, and the semantics of each of these languages can be
described in DSKETCH, with suitable specifications. These diagram languages
were selected due to their characteristic nature; they represent a wide range of
diagram languages.

A classification of diagram languages is given in [28]. The main distinction is
between (i) connection-based classes and (ii) geometric-based classes, each de-
scribing a hierarchy of single classes (cf. Figure 2.1). Furthermore, there exist hy-
brid languages. (i) is characterized by graphical shapes which are inter-connected
in some way, e.g., by lines, or by arrows. Its two sub-classes are Graph and Plex,
which both represent graph-like languages, but the latter is restricted to such lan-
guages where each shape is connected to a fixed number of other shapes. An
example of class Graph are Petri nets (Section 2.1). An example of class Plex are
Boolean logic diagrams, which are discussed in Section 2.5. Furthermore, this
language serves as a good example, because the meaning of an operator shape is
determined by an attribute (in this case, text written inside the shape). Among the
presented selection of diagram languages, this applies to Boolean logic diagrams
only.

For geometric-based classes (ii) the spatial arrangement of the shapes of the
language conveys necessary information. Accordingly, relations between shapes
can refer to adjacency, inclusion, or intersection, for example. The most general
class within (ii) is called Box. Shapes of languages in this class are character-
ized by their bounding box, which does not need to have a fixed size for each
shape. Similar is class Iconic, but it requires fixed sizes for the bounding boxes of
shapes. Finally, there is class String, which contains all textual languages. These
are not subject to our work. An example of class Box are Nassi-Shneiderman
diagrams (NSDs), which are described in Section 2.2. An example of class Iconic

21

22 CHAPTER 2. DIAGRAM LANGUAGES

Connection-based classes Geometric-based classes

Class Plex
(Boolean

logic diagrams)

Class Iconic
(Tic-tac-toe)

Class String

Class Box
(NSD, GUI builder)

Class Graph
(Petri net)

Hybrid
(Statecharts)

Figure 2.1: Overview of classes of diagram languages [28]. The arrows denote
subset relations.

is the game Tic-tac-toe (Section 2.6). Although not a classical diagram language,
and without technical application, it exhibits all characteristics in terms of syntax
and semantics, and indicates that DSKETCH can be applied to a wide range of
languages.

A representative for hybrid diagrams are statecharts. States are connected
by arrows (class Graph), and hierarchical states are expressed by inclusion (class
Box). Statecharts are illustrated in Section 2.4. Finally, we have included a simple
GUI builder as an example, because many other approaches to sketching use this
kind of diagram language as well, for example, SILK [61, 62, 63], DENIM [65], or
JavaSketchIt [14, 59]. The GUI builder is another example for a diagram language
in class Box.

The final Section 2.7 of this chapter discusses the application range of the
proposed approach, and characterizes the diagram languages it can be applied to.

2.1 Petri Nets
Petri nets are used for modeling distributed systems. There are four different
shapes: places, transitions, arrows and tokens. Arrows connect either a place
to a transition, or vice versa, but neither two transitions, nor two places. Places
are circles and may contain one or more tokens. Tokens are also circles, so the
context of a circle (i.e., if the circle is inside another circle or contains another
circle) must be used to distinguish places from tokens. Transitions are axially
parallel rectangles, which are usually either small in width or in height. We neglect
this circumstance and regard any rectangle as transition, which eases drawing.
Furthermore, both transitions and tokens are usually completely filled. We neglect
this, too.

2.2. NASSI-SHNEIDERMAN DIAGRAMS 23

3
a

b

t1

2

Figure 2.2: Example of a Petri net.

Text can also be used on Petri nets, but is optional. A number written inside
a place denotes the capacity of the place, i.e., the number of tokens that may be
contained. Arbitrary identifiers written near the border of places or transitions
represent labels, which can be used to distinguish places and transitions textually.
A number written close to the shaft of an arrow leading to a transition denotes the
cost of the transition, i.e., the number of tokens required inside the place to fire
the transition. A number written close to the shaft of an arrow leading to a place
denotes the number of tokens that is added to the place if the transition actually
fires.

A transition may fire if each input place of the transition contains as many
tokens as the costs of the arrows to the transition indicate and if the capacity of
each output place is not exceeded by adding the number of tokens indicated by
the number at the arrows from the transition. If several transitions can fire, it is
non-deterministic which one goes first.

An example of a hand-drawn Petri net is shown in Figure 2.2. Two of the
places are labeled (a and b), and place a has a capacity of 3. The arrow between
place b and transition t1 has a cost of 2. Cost of an arrow is assumed 1 if not
specified. Capacity of a place is assumed infinite if not specified.

2.2 Nassi-Shneiderman Diagrams
A Nassi-Shneiderman diagram (NSD) is a graphical representation of a structured
program [73]. Its syntax allows for expressing statements, loops and conditions.
The outline of each correct NSD is always a rectangle parallel to the axes. Note
that we cover only a subset of the original language here.

An atomic statement is represented by a rectangle which contains some text

24 CHAPTER 2. DIAGRAM LANGUAGES

i > 0

cond

a b

i := i-1

print i

(a)

i > 0

cond

a b

i := i-1

print i

WHILE i > 0 DO
IF cond THEN

a
ELSE

b
FI
i := i - 1

OD
print i

(b)

Figure 2.3: (a) example of a Nassi-Shneiderman diagram. (b) corresponding
pseudo code.

specifying the actual statement. Two statements which are to be executed one
after the other are represented as two rectangles with the same width, one above
the other, but not overlapping, such that their corners touch. Conditions evaluate
a boolean expression, having two branches for the true and false case. The graph-
ical representation is again a rectangle, this time with two diagonal lines inside
the rectangle. Although possible with DSKETCH, we neglect the letters y (or t)
and n (or f) which are usually written inside the triangles formed by the diagonal
lines. This simplifies drawing without loss of any information, as the left branch
is always considered to be the case where the condition evaluates to true, while the
right branch is the case where the condition evaluates to false. Finally, loops are
represented by shapes formed like the rotated letter L. They also contain text spec-
ifying the condition to be evaluated. Figure 2.3(a) shows a simple NSD consisting
of four statements, one condition, and one loop. A string representation of this
structured program is given in Figure 2.3(b) (keywords are written in uppercase
letters).

There is a second type of loop, which differs from the shown while-loop in
that it evaluates its condition only after the first run of the loop, so it is like the
repeat-until-loop known from the programming language Pascal, for example. Its
graphical representation in NSD is similar to the while-loop, but the horizontal
bar (containing the condition) is below the enclosed block, instead of being placed
above it.

Although cumbersome for larger programs, the benefit of NSD is its clear

2.3. GUI BUILDER 25

Ok

Cancel
min

max

yellow

My Dialog Window

some option

an alternative

check me or not

moreless

Figure 2.4: Example of a hand-drawn dialog box.

graphical representation, which allows for illustrating algorithms in a nice, visual
manner. Therefore, NSDs are still widely known.

2.3 GUI Builder

A well-established, often used field of application for sketching tools are GUI
editors or builders. The idea is to allow designers for drawing user interfaces,
from which the actual GUI can be generated. While this application does not
seem like a classical diagram language, a simple GUI builder can be built with
DSKETCH as well.

The goal is to draw dialog boxes with basic, common controls. We decided for
buttons, combo boxes, radio buttons, check boxes, horizontal and vertical sliders,
and text fields. Buttons are drawn as rectangles with a label written inside. A plain
rectangle without a label represents a text field. Radio buttons are represented by
circles with text to their right; check boxes are represented by small squares with
text to their right. Sliders are represented by small rectangles, placed either on a
horizontal line, or on a vertical line. Either way, the ends of the lines represent the
minimum and maximum values for the sliders. They may be labeled optionally. A
combo box is represented by a rectangle with a vertical line and some text inside;
the window is represented by a rectangle with a horizontal line below the window
title. Figure 2.4 shows an example window containing all possible controls.

26 CHAPTER 2. DIAGRAM LANGUAGES

ready

busy

done

not done

Figure 2.5: Example of a statechart.

As a result of processing a hand-drawn dialog box, different possibilities are
conceivable. For example, the actual window can be generated, or source code to
generate that window. Additionally, the window can be beautified, i.e., controls
can be aligned, and fitted in size and position.

2.4 Statecharts
Among the examples in this chapter, statecharts are the only diagram language
from the UML family. They represent the internal state of entities, and are typ-
ically used in conjunction with UML class diagrams. Similar to finite state au-
tomata, transitions between the states can be expressed, along with aspects like
conditions for transitions, or actions which happen when a transition fires.

We cover a subset of the UML statecharts. States are drawn as rectangles. The
name of a state is written inside it, just below the top line. Transitions are drawn
as open-headed arrows. At the shaft, textual labels can be attached, containing
information about signals, conditions and actions. The very first state of a state-
chart (the initial state) is drawn as a circle. It has to be unique for a statechart and
has to have exactly one outgoing transition, unlike all regular states. Final states
are drawn as circles containing another circle. Initial states must not be the sink
of any transition, while final states must not be the source of any transition. An
example is shown in Figure 2.5. It is possible (although not shown in the figure)
to nest a complete statechart in another state. This way, the internal states of this
state can be modeled, too.

2.5. BOOLEAN LOGIC DIAGRAMS 27

c

b

a

&

>=1 y

Figure 2.6: Example of a Boolean logic diagram. The diagram represents the term
y = ¬((a ∧ b) ∨ ¬c).

2.5 Boolean Logic Diagrams

Boolean logic diagrams (BLD) allow for expressing boolean terms consisting of
conjunctions, disjunctions and negations. An example is shown in Figure 2.6.
Operators are drawn as rectangles. Inside the rectangle either & is written for a
conjunction, >=1 for a disjunction, or 1 for a negation. Alternatively, a negation
can be drawn as a triangle. For each operator, a small circle can be attached to the
right. It is called a bubble and negates the output of the operator. For negation, the
bubble is mandatory. In general, input to operators is indicated by lines ending
on the left side of the operator, while lines indicating output begin on the right
side, or on the right side of the bubble, if there is one. Input to an operator that
is no output of another one represents and input variable and is labeled with a
respective variable name. Accordingly, output of operators that is not input to
another operator represents the result of the diagram and is labeled with the result
variable name. Like NSDs for structured programs, BLDs represent their content
in a visual appealing manner which can be easily understood, even at a first glance.

What is very special about BLDs are the labels written inside the operators
(rectangles). On the one hand, the labels describe the actual operator, which means
that text may also convey crucial information. On the other hand, the arity of the
operator changes depending on the text. Negations are unary, while conjunctions
and disjunctions are binary. This means that the information given by text can be
used to disambiguate, too.

28 CHAPTER 2. DIAGRAM LANGUAGES

Figure 2.7: Example of a Tic-tac-toe game.

2.6 Tic-tac-toe

Tic-tac-toe is no typical technical diagram language, but can be specified using
DSKETCH. The rules of the game are very simple. Two players play against each
other on a 3x3 grid. In turn, they put marks on the fields of the grid; each field may
contain only one mark. One player usually draws crosses, the other noughts. The
first player with three of his own marks in a row (vertical, horizontal, or diagonal)
wins the game. E.g., in Figure 2.7 the player drawing noughts has won. If all nine
fields are marked, and there are no three equal markings in a row, the game ends
in a draw. For this very simple game, it can be shown that the game always ends
in a draw if both players play optimal, i.e., do not make errors which allow their
opponent to win.

There are only three shapes to be recognized, the grid, the cross, and the
nought. In general, the result of processing such a drawing could be an assess-
ment of the game situation, e.g., whether one player has won, whether the game
situation is legal, or whose turn it is. Also, game situations which are illegal, e.g.,
three noughts and only one cross, can be seen as semantic errors.

2.7 Application Range of the Proposed Approach

As discussed in Section 1.2, DSKETCH is designed for the understanding of hand-
drawn diagrams. In this respect, an important question is the class or character-
istics of diagram languages that the approach can be applied to. This chapter has
shown six different languages which cover all classes of visual languages shown
in Figure 2.1. In this respect, our approach supports a broad range of diagram
languages.

The field of application is limited by two factors. The first is the expressive
power of the production rules supported by the underlying parser. In general,

2.7. APPLICATION RANGE OF THE PROPOSED APPROACH 29

context-free languages can be described, and there is an extension which also
allows for describing certain aspects which are not context-free. For example,
arrows in graph-based languages like Petri nets, statecharts, or automata can be
embedded this way. Details will be given in Chapter 9. Note that languages whose
diagrams have a tree-like structure, e.g., BLD, can be specified with context-free
rules only.

The second limiting factor is the expressive power of the specification of
shapes. The graphical primitives like lines or arcs are predefined, but further prim-
itives can be integrated in the given concept, if necessary. However, the specifica-
tion assumes that shapes exhibit a fixed visual appearance that is free of structural
variability. For example, a rectangle always consists of four straight lines, con-
nected at their end points. While a rectangle can be drawn freely, for example,
very thin or more like a square, and in one stroke or in several, the rectangle
always consists of these four straight lines – the structure is fixed.

To conclude this section, DSKETCH can be applied to diagram languages from
all classes illustrated in the introduction to this chapter, given that their syntax can
be described context-free (or using the mentioned extension), and given that the
visual structure of the shapes is fixed.

30 CHAPTER 2. DIAGRAM LANGUAGES

Chapter 3

Related Work

Approaches to sketching can be grouped according to their overall objective.
There are those approaches which aim at the understanding of technical drawings,
like we do, and there are other approaches, e.g., for modeling, for animation, or
for design. The first group is strongly related to our work, and related approaches
are discussed in this chapter. Approaches from the second group have a different
scope, and are mentioned briefly for the sake of completeness only.

An approach to 3D modeling is Teddy, for example, by Igarashi et al. It al-
lows for drawing 3D models of freeform objects like stuffed animals [57] by 2D
sketches. Another approach to 3D design by sketching is ILoveSketch by Bae
et al., which allows professional designers to create 3D models [8]. This task is
aided with dedicated functionality like mirroring strokes, e.g., to create two iden-
tical wings of an airplane by just drawing one wing.

For animation, Motion doodles by Thorne et al. allow for first sketching a
character similar to a stick figure, and then describing a path this character travels
along using one stroke [96]. The shape of this stroke is interpreted to decide when
the character goes forward and backward, when to jump, or when to run. Davis
et al. [33] also allow for creation of stick figures. Animations are described by
sketching annotated key frames of the animation.

Turquin et al. allow for drawing garments interactively. The user draws the
front or the back of the garment, and the system automatically dresses a figure
with that garment [97]. Igarashi et al. also allow for placing 2D clothing on 3D
models by requiring the user to place identical marks on both the clothing and
the model [56]. The system then places the clothing on the model by overlapping
identical marks.

The group of approaches closer related to our research are those where tech-
nical drawings are processed. In the following sections, four approaches are dis-
cussed: GRANDMA in Section 3.1, LADDER in Section 3.2, Sketch Grammars
in Section 3.3, and InkKit in Section 3.4. These four approaches are consid-

31

32 CHAPTER 3. RELATED WORK

ered in detail, because we find them either important and influential, or because
their objective is similar to ours. Section 3.5 briefly illustrates a broader selection
of further approaches. Section 3.6 draws a comparison between DSKETCH and
GRANDMA, LADDER, Sketch Grammars and InkKit.

3.1 GRANDMA
As already mentioned in Section 1.1, the work of Dean Rubine, published in the
early nineties, had a great impact [83, 84]. Based on the observation that it is
difficult to create a hand-coded recognizer, he tackled the problem of automati-
cally generating recognizers. To this end, a framework called GRANDMA (Ges-
ture Recognizers Automated in a Novel Direct Manipulation Architecture) was
developed. It allows for automatic generation of recognizers based on training
examples of gestures. About 15 examples per gesture are reported to be sufficient
for a reliable recognizer. Recognition is based on 13 features which were selected
due to some reasonable criteria: small change in the input should result in small
change in the features, and for reasons of efficiency the number of features should
not be too high, but high enough so that different gestures can be distinguished
reliably. For each input stroke each of the 13 features is computed and classified
by a linear function that computes the weighted sum of the features. Each gesture
has its own set of weights. The stroke is interpreted to be the gesture which yields
the greatest weighted sum. The weights are determined by examining the training
samples.

Rubine gives two reasons for using single-stroke gestures. First, he wants to
avoid the issue of segmentation. Second, single-stroke gestures can be memorized
more easily. For the second aspect, the focus on gestures is important. Gestures
are meant to represent commands. After a gesture has been processed, its repre-
senting stroke is removed from the screen. This is a contrast to other, more current
approaches like our own, where the user’s strokes are preserved.

Using different sets of gestures, recognition rates exceeding 96% are reached,
the higher the smaller the number of different gestures is. Peak values are reached
for 30 gestures to distinguish. Even back in 1991, the performance of the imple-
mentation was very good, with less than 10ms for the classification of these 30
gestures.

3.2 LADDER
In the course of her PhD, Tracy Hammond has developed a generic approach to
sketching called LADDER (Language for Describing Drawing, Display, and Edit-

3.2. LADDER 33

ing in Recognition) [48, 46, 47]. The approach is two-fold. On the one hand, it
consists of a high-level description language which allows for an easy specifica-
tion of what kinds of shapes are to be recognized. On the other hand, the system is
equipped with a generic recognizer that is customized by the specification to rec-
ognize the described shapes. These two principles are very similar to DSKETCH.
However, unlike our approach LADDER completely lacks an analysis stage. The
general idea is to provide an easy-to-use, but powerful system to allow experts in
a domain to create sketching editors, even if they have only little understanding of
the technical aspects of sketching.

The description language can be used to describe the visual appearance of
shapes in terms of primitives like point, path, straight line, curve, arc, spiral, el-
lipse or text. Recognition of primitives is also guided by constraints, which are
either hard or soft: For successful recognition, hard constraints have to be sat-
isfied, while soft constraints should be satisfied, but do not have to be. Also,
the description language allows for the specification of editing operations, and
of a beautified visual appearance that replaces the user’s strokes after successful
recognition. These two aspects are different from DSKETCH, but suit the philos-
ophy of the proposed recognizer very well (see below). Groups of shapes can be
defined, but their only use is for editing operations. A possible improvement in
terms of recognition rates, driven by a top-down approach, is considered, but is
not implemented. The description of shapes even supports abstract shapes and
inheritance, inspired by the concepts of object-oriented programming languages.
A complete description of the language and detailed examples can be found in the
appendix of Hammond’s PhD thesis [49]. Two advantages of LADDER are the
expressive power of the language and the recognition rates of its recognizer, which
are very good even for different domains like Japanese Kanji [92], or constraint
network diagrams [50].

Primitives are recognized by the feature-based low-level recognizer of Tevfik
Sezgin [91, 89]. Here, for each stroke curvature and speed data are combined to
obtain a polyline representation of the stroke. In the second step, segments of that
polyline are replaced by Bezier curves to better fit curved parts. Finally, using
simple features, primitives are recognized. To assemble shapes from these recog-
nized primitives, a rule-based system is used. The specification is transformed into
rules for the system, the recognized primitives are added as facts. From these facts
shapes are constructed according to the rules. The complete recognizer works in-
crementally. Partial findings of the rule system are kept. After new strokes are
drawn, new primitives are recognized and added as facts. The system then tries to
continue the partial findings with the new facts.

A severe drawback of this rule-based recognition is its runtime performance.
Hammond admits in her PhD thesis that the runtime may exceed one hour if
there are 30 or more lines on the canvas that have not been used for high-level

34 CHAPTER 3. RELATED WORK

Figure 3.1: Architecture of the LADDER system [48].

shapes [49]. Accordingly, she proposes another recognition approach that com-
bines primitives in a non-deterministic manner. In order to achieve acceptable
runtime performance, all primitives are indexed first, in a way that each subse-
quent access can be performed very quickly. This avoids the extreme runtimes
that may happen with the rule based system. The new recognizer now has fully
replaced the old one, and is the basis for all further research in her group; however,
in many of the group’s publications, still the older journal article [48] is cited.

Shapes can be specified to be final; whenever a final shape is successfully
constructed, the facts representing the shape’s primitives are removed. As a con-
sequence, once a final shape is recognized, it is fixed and cannot be undone later,
even if there would be a better interpretation. If a shape is not final, its primitives
are preserved and can be used again, but this has a negative effect on the runtime.
Context is hardly considered; however, the presence of other shapes can be spec-
ified to influence the recognition result; for example, a circle can be recognized
as a pin joint if it is placed on two closed shapes (the bodies it connects). Due to
the eager, incremental recognition it is reasonable to specify editing operations,
e.g., moving the head of an arrow, while keeping its tail fixed. If there were no
eager recognition, such operations could not be applied. The overall architecture
of LADDER is shown in Figure 3.1.

Similar to our experience, the overall recognition rate strongly depends on

3.3. SKETCH GRAMMARS 35

the recognition rate of the low-level recognizer. If primitives are missed at this
level, no recovery is possible later, the primitives are inevitably lost. In our case,
this concerns the transformers (cf. Section 4.1). In the case of LADDER, the
feature-based recognizer by Sezgin is affected, and improvements are in the fo-
cus of research in Hammond’s group. Brandon Paulson suggests a new low-level
recognizer called PaleoSketch [76], which is also based on features. His main con-
tribution is the introduction of two new features based on the direction graph com-
bined with a deliberate choice of existing features. Supported primitives include
line, polyline, circle, ellipse, arc, curve, spiral, and helix. The basic assumption is
that each primitive is drawn in one stroke. If several primitives are drawn by one
stroke, the stroke is tried to be split. However, this functionality is very basic in
its current state, and is planned to be the subject to future work. The recognition
rate of primitives is reported to exceed 98%. However, in their test setting, each
subject was required to always draw one primitive in one stroke, with only one
exception, where two given primitives were to be drawn in one stroke. This is
a very strong restriction, which is not very natural. Nevertheless, PaleoSketch is
very promising, and seems like an improvement over previous work. PaleoSketch
is integrated in LADDER and serves as an alternative to Sezgin’s recognizer.

3.3 Sketch Grammars
An approach driven by formal considerations is that of Sketch Grammars (SkG)
by Gennaro Costagliola et al. [21, 23, 20]. SkG extends the formalism of Extended
Positional Grammars (XPG) [29], which itself is very powerful and allows to de-
scribe languages from all classes illustrated in the introduction to Chapter 2. SkG
allows for describing both the visual appearance of symbols (called ink grammar),
and the syntactical aspects and semantics of a diagram language (called language
grammar) in the same formalism. The ink grammar follows the same idea as
LADDER. Primitives are combined by relations that allow for precisely express-
ing how the primitives are related, e.g., where they intersect, or which angle two
lines enclose. Actions, which are attached to the rules, describe how the attributes
of the shapes are computed. Furthermore, relations can also be temporal, e.g., to
indicate when a second primitive has to follow its predecessor. This is especially
useful for describing editing gestures, which can also be achieved by SkG. Tem-
poral relations are not used by the language grammar. The ink grammar and the
language grammar taken as a whole describe a visual language.

For the language grammar it is necessary to describe how shapes can be related
to each other. This is accomplished via attachment regions, the same concept we
also rely on (cf. Section 7.1). These are defined for every shape, e.g., both ends
of an arrow, or the outline of a rectangle. Then the language grammar refers

36 CHAPTER 3. RELATED WORK

to these regions and describes their connection in terms of relations, which are
independent of the visual language1.

Processing a sketch follows the distinction between ink grammar and language
grammar. Three steps are involved, shown in Figure 3.2. The first is the recogni-
tion of the primitive shapes, where SkG relies on the SATIN toolkit [52]. In the
second step, all primitives are considered as terminal symbols for the ink gram-
mar. As SkG extends XPG, which itself extends string grammars (mainly by
adding more general relations between symbols than just concatenation), an LR-
parsing approach can used for parsing the input according to the ink grammar, i.e.,
for recognizing shapes. The result is a set of shapes, and a set of strokes that could
not be matched yet. In the third step, the recognized shapes are considered in turn
as terminal symbols for the language grammar. As the language grammar follows
the same formalism as the ink grammar, the same parsing approach can be used.
The parser thus tries to derive the start symbol in a bottom-up manner. However,
the result is not a derivation tree, but a forest of trees. Each tree in the forest de-
scribes a valid interpretation of the sketch, i.e., an interpretation that satisfies all
rules from the specification. In order to compare the trees, ranking values for their
roots are computed. These values are ultimately based on confidence values for
the primitives, and the relations used when parsing the input in order to recognize
shapes.

The full approach works incrementally, and applies eager recognition, which
is clearly favored by the authors. Each new stroke is immediately processed to
recognize primitives. When parsing the input, the system not only recognizes
complete shapes, but also keeps track of shapes that are only partially matched.
New primitives are used to try and complete these partial shapes. Having recog-
nized new shapes, the language grammar is considered again, and the resulting
interpretation is shown to the user as visual feedback.

Parsing the shapes according to the language grammar means to analyze the
shapes and their context, and to generate a syntactically and semantically mean-
ingful interpretation, something that LADDER does not do. The authors of SkG
also rely on context to resolve ambiguities. Therefore it has been decided for a
grammar-based approach. Similar to SkG, in DSKETCH we also exploit context,
but use a different formalism for describing syntax and semantics, and a different
parser. What is very appealing in SkG is that both shapes and the language itself
(and even editing gestures) are described by the same formalism.

More recent development of SkG involves training [22], error recovery tech-
niques [24] and automatic shape completion [25]. Training is used to determine
reasonable values for thresholds involved in primitive shape recognition and pars-

1Note that we have a different notion of the term relation (cf. Section 7.2), as we use it to de-
scribe the actual relations between labeled attachment regions, depending on the visual language.

3.4. INKKIT 37

Using Error Recovery Techniques to Improve Sketch Recognition Accuracy 159

segmentation and recognition. However, the recognition algorithm requires each
object to be completed before the next one is drawn.

3 The Proposed Approach

As shown in Fig. 1, the proposed sketch recognition system interacts with the
sketch interface to obtain the edited strokes, to provide the results of its inter-
pretation process, and to receive user’s feedback on the recognized symbols.

The sketch recognition module works in the eager mode and is composed by
three sub-modules. The domain independent recognizer interprets the strokes
as primitive shapes, such as lines, arcs, ellipses, etc. Moreover, to support the
recognition of multi-stroke symbols the strokes to be classified are suitably split
into single-stroke segments by exploiting stroke information such as curvature,
speed and direction.

The symbol recognizers cluster the primitive shapes in order to identify pos-
sible domain symbols. In particular, when a symbol recognizer is able to parse
a new stroke, it gives as output the new status of the symbol, which can be
partially or completely recognized. The strokes not parsed by a symbol recog-
nizer are temporarily stored in its unmatched strokes repository. This repository
contains both graphical and classification information of each unparsed stroke.

Sketch Recognition Module

Language
Recognizer

Domain-independent
Primitive Shape Recognizer

(Classification, Stroke)

(Stroke)

[Symbol,Status]

(Symbol)

Sketch Interface

(Feedback)

Unmatched
Strokes

Symbol
Recognizer 1

Symbol
Recognizer 2

Symbol
Recognizer n

(Reset)

Fig. 1. The recognition processFigure 3.2: Architecture of the SkG system [24].

ing. In user studies, the trained recognizer always outperforms the untrained one.
Error recovery is possible because incomplete shapes are also kept. It allows
for overcoming missing primitives and incorrectly recognized primitives. Shape
completion assists the user in drawing complex shapes by suggesting automatic
completion; therefore it is even considered how the user drew such shapes before.

3.4 InkKit

Understanding that sketching is an application domain in itself, Beryl Plimmer
and her group at the University of Auckland, New Zealand started working on
InkKit [19, 79]. It is designed to be a toolkit for creating sketch-based appli-
cations. Accordingly, InkKit provides programmers with useful functionality to
develop such applications. This includes a generic recognition approach, a GUI,
and an easy-to-implement interface to utilize InkKit and embed it in one’s own ap-
plications. Further topics addressed are beautification [80] and switching between

38 CHAPTER 3. RELATED WORK

user interface, recognition engine and extensibility for domain
specific functionality.

6.1 User Interface
InkKit contains two main user interfaces: sketch pages and a
portfolio manager. To maximize viewable space InkKit can be
used with an auxiliary monitor (Figure 5). In this mode the
portfolio manager resides on any standard output monitor and
the sketch pages reside on the tablet (which accepts stylus
input).

Figure 5. InkKit user interface.

To engender the feeling of working on paper the sketch pages
are deliberately minimalist in appearance. Users can ink, erase,
undo, redo and, edit by first selecting ink, and then resize, cut,
copy and paste. Page size can be reduced or enlarged by
dragging the sides or corners of the window. If reduction hides
ink the virtual page is the minimum size to accommodate the
ink and scroll bars are added to the page. Pages can be zoomed
from a drop-down list.

The metaphor for the portfolio manager is that of spreading
pages around a desk. Pages can be moved around the space and
resized: resizing automatically zooms the page content to the
available space. Links can be created between the pages

The user interface has been thoroughly usability tested (see
[27]). The behaviour of the two visualizations (sketch pages and
portfolio manager) was carefully tested. This resulted in sketch
pages that are editable only in sketch-page view (not portfolio
view) and the resizing of sketch pages acting differently in each
view (resizing the sketch page, but zooming the sketch in
portfolio view). Also we verified that the terminology used on
the interface is understood across domains.

6.2 Recognition Engine
Our goal with the recognition engine is to be able to recognize
forms and abstract diagrams containing shapes and words from
user examples. From the architecture described above we
developed a modular approach to the recognition (Figure 6).
Much of the recognition is an implementation of well known
techniques; however, the divider and component recognition are
novel approaches to these problems.

Divider: The Tablet OS includes both a text recognizer and
stroke divider. The text recognizer produces good results. We
tested the divider on a variety of typical diagrams; 68% of
drawing strokes were classified as text while 6% of letter
strokes were classified as drawing. Given the nature of
diagrams this error rate is unacceptable.

Analysis of sample text and drawing strokes identified features
that we could use in conjunction with probabilities returned by
the OS divider. Our divider first analyzes each stroke, assigning
it a probability of being a letter, and then combines the
probabilities of horizontally adjacent strokes. We reject text that
is less than two letters in length so that simple shapes like
circles are recognized (this can be overridden by the domain
plug-ins). Using this approach we were able to achieve a much
lower rate of false text (4%), while maintaining a low rate of
false drawing strokes (10%). Strokes identified as text are
passed to the OS for recognition.

Figure 6. Recognition engine architecture.

Shape Recognition: The remaining strokes are drawing ink.
Most diagrams consist of a small set of basic shapes that are
simple outlines such as rectangles, triangles, circles and the
like. Most of these can be drawn with one continuous pen
stroke. A number of sketch tools (see Table 1) have used this
characteristic and implemented Rubine’s [32] algorithm for
stroke recognition. Its attractiveness is the simplicity of
implementation and that it is example driven.

After implementing Rubine’s algorithm we identified three
limitations to its use. First, it only caters for shapes created in
one continuous stroke. Second, some of the features are tied to
the absolute size of the shape. Third, the recognition, while
good, was not accurate enough for our purposes.

Joiner: It is not always natural to draw a basic shape with a
single stroke. Two approaches can be taken to this problem.
Complex lines can be broken into component lines [4], or else
component lines can be joined to form a single line. For
example, a square could be divided into four straight lines, or
the separate lines could be joined to form a square. We chose
the latter approach joining adjacent successive strokes that do
not already form a closed shape (such as a rectangle or
triangle). Before joining, the recognizer’s copy of strokes are
rotated and trimmed to ensure a continuous smooth flow of
points, but the user’s view is left unaltered.

Basic Shapes: Solutions for the latter two problems (recognition
dependent on size and higher accuracy) were produced by
modifying the features used to classify shapes. We removed
classification features that involved absolute size values, and
inserted ratios in their place. As an example, width and height
features were replaced by the ratio between the width and
height. We also included features identified by other research
[10] in relation to the convex hull and smallest enclosing
rectangle. Ratios between the perimeters and areas of these
shapes are useful because they ignore orientation issues. As an
example, regardless of orientation, the ratio between the areas
of the convex hull and enclosing rectangle is 1 for a square,
0.78 for a circle and 0.5 for a triangle.

Informal comparison testing between Rubine’s algorithm and
our enhanced algorithm on the same training and test sets from

Divider

Tablet OS’s Recognition Engine

Basic Shape
Recognition

Component

Recognition

Component
examples

Domain specific

Domain independent

Com
ponents

Joiner

Strokes

Figure 3.3: Architecture of the InkKit recognizer [79].

different levels of formality [101].
The focus of the research lies more on high-level aspects, and less on low-

level technical aspects. For recognition, they basically rely on Rubine’s approach,
which they have improved in some way. First, the features based on absolute size
were replaced by features which only measure ratios. This allows for more flex-
ibility in drawing and is reported to improve accuracy of the recognizer. Second,
a joiner combines two strokes if both strokes do not form closed shapes and have
their end points close to each other. This enables their system to also account for
multi-stroke symbols. Using this approach, primitives (which here are called basic
shapes) are recognized in a generic fashion. The domain-dependent recognition
then identifies shapes (called components) from these primitives. In order to do
so, no source code is required by the programmer, but only examples of shapes.
The primitives found in the examples are examined for their relations (intersect-
ing, enclosing, etc.) and their relative positions to each other. Ambiguity can
occur among the primitives. For the recognition of shapes, all primitives are first
examined for the same relations and positions as in the examples. Then, based on
probabilities and likelihood, the shapes are found. The context of a shape (given
by other shapes) is not considered for the resolution of ambiguities. Figure 3.3
shows the architecture of InkKit’s processing approach. In an informal evaluation
of UI diagrams (similar to Section 2.3) the authors claim to reach a recognition
rate of about 95%.

Text and graphics may be placed next to each other without any mode change.
In order to distinguish the one from the other, the strokes are first passed to a
divider for recognition. Strokes found to be text are recognized by the text rec-
ognizer from Microsoft Windows Tablet PC Edition, which works reliably. All
other strokes are considered to be graphics, where shapes are recognized as de-
scribed above. For the divider, first the one delivered as part of the Microsoft

3.5. OTHER APPROACHES 39

Tablet SDK was tried, but did not produce satisfying results. As improvement, a
own divider has been implemented, which substitutes the Microsoft divider and
performs much better. However, the topic is still under investigation [75].

The fundamental goal of the project is to simplify the creation of sketching
applications. For this reason, recognition of shapes is not described by source
code, but by examples, which are easier to supply, and save lines of code. For
the same reason, considerable effort is spent on including more functionality in
InkKit to further reduce the amount of domain-specific code. In [39], for example,
connectors like lines and arrows, which are very common to many sketches, are
examined in three exemplary domains in order to identify certain characteristics.
Based on the findings, connectors were integrated into the core functionality of
InkKit.

A central aspect of InkKit’s user interface is to allow for different sketches
from the same domain at the same time. The single sketches can be linked with
each other to create one logical unit, which is translated as a whole. The meaning
of the sketches, the links between the sketches, and the result of the translation
process have to be hand-coded by a programmer who wants to use InkKit within a
certain domain. Unlike DSKETCH, no formal approach is taken here which allows
for specifying these aspects. On the other hand, hand-coding allows for great
flexibility and freedom, thus enabling a broad range of fields of applications. In
recent work, the approach has been extended to support even sketches of different
domains at the same time [86]. However, there is no formal treatment of syntax
or semantics.

3.5 Other Approaches
Besides the four approaches illustrated in detail in the previous sections, there
are many other approaches to sketching as well. A selection of these works is
given in this section. It contains various approaches on low-level recognition and
high-level recognition, which are all guided by different ideas and concepts, e.g.,
agents, graph transformation, or Hidden Markov Models (HMMs).

Another utilization of graph transformation to sketching (like DSKETCH) is
reported by Zanibbi et al. [103]. Using a given set of symbols that have already
been recognized, their approach analyzes mathematical expressions. The symbols
include numbers, operators, and letters. The sum operator, for example, is given
as one symbol; the equals token is given as two symbols, both short horizontal
lines of approximately equal length. The size and location of each symbol is
known. For analysis, a three-step approach is proposed, which is roughly similar
to our analysis stage. First, all symbols are examined, and their relative positions
to each other are established. Even superscript and subscripts are regarded. The

40 CHAPTER 3. RELATED WORK

result is a tree-like structure. Second, tokens comprised of more than one symbol,
like equals, or function names, are composed. Tree transformations are used here,
which are specified by rules. Third, the resulting structure is transformed into
LATEX code representing the original mathematical expression. Ambiguities like
whether a token is above another token, or a superscript, for example, are treated.
Ambiguity in the symbols drawn by the user is not considered.

The low-level recognizer CALI by Fonseca et al. [38] is based on features,
but exhibits two interesting properties. All features are based on the convex hull
of all strokes that belong to one shape. As a result, the recognizer is completely
invariant to stroke order, direction, or count, but prior knowledge about where
individual shapes are located is required. For classification, fuzzy sets are used
which allow for a better modeling of ambiguities. The recognizer is not trainable,
but only capable of recognizing a predefined set of primitive shapes like triangles,
rectangles, wavy lines, etc. The reported recognition rate is about 95%. Using a
naive Bayes classifier following [35], instead of fuzzy logic, was also proposed,
which can be trained to various shapes. JavaSketchIt by Caetano et al. [14] is
a high-level sketching system for user interfaces based on CALI. It allows for
construction of UI widgets from the predefined primitives by basic spatial and
adjacency relationships.

Casella et al. propose a conceptually interesting generic framework for sketch
understanding based on agents [16, 17, 18]. They can include arbitrary symbol
recognizers, but their organization is quite different from DSKETCH. There is an
individual agent for each available kind of shape, called an SRA (symbol recog-
nition agent). The SRAs autonomously search for shapes, but may communicate
which each other to exchange context information. A central agent may solve con-
flicts between the SRAs. Use case diagrams from the UML serve as an example.
Using a Java-based implementation, good recognition rates are reported. Similar
to our findings, this is clearly due to the use of context information.

Agents are also used in SketchiXML by Coyette et al. [31, 32]. Their focus lies
on user interface design only, as this domain benefits greatly from a sketch-based
approach. Their contribution lies in higher-level aspects, e.g., the output format
of the system is independent of hardware and operating system, so it supports
multiple platforms. Furthermore the behavior of the system can be adjusted to the
specific needs of individual users. For recognition, the CALI approach is used.

High-level recognition based on graph-matching is investigated by Lee et al.
[64]. Individual shapes are represented as attributed relational graphs which com-
prise both geometry and topology of the shape. These graphs are learned auto-
matically from training samples. Given that individual shapes have already been
located, the corresponding graph for a shape is created first. Then, the best in-
terpretation is chosen by matching this graph with the graphs precomputed for
the training samples. Four different approaches to this decision process are com-

3.5. OTHER APPROACHES 41

pared, all of them guided by a similarity measure. A greedy approach performs
best in terms of recognition rate and processing time. The main advantage of the
approach is that it is invariant to drawing order or direction.

A flexible approach is suggested by Gennari et al. [40]. It allows for recogni-
tion of individual shapes from a complete drawing. The strokes are first approxi-
mated by curves and straight lines. Then, using two different approaches, single
shapes are located. After recognition of these shapes, e.g., as in [64], using simple
scores some shapes are pruned if they overlap with other shapes. Finally, hand-
coded rules add domain information. In this article, the domain are electronic
circuits. The only assumptions made by the approach are that each shape is drawn
one after another, and not interspersed, and that 2 to 14 strokes are used for each
shape.

The approach by Grundy et al., MaramaSketch [44], adds an additional layer to
the Eclipse-based toolkit Marama [45] from the same group. Marama allows for
the generation of editors for visual languages based on specifications. Marama-
Sketch uses existing interfaces to extend Marama editors by support for sketched
input. The only extra information required are training samples for the shapes.
For recognition, the HHReco [53] toolkit by Hse et al. is used. Its properties
are similar to those of CALI. Multi-stroke input is supported, but segmentation
is not possible; instead, it is assumed that the strokes comprising a shape are
known. The focus of MaramaSketch lies on higher-level aspects of sketching.
Their tool supports (among other things) lazy and eager recognition, informal and
formal representation, and explicit user interaction for ambiguity resolution. To a
certain extent, even context can be considered for disambiguation, but no details
are reported.

Alvarado et al. present an approach called ASSIST, which is limited to mechan-
ical devices [3]. Special emphasis is put on ambiguity resolution. First, a recog-
nizer detects primitive shapes like bodies, springs or pin joints. Then, the shapes
are scored by some basic rules, which are domain-dependent and hard-coded.
The final stage, resolution, selects the final interpretation for the sketch according
to the scores. This way, context is considered and ambiguities are resolved. In
later work, the group changed their approach to be domain-independent [4, 5] by
using the LADDER language to describe shapes, and an incremental high-level
recognizer based on Bayes nets instead of the hard-coded scoring schemes. Us-
ing Bayes nets, it becomes possible to even identify shapes drawn only partially.
However, the approach cannot perform segmentation of strokes contributing to
different shapes, and is very limited in its ability to describe context between
shapes; syntax and semantics cannot be described at all. Although aimed to be
applied in real-time, processing a single stroke takes seconds in many cases, as
the Bayes nets grow quickly [2].

The well-known Back of an Envelope by Gross et at. [43] extends previous

42 CHAPTER 3. RELATED WORK

work of the same group, the Electronic Cocktail Napkin [42]. The recognizer is
feature-based, clustering of symbols is done by a time-out threshold, and segmen-
tation is not supported. An interesting feature it uses is a 3x3 grid, which records
for the grid cells the order in which they were visited by the strokes. A multi-
level classification procedure assigns certainty values from 0 to 5 to recognized
shapes. To account for automatic resolution of context, configurations describe
which shapes are related to which other shapes in terms of simple geometric con-
straints like contains or left-of. Configurations can also be defined recursively,
which allows for a more expressive definition of context. Several examples in-
dicate that arbitrary output is possible as result of the sketch processing, but no
technical details are given. Recognition rates are not reported.

Sezgin et al. developed an approach that relies on Hidden Markov Models
(HMMs) [90]. It is based on the observation that different users always draw
shapes using the same or a very similar ordering of their strokes. This observation
is backed by a user study. The advantage of HMMs is that the drawing style of
users does not have to be restricted. During training, for each user, and each class
of shapes, a HMM is computed. Then the analysis of a complete sketch consist-
ing of many shapes is solved by finding the shortest path in a graph. Reported
recognition rates are good, and the performance of the approach excels that of a
baseline method using features. Other applications of HMM to recognition are
reported by Hu et al. [54, 55], and Yuan et al. [102].

Further approaches to sketching are discussed and compared in [100, 13].

3.6 Comparison
In order to conclude this chapter, and to highlight the value of our contribution,
this section compares DSKETCH to those four approaches that have been illus-
trated in detail before: GRANDMA, LADDER, Sketch Grammars, and InkKit.

Similarities with and differences to other approaches

Common to all five approaches is that they are not tied to a specific domain, but
generic. However, GRANDMA has been designed with the goal of gesture recog-
nition, while the other four approaches have been designed for sketches. Ac-
cordingly, GRANDMA relies on single-stroke recognition, which suits gestures,
while the other four have multi-stroke recognizers which are more convenient
when drawing shapes. All five approaches rely on on-line recognition.

LADDER, SkG, InkKit and DSKETCH have been designed with different
goals. LADDER is a general-purpose shape recognizer, and its special contri-
bution is the powerful specification language. SkG and DSKETCH aim at under-

3.6. COMPARISON 43

standing sketches based on syntax and semantics. LADDER, SkG, and DSKETCH

also allow for unrestricted sketching. Finally, InkKit is a toolkit that provides fea-
tures and methods for building own sketching applications. LADDER, SkG and
DSKETCH have in common that shapes are specified using some formalism. In
contrast, GRANDMA and InkKit rely on training samples.

Allowing the user to draw freely and unrestricted is fundamental to DSKETCH.
As stated in Section 1.2, we have multi-stroke recognition capable of automatic
clustering and segmentation. This means that one stroke may contribute to dif-
ferent shapes, or several strokes may contribute to one shape. Furthermore, low-
level processing of strokes also considers ambiguity and allows for different in-
terpretations of the same stroke in parallel (cf. Chapter 4). As mentioned before,
GRANDMA and InkKit both rely on training samples for their recognizers, which
indicates a dependency on the drawing style of the user who committed the train-
ing data. However, in this respect InkKit is certainly superior to GRANDMA,
and allows for more flexibility, most prominently due to multi-stroke recognition.
SkG relies on the SATIN framework for low-level recognition, and is capable of
constructing shapes from primitives, which allows for multi-stroke recognition.
However, very few details are published.

Except for GRANDMA, all approaches are capable of producing domain-
dependent results. GRANDMA, with its focus on gestures, obviously interprets
strokes only as gestures. There is no need for any further output. SkG and
DSKETCH support the generation of output by two factors. First, as both ap-
proaches rely on a parser, derivation structures are generated which express the
content of the sketch. Second, these derivation structures describe only syntacti-
cally correct sketches, incorrect interpretations are omitted. In contrast, LADDER
and InkKit give less support for output generation, and only provide programming
interfaces which can be used to access the recognized shapes.

Differences between the approaches can also be observed regarding the issue
of runtime performance. GRANDMA certainly is very fast, which is also docu-
mented in literature. The perceived performance of LADDER is also very good.
Its recognizer works incrementally, which also suggests a good performance. SkG
also works incrementally, but no details are published on actual runtime perfor-
mance. InkKit’s performance is also not reported. Regarding our own approach,
performance is fast as well, however, not in the range of GRANDMA and LAD-
DER. The evaluation (cf. Chapter 10) shows that this is due to our recognizer,
which does not work incrementally. Accordingly, for larger sketches compris-
ing more strokes, runtime increases. However, as DSKETCH applies an analysis
stage which, except for SkG, the others do not, performance cannot be compared
directly.

44 CHAPTER 3. RELATED WORK

Detailed differences between DSKETCH and SkG

The previous paragraphs show that DSKETCH follows similar ideas like SkG. Dif-
ferences are in the details. For shape recognition, in SkG shapes are specified with
the same formalism as the subsequent parsing process. This simplifies processing.
In contrast, shape specifications for DSKETCH are different from the formalism
used to describe parsing. An advantage of this is that, similar to LADDER, our
shape specifications can be understood and written easily.

The parser used by SkG uses an extension of well-known techniques known
from LR parsers for string grammars. On the contrary, we use a hypergraph parser.
Our parser solves ambiguities automatically. Therefore, ambiguities (called con-
flicts, cf. Section 6.2) are modeled explicitly. Another interesting detail about
DSKETCH and SkG is the use of meta-rules. While we avoid such rules in the
parser, SkG prunes search according to two meta-rules. The effect of the appli-
cation of these rules in terms of recognition rates and runtime performance is not
reported.

Detailed differences between DSKETCH and LADDER

An overall difference between our approach and LADDER is the philosophy of
the two approaches. LADDER performs an incremental, eager recognition, which
is fast in practice. Immediate feedback about recognized shapes can be shown to
the user. Context is hardly considered, recognition errors due to the incremental
recognition may happen and are accepted. In contrast, in DSKETCH we perform
lazy recognition. This allows us to avoid recognition errors as they may occur
in LADDER. Accordingly, recognition starts from scratch each time, in order to
not miss any shape drawn by the user. Context, considered in the analysis stage
succeeding recognition, is very important. By using a search plan, DSKETCH

exploits sub-shapes common to different kinds of shapes; in LADDER, this has
to be manually specified using the inheritance mechanisms. Common to both
approaches is that interspersed drawing is fully supported, i.e., it does not matter
if shapes are completed before other shapes are drawn.

Using the example of NSD some limitations of LADDER can be shown, which
DSKETCH does not have. Figure 3.4 shows two sketches where LADDER does
not produce the desired result. In (a), the loop will not be recognized because lines
are not split, so it cannot be determined if the shown endpoint and line coincide.
In (b), if statements are specified as final, only one of the three statements will be
recognized, as in this case primitives are removed from the recognition process as
soon as a shape is found which consists of these primitives. In the case of NSD,
this is a severe issue; our user study has shown that no user repeated the strokes
dissecting two statements (or other shapes) from each other. If the statements are

3.6. COMPARISON 45

doSomething

firstAction

secondAction

someCondition

coincidence is missed

(a)

doSomething

firstAction

secondAction

someCondition

coincidence is missed

(b)

Figure 3.4: Two example sketches for the limitations of LADDER.

not specified as final, runtime decreases; however, too few details are published in
order to assess the actual effect.

Conclusion

The most obvious insight gained from related work is that context information is
rarely used for disambiguation. Nevertheless, many authors admit its value. Some
approaches are domain-specific, and tailored to their domain to employ context.
Only rarely, context is formally described in terms of syntax and semantics, which
we think is very appealing.

Many other approaches have in common that a more or less severe set of re-
strictions are imposed on the user. However, recognizers that rely on stroke order,
direction, or number, are inconvenient. Even if they may work most of the time,
the individual workflow of a user is unpredictable, and should not be interrupted
by insufficient processing capabilities. Accordingly, DSKETCH does not rely on
the mentioned features, but on abstracted models, where this information is not
included.

Although domain-specific approaches can be designed more easily, and may
perform better than generic approaches, the contribution of an approach is much
greater if it falls in the latter category. Approaches designed for only one domain
can assume much stronger requirements, but their impact is obviously limited.
Since DSKETCH is generic, we also need a generic mechanism to describe shapes.
And as we do not want to rely on features, this mechanism must be an abstract
representation of an ideal shape. To this end, we have adopted the idea of SkG and
LADDER, where specifications precisely define shapes, as opposed to training
samples.

46 CHAPTER 3. RELATED WORK

Chapter 4

Preprocessing

This chapter marks the first step in the recognition stage of processing a sketch.
Preprocessing is performed by a set of independent preprocessors, which are
called transformers (cf. Figure 1.4). Input for the transformers are the strokes
drawn by the user, output is preprocessed information in the form of models. In
general, preprocessing (sometimes also referred to as low-level processing) is an
important step for a sketching system. For several reasons, input strokes always
exhibit noise which must be filtered. Noise increases the load on the system and,
therefore, processing time. Additionally, later recognition is impeded by noise.

There are different sources of noise. One is digitization; a sheet of paper
which contains a drawing must be scanned to be digitized. Here, three effects
can occur. First, the scanned image is not likely to be monochrome only, even
if it is drawn with just one pen, say a pencil. It is very likely that the digitized
image will contain several shades of the original color the pencil had. Second,
dust and other particles on the surface of the paper will be captured as well by
the scanner, meaning that they will be represented as pixels on the image. Third,
the scanned lines may have different widths, because a pencil never has the same
width all the time when drawing. Because we assume no scanned images, but
an on-line sketching approach using dedicated hardware, noise due to digitization
cannot occur. However, there are other sources of noise as well. When drawing
with a stylus, the user can generate noise accidentally, by slipping off from the
stylus, or by pressing buttons on the stylus, thus generating different events. Also,
the hardware can fail to track the movement of the stylus, and introduce errors
or noise in the data. Because noise due to hardware or due to the user is rather
unlikely, we neglect these aspects. Besides, a practical system can solve these
issues easily with an appropriate user interface, providing undo/redo functions,
for example.

Besides noise, there are further reasons for preprocessing, which apply for
DSKETCH. One such reason is to prepare the input data for the recognition pro-

47

48 CHAPTER 4. PREPROCESSING

cess by transforming it into a format or representation more suitable for this task.
A trade-off between precision and amount of data has to be agreed on. An input
stroke is very precise but also rather verbose. Reducing the amount of data for
later processing reduces the precision, but decreases the load on the subsequent
processing steps.

Another reason for preprocessing is to apply some abstraction. In general,
losing precision does not need to be a bad thing. For later processing, abstracted
(or aggregated) data can be much more convenient. The challenge is to apply as
much abstraction as possible, while not losing important details. As an example
consider a stroke that is very straight; it can consequently be represented by its
two end points only (given that timing information is of no interest). This means
a great reduction in the amount of data, but preserves all necessary details.

To conclude, there are the following reasons for preprocessing: dealing with
noise, and getting rid of unnecessary information while preserving essential in-
formation. Noise is discarded, as described above. What remains is to apply
abstraction, which is described in the following sections. Section 4.1 explains
the overall concept and the ideas behind the preprocessing architecture we pro-
pose. Sections 4.2 through 4.6 describe how strokes are preprocessed as lines,
arcs, links, circles and text. Further work relevant to the topic of preprocessing is
given in Section 4.7. Section 4.8 summarizes the chapter.

4.1 Concept
As mentioned in the introduction to this chapter, the input data must be trans-
formed into a format suitable for later processing, i.e., the recognition step per-
formed by the assembler. This step depends on what a stroke is supposed to
represent. However, this information is not known initially. Accordingly, the idea
is that the preprocessing step does not recognize complete shapes, but primitives
only, without any context information or interpretation at hand. Therefore, the
input strokes are processed (or transformed) in parallel by several transformers,
such that each possible later interpretation is represented in the transformed data.
For example, a stroke could represent a line or a link. Both of these interpretations
are generated during preprocessing, and are stored in parallel for the assembler.

In Section 1.2 the four types of primitives we assume have been described:
straight lines, arcs, links, and text. Text is processed differently, and will be cov-
ered later. When an input stroke is drawn by the user, it is unknown to the system
which of the three primitives line, arc, or link it is supposed to represent. Even
a combination of several primitives is possible, e.g., a stroke that represents a
straight line and an arc connected to the line. Accordingly, each input stroke is
processed in parallel by three different transformers: one transformer extracts only

4.1. CONCEPT 49

Assembler

Line Transformer

Arc Transformer

Link Transformer

Line Model

Arc Model

Link Model

fed into

queried by

Text Transformer Text ModelText

Strokes Shapes

Circle Transformer Circle Model

… …

Figure 4.1: Conceptual overview of the preprocessing step.

straight lines, the next transformer extracts only arcs, and the last one extracts only
links. The result of each of these three transformations is kept separate from each
other. The bottom line is that every transformer induces a certain view on the set
of strokes drawn by the user.

Figure 4.1 shows this concept in detail. As before, rounded boxes denote data,
rectangular boxes denote processing units. Each stroke is passed to the three in-
dependent transformers. Each transformer treats the stroke according to its own
view on the stroke. The result is stored in respective models. Consequently, a
transformer and its assigned model form a logical unit. The contents from the
models will later be queried by the assembler (cf. Chapter 5), which yields the
shapes. Up to now, each transformer searches for one kind of primitive in the
strokes, independent of how the strokes are drawn. However, the proposed con-
cept allows also for integration of transformers which make certain assumptions
on the strokes. As an example, a circle transformer is included as well (although
a circle is no primitive). For each single stroke representing a circle this trans-
former identifies the arcs this circle is composed of. The rationale behind this
transformer is that circles occur frequently and in different domains, and that this
fact can be exploited to improve recognition of arcs. Further transformers (and
assigned models) are conceivable, and can be integrated into the shown architec-
ture. This is indicated by the boxes containing dots. Text, the second kind of input
data besides strokes, needs no abstraction, as no information can be left out here.
Remember, in Section 1.2 we have assumed that text input is indicated by the user
in the GUI. Text is fed into a transformer as well, which converts it into a format
suitable for the assembler. The following sections discuss each of the five shown
transformers in detail, along with their models. Common to all transformers is

50 CHAPTER 4. PREPROCESSING

Original sketch

Line

Model

Arc

Model

Circle

Model

Link

Model

Figure 4.2: A sketch and the four stroke models. The original strokes are shown
grayed out.

that references to the original strokes (or text) are stored with the abstracted data.
This information is required later (cf. Chapter 6).

An example is given in Figure 4.2. A small sketch of a circle, a square, and
an arrow is shown, along with the four models that are generated by the four
transformers (since there is no text, the text model is empty). A benefit of the
proposed approach is that each model can be updated immediately after a stroke
is drawn, which allows for incremental processing. As shown by the models,
each transformer is free to discard complete strokes or parts of strokes that do
not suit its view. Notice that each transformer works on a best-effort basis, trying
to approximate the original strokes as good as possible with primitives. Finally,
the same stroke may be represented in different models, which is the case for
the circle, for example. This is the most important advantage of preprocessing in
DSKETCH: without any prior knowledge what a stroke is supposed to represent,
each possible interpretation is obtained and kept in parallel.

4.2 Lines
Basically, the line transformer attempts to map every stroke to a set of one or more
straight lines. Basic vectorization algorithms can be applied for this purpose.
In order to best suit our needs we have designed a simple heuristic approach,
which can be computed very efficiently. Figure 4.2 shows an exemplary sketch
consisting of several strokes, and a set of line segments which are the result of the
transformation process. As the rectangle and the arrow consist of straight lines
only, the identified line segments are a good approximation to the original data.
The circle becomes angled, which is no problem. The approximation by straight

4.2. LINES 51

Algorithm 1 Transformation of a stroke s = p1 . . . pn into straight lines.
1: procedure LINES(s) . The stroke s = p1 . . . pn
2: L← ∅ . L will contain all straight line segments
3: a← p1
4: b← p2
5: for i ∈ 3 . . . n do
6: c← pi
7: if |6 abc− 180◦| > tangle then
8: L← L ∪ {(a, b)} . a new straight line segment is found
9: a← b

10: end if
11: b← c
12: end for
13: L← L ∪ {(a, pn)} . preserve last straight line segment
14: end procedure

lines could be improved if the lines were shorter. However, this is not necessary,
as there is no need to closely approximate the circle by straight lines. It is the arc
model and the circle model which are supposed to eventually match the circle.

The line transformer processes each stroke independently by splitting it into
segments which are nearly straight. To find the samples of the stroke where this
splitting must occur, the angles enclosed by three samples a, b, c of the stroke are
examined. a, b, c are initialized to the first three samples of the stroke. Then, the
angle 6 abc is compared to 180◦. If the difference exceeds a threshold tangle = 25◦,
a straight line is found from a to b, and a, b, c are assigned new values. a becomes
b, b becomes c and c becomes the subsequent sample of the stroke. If the difference
of the angles does not exceed the threshold, then b is replaced by c and c becomes
the subsequent sample. Algorithm 1 lists this procedure1. Finally, the line model
contains a set of straight lines, represented by their end points. Note that the value
for the mentioned threshold tangle, as all other values for thresholds, is determined
empirically.

The line transformer performs additional tasks which are not shown in the al-
gorithm. To avoid clutter in the line model, those line segments which are very
short are discarded. Also, the transformer discards all line segments whose direc-
tion does not match at least one line primitive in the specification, as these lines
will never be queried later. For example, no shape from the GUI builder uses a

1Note that it is theoretically possible to construct a stroke formed like a spiral with increasing
radius where this algorithm considers the connection between the first and last sample of the stroke
as one straight line, and nothing else. However, this never happens in practice, and does not mean
a limitation of the algorithm.

52 CHAPTER 4. PREPROCESSING

b

a

c
225

c
180

c
135

c
90

c
270

c
315

c
45

Figure 4.3: Possible angles between three consecutive samples that are too close
to each other.

diagonal line (cf. Figure 2.4), so the line transformer discards all diagonal lines
immediately. Finally, if lines intersect or have an end point close to another line,
they are split; this is necessary and will be discussed in Section 5.4. For the sake
of simplicity, splitting of lines is not shown in Figure 4.2.

Because modern hardware allows for very high sampling rates, it frequently
happens that consecutive samples of a stroke are received from neighboring loca-
tions on the screen, i.e., their distance is 1 or

√
2. Depending on the hardware,

this even happens with moderately quick drawn strokes. Only very quickly drawn
strokes do not show this effect. The problem arising is that 6 abc gets a multiple of
45◦. This renders the whole algorithm useless, as only perfectly straight lines can
be recognized as such. An example is shown in Figure 4.3. a and b are assumed
fixed in this case, various positions for c are shown. Only for c lying above b
(6 abc is 180◦, the difference is 0◦) a straight line from a to c can be recognized.
As a solution those samples of a stroke must be ignored which are too close to
each other. These samples can be filtered out in linear time using another thresh-
old tdist, shown in Algorithm 2. Note that function FILTER must be applied to a
stroke before it is processed by procedure LINES (Algorithm 1).

4.3 Arcs
The recognition of arcs – quarters of ellipses as defined in Section 1.2 – is per-
formed by the arc transformer. It relies on the single assumption that arcs are
always drawn in one stroke. This stroke can contribute to something else, of
course, but there are never two or more strokes forming one arc. This assumption
is justified by our user study, where indeed each arc was drawn in one stroke (cf.
Section 10.5).

4.3. ARCS 53

Algorithm 2 Filtering of samples from a stroke s = p1 . . . pn which are too close
to each other. The first and last sample from s are preserved. The filtered stroke
is returned.

1: function FILTER(s) . The stroke s = p1 . . . pn
2: R← p1 . R will contain the result
3: a← p1
4: i← 2
5: while i < n do
6: if EUCLIDEAN DIST(a, pi) ≥ tdist then
7: R← Rpi . append pi to R
8: a← pi
9: end if

10: i← i+ 1
11: end while
12: R← Rpn . preserve last sample
13: return R
14: end function

As Figure 4.4 illustrates, each stroke is processed in three steps to identify the
arcs it describes. Again function FILTER (Algorithm 2) is applied to the stroke as
prerequisite. Then, the stroke is split at its inflection points, such that the resulting
sub-strokes are each bent completely left or right, without changes in between (cf.
Figure 4.4(b)). Straight line segments in the stroke are filtered out. In order to
decide about straightness and bending, similar to the line transformer, each three
consecutive samples a, b, c of the stroke are taken, and the enclosed angle 6 abc is
computed. If this angle is 180◦, the stroke is straight between a and c; otherwise
it is bent either to the left, or to the right.

In the second step, sub-strokes are approximated by arcs in the following way.
For each two consecutive samples of a sub-stroke the angle enclosed with a refer-
ence line is computed. The reference line can be chosen arbitrarily, but must be
the same for each angle. As each sub-stroke is always bent to one side only, the
change of these angles is monotone. Then, by examining the encountered angles
it can be determined which quadrant or quadrants are covered by the sub-stroke.
An example for an arc in quadrant 2 is illustrated in Figure 4.5. The horizontal
line was chosen as reference line. Accordingly, angles between 90◦ and 0◦ fall
in quadrant 2. The figure shows for each sample of the stroke the angle enclosed
with the subsequent sample and the reference line. It is assumed that the shown
sub-stroke has been drawn clockwise. It can be seen that the sample labeled a
is the first of the arc in quadrant 2, as its assigned angle is the first below 90◦.
Likewise, the sample labeled b is the last one of this arc, as its assigned angle is

54 CHAPTER 4. PREPROCESSING

(a) (b) (c) (d)

Figure 4.4: Processing of a stroke by the arc transformer. (a) original stroke. (b)
sub-strokes completely bent either left or right. The original stroke is grayed out.
(c) preliminary arcs superimposed on the sub-strokes. The sub-strokes are grayed
out. (d) final arcs after the legs are cut.

103o

76o

60o

45o

29o

340o

309o

16o

4o

a

b

Figure 4.5: Angles enclosed by consecutive pairs of samples (filled circles) of the
sub-stroke (bold polyline) with a horizontal reference line. From sample a to b an
arc is created, which lies in quadrant 2.

the first one subsequent to a that is not in the mentioned interval. Note that this
example serves for illustration only; real sub-strokes show a much higher density
of samples, thus the change of the angles is much smaller. The respective arcs
which are created for the running example from Figure 4.4 are shown in 4.4(c).

The identified arcs fit the stroke quite well. However, testing has revealed that
the legs of the arcs are often very long when a straight line and a consecutive
arc are drawn in one stroke, e.g., as in 4.4(a). Hence, the final step for the arc
transformer in processing a stroke is to cut these legs. This is done by removing
the first and last few samples of the sub-stroke which contribute to the curve of

4.4. LINKS 55

the arc no more than 5◦. Figure 4.4(d) shows the result. All identified arcs are
then stored in the arc model by their two end points and the quadrant (1 to 4) they
belong to.

4.4 Links
A link is an arbitrarily bent or curved connection between two points. Since this
is true for every stroke, each stroke is considered to be a link. The only exceptions
are for strokes forming nearly closed shapes like circles or polygons, because the
two points connected by the link are supposed to be different from each other.
This approach is very simple and efficient. A direct benefit is that intersecting
links, e.g., intersecting shafts of arrows, are easily and reliably detected, and not
confused. This allows for an unrestricted drawing style for the user. However, this
approach also has two flaws: (i) a stroke may contribute to several primitives, not
to just one link, and (ii) it may be necessary to cluster several strokes to make one
link.

The first flaw mentioned became obvious in the user study. It frequently hap-
pened that participants drew arrows in one stroke, i.e., a link for the shaft and
straight lines for the arrow head. If strokes cannot be split accordingly, the effect
would be that users were forced to always draw arrow shafts in a separate stroke,
which is very inconvenient. As a solution, strokes are split at those samples where
the local curvature is very high, i.e., where the stroke clearly changes its direction.
For this purpose, procedure LINES (Algorithm 1) is applied again, however, using
a much greater threshold for tangle, as there is no need for an exact approximation
here. Figure 4.6 gives an exemplary arrow drawn in one stroke, which is very
similar to the ones from the user study. The arrow head is made by straight lines,
while the shaft is supposed to be a link. Consequently, the stroke must be split by
the link transformer, in order to properly assign a link to the shaft only, leaving
out the head of the arrow. Of course, the head itself is also split two times, as the
algorithm does not check for any interpretation (like arrow-head) at this point.

The second issue mentioned above – clustering of strokes to form a link –
cannot be solved exhaustively in reasonable time, because the number of combi-
nations between strokes is much too large to be enumerated completely. Hence a
heuristics must be applied. For each two strokes having one of their end points
close to each other we combine these two, if (and only if) there is no other stroke
nearby (cf. Figure 4.7). This process is applied recursively in order to be able to
combine more than just two strokes. All other cases of two strokes close to each
other, like an end point of a stroke close to another stroke, but not close to one of
its end points, or two intersecting strokes, are not combined. In Figure 4.7, (a) is
not combined because it is a stroke forming a closed shape; (b) is not combined

56 CHAPTER 4. PREPROCESSING

split

splitsplit

Figure 4.6: An arrow drawn in one stroke. The shaft is supposed to be a link, so
the stroke has to be split at the indicated positions.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.7: Different cases of two strokes being close to each other. (a)-(d) are
not combined, while (e) and (f) are.

because for one of the strokes that are close to each other, it is not an end point; (c)
is not combined because the strokes are intersecting; finally, (d) is not combined
because there are end points of three strokes close to each other, so for every two
of them there always is another stroke nearby. (e) and (f) are combined.

4.5. CIRCLES 57

Actually, combining strokes is not performed by the link transformer, but will
be done on demand later, when the assembler queries information from the link
model. The reason is that there is a considerable high number of possible combi-
nations of strokes (even with the mentioned restrictions), most of which will never
be queried at all. Hence, it is not reasonable to precompute all of these possible
links in the transformer, but rather to do so on demand from the assembler. Just
like the line model, in the link model only the end points of links are stored. Be-
cause the original strokes are also stored, it is possible to decide whether two links
may be combined when queried by the assembler.

4.5 Circles
Circles are composed of four arcs. Therefore, the arc transformer already detects
circles. Nevertheless, the addition of a circle transformer is a worthwhile exten-
sion. As circles are common to many different diagram languages (for example,
from the six diagram languages mentioned in Chapter 2, five use circles), using
the circle transformer the reliability of preprocessing step can be increased. Be-
sides, the addition of this transformer (and its model) is an example for how two
different transformers can process the same primitives.

In contrast to the other transformers, a feature-based approach is suitable for
circles. Based on the assumptions that (i) each circle is drawn in exactly one
stroke, and that (ii) this stroke does not contribute to any other primitive, several
features of each stroke can be computed and evaluated. Both assumptions hold for
each circle drawn in the user study as described in Section 10.5. The implication
of (i) and (ii) is that the circle transformer must neither cope with segmentation
nor with clustering, which both pose problems for feature-based recognition. The
following features are considered:

• Length l of the stroke.

• Center point p = (x, y), radius r and accumulated angle γ. These four val-
ues are obtained by a parameter estimation (described below). γ is defined
as the angle computed by accumulating the absolute difference between
each three consecutive samples of the stroke and 180◦ (see Figure 4.8).

• Bounding box b (with height h and width w).

First, the parameters x, y, r and γ of a possible circle have to be estimated
based on the stroke s. A simple solution would be to compute the average coor-
dinates of all samples from s to find x and y. Then, r gets the average Euclidean
distance of each sample from (x, y). γ can be computed according to its defini-
tion, i.e., by accumulating the absolute difference between each three consecutive

58 CHAPTER 4. PREPROCESSING

γ=313oγ=341o γ=399o

Figure 4.8: Examples of a stroke and accumulated angle γ. The value of γ has no
upper bound and can therefore exceed 360◦, as in the example on the right.

(a)

(b)

Figure 4.9: Strokes and superimposed circles. (a) the center of the circles is com-
puted as average of all samples. (b) the center of the circles is computed as average
of all intersections of perpendiculars going through the midpoints of the chords.

samples of s and 180◦. Note that this feature is identical to the total rotation as in
[76], or the total angle traversed as in [83].

The problem with this naive approach is that the values computed for x and y
often are not exact if the stroke does not describe a good approximation to a cir-
cle, e.g., because it was drawn very sloppy. This issue is revealed in Figure 4.9(a).
It shows three examples of strokes and superimposed circles obtained from com-
puting the mentioned average values. The circles do not approximate the stroke
well. Consequently, a different approach has to be taken. r and γ are computed as
described above, but x and y are not. Instead, (x, y) is calculated as the point with
the minimal distance to all perpendiculars to all chords (given by two consecutive
samples from s). In case of a perfect circle or arc, all of these perpendiculars
intersect in exactly one point. Otherwise, there can be usually seen a cluster of in-
dividual intersections. The average of all points of intersection is taken for (x, y).
Figure 4.9(b) shows the same examples as before, but with the center of the circles
computed in the improved way.

Given the estimated parameters, deciding whether a stroke may be reasonably
interpreted as a circle is easy. Since small circles tend to be drawn more sloppily,

4.5. CIRCLES 59

Algorithm 3 Transformation of a stroke s into a circle.
1: function CIRCLE(s) . s is the input stroke, the result is (x, y, r) or nil
2: (l, x, y, r, γ, h, w)← COMPUTEFEATURES(s)
3: if not b contains (x, y) then . bounding box contains center of circle
4: return nil
5: end if
6: if γ < 300◦ then
7: return nil
8: end if
9: if w ≤ 40 and h ≤ 40 then . check if the stroke is small

10: if w > 3 · h or h > 3 · w then . bounding box not too high or wide
11: return nil
12: end if
13: l′ ← γ/180◦ · r · π . length of a perfect circle with accu. angle γ
14: if l′ < 0.75 · l then . the stroke must not be too long compared to l′

15: return nil
16: end if
17: else . the stroke is not small
18: if w > 2 · h or h > 2 · w then
19: return nil
20: end if
21: l′ ← γ/180◦ · r · π
22: if l′ < 0.9 · l then
23: return nil
24: end if
25: if HASSHARPBENDS(s) then . ckeched only for strokes not small
26: return nil
27: end if
28: end if
29: return (x, y, r)
30: end function

they have to be distinguished somehow. We define that a stroke is small if neither
height nor width of the bounding box exceed a value of 40 (another threshold
determined empirically). Then, the decision whether a given stroke is a circle is
made by function CIRCLE (Algorithm 3), which computes the triple (x, y, r) to
indicate that a stroke is a circle, otherwise nil. If a stroke is found to be a circle,
the features x, y and r are used to describe the circle and are, thus, stored in the
circle model.

In the algorithm, the features described above are computed first (cf. line 2).

60 CHAPTER 4. PREPROCESSING

Then, evaluation takes place. For small circles, the ratio between width and height
of the bounding box is usually not as close to 1 as for larger circles (cf. line 10).
The same holds for the difference of the actual stroke length l and the length of a
perfectly precise circular line with radius r and accumulated angle γ (cf. line 14).
Finally, if the stroke is not small, we search for sharp bends in the stroke, which are
not supposed to occur for a circle (cf. line 25). A sharp bend is defined as three
consecutive samples of the stroke enclosing an angle less than 110◦ or greater
than 250◦. Again function FILTER (Algorithm 2) is applied for this measure to
be applied properly. The measure is necessary to distinguish circles from squares,
which otherwise are sometimes misinterpreted as circles, too. For small strokes,
this measure does not yield valid results, as the described angle easily becomes
too sharp for three samples, even if the intention was to draw a circle.

4.6 Text

As stated in the introduction to this chapter, text is handled completely different
from strokes. This means that the user, while drawing the diagram, has to indicate
when text is entered and when graphics are drawn. The way this indication is done
depends on the user interface. An alternative is to automatically separate text from
graphics, which is done by a processing unit called a divider. However, this is a
very challenging issue which is neither discussed nor solved in this thesis, but
tackled in related work such as [75, 10]. Using a divider, the system architecture
shown in Figure 4.1 would change to the one shown in Figure 4.10. One way
or another, the models would contain the same data (given that the divider works
reliably). Hence there is no effect on subsequent processing steps.

Manually indicating the entering of text has the advantage that special hard-
ware can be used (e.g., a regular keyboard, or Thumbscript2), or approaches that
require a special GUI (e.g., an on-screen keyboard, menu-augmented soft key-
boards [58], Fitaly3, SHARK [104], Quikwriting [78], or Cirrin [66]). It remains
an open question what is preferred by users, and what approach or approaches
lead to the most reliable input. A further investigation of text input approaches for
sketching systems is given in [88].

Since text is not directly written on the canvas, is has to be rendered using
some default font. Text is assumed to be written always horizontally, and so is
the space it requires assumed to be rectangular and axis-parallel. The size of this
rectangle depends on the text, the font face, the size of the font, and the font
style (for example, italic or bold). The only thing the text transformer therefore

2see http://www.thumbscript.com/
3see http://www.fitaly.com/

http://www.thumbscript.com/
http://www.fitaly.com/

4.7. FUTURE WORK 61

Line Transformer

Arc Transformer

Link Transformer

…

Text Transformer

Strokes
Circle Transformer

…

Divider

…

…

…

…

…Text Strokes

d
is

jo
in

t

Graphic Strokes

Figure 4.10: Conceptual overview of the preprocessing stage if a divider would
be used.

computes is the location and the size of this rectangle, using the text as input,
based on the current font. This information is stored in the text model.

4.7 Future Work
There are different aspects of future work concerning the preprocessing stage. In
Section 4.6 the use of a divider is discussed. The user interface of a sketching
system could benefit from such an approach, but the concept as well as possible
gains need to be further investigated.

In a diploma thesis the recognition of hatched and filled regions in drawings
has been tackled, with some very good results reported [94, 95]. Hatched regions,
as they occur in architectural diagrams, for example, are recognized by trans-
forming input strokes into a parameter space, where characteristic patterns can be
identified more easily. For the recognition of filled regions, like transitions and
tokens in Petri nets, for example, three features have proven to be sufficient. An
open question is how best to integrate this component into our transformer-model
approach. For strokes representing hatched or filled regions, the transformers
described so far may produce much clutter, which can hinder the actual shape
recognition. This is especially true for the line transformer.

Similarly, dashed and dotted lines frequently occur in diagrams. For example,
a dashed arrow is used to indicate that a class is implementing an interface in a
UML class diagram. Recognition of such lines is still an open issue. Finally,
other approaches to low-level processing like [76] may be included as well, either
in addition to the proposed transformers, or as replacements.

62 CHAPTER 4. PREPROCESSING

4.8 Summary
In this chapter, our approach to low-level processing in DSKETCH has been de-
scribed. The key idea is to generate different interpretations of each stroke in
parallel. There is no context information available at this point to decide about a
reasonable interpretation. Every transformer works on a best-effort basis to pro-
cess a stroke according to its own view. In doing so, the information conveyed by
the strokes gets abstracted to a certain extent, which is an effective way to deal
with noise and imprecision. Each transformer is free to discard complete strokes
or part of strokes if they happen to be outside of its view.

For each of the three graphical primitives (lines, arcs, links) there is an inde-
pendent transformer (and model), and there are two further transformers, one for
text and one for circles. Additional transformers, either for new graphical primi-
tives, or for special shapes which exhibit a complicated structure, can be integrated
easily. Each model is updated immediately after a stroke is drawn.

Of course, approaches to low-level processing have been published before, as
has been illustrated in Chapter 3. Examples are PaleoSketch [76], the recognizer
by Sezgin [91], and the SATIN framework [52]. The transformers we have pre-
sented in this chapter are an alternative to those approaches. There are two points
in favor of our solution:

• The transformers are very efficient and take virtually no time, as the user
study shows. In fact, the average time to transform a single stroke by all
transformers ranges below 0.5ms (cf. Section 10.1).

• Unlike other approaches, our transformers are completely independent; the
consequence is that each transformer can split each stroke differently, and
therefore can approximate the stroke more precisely. Other approaches of-
ten do not do so, but split the stroke at the same points for all primitives.

Nevertheless, the concept of the preprocessing steps allows for integrating low-
level recognizers from other groups as well, by wrapping them into additional
transformers.

Chapter 5

Recognition

As mentioned in Chapter 1, recognition is one of the most challenging issues
of every approach to sketching. In our architecture, shown in Figure 1.4, the
assembler is the central component that performs the actual recognition. Based
on the contents of the models obtained by preprocessing, the assembler combines
single primitives into complex shapes. Therefore, the assembler has to query the
models. The key idea is that the assembler treats every model in the same way. It
has no specific information on any model regarding what primitives are stored in
this model. Accordingly, the assembler always queries each model for a primitive.
This is crucial to the integration of new transformers and models, as it requires no
changes in the assembler at all.

The actual recognition process is discussed in Section 5.4. Before, two pre-
requisites have to be explained. The first is how queries of the assembler to the
models look like, and how the results to these queries are determined. This is
illustrated in Section 5.3. The other prerequisite is the search plan. Its purpose
is to determine the order in which primitives are searched for by the assembler.
On the one hand, the search plan guarantees that the single primitives of a shape
are connected to each other as indicated by the specification of the shape. On
the other hand, the search plan determines the search order in such a way that
primitives shared by different shapes are searched for conjointly. This improves
performance. The search plan is discussed in Section 5.2.

When specifying shapes, the expressive power of primitives alone does not
suffice. For example, using only primitives it cannot be specified that the width of
a rectangle should be greater than its height. To add expressive power, constraints
are used in addition to primitives. Section 5.1 describes constraints, and how
shapes can be specified using these constraints and primitives.

Section 5.5 discusses an approach to rate shapes. This is necessary in order
to argue about the quality of shapes. The final two Sections 5.6 and 5.7 of this
chapter deal with future work and provide a summary.

63

64 CHAPTER 5. RECOGNITION

final statemass

Figure 5.1: Examples of shapes which are not connected.

Sections 5.2 through 5.4 assume that all primitives of a single shape are con-
nected. However, many practical shapes fail to satisfy this assumption. Two
examples of such shapes are shown in Figure 5.1. In order to also recognize
such shapes, each connected part is recognized independently. Then, the com-
plete shape is assembled from the parts. Constraints can be used to describe how
the parts should be related to each other. An example is given in the next section.

5.1 Constraints and the Specification of Shapes
It is obvious that shapes are composed of primitives. A rectangle, for instance,
is composed of two vertical straight lines and two horizontal straight lines. This
issue has already been discussed in Section 1.2; examples have been given in Fig-
ure 1.5. Recall that there are junction points where primitives are connected to
each other, and simple points where primitives are not connected. In the case of
the rectangle, there are four junction points, one at each corner. Whereas this ex-
ample is straightforward, others are not. An open-headed arrow, for instance, may
consist of three straight lines, two for the head, and one for the shaft. All three
lines meet in one common junction point, which is the tip of the arrow. Figure 5.2
gives examples of lines which satisfy this description. Obviously, primitives and
their incidence do not suffice to completely specify arrow heads. It is also neces-
sary to limit the length of the lines of the arrow head, require them to have similar
lengths, require the shaft to have a considerably greater length, and enforce certain
angles between the three lines meeting at the tip. This is achieved by constraints.
Common to all constraints is that they are solely based on points.

While a great number of constraints are conceivable, we found a relatively
small set to be sufficient for most cases. The following enumeration gives all of
these constraints. There are constraints for

• Comparing the angle described by three points to either a fixed value, or
to another angle, described by three other points. Comparing means either
equal, not equal, greater than, or less than.

• Comparing the distance between two points to either a fixed value, or to
another distance between two points. Comparing means again either equal,
not equal, greater than, or less than.

5.1. CONSTRAINTS AND THE SPECIFICATION OF SHAPES 65

different

lengths
wrong

angles
shaft too

short

arrow as

intended

junction pointsimple point

Figure 5.2: An arrow as intended, and examples of possible shapes with the same
primitives if no constraints are in place.

• Comparing the direction of a thought straight line between two points to a
given value (horizontal, vertical, ascending, or descending). In this case,
comparing means only equal or not equal.

• Comparing the coordinates (x or y) of a point to those of another point.
Comparing means again either equal, not equal, greater than, or less than.

Of course, when comparing values as indicated by these constraints, thresh-
olds have to be applied to provide for the impreciseness of hand-drawing. It is
highly unlikely that two angles are ever equal, for example. However, the specifi-
cation always describes a perfect shape, so it is reasonable to describe comparison
in terms of equal, or not equal. The mentioned lack of precision is handled by
the assembler. Further constraints are conceivable, but are not needed to specify
the diagram languages described in Chapter 2. Anyway, further constraints can be
easily integrated.

Just like LADDER (cf. Section 3.2), we distinguish between hard and soft
constraints. For hard constraints, the assembler checks that these are satisfied for
each shape that is recognized, and discards all shapes where this is not the case.
Soft constraints are only used to influence the rating of a shape (cf. Section 5.5).
A shape is not removed just because a soft constraint is violated.

66 CHAPTER 5. RECOGNITION

DONT‘T USE

sideB

sideA

head

tail

Arrow

Rounded

rectangle

t1 t2

b1 b2

r2

r1
l1

l2

Grid

t1 t2

b1 b2

r2

r1l1

l2
i4

i1 i2

i3

Stick

figure

h1

h2h4

h3

a2 a3
a1

l2

l3l1

Figure 5.3: Examples of shapes. All junction points and simple points are named.

The specification of a shape has to include (i) its primitives, (ii) constraints
on these primitives, and (iii) attachment areas. The latter will be covered in Sec-
tion 7.1. To specify (i) and (ii), each distinct point of a shape is uniquely labeled.
Two different examples of shapes are shown in Figure 5.3. All points, either junc-
tion points or simple points, are labeled. Constraints are not explicitly shown;
they are rather represented by the visual appearance of the shapes. Details of the
textual specification of these two shapes, including the constraints, can be found
in Appendixes A.1.4 and A.6.3. Note that the textual representation is sufficient.
The graphical representation shown here serves for clarity only. Also note that
text is the only primitive which can be specified to be optional, which means that
it may or may not be present. This allows for more flexible specifications.

The shape shown in Figure 5.4(a) is not connected; it comprises two circles,
one completely contained in the other. As mentioned in the introduction to this
chapter, such shapes are recognized by recognizing each connected part first, and
then combining these parts. Given the specifications listed above, it can be ex-
pressed that the one circle must contain the other one (cf. Figure 5.4(b)). Note
that a prerequisite to the combination of shape parts is that no sub-stroke is used
in two different parts. In this example, a sub-stroke must not be used in both
circles.

For the specification of an actual diagram language, all its shapes have to
be defined in terms of (i)–(iii). Based on these specifications a search plan is
computed, as described in the next section.

5.2 Search Plan
The actual recognition of shapes, described in Section 5.4, collects the single
primitives of a shape, and then assembles these primitives to the complete shape.
A search plan dictates the order in which the primitives are searched for. The

5.2. SEARCH PLAN 67

top

bottom

right
left b c

a

d

(a)

top.y less than a.y
left.x less than b.x

right.x greater than c.x
bottom.y greater than d.y

(b)

Figure 5.4: Example of an unconnected shape and its constraints. The origin is in
the upper left corner.

Figure 5.5: A rectangle and many vertical lines hampering the recognition.

reason is that (i) certain primitives require other primitives to be identified first,
and (ii) each primitive which is found has to be connected to some other primitive
which has been found before. An example for (i) are text regions, which are
constructed as soon as all of the necessary points are identified. An example for
(ii) is shown in Figure 5.5. A rectangle is searched. It consists of two vertical and
two horizontal lines, connected at their end points. If the recognition process first
identifies the two vertical lines, then trying to identify horizontal lines connecting
these vertical lines at their end points, many pairs of vertical lines are considered
in vain. Searching for a vertical line, and then for a horizontal line connected to
that first vertical line is the better option here, because it does not require to try
each combination of two vertical lines.

Another motivation for computing a search plan is to determine when to search
conjointly for the same primitives occurring in different shapes. Depending on
the specification of the diagram language, different shapes may contain the same
primitives. Examples are Nassi-Shneiderman diagrams (NSDs) (cf. Section 2.2).
In the specification, each of the four shapes contains a horizontal line. Addition-
ally, in each case there is an additional vertical line attached to the left end point of

68 CHAPTER 5. RECOGNITION

Figure 5.6: An example for shared primitives among the shapes of NSD. The
shared primitives are shown as solid lines. The choice of shared primitives is not
unique in general.

the first horizontal line, and going up (cf. Figure 5.6). Alternatively, there is also
an additional vertical line attached to the right end point of the first horizontal line,
also going up. Shared primitives like this can be searched for conjointly, which
saves time for the recognition. This example also shows that there are several pos-
sibilities for shared primitives in general. In the special case that two shapes have
the same visual appearance, using this approach they can be identified at the same
time. In Petri nets, for example, both places and tokens are represented as cir-
cles. Whenever a circle is recognized, both a place and a token are found. On the
other hand, diagram languages like Tic-tac-toe do not have a single shared prim-
itive among their shapes (cf. Section 2.6). In general, the more shapes a diagram
language consists of, the more likely shared primitives will occur.

A search plan is a tree where each node represents a (partial) shape. The tran-
sition from one node n to the next node n′ is done by adding one additional prim-
itive to the partial shape represented by n such that all primitives of the (partial)
shape represented by n′ are still connected. Each leaf represents a fully identified
shape. Additionally, inner nodes may also represent completed shapes (depending
on the specification). The root of a search plan is an empty node which has no
primitives. The first primitive which is then identified obviously cannot be con-
nected to any other primitive. In the ideal case, each node has no more than one
child. This means that all partial shapes represented by this node have one single
shared primitive which can be used to continue the search for all of these partial
shapes. If such a primitive, shared by all partial shapes, does not exist, the search
plan node has more than one child, because in this case the search process must
be continued with different primitives.

Figure 5.7 shows an example search plan for NSDs. Node C has three children,
node L has two. This means that there is no fourth primitive shared by all shapes
(node C), and no fifth primitive shared by the shapes While and Until (node L).
At nodes E, K, O and R the different shapes are completely identified, which can
be also seen in the table. This search plan does not show an example where an
inner node represents a completely identified shape. Note that nodes D and L are
different, although they both add a vertical straight line to the partial shape in node
C at the point labeled b. They are different because in node D the horizontal lines
are connected by the new vertical line, while in node L they are not.

5.2. SEARCH PLAN 69

Root node

Node QNode N

Node L

Node C

Node PNode MNode E

Node D

Node B

Node A

Primitive

Primitive

Primitive

Primitive

Primitive

Text

Primitive Primitive

Primitive

PrimitivePrimitive

Node J

Text

Node F

Node G

Node H

Node I

Node K

Text

Node O Node R

Text
Text

Primitive

Text
Primitive

Text

Primitive

Primitive

Primitive

Primitive

Text

Primitive

Primitive

a

a

a

a

a

b

a

b

c

b

c

b

a

a

a

a

a b

ba

ba

b
a

a

a a

a

b

a

b

a

b

a

b

Node Partial Complete Node Partial Complete
Root (all) J Condition

A (all) K Condition
B (all) L Until, While
C (all) M Until
D Statement N Until
E Statement O Until
F Condition P While
G Condition Q While
H Condition R While
I Condition

Figure 5.7: One possible optimal search plan for NSD. For each node the partially
identified shape is shown. Transitions from one node to a child are triggered by
adding the respective primitive, connected at the points indicated by lowercase
letters. The table shows for each node which shapes are partially or completely
identified.

70 CHAPTER 5. RECOGNITION

Node A

Node B

Root

node

…

Node A

Node B

Root

node

…

Shape First Search Plan Second Search Plan

occurs

twice in

shape

occurs

just once

Figure 5.8: Two different search plans for the same shape. The right one is better
than the left one, as the partial shape represented by node B occurs just once in
the shape, instead of twice.

A search plan is not unique in general. This raises the question which of
two search plans is better? The intention is that the search plan increases the
performance of the recognition process by demanding search for shared primitives
first. Accordingly, the best search plan is the one where recognition takes least
time. However, because actual performance depends not only on the search plan,
but also on the diagram language, on the sketch, and on the drawing style (cf.
Chapter 10.5), it can only be estimated which one will be better when the search
plan is computed. Therefore, we define a search plan to be optimal if its number
of nodes is minimal. In this case, as much shared primitives are searched for
conjointly as possible.

Although the computation of an optimal search plan can be performed exhaus-
tively, we rely on a greedy approach to make this computation more efficient. For
each node n representing a partial shape, a new node is created for that primi-
tive which preserves the most alternatives in terms of shapes which can still be
reached from n. In case that this criterion is not unique, that primitive is cho-
sen which preserves the least alternatives for the same shape (if this is still not
unique, the choice is non-deterministic). In order to explain this secondary cri-
terion, consider Figure 5.8. Two different search plans are outlined, both for the
same shape. Of course, both plans show the same number of nodes to fully iden-
tify the shape. However, the second one is better, as the partial shape yielded after
two steps is unique for the shape, which means that it will not occur as often as
the partial shape yielded by the first search plan after two steps. This means that,
using the first plan, half of the partial results recognized after the second step turn
out as dead ends, which is a waste of computing resources. Using the secondary
criterion as described above, the greedy algorithm computes the second plan.

For the computation of a search plan, shown in Algorithm 4, each node is

5.3. QUERYING THE MODELS 71

Algorithm 4 Computation of a search plan from a set S of shapes. Return value
is a node n.

1: function SEARCHPLAN(S)
2: n←NEWNODE

3: n.partial← {s|s ∈ S, s not yet completed}
4: n.complete← {s|s ∈ S, s completed}
5: S ← n.partial
6: while S 6= ∅ do
7: (p, S ′)←SELECTBEST(S) . select best remaining primitive p
8: n′ ←SEARCHPLAN(S ′) . recursively compute child node
9: ADDCHILD(n, p, n′) . add child node

10: S ← S \ S ′
11: end while
12: return n
13: end function

treated separately. A node has two disjoint sets that cannot both be empty (cf. the
table in Figure 5.7). One set contains the shapes for which the node represents a
partial finding; the other set contains the shapes which are completely identified
at this node. The root node represents all shapes as a partial finding, as it does
not contain any primitives. For a given set of shapes S, the algorithm first selects
that primitive p according to the two criteria described in the previous paragraph
(line 7). p must not have been selected before, as in this case, p would occur
twice in the search plan. Let S ′ be the set of shapes that share p. Second, a new
node is created recursively for the shapes in S ′ (line 8). This node is added as
a child (line 9). If there are other shapes which do not use the primitive p, the
process is repeated until every partial finding is represented in a child node. The
function SEARCHPLAN is initially called with the set of all shapes of the diagram
language, and yields the root node of a search plan.

5.3 Querying the Models
Recall that the assembler queries the models for primitives. Before the details of
this process are described in detail in the next section, this section first explains
what kinds of queries are possible, and what the results of the queries look like.

There are four kinds of primitives queried by the assembler: lines, arcs, links
and text. We discuss each of them separately. When querying for a straight line,
the assembler optionally specifies a start point, an end point, and a direction. If
specified, the direction (assumed from the start point to the end point) serves as
a filter discarding all lines from the result that have another direction. It can be

72 CHAPTER 5. RECOGNITION

(135,26)

(112,221)

(153,25) (422,25)

(430,43)

(419,241)
(124,232)

(411,233)

Line Model Arc Model

Figure 5.9: A line model and an arc model.

one of eight values: up, up left, left, down left, down, down right, right and up
right. If the start point is specified, all returned lines must start in this point.
Likewise, if the end point is specified, all returned lines must end in this point.
Whether start point and end point are specified is given by the search plan. For
example, the transition from node A to node B in Figure 5.7 requires a horizontal
line going down from the point represented by a. The end point is not specified
in this example.

For arcs and links there is a start point and end point as well, which works
exactly the same way as for lines. However, instead of specifying a direction, for
arcs both a quadrant and the orientation (clockwise or counter-clockwise) must be
specified. Quadrant and orientation are not optional. Links do not have any other
special attribute, start point and end point are sufficient here.

In Figure 5.9 a line model and an arc model are shown. The line model stores
six lines, while the arc model stores four arcs. The indicated coordinates corre-
spond to the end points of the lines and arcs. Note that both models only contain
perfectly straight lines, or perfect arcs, respectively. This is due to the abstraction
applied by the transformers, described in Chapter 4.

Now consider some queries to these models. If the line model is queried for a
line going up, starting at point (419, 241), it returns the line ending in (430, 43).
Although this line is not perfectly vertical, it is a valid result; the models have
to respect the lack of precision due to the nature of hand-drawing. Likewise,
when the line model is queried for a line going left from (419, 241), it returns two
answers: the line ending in (282, 233), and the line ending in (124, 232). This
is valid as well, although none of these two lines actually starts at the specified
point, and the second result even contains a small gap of some pixels. If there is
a query for lines going down, with no points specified, the three vertical lines will
be returned; querying for lines going up (again without specifying points) returns
the same three lines, but this time the coordinates of start point and end point are
interchanged in the result. As final example, a query for a line going down right

5.4. RECOGNITION OF SHAPES 73

from (150, 20) to (425, 25) yields no result. Although there is a line connecting
these two points (once again the line model allows for some imprecision), this line
is horizontal, and does not go down right.

Querying the arc model is very similar. A query for an arc in quadrant 1, clock-
wise, starting from point (151, 63), yields one result, namely the arc to (188, 127).
The same query with a counter-clockwise orientation yields no result (the arc from
(128, 64) to (71, 107) is not in quadrant 1, but 4, hence it is no valid result). For
links, no example is shown. They work as lines, except for the direction.

Finally, text is queried in terms of a location. The location is described by a
point, polyline, polygon, or a combination thereof (see Appendix A for examples,
e.g., Appendixes A.2.2 through A.2.4 for the shapes of NSD). It is intersected with
the bounding box of each text. If the result is not empty, the text is returned, oth-
erwise it is not. Note that this concept is equivalent to attachment areas, described
in Section 7.1. If no location is specified, each text may be returned, regardless of
where it is written on the canvas.

5.4 Recognition of Shapes
The assembler performs the actual recognition of shapes (cf. Figure 5.10). It both
accesses the models and the search plan that has been computed from the speci-
fication. The assembler yields the shapes that can be identified from these data.
Determined by the search plan, the assembler queries the models for primitives,
as has been described in the previous sections. The assembler then combines
each result from every model with the current partial finding, and continues the
search with each combination independently. The details are explained below.
As mentioned in the introduction to this chapter, the assembler treats every model
equally, and has no specific information about the primitives contained in a model.
Accordingly, each model is queried for each primitive. For example, each model
is queried for straight lines, although only the line model will return results.

Note that having different independent models is just a matter of representa-
tion; conceptually it is equivalent to have only one model that is the union of the
independent models, i.e., it contains all primitives found by each transformer.

The search process is based on states, which are created and managed by the
assembler. Each state s corresponds to a node in the search plan, denoted by
s.node. Accordingly, each state contains a (partial) shape from the sketch that
corresponds to the (partial) shapes in its search plan node. The set of shapes that
are completely identified in a state s are denoted by s.complete. If s represents
only a partial state, s.complete is empty.

Algorithm 5 describes the search process performed by the assembler in detail.
It yields the set Sh of all shapes that can be recognized from the models (the

74 CHAPTER 5. RECOGNITION

Model A

Model B

… queried by

Shapes

dictates

generates

Specification

Assembler

Search Plan

Figure 5.10: Conceptual overview of the assembler.

rounded box labeled Shapes in Figure 5.10).
States are processed independently; there is no connection between them.

When processing a state s, two things happen: (i) all shapes that are completely
identified (according to s.node) are added to the result (line 7), and (ii) for each
child of s.node in the search plan the corresponding primitives are searched for in
the models (line 10). The queries to the models are as described in the previous
section. For each primitive p′ returned from a query, a new state is created as a
copy of s with p′ as additional primitive (line 12). It is checked whether this new
state violates any hard constraints (line 13). If so, it is discarded; otherwise it is
stored for later processing (line 14).

The assembler searches for the shapes from scratch each time (an incremental
approach exhibits some challenges, which are briefly discussed in Section 5.6). It
starts with exactly one empty state s that corresponds to the root of the search plan
(line 3). This is the first state that is processed.

For a (partial) finding, represented by a state, the search process can be ter-
minated for three reasons: (i) the corresponding node in the search plan has no
children, as it is a leaf of the search plan, (ii) no single primitive for the transition
to a child node has been found (in this case P ′ is empty, cf. line 10), and (iii) as al-
ready mentioned, a (partial) finding may violate hard constraints (line 13). Under
certain conditions, constraints can be evaluated even before a shape is completely
recognized. All constraints are based on points. The assembler can therefore eval-
uate a constraint, i.e., decide whether a (partial) finding satisfies the constraint, as
soon as all necessary points are identified. As an example for NSD, the width of
a statement can be required to be greater than its height. This can be evaluated at
node D in Figure 5.7, as both height and width are already known at this node, and
as this node represents a partial finding only for statements, but not for any other
kind of shape.

As an example consider the line model shown in Figure 5.9 and the search plan
shown in Figure 5.7. If we neglect text, a statement can be identified in the model,
but no other shape. Consequently, in this example we only follow the leftmost
trail in the search plan (to node D), leading to the statement without text.

5.4. RECOGNITION OF SHAPES 75

Algorithm 5 Recognition of all shapes from scratch, as performed by the assem-
bler. Recognition is based on the search plan and the models. Return value is a
set of shapes Sh.

1: function RECOGNIZE

2: Sh← ∅ . Sh will contain the result
3: s←CREATEEMPTYSTATE . s is a state
4: St← {s} . St is the set of states that still have to be processed
5: while St 6= ∅ do
6: s←REMOVEARBITRARYSTATEFROM(St)
7: Sh← Sh ∪ s.complete
8: for all (p, n) ∈GETALLCHILDREN(s.node) do
9: . p is a primitive, n is a node

10: P ′ ←QUERYALLMODELSFOR(p)
11: for all p′ ∈ P ′ do
12: s′ ←CREATESTATE(s, p′, n)
13: if NOHARDCONSTRAINTSVIOLATED(s′) then
14: St← St ∪ {s′}
15: end if
16: end for
17: end for
18: end while
19: return Sh
20: end function

The transition in the search plan from the root to node A is triggered by a
horizontal line. Querying this line leads to four results in the line model, indicated
by the four figures in Figure 5.11(a) through (d). The next transition in the search
plan demands a vertical line going down, starting from the left end point of the
first horizontal line (indicated by a in the search plan). In (b), no such line is
in the model, hence the result of the query is empty, and the partial finding is
immediately discarded. The same holds for (c). In (a), such a line can be found,
which ends in (411, 233). The next transition then demands a horizontal line
going right, starting at this point. No such line can be found, so this partial finding
is discarded as well. What remains is (d). Here, the first vertical line can be
found. It ends in point (112, 221). The second vertical line, going right from this
point, leads to two alternatives. The first is (269, 232), which must be discarded
in the next step, as there is no vertical line connecting this point to (422, 25). The
other alternative is (411, 233). In the last step, the fourth line can be identified as
well. Then the statement is fully identified (apart from text, which would now be
queried by the assembler), and added to the result of the assembler. The transitions

76 CHAPTER 5. RECOGNITION

to nodes F and L cannot be found in the line model.
Finally, it is necessary that lines are split at intersections with each other. This

fact has already been mentioned in Section 4.2, but not explained so far. Again
following the search plan in Figure 5.7, in Figure 5.12 the statement cannot be
identified in (a) if point i is not present in the corresponding line model (in this
example, letters denote points, instead of coordinates as before). The reason is
that the line from c to d is identified as the only choice for a line starting in c
and going right. However, from point d no vertical line connecting this point to b
can be found, so the statement is not recognized. By intersecting c-d and b-e, the
line from c to i is a valid alternative, and finally, since i-b is indeed vertical, the
statement is identified.

For (b) the situation is similar. If point i is not present, again line c-d is the
only option, and there still is no line going up, starting from point d. As a solution,
the projection of point e on line c-d must be computed, and c-d must be split at
this point in order to obtain two lines instead, namely c-i and i-d. Starting in point
i the vertical line e-b can then be found, which completes the statement.

Runtime complexity

Let p be the number of all primitives in all models, let x be the number of primi-
tives of the shape s with most primitives, and let c be the number of all constraints
used for shapes. Note that all three variables p, x and c are independent of the
proposed recognition algorithm; the value of p depends on the actual sketch, and
the values of x and c depend on the specification. Then the worst-case runtime
complexity of the search process can be roughly estimated by O(px · (c + 1)),
because for each of the x primitives of the shape specification there are up to p
primitives from the sketch, and in each case the constraints are checked; all con-
straints currently supported (cf. Section 5.1) can be computed in constant time.
All other shapes in the specification have equal or fewer primitives than s has,
thus their complexity is equal or less. Note that (c + 1) is used in the estimation,
and not c, since there may be no constraints specified.

Although this estimation is polynomial (c and x are fixed for a given language),
in practice the runtime is roughly linear (cf. Section 10.1). This is due to several
reasons:

• In practice, the number of primitives matching a query is much smaller than
p. For example, if a horizontal line is queried, lines with another direction,
arcs, links and text are not considered.

• Given a shape with n primitives, there are n! possible orderings to assemble
the shape. The search plan allows only one of them, independent of n,

5.4. RECOGNITION OF SHAPES 77

(153,25) (422,25)

(135,26)

(112,221)

(153,25) (422,25)

(135,26)

(112,221)

(153,25) (422,25)

(124,232)

(135,26)

(112,221)

(153,25) (422,25)

(124,232)

(411,233)

(135,26)

(112,221)

(153,25) (422,25)

(430,43)

(419,241)
(124,232)

(411,233)

discard partial finding

statement

identified

A

B

C

C

D

(282,233)

(282,233)

(411,233)

discard partial

finding

A

B

discard partial

finding

(124,232)

A

(a)

(153,25) (422,25)

(135,26)

(112,221)

(153,25) (422,25)

(135,26)

(112,221)

(153,25) (422,25)

(124,232)

(135,26)

(112,221)

(153,25) (422,25)

(124,232)

(411,233)

(135,26)

(112,221)

(153,25) (422,25)

(430,43)

(419,241)
(124,232)

(411,233)

discard partial finding

statement

identified

A

B

C

C

D

(282,233)

(282,233)

(411,233)

discard partial

finding

A

B

discard partial

finding

(124,232)

A

(b)

(153,25) (422,25)

(135,26)

(112,221)

(153,25) (422,25)

(135,26)

(112,221)

(153,25) (422,25)

(124,232)

(135,26)

(112,221)

(153,25) (422,25)

(124,232)

(411,233)

(135,26)

(112,221)

(153,25) (422,25)

(430,43)

(419,241)
(124,232)

(411,233)

discard partial finding

statement

identified

A

B

C

C

D

(282,233)

(282,233)

(411,233)

discard partial

finding

A

B

discard partial

finding

(124,232)

A

discard partial

finding

(124,232)

(411,233)

A

(c)

(153,25) (422,25)

(135,26)

(112,221)

(153,25) (422,25)

(135,26)

(112,221)

(153,25) (422,25)

(124,232)

(135,26)

(112,221)

(153,25) (422,25)

(124,232)

(411,233)

(135,26)

(112,221)

(153,25) (422,25)

(430,43)

(419,241)
(124,232)

(411,233)

discard partial finding

statement

identified

A

B

C

C

D

(282,233)

(282,233)

(411,233)

discard partial

finding

A

B

discard partial

finding

(124,232)

A

(d)

Figure 5.11: Extract from the search process for a statement in a drawing. (a)–(d)
each represent a different first choice for the horizontal line. Only (d) succeeds in
finding a complete shape. Partial results are discarded as indicated. The letters in
the lower right corner of each state represent the corresponding search plan node
in Figure 5.7. Text is neglected.

78 CHAPTER 5. RECOGNITION

a
b

c
d

i

Line modelDrawing

e

Line modelDrawing

a b

c
d

e

i

(a)

a
b

c
d

i

Line modelDrawing

e

Line modelDrawing

a b

c
d

e

i

(b)

Figure 5.12: Two drawings and their corresponding line models. The NSD state-
ment cannot be identified without intersecting lines c-d and b-e in (a), or comput-
ing the projection of point e on line c-d in (b).

which reduces runtime considerably. However, there still may be partial
results that eventually turn out as dead ends, of course.

• This single ordering guarantees that the primitives are connected, which
greatly reduces the number of possible primitives.

• Constraints are checked as soon as possible, pruning search plan states that
cannot be completed to legal shapes.

• Primitives shared by different shapes are searched for jointly, which again
means a reduction of runtime.

5.5 Assigning Ratings to Shapes
In the later steps of processing there is sometimes the need to make a choice
between two shapes, or between two sets of shapes. The decision for one or the
other is based on ratings. A rating of a shape is a positive real number, where a
greater number is better. This way, that one of the two is chosen which exhibits
the greater rating. Sets of shapes are rated by accumulating the individual ratings
of the contained shapes. For choosing one of two shapes, or sets of shapes, it may
happen that both ratings are equal. In this case, the decision for one of the two is
performed in a non-deterministic way.

5.5. ASSIGNING RATINGS TO SHAPES 79

Computation of ratings is driven by two key ideas. (i) the more complex the
shape is the higher is its rating. A shape is more complex the more primitives and
constraints it is made of. The rationale behind this is that the assembler has to
identify more primitives for a more complex shape, and that these primitives must
satisfy more constraints, which makes the shape more valuable. (ii) the rating of a
shape is higher the more precisely it is drawn. Here, the idea is to reward precise
drawing style with higher ratings, and to penalize sloppy drawn shapes.

These two requirements have several consequences. One consequence is that
two shapes of the same kind, e.g., two arrows, must gain the same rating, given
that they are drawn with equal precision, because they are made of the same num-
ber of primitives and constraints. If two arrows are not drawn with the same
precision, that one gains the higher rating that is drawn more precisely. Another
consequence is that ratings are not normalized to some fixed value, as this would
violate (i).

We set the upper bound for the rating of a shape to the complexity of the
specification of the shape. This complexity is defined as the weighted sum

np × wp + nhc × whc + nsc × wsc

where np is the number of primitives of the shape specification (with weight wp),
nhc is the number of hard constraints (with weight whc), and nsc is the number of
soft constraints (with weight wsc). All weights are positive. Obviously, the more
primitives or constraints a shape specification exhibits, the greater its complexity
is. In case that a shape is drawn with perfect precision, its rating is equal to its
specification complexity. Otherwise, the rating is reduced in order to factor in the
lack of precision.

For the three weights we suggest to set wp = 1.5, whc = 1.0 and wsc = 0.75.
This favors primitives over constraints and hard constraints over soft constraints.
Given these weights, consider the shapes defined in Appendix A.1 as examples.
The arrow has a complexity of 14.25, because it consists of four primitives (4 ×
1.5), six hard constraints (6× 1.0), and three soft constraints (3× .75). Likewise,
the complexity of the place is 9.0, the complexity of the transition is 7.5, and the
complexity of the token is 6.0.

As mentioned above, the rating of a shape is equal to its complexity only if it
is perfectly drawn and satisfies every constraint. However, an imprecise drawing
style is inevitable in hand-drawing, and the assembler must allow for thresholds
to also recognize shapes not drawn with perfect precision. Accordingly, the actual
rating of such shapes is decreased, as the imprecise drawing style is penalized.
This is done in the following way. The actual rating of a shape is computed as
sum of all individual ratings for all primitives and all constraints. These are each
rated by their weight, if perfectly satisfied; otherwise their rating is reduced. For

80 CHAPTER 5. RECOGNITION

primitives, text and links are always rated with wp, optional text that is not present
with 0. The rating of a line is decreased the more the direction of the line differs
from the specified direction, which can always be given by mapping the possible
direction to precise values (e.g., right→0◦, right up→45◦, . . .). For arcs, the rating
is decreased if the angle spanned by the arc is less than 90◦, which may happen
due to imprecise drawing. For constraints a similar approach is taken. The rating
of a constraint is computed depending on the kind of comparison specified for
the constraint. The more two values differ, which are constrained to be equal,
the more the respective rating (given by whc or wsc) is decreased. If two values
are constrained to be not equal, or one greater than the other (less than, resp.),
the rating of the constraint is reduced the more the two values are equal. Soft
constraints, which are not satisfied, are rated by 0. Examples for practical ratings
are given in Appendix C.2.

Even if a constraint is poorly satisfied, it is satisfied anyway. Accordingly,
we suggest to compute the actual rating for a constraint c requiring two values to
be equal by the following formula (d is the absolute difference between the two
values, th is the maximum allowed absolute difference between the two values
such that the constraint is still satisfied, and w is the weight, either whc or wsc)

rating(c) = (1− d

2 · th
)× w

Now even if the constraint is poorly satisfied, the constraint is still rated by 0.5 of
its weight. If it is perfectly satisfied, it is rated by its weight. No higher or lower
values are possible. If the constraint c requires two values to be not equal, or one
greater than or less than the other, we suggest the following formula (d and w are
as before, while th is the maximum allowed absolute difference between the two
values to still count them as equal)

rating(c) =

{
w if d ≥ th,

(0.5 + d
2·th)× w otherwise

Using this formula, a constraint is rated by its weight if the actual distance is
greater than or equal to the threshold; otherwise the rating is linearly decreased to
0.5 of its weight.

5.6 Future Work
A worthwhile extension to the approach presented in this chapter would be to
have the recognition process work incrementally. Then, either after a new stroke
is drawn, or when explicitly invoked by user interaction, recognition does not

5.7. SUMMARY 81

have to start from scratch each time, but can reuse previously identified shapes.
However, many challenges are involved in this approach. First, each transformer
and model also must work incrementally, and must be able to distinguish between
old data that has been used for recognition before, and new data, which has not
been used so far. Second, the assembler must either store all partial findings,
which is very costly, as there are many in general, or the assembler must apply
some other approach to complete partial findings which could not be completed
before due to missing primitives. Third, data can also be deleted from the drawing,
and thus from the models, which must also be coped with. These considerations
show that the incremental recognition approach outlined above requires some non-
trivial bookkeeping.

As alternative, or in addition to this incremental approach, recognition could
be parallelized. All partial findings are represented by search states, which are
completely independent from each other. Informal testing with the sketches taken
from the user study (cf. Chapter 10) has shown that the total number of search
states for one run of the assembler is typically in the thousands, while the average
number of search states waiting for processing is in the hundreds. Accordingly,
processing these states in parallel on a multi-processor machine, which is very
common hardware nowadays, could improve runtime performance significantly.

5.7 Summary
In this chapter the recognition process has been discussed in detail. The assembler
queries models for primitives based on the preprocessing illustrated in Chapter 4.
The order of the queries is dictated by the search plan, which is automatically
computed from the specification. By using the search plan, and by evaluating
constraints as soon as all necessary information is identified, states of the recogni-
tion process can be discarded as soon as possible, and unnecessary processing is
avoided. The assembler does not distinguish between different models, but asks
every model for a primitive. New transformers and models can be easily inte-
grated. Each shape is rated based on its complexity, and on how precisely it is
drawn. Shapes do not have to be connected. If they are not, using constraints it
can be specified how the single parts are related to each other.

An interesting issue is the relationship between DSKETCH and SkG (cf. Sec-
tion 3.3). The recognizer in SkG works incrementally and must thus be able to
continue partially recognized shapes non-deterministically according to what the
user draws. The order in which primitives are added to partial shapes is not fixed.
Technically, this is done using an evolution of extended positional grammars
(XPG) and a respective parser. In contrast, in DSKETCH we recognize all shapes
from scratch. This is done in a deterministic manner; determinism is achieved by

82 CHAPTER 5. RECOGNITION

the search plan. However, it is possible to map our approach to that of positional
grammars [27]. In this case, primitives are taken as terminal symbols, while par-
tially identified shapes are nonterminal symbols. This way, a search plan can be
directly transformed into a suitable non-linear grammar.

Chapter 6

Postprocessing

The result from the assembler is a set of shapes, which are completely unrelated
as yet. The analysis stage, which is the topic of Chapters 7 through 9, requires
exactly such a set of shapes. Regardless of this, two reasons make a postprocess-
ing step right after the assembler (cf. Figure 1.4) valuable. First, the number of
shapes can be reduced without losing crucial information, as explained in Sec-
tion 6.1. The less shapes that are passed to the analysis stage, the less time is
consumed. The second reason for postprocessing is to deduce some extra infor-
mation which can later be used to decide which shapes to add to the final result of
the analysis, and which to discard. This is subject of Section 6.2. Finally, based
on the diagram languages described in Chapter 2, a further configuration option is
identified, which allows for some optimization of the processing. Its use depends
on the diagram language, which is discussed in Section 6.3. Note that this chapter
describes the single postprocessing steps in the order in which they are applied,
so the removal of duplicates is first, the deduction of extra information is second,
and the execution of the configuration option is third. The chapter is summarized
in Section 6.4.

6.1 Elimination of Duplicates

A typical result of the recognition approach explained in the previous chapter
are duplicates, i.e., two or more recognized shapes which represent the same
actual shape drawn and intended by the user. Duplicates occur when the same
drawn shape is identified more than once, each time with slightly different junc-
tion points. False positives occur among the junction points mostly due to the line
transformer (Section 4.2). This transformer tends to split the input strokes more
often than necessary in order not to miss an important point. An example is shown
in Figure 6.1(a) and (b). Instead of four straight lines which were intended by the

83

84 CHAPTER 6. POSTPROCESSING

a b

c

d

e f

Drawing Line Model

Two similar rectangles which must

not be considered as duplications.

(a)

a b

c

d

e f

Drawing Line Model

Two similar rectangles which must

not be considered as duplications.

(b)

a b

c

d

e f

Drawing Line Model

Two similar rectangles which must

not be considered as duplications.

(c)

Figure 6.1: (a) a drawing of a rectangle made with one stroke. (b) the correspond-
ing line model. (c) two rectangles which are no duplicates.

user, the assembler will get more results from the line model. Assume the search
plan from Figure 5.7. In the first step, the horizontal line from a to b is returned
by the line model. The second line, going down from a, leads to two different
results, either c, or d. For c there are two options for the third line going right,
either starting in c, or starting in e due to the thresholds allowed for answering
queries. Both of them go to f. For d there are the same two options due to the
thresholds. In any case, the horizontal line goes to f. From f there is then only one
vertical line going to b, and the shape is fully recognized. However, four alterna-
tives for the lower left corner of the rectangle were identified: c only, (c,e), (d,c),
and (d,e). This results in four shapes identified by the assembler, three of which
are duplicates.

There is another reason for duplicates. Different models may return results for
the same query. It is highly unlikely that these results are equal, even if they are
based on the same strokes. As an example, consider the arc model and the circle
model, and a circle drawn in one stroke. The circle is identified by requesting the
four arcs from the models. Both the arc model and the circle model will return
valid results, but the end points of the arcs will be slightly different in general,
which results in many different circles that are identified.

Duplicates impose an unnecessary load on the analysis stage, although this
stage can deal with duplicates. This load results in a waste of computing resources.
The challenge in the identification of duplicates is to distinguish these from two
shapes which just happen to be very close to each other, as none of those must be
removed. The first precondition for a shape to be a duplicate of another is that both
shapes have the same type, e.g., both shapes are places, or both shapes are arrows,
in the case of Petri nets. The second precondition is that both shapes comprise
exactly the same text primitives if they comprise text primitives at all, e.g., two
NSD statements can only be duplicates if they contain the same text. If either of
the two preconditions is not satisfied, none of the two shapes is considered to be a

6.1. ELIMINATION OF DUPLICATES 85

duplicate of the other.
To decide whether two shapes are duplicates, three conditions are checked. If

one is found to be satisfied, we assume one of the two shapes to be a duplicate of
the other. Then, that shape is discarded which exhibits the lower rating, because
this shape is assumed to be drawn with less precision (cf. Section 5.5). Although
comparing each two shapes exhibits O(n2) complexity, where n is the number
of shapes, the gain in terms of overall processing speed certainly warrants this
expenditure, as tests made with the prototypical implementation clearly show (cf.
Section 10.3).

The first of the three conditions regards the distance of the points of the two
shapes to each other. The specification assigns each point of a shape a unique
identifier, whether it is a junction point or a simple point. If the points from both
shapes with the same identifier are all closer to each other than a certain, very
small threshold (like 10 pixel, or less), the condition is satisfied. This condition
may accidentally hold if two different shapes are drawn very close to each other
(cf. Figure 6.1(c)). If this frequently happens, the threshold must be decreased.

The second condition refers to the strokes or sub-strokes used to draw a shape.
This condition holds if exactly the same strokes or sub-strokes are used for both
shapes, no matter how these are related to the single primitives. Obviously, it
is necessary to know those strokes or sub-strokes used to draw a shape to de-
cide about this condition. This information is preserved by the transformers, and
reflected in the models. The postprocessing step can subsequently access this
information and check whether the condition holds.

The third and final condition makes use of fully connected primitives. A fully
connected primitive is a straight line, an arc, or a link where both end points are
junction points, i.e., both end points are connected to other primitives. From the
two examples of shapes shown in Figure 5.3, the arrow has no fully connected
primitives, as each line has only one junction point. For the grid, only the four
inner lines (i1-i2, i2-i3, i3-i4, and i4-i1) are fully connected primitives. Now if the
strokes or sub-strokes used to draw the fully connected primitives of one of the
two shapes are a subset of the strokes or sub-strokes used to draw the fully con-
nected primitives of the other shape, the first shape is regarded as duplicate, and is
removed, no matter which shape has the higher rating. The idea behind this con-
dition is that fully connected primitives are more significant for a shape, usually
describing the location and extent of the shape better, because both end points are
not depending on one primitive only, but several primitives. Accordingly, there is
less choice in the identification of fully connected primitives.

Evaluating these three conditions revealed that the first and the third already
remove most of the duplicates, even if applied solely. However, in some cases it
is the second condition, or a combination of all three conditions that remove more
duplicates, so it is valuable to always apply all of them.

86 CHAPTER 6. POSTPROCESSING

The removal of duplicates does not harm the later analysis stage in terms of
losing valuable information. As one shape is always kept, and only its duplicates
are removed, the essential data is preserved.

6.2 Identification of Conflicts
Depending on the diagram language, one stroke or sub-stroke may only contribute
to one shape at the same time, and not to two or more. Consequently, whenever
the same stroke or sub-stroke is used for different shapes, only one of the shapes
can be correct, and the others are false positives. This is true no matter whether
the shapes in question have the same specification, or not.

Many diagram languages exhibit the described behavior. From the six exam-
ples given in Chapter 2, it is true for all but Nassi-Shneiderman diagrams. For
NSDs, almost each stroke or sub-stroke is shared between two shapes, except for
those strokes or sub-strokes forming the very outline of a diagram, and for the
diagonal lines used in conditions. In the other five diagram languages each stroke
or sub-stroke may only belong to one shape.

If two shapes are found to use the same stroke or sub-stroke this is called a
conflict. The final result of processing a sketch has to be free of conflicting shapes.
Conflicts cannot be solved in the postprocessing step, but they can be detected in
this step. A solution is not possible, because no context information is available
as yet. The solution could only be based on meta-rules, which is avoided as much
as possible in DSKETCH. The subsequent analysis stage establishes context of
shapes and thus has the necessary means to solve the conflicts.

As mentioned, the existence of conflicts depends on the diagram language.
Hence, the specification of a diagram language also has to define if conflicts
should be detected, or not. If yes, the result can be expressed as a binary sym-
metric relation between shapes, where each tuple in the relation refers to two
conflicting shapes.

6.3 Suppression of Shapes Containing Other Shapes
Next to the option introduced in the previous section regarding conflicts between
shapes, a further configuration option, very specific to NSD, is reasonable. The
graphical appearance of all shapes is based on blocks, and such blocks are also
drawn next to each other. Many false positives are recognized, as each two neigh-
boring blocks can be recursively combined to a larger block. As for the dupli-
cates, the analysis stage can deal with this circumstance, but again performance
suffers severely. The NSD shown in Figure 6.2(c) consists of nine shapes: one

6.3. SUPPRESSION OF SHAPES CONTAINING OTHER SHAPES 87

a

b

c

d

e
f

g

h

i

a

b

c

d

e
f

g

h

i

a

b

c

d

e
f

g

h

i

a

b

c

d

e
f

g

h

i

a

b

c

c

aa

b b b

c

a

b

c

(a)

a

b

c

d

e
f

g

h

i

a

b

c

d

e
f

g

h

i

a

b

c

d

e
f

g

h

i

a

b

c

d

e
f

g

h

i

a

b

c

c

aa

b b b

c

a

b

c

(b)

a

b

c

d

e
f

g

h

i

a

b

c

d

e
f

g

h

i

a

b

c

d

e
f

g

h

i

a

b

c

d

e
f

g

h

i

a

b

c

c

aa

b b b

c

a

b

c

(c)

Figure 6.2: NSDs and examples of false positives. (a) a simple NSD comprised
of three consecutive statements. (b) all ten statements recognized in the simple
NSD, seven of which are false positives. (c) further examples of false positives
for a more complex NSD.

while-loop, one condition, and seven statements. The prototypical implementa-
tion identified 41 shapes1. Some of the false positives which are identified due to
the special nature of NSD are also shown in the figure.

To make this point more clear, consider two consecutive statements, like g-h in
the figure. As the examples show, instead of the two statements four are identified
(the highlighted larger statement can be combined with text g or h, which makes
two more solutions). The problem gets worse the more consecutive statements

1The implementation counts each shape only one time, even if there are different texts that can
be combined with the shape. Otherwise, there would be identified by far more than 41 shapes.

88 CHAPTER 6. POSTPROCESSING

there are. For three consecutive statements (cf. Figure 6.2(a)), the assembler iden-
tifies ten statements (cf. (b)), for four consecutive statements 20 are identified. In
general, for n consecutive statements O(n2) statements are identified.

Again the solution is based on a meta-rule. The option allows for suppres-
sion of those shapes which completely contain another shape, no matter what the
shapes are. This way, only the smallest shapes are preserved, which is exactly the
right thing to do here, as all false positives combine two or more smaller shapes.

6.4 Summary
The need for a postprocessing step is shown in this chapter. Its three goals are
to remove duplicates, identify conflicts, and suppress shapes containing other
shapes. Removal of duplicates minimizes load for the analysis stage, conflicts
can be solved by the analysis stage, but can be identified during postprocessing,
and suppressing of shapes containing other shapes allows for tuning the approach
for the characteristics of diagram languages like NSD.

Each of the options is deduced from observations of diagram languages and
how DSKETCH works with these languages. One of the options controls the iden-
tification of conflicts, while the other is based on a meta-rule, with the goal of
minimizing the load for analysis. Although a fair selection of diagram languages
has been examined (cf. Chapter 2), it cannot be excluded that further diagram
languages impose a need for further options.

Chapter 7

Modeler

An overview of the analysis stage is shown in Figure 1.4. The modeler, described
in this chapter, is the first of three steps in the analysis stage of processing a
sketch. It creates a graph model from the shapes identified in the recognition
stage. The two steps following the modeler are the reducer and the parser, which
are explained in the next two chapters.

The complete analysis stage is based on DIAGEN [69, 68]. DIAGEN is a tool
to generate editors for visual languages from specifications. In fact, this also de-
scribes DSKETCH, with the only exception that the editors generated by DIAGEN

do not support sketching. Also, as mentioned in Section 1.2, the generated editors
provide support for free-hand editing, which is necessary for the combination with
sketching. Accordingly, DIAGEN makes the perfect start for DSKETCH. Editors
generated by DIAGEN exhibit the architecture shown in Figure 7.1. Data struc-
tures are shown as rectangles, processing units are shown as rounded boxes with
underlying shadow, and arrows denote flow of control. The user is provided with
a GUI, the drawing tool, where he can create a diagram in a traditional point-
and-click fashion. Processing the diagram is then split into four steps: modeler,
reducer, parser, and attribute evaluation. The modeler first creates a hypergraph
model representing all components the diagram consists of (what we refer to as
shapes), and the spatial relations between the components. Result is the hyper-
graph model, which is then reduced. Goal of this step is to decrease the size of the
model, and to discard some syntactically invalid patterns. This step yields the re-
duced hypergraph model. The hypergraph parser creates a derivation structure by
applying a bottom-up parser, taking the edges in the reduced model for terminal
symbols. Finally, attributes of the derivation structure can be evaluated in order to
produce the semantic representation as final result. These steps, beginning with
the modeler, are completely adopted in DSKETCH. This chapter explains the mod-
eler in detail, and the modifications that were necessary in order to fulfill the needs
of DSKETCH. The next two chapters do so for the reducer and the parser (attribute

89

90 CHAPTER 7. MODELER

DiaGen/DiaMeta-Einführung, 5.2.2007, Mark Minas

Layout

information

4

DiaGen: Editor Architecture

Hypergraph

model
Modeler

Reduced

hypergraph

model

Reducer Parser
Derivation

structure
Diagram

Drawing

tool

Editor user

selects

operation

selects

operation

Hypergraph

transformer
reads

reads

modifies reads

Layouter

Semant.

represen-

tation

Attribute

evaluation
Highlights syntactically correct sub-diagrams

Figure 7.1: Architecture of an editor generated by DIAGEN.

evaluation is part of the chapter on the parser). Aspects of DIAGEN not relevant
to DSKETCH are the layouter that can rearrange the components of a diagram to
gain a visually more appealing diagram, and the hypergraph transformer, which
allows for structured editing of diagrams using predefined editing operations.

Applied to our topic, the fundamental task of the modeler is to relate the shapes
identified in the recognition stage, according to some rules, and create the hyper-
graph model (HM) which represents both the shapes and the relations. A graph
structure is required because the reducer and the parser essentially apply graph
rewriting techniques. The rules for relating shapes are given by the specification
of a diagram language. To specify what relations between shapes exist, it is first
necessary to describe which regions of shapes can be related at all. These regions
are called attachment areas, described in Section 7.1. Thereafter, relations be-
tween the attachment areas may be defined, which is explained in Section 7.2.
Before the actual creation of the hypergraph model is illustrated in Section 7.4,
it is first necessary to introduce hypergraphs (Section 7.3), which are the central
data structure for the analysis stage. The chapter is summarized in Section 7.5.

7.1 Attachment Areas
An attachment area describes what regions of a shape can be related to other
shapes (a shape is never related to itself). Each shape should have one attachment
area at least; otherwise it cannot be related to other shapes. The definition of

7.1. ATTACHMENT AREAS 91

outline

(object)

full area

(placeArea)

center

(tok)

outline

(object)

tip

(arrowEnd)

tail

(arrowEnd)

input &
output

Figure 7.2: Examples of shapes and their attachment areas. Labels are given in
parentheses.

attachment areas is part of the specification of a shape. Examples are shown in
Figure 7.2. An arrow, for instance, usually has two attachment areas, which are
its tip, where the arrow is attached to its sink, and the point where it is attached
to its source. In a Petri net, both the place and the transition have their outline
as attachment areas, because arrows start and end at the outline of places and
transitions. The place may have its full area as another attachment area, because
tokens can be placed anywhere inside places. Tokens, on the other hand, may
also have their full area as attachment area. Alternatively, only the center point
could be specified as attachment area. The operator shape from BLDs has two
attachment areas, too, which are its left vertical line for input, and its right vertical
line for output.

These examples show that an attachment area can either be a point (arrow,
token), a polyline which may or may not be closed (place, transition, operator),
or a polygon (place, token). In fact, a single attachment area can even be an
arbitrary combination of these three basic building blocks. For example, it is
possible to specify one attachment area for stick figures (cf. Figure 1.5) composed
of the area of the head, both legs, and the outer end points of the lines forming the
arms. Attachment areas are specified in terms of junction points, simple points
and primitives. Examples can be seen in Appendix A.

Unlike DIAGEN, due to the impreciseness of hand-drawing, actual attachment
areas of shapes may be heavily deformed. As an example consider again the tran-
sition from a Petri net. Its only attachment area is a rectangle parallel to the axes.
Figure 7.3 shows the drawing of a transition, along with this rectangle (shown in a
dashed style). It can be seen that the actual strokes differ noticeable from the per-
fect, precise attachment area (a). However, when the user wants to draw an arrow,
say, starting from this transition to some place, he does not care about the perfect

92 CHAPTER 7. MODELER

1 2

3 (a)

a

bc (b)

1 2

3

(c)

Figure 7.3: (a) a transition which is deformed. (b) an arrow respecting the defor-
mation, along with a deformed place. (c) a better approximation to the transition
using seven segments.

rectangular attachment area. Instead, he assumes his own strokes as attachment
area. The same holds for the sink of the arrow, which is a place. It also shows
clear deformations (b).

To account for these issues, when computing attachment areas of shapes, the
actual strokes must be considered, instead of the idealized specification of shapes.
Thus, the polyline for the attachment area of the transition must have more than
just four segments (for the four sides of the rectangle) to follow the actual stroke
more precisely. In this example, even a small increase to seven segments improves
the result a lot, as (c) shows. To simplify the approximation by the polyline, the
actual stroke (or strokes) are taken, which are polylines themselves. For the place,
comprised of arcs, the same approach is followed. By taking the strokes instead
of the actual primitives, arcs are effectively done away with. This simplifies later
computation. Polygons describing attachment areas can be computed in the same
way. The amount of data can even be reduced by taking only every n-th point of a
stroke, where n is a small number like 3. While this means an obvious reduction
of precision, in practice the sampling rate is so high that this does not matter; the
result is a still very precise polyline or polygon which can be easily computed.

Points (simple or junction) and primitives are directly given by the sketch.
However, in some cases they do not suffice to specify an attachment area. Fig-
ure 7.4 shows the grid from Tic-tac-toe. It comprises nine cells, each of which
may contain a mark. The desired attachment areas are shown as rectangles. How-
ever, as indicated by the question marks in the figure, for each of the four corner
cells a point is missing to describe the attachment area properly. Luckily, the co-
ordinates for these four points can be computed from points given by the sketch.
For example, the upper left corner’s point, called ul in the following, has the same
x-coordinate as the simple point l1, and the same y-coordinate as t1. By com-
puting ul from other, given points, new straight lines can be constructed as well.

7.1. ATTACHMENT AREAS 93

t1 t2

b1 b2

r2

r1l1

l2
i4

i1 i2

i3

?

?

ul?

?

constructed

line

constructed

line

Figure 7.4: The grid from Tic-tac-toe requires computing the points indicated by
question marks based on the points given by the sketch, in order to define the
attachment areas in the corners (shown by the rectangles). The constructed lines
(dashed lines) result from the computed points.

In this case, a straight line from l1 to ul, and another one from t1 to ul. Using
these two lines and the sketched lines from l1 to i1 and from t1 to i1, the polygon
describing the attachment area can be defined1.

To conclude, attachment areas are composed of an arbitrary number of points,
polylines and polygons. These are specified in terms of junction points, simple
points and primitives. Sometimes it may also be necessary to compute additional
points and primitives from the ones given by the sketch. Both the polylines and
the polygons consist of straight segments only. Their computation is based on the
original strokes drawn by the user, which are already polylines themselves. In
case of a constructed line, no stroke is present, and the line is represented as one
segment between the points it connects.

1Note that DIAGEN additionally supports the concept of infinite attachment areas, which are
constrained by geometric properties, e.g. all points to the left of a given line. Using this special
kind of attachment area, there is an alternative in specifying the grid cells: for each of the four
lines of the grid, two infinite attachment areas can be specified for each line, one containing all
points to the left of the line and one containing all points to the right of the line for the two vertical
lines, or above the line and below the line for the two horizontal lines. This way, a mark can be
specified to be inside a cell if it is inside the intersection of two or more of the eight attachment
areas. However, DSKETCH does not support the concept of infinite attachment areas.

94 CHAPTER 7. MODELER

Figure 7.5: Three different cases of two related circles. The three cases cannot be
distinguished by relation types only, but require further conditions.

7.2 Relations

A relation between two different shapes is given if two attachment areas, one from
each shape, are overlapping. However, not every pair of overlapping attachment
areas is relevant. Part of the specification of a visual language is to describe which
attachment areas can be related at all. This is described by relation types. Relation
types describe how shapes may be related to each other by telling what attachment
areas may be related. In order to distinguish between attachment areas, each area
is labeled in the specification, as shown in Figure 7.2 (the labels are written inside
the parentheses). Labels may be reused for different attachment areas, or they may
be unique for an attachment area. This decision is completely free to the writer of
the specification.

Again Petri nets are considered as example. Both attachment areas of the
arrow can be labeled with arrowEnd, for example. The outline of place and
transition can be labeled with object. Then a relation type can be defined between
object and arrowEnd, and by doing so arrows can be attached to places and
transitions. The area of the place can be labeled placeArea, and the attachment
area of the token (whether it is a polyline, area, or point) can be labeled tok. Then
a relation type can be specified between placeArea and tok to indicate that tokens
can be related to the area of places.

To distinguish relation types from each other, they are labeled, too. This is
necessary for subsequent steps of the analysis stage. For example, the relation type
between object and arrowEnd can be labeled by attachedTo, and the relation
type between placeArea and tok by contains.

Relation types may have a condition. The condition allows restricting the
presence of relations. For example, let a circle have its outline as attachment area,
and let there be a relation type that allows for relating two circles. Then, using
relations alone it cannot be distinguished for two related circles whether one circle
contains the other, or the circles lines intersect, or the circles are next to each other
(cf. Figure 7.5). Using conditions, these cases can be distinguished. Note that the
original DIAGEN already supported conditions.

Finally, there is a subtle distinction of relation types. The arrow in Figure 7.3 is

7.3. HYPERGRAPHS 95

clearly meant to connect the transition to the place, although it neither touches the
place nor the transition. Obviously, some threshold has to be allowed for, because
shapes will never be neatly aligned when drawn by hand. The larger the threshold
is, the more forgiving the system is in terms of sloppily connected shapes. On the
other hand, a token inside a place does not need any threshold. Even when drawn
by hand, the token can be easily placed inside the place. Even more, if some
threshold is applied, a token drawn next to a place would also be recognized as
inside the place, according to the relation type contains from above. This means
that for some relation types a threshold is absolutely necessary, while for others it
is harmful and allows for a wrong interpretation. The later kind of relation type is
called rigid to indicate that no threshold is considered, while the former kind of
relation type is not rigid. Whether a relation type is meant to be rigid or not can
be specified as part of the condition. In DIAGEN, no such large thresholds need
to be allowed for, as the input is much more precise. Accordingly, the notion of
rigid is not necessary.

7.3 Hypergraphs
As mentioned in the introduction to this chapter, both shapes and relations are
represented in a hypergraph [9] in DIAGEN. A hypergraph is like a regular graph,
but each edge may be connected to an arbitrary number of nodes. When speaking
of a hypergraph, an edge is said to visit nodes. Each edge and node may be labeled,
although in DIAGEN only edges are labeled, nodes are not. The arity of an edge,
i.e., the number of nodes it visits, depends on the label of the edge. In this sense,
a regular graph can be seen as a hypergraph where the arity of each edge is 2.
In a hypergraph, edges are called hyperedges, and nodes are called hypernodes.
Nevertheless, the terms edge, node and graph will often be used if it is clear from
the context that they refer to a hypergraph. Hyperedges with an arity of 1 are
called unary; hyperedges with an arity of 2 are called binary.

Hypergraphs are well suited for a graphical representation. Figure 7.6 shows
a hypergraph consisting of seven edges and four nodes. Nodes are shown as filled
circles. Edges are shown as boxes with the label of the edge written inside. Some-
times, as for the edge labeled c in the figure, edges are not shown as boxes, but as
polygons. Each node visited by an edge is connected to that edge by a line, called
a tentacle. To distinguish the nodes visited by an edge, the tentacles are numbered.
For unary edges, this is not necessary. Edges and nodes may be given a unique
name to distinguish them from other edges and nodes. In the case of nodes, the
name is written next to the node. In the case of edges, the name is written inside
the edge, separated from the label by a colon, e.g. n1:a. For binary edges there is
a special notation. They can be drawn as bold arrows from the first visited node

96 CHAPTER 7. MODELER

n1:a

a

1

2

b

a

1

2 3

edge label tentacle

binary edge

n2

node

name

(edge)

name

(node)

c a

b

j

i

Figure 7.6: A hypergraph consisting of seven edges and four nodes.

to the second. Both edges labeled b in the figure thus are equivalent binary edges
between the same two nodes i and j.

Furthermore, each hyperedge may have attributes. An attribute is a (name,
value) pair. The name of an attribute must be unique for the edge; different edges
may have attributes with the same name. Attributes of an edge depend on the
label of the edge, i.e., different edges with the same label also have the same
attributes, although with different values in general. Attributes are not shown
in the graphical representation shown in the figure. For an edge named n, the
attribute attr is denoted as n.attr.

7.4 Creating the Hypergraph Model

First, the modeler establishes all relations between the attachment areas of all
shapes. Then, the hypergraph model (HM) is created. It represents all shapes,
all relations, and all conflicts. Section 7.1 describes how attachment areas are
computed based on the specification of shapes.

For each pair of attachment areas labeled a and b where a relation type r
between a and b is specified, the distance between a and b is calculated (see
below). Then, this distance is compared to a threshold (set to 40 in the prototypical
implementation). This allows for convenient drawing of shapes, as they do not
have to stick together very closely. If the distance between the attachment areas
is not greater than the threshold, and if the condition of the relation type holds (if
there is one), an actual relation of type r between a and b is found. In case that
r is rigid, there is no threshold allowed and the two attachment areas must touch
each other, i.e., their distance is 0.

Let {a1, . . . , ai, . . . , an} be the constituents of attachment area a, i.e., each

7.4. CREATING THE HYPERGRAPH MODEL 97

ai, 1 ≤ i ≤ n is either a point, a polyline, or a polygon. Let {b1, . . . , bj, . . . , bm}
be the constituents of attachment area b. Then the distance between a and b is the
minimum of all distances between each ai and each bj , so

dist(a, b) := min{dist(ai, bj) | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}

Points, polylines and polygons can all be seen as (possibly infinite) sets of
points. The distance between ai and bj then is the minimum of all Euclidean
distances between each two points from these two sets, so

dist(ai, bj) := min{‖s− t‖ | s ∈ ai, t ∈ bj}

Using algorithmic geometry, dist(ai, bj) can be computed.
For the creation of the HM, the modeler represents each shape as edge labeled

with the name of the shape, e.g., place or transition in the case of Petri nets. These
edges are called shape edges. All attachment areas of all shapes are represented by
a unique node each. Each shape edge visits exactly those nodes which represent
its attachment areas, and the nodes are visited in the order in which the attachment
areas are specified for the shape. As a result, each node is visited by exactly one
shape edge in the HM.

Relations between shapes are represented as binary edges, which are called
relation edges. The label of the corresponding relation type is also used as label
for the relation edge. In the graphical notation, the special notation with the bold
arrows is used to represent relation edges. Relation edges always visit the two
nodes representing the attachment areas which are related. The attachment area
which is specified first for the relation type is visited first, too. In the example
from Section 7.2 the attachedTo relation always visits the node representing the
object area first and the node representing the arrowEnd area second.

A drawing of a Petri net with one transition, two places, two arrows and one
token is shown in Figure 7.7(a), along with two HMs, given that there are no
duplicates. The first HM (b) is the one that is actually intended. The six shapes
from the drawing are represented by one shape edge each, and five relation edges
attach the two arrows to their sources and targets, and the token inside the left
place. Note that the direction of the arrows in the drawing can be seen in the HM
by the numbering of the tentacles. The source of the arrows is always numbered
with 1, the target with 2.

However, because a circle is defined as the shape for both a place and a token,
from the three circles in the drawing three places and three tokens are recognized,
and must be represented in the actual model (c). HM (b) is a subset of (c); it is still
valid, but grayed out to put emphasis on the extra information. The dashed lines
indicate the conflicts which were found in the postprocessing step, because a token
and a place recognized from the same circle use the same stroke (cf. Section 6.2).

98 CHAPTER 7. MODELER

(a)

token

2

1

1

2

1

a
tt

a
c
h
e

d
T
o

1

2

a
tt

a
c
h

e
d

T
o

a
tt

a
c
h
e
d
T
o

attachedTo

2
place

arrow

transition

arrow

place

(b)

2

2

1

2

1

1

1

2

2

token

contains

1

transition

a
tt

a
c
h
e

d
T
o

a
tt

a
c
h
e
d
T
o

a
tt

a
c
h
e

d
T
o

attachedTo

token

place

arrow

place

arrowtoken

place

(c)

Figure 7.7: (a) hand-drawn Petri net. (b) desired HM of the Petri net. (c) actual
HM; the desired HM is grayed out, conflicts are shown by dashed lines. The
crossed out relation edges are correct, but suppressed due to the conflicts.

7.5. SUMMARY 99

Two shape edges are called conflicting if the shapes they represent have a conflict.
This circumstance is always shown by dashed lines.

As more shapes are found, the modeler also identifies more relations between
those. What surprises initially, but is nevertheless correct, is that a place always
contains the token which is recognized from the same stroke, although the respec-
tive shape edges are conflicting. While shown in the figure for the sake of clarity,
the modeler actually does not regard relations between conflicting shapes, and
does not create respective relation edges in the HM for those relations. Recall that
a conflict between shapes means that only one of them can be correct, and one is
definitely false, so relations are of no interest between conflicting shapes. All the
extra information in (c) is not intended and will be dealt with in the next two steps
of analysis, the reducer and the parser.

Shape edges are attributed based on the shapes they represent. For each text
primitive in the shape (defined in the specification), an attribute is generated au-
tomatically, with the name of the text as name of the attribute, and the actual text
as value of the attribute. The same is done for the rating of the shape, which is
represented as an attribute named rating. Other attributes cannot be generated
automatically, but have to be specified. They are always based on computations
on the (junction) points of the shape. Take a place, for example, where center
and radius can be computed and stored as attributes of the respective shape edges.
These attributes can then be used by the reducer and the parser.

The modeler as described in this section differs only in details from the origi-
nal DIAGEN modeler. Our application of the modeler additionally considers de-
formed attachment areas and conflicts between shapes, and automatically adds
attributes representing the values of text primitives and the rating.

7.5 Summary
Based on attachment areas of shapes, and relation types specified between these,
the modeler creates a hypergraph model called HM. This model is used by the
subsequent processing steps to complete analysis. In the HM, each shape is repre-
sented as a shape edge, and each relation is represented as a binary relation edge.
The identification of relations depends on the kind of attachment areas, which can
be a combination of points, polylines and polygons. Relation types can have an
optional condition. Using this condition it can be specified, for example, whether
a relation type is rigid or not, i.e., whether a threshold may be allowed for the
identification of an actual relation. Conflicts are also represented in the HM, as
well as attributes, which can be attached to edges. The modeler assures that no
relation between conflicting edges is represented in the HM.

Compared to the original modeler found in DIAGEN, DSKETCH makes the

100 CHAPTER 7. MODELER

following additions and changes (all other aspects are left unchanged): attach-
ment areas may be deformed in DSKETCH, a larger threshold is applied for the
identification of relations, relation types may be rigid, conflicts are considered,
and some attributes and their values are computed and added automatically. This
means that the notion of attachment areas, relations, relation types, conditions for
relation types, and using a hypergraph representation have already been part of
DIAGEN.

Chapter 8

Reducer

In the second step of the analysis stage, the HM yielded by the modeler is reduced
to the reduced hypergraph model (RHM). The RHM is then processed by the
parser as final step in the analysis stage, as shown in Figure 1.4. The parser is
discussed in the next chapter.

The need for a reducer, explained in this chapter, stems from two considera-
tions: (i) a model with less nodes and edges can be expected to be processed more
efficiently, and (ii) there may be syntactically invalid patterns which can be easily
identified and removed. Of course, by removing invalid patterns, the size of the
graph decreases automatically. Furthermore the structure of the HM is generic in
that each edge is either a shape edge or a relation edge, no matter what the domain
is. Using specific knowledge of the domain, a more compact representation of the
HM can be achieved. The structure of the RHM is no longer generic, but depends
on the domain.

The reduction process is guided by reduction rules. These are part of the
specification of a diagram language. Because the application of reduction rules
is related to graph transformation, Section 8.1 gives a brief introduction into this
topic first. Then, Section 8.2 explains reduction rules and their application in
detail. In Section 8.3 some issues are investigated that are emerging from our
application of the DIAGEN system to sketching. A quick glance at future work is
given in Section 8.4. Finally, Section 8.5 summarizes the chapter.

8.1 Graph Transformation

Graph transformation means to modify a given graph G by the application of
graph transformation rules. In our case, as well as in DIAGEN’s, we deal with
hypergraphs, which have been introduced in Section 7.3. A graph transformation
rule is given by a left-hand side (LHS) L and a right-hand side (RHS) R, both of

101

102 CHAPTER 8. REDUCER

a

a

b

G

a a

1

2

1

2 3

x:a

d

R
y

z

a

d

H

a a

1

2

1

2 3

x:a

a

b

L
y

z

b b

c c

Figure 8.1: A graph transformation rule with LHS L and RHS R, and its applica-
tion to a graph G, yielding a graph H .

which are graphs (hypergraphs in our case). The idea of graph transformation is
to identify an occurrence of L in G (called a match) and replace that occurrence
with R to yield the resulting graph H . One application of a rule is called direct
derivation. A transformation of one graph into another can then be given as a list
of direct derivations.

The key idea of a direct derivation is to delete those objects (edges and nodes)
in G which are in L but not in R, to add those objects which are in R and not in L,
and to preserve those objects which are both in L and R. An example is the rule
given in Figure 8.1. L and R are separated by a bold arrow. Identical objects in L
and R are given the same name (x, y, and z). One of two possible matches of L
in the graph shown in Figure 7.6 is shown below the bold horizontal line, which
separates the rule from its application to G yielding H . For the match, each object
in L must be identified in G, which is achieved by finding a morphism between L
and G. This is indicated by thin dashed arrows in the figure. The resulting graph
H of applying the rule is also shown. It can be seen that all objects which are
both in L and R are still present in H (x, y, and z), that all objects which are in
R but not in L are added (the edge labeled d), and that all objects in L but not in
R are removed (the unnamed edges labeled a and b). An introduction to graph
transformation is given in [51]; a detailed and formal discussion is given in [82].

As mentioned above, there is a second match for L in G, where the edge
labeled b is different. What can be seen in the figure is that this second match can
only be found in G, but not in H . Accordingly, after the rule is applied the first
time, no matter for which of the two matches for L, it cannot be applied a second
time in this example. It follows that the result is influenced by the ordering in

8.2. REDUCTION RULES 103

which rules are applied.

8.2 Reduction Rules
The rule application performed by the reducer is different from the general ap-
proach to graph transformation described in the previous section. Reduction rules
also have an LHS and RHS (and more, see below), and matches for the LHS are
searched for in the HM, but the HM is not modified by the reducer. Instead, a
different model, the reduced hypergraph model (RHM) is modified. Initially, it
is empty. For each match of an LHS in the HM all objects in the correspond-
ing RHS are added to the RHM. The effect is that the same object in the HM
can be matched by different LHSs, even if it is not in the corresponding RHSs.
This would not be possible with graph transformation as described in the previous
section. Also, no object is ever deleted in this process. An example is shown in
Figure 8.2. We assume the same rule as in Figure 8.1, with the exception that the
node named z now is different in L and R. There are two matches for the LHS of
the rule in the HM. The RHM shown in Figure 8.2 comprises all objects from the
respective RHSs R′ and R′′. Although rule applications are independent of each
other, edges x’ and x” are equal in the RHM, because they occur both in the LHS
and the RHS of the rule, and because they are matched by the same edge in the
HM. A similar observation holds for nodes y’ and y”, so these two are also equal
in the HM. The edges named d’ and d”, and the two unique nodes they visit, only
occur in the RHSs R′ and R′′ of the rule applications, but not in the LHSs, so they
are not equal in the RHM. See [68] for a detailed description of the semantics of
the DIAGEN reducer.

The reducer applies reduction rules in the described way for each match of an
LHS of a reduction rule. As the number of nodes and edges in the HM is finite,
and the number of reduction rules is also finite, this process certainly terminates.
Note that the parser (cf. Chapter 9) works with the RHM only, so any necessary
information which is not transformed by a suitable rule is lost. By convention,
labels used for the edges in the RHM are different from the labels used for edges
in the HM.

A reduction rule consists of five parts, (i) an LHS, (ii) a RHS, (iii) an optional
condition, (iv) an optional action, and (iv) a (possibly empty) set of negative ap-
plication conditions (NACs). (i) and (ii) have been described above. If a match
for an LHS is identified, the rule is applied, and the action (iv) is processed, if
there is one. Actions are used to set attributes of the edges in the RHS. If there
is a condition (iii), it must hold; otherwise the rule is not applied. Finally, rules
may have attached one or more NACs, where each may have an own condition. A
NAC is again a graph, and it restricts the application of a rule. If a match for the

104 CHAPTER 8. REDUCER

a

a

b

HM

a a

1

2

1

2 3

x':a

d'

R'
y'

(x' = x''):a

d''

RHM

x':a

a

b

L'
y'

b

c

x'':a

a

b

L''
y'' x'':a

d''

R''
y''

d'

y' = y''

Figure 8.2: Two applications of a reduction rule similar to the one in Figure 8.1,
and the resulting RHM. Those nodes and edges in the HM that do not occur in
matches of the LHS are grayed out.

NAC is found in the HM, rule application is prohibited. Just like for the LHS, the
condition of the NAC must hold for a successful match. Examples for NACs are
given below.

We continue the example of Petri nets given in Section 7.2. First, a new at-
tachment area transArea is specified for transitions, which is made by the full
area covered by a transition. Then, a relation type touchTP from transArea to
placeArea is added. Using this relation type it can later be determined if a place
and a transition touch each other or overlap, which we do not allow in this exam-
ple. Because overlapping or touching transitions and places are also not allowed,
a second relation type touchTT from transArea to transArea is added, and a
third relation type touchPP from placeArea to placeArea.

Assuming the new attachment area transArea and the three new touchXX
relation types, and everything that has been specified before in Section 7.2, the
reduction rules for Petri nets are shown in Figure 8.3. The bold arrows pointing
from left to right separate the LHS from the RHS. By convention, all edges in the
RHS of reduction rules have labels starting with t . This convention is explained
in the next chapter. Conditions are given textually (cf. 8.3(c)). They always refer
to edges in the LHS only. In rule (c) we assume that both for edges labeled place

8.2. REDUCTION RULES 105

1

2

1

2

a

a

1

2

place

place

t_place

transition

(a)

1

2

1

2

a

a

1

2

transition t_trans

placetransition

(b)

a

a

2

1

contains

Condition: t.radius < p.radius / 2

t:token

p:place

t_token

(c)

b

a

2

1

1

attachedTo

attachedTo

2

2 1

a

b

2

1

t_arrow

transition

arrow

place

(d)

t_arrow

b

a

transition

arrow

1

place

2

1

attachedTo

attachedTo

2

2 1

a

b

1

2

(e)

Figure 8.3: Reduction rules for Petri nets. Rules (d) and (e) are different in that
the former corresponds to an arrow from a place to a transition, while the latter
corresponds to an arrow from a transition to a place.

and token an attribute radius is defined, which contains the radius of the circle
as value. Actions are given textually as well, but only refer to edges in the RHS
(no actions are shown in Figure 8.3). Attributes of edges in the RHM have to be

106 CHAPTER 8. REDUCER

2

2

1

1
t_trans

t_arrow

t_place

t_token

t_arrow

t_place

Figure 8.4: The RHM for the HM shown in Figure 7.7(b).

specified, too. Using the actions, their values can be set, and information can be
forwarded from the HM to the RHM. Unlike those attributes of edges in the HM
which can be generated and set automatically (cf. Section 7.4), for edges in the
RHM all attributes have to be explicitly specified. NACs are shown as part of the
LHS with a gray background, and crossed out (cf. 8.3(a), (b)). In this example,
the NACs do not have conditions. Note that there are no reduction rules for arrows
connecting two places or two transitions. These are invalid patterns which are not
processed by the reducer, and are thus not present in the RHM.

As an example, using these rules the HM shown in Figure 7.7(b) is reduced
to the RHM shown in Figure 8.4. In this case, the HM does not contain any
touchXX edges, as no places and transition overlap in the sketch. It can be seen
that the RHM is much smaller indeed, mainly because the relations are no longer
explicitly represented by edges, and because there are far less nodes. In total,
the HM consists of eleven edges and ten nodes, while the RHM consists of six
edges and only three nodes. Reduction of the HM shown in Figure 7.7(c) will be
discussed in the context of a larger example in Section 9.5.

Usually the design of reduction rules allows for some freedom. An alterna-
tive specification for Petri nets could use the rules shown in Figure 8.5 instead of
rules 8.3(a) and 8.3(c), with all other rules from Figure 8.3 left unchanged. The
difference is that tokens are no longer modeled explicitly by dedicated edges in
the RHM, but by an attribute of edges labeled t place. Accordingly, the rules in
Figure 8.5 distinguish whether a place contains a token or not, and apply the cor-
rect action. In this example, there also is a condition for the NAC in Figure 8.5(a).
This NAC prevents the application of the rule only if a match for the NAC is found
and the token in the match is sufficiently small.

A special kind of reduction rule (which is not relevant to Petri nets) describes
how nodes in the HM are merged in the RHM. This means that the reducer maps
two nodes from the former model to only one node in the latter. An example is
shown in Appendix A.2.8. This rule sometimes comes in handy (as for NSD, for
example), and is another alternative to reduce the size of the RHM.

8.3. CONFLICTS AND NEGATIVE APPLICATION CONDITIONS 107

1

2

2

a

a

1

2

contains

Action: t'.token = false

Condition:

t.radius < p.radius / 2

p:place t':t_place

1

transition

t:token

place

(a)

1

2

1

2

a

a

1

2

contains

Condition: t.radius < p.radius / 2

Action: t'.token = true

transition place

t':t_placep:placet:token

(b)

Figure 8.5: Two alternative reduction rules for Petri nets which are a substitute for
the rules shown in 8.3(a) and (c).

8.3 Conflicts and Negative Application Conditions

The situation rarely is as simple as illustrated in the previous section. In the fol-
lowing paragraphs some further issues are therefore discussed. Handling these
issues marks the difference between the reducer in DIAGEN and our adaption.

The first issue concerns the conflicts between shapes, which are identified in
the postprocessing step (cf. Section 6.2). It may happen that shape edges matching
an LHS of a reduction rule are conflicting. The rule must not be applied in this
case, as a conflict indicates that one of the edges is wrong. The reducer therefore
checks that no two conflicting edges occur in the same match for an LHS of a
reduction rule. The same observation holds for NACs; a match for a NAC must
not contain conflicting edges.

Taking a closer look at NACs reveals another issue. For example, the recog-
nition stage identifies the transition and the place (or token) on the left hand side
of Figure 8.6(a), next to the arrow and the transition on the right hand side. The
modeler then creates the HM shown in 8.6(b). Now edges p and t mutually satisfy
a NAC for each other, so for these two edges neither rule 8.3(a) nor rule 8.3(b)
can be applied, although the LHSs of both rules are matched. The resulting RHM
is shown in 8.6(c). At this point, all information about the place and transition is
lost. Accordingly, the system can no longer recognize at least one of the two as
correct. Obviously, it would be better if either the place or the transition could
be included in the final result (although the sketch itself is syntactically wrong).
Therefore, it is necessary that they are both represented in the RHM.

As a solution to this issue, the idea of conflicts has to be conveyed to the RHM.
Like in the HM, edges in the RHM can also be conflicting, and again conflicts are
a symmetric binary relation between these edges. Using conflicts, NACs can be

108 CHAPTER 8. REDUCER

p

t

(a)

2

2

21

2

1

1

1

attachedTo

attachedTo

a

c

b

transition

arrow

p:place

t:transition

token

(b)

21

ab

t_trans

t_arrow

(c)

21

abc

t_arrow

t_transt':t_trans p':t_place

(d)

2

2

21

2

1

1

1

attachedTo

attachedTo

touchTP

a

c

b

transition

arrow

p:place

t:transition

token
1

2

1

2

a

1

2

place

placetransition

HML

(e)

Figure 8.6: A sketched Petri net and different models created from the sketch.
(a) hand-drawn Petri net. Place p and transition t touch each other, and both are
attached to the arrow. (b) HM created for the Petri net. The token edge and the
edge named p are not related because they are conflicting. (c) RHM if NACs are
strictly obeyed. (d) RHM if processing of NACs is relaxed. (e) a match for the
LHS and one NAC in the HM of the production rule shown in Figure 8.3(a).

8.3. CONFLICTS AND NEGATIVE APPLICATION CONDITIONS 109

processed differently. Instead of prohibiting the application of a reduction rule if
a NAC is matched, the rule has to be applied anyway. In order to not render the
NACs useless, respective information about the matched NAC has to be added to
the RHM. This information can be expressed by conflicts, which is shown below.
The desired result of this changed behavior of NACs is shown in 8.6(d) (note that
there is, for (c) as well as for (d), no t token edge generated, as in the HM in (b)
the token edge conflicts with the place edge, which must not be the case for a
match of the LHS, as discussed above).

Conflicts in the RHM, like the one shown in Figure 8.6(d), must be derived
automatically from satisfied NACs. Informally speaking, if edges match a NAC
in one application of a reduction rule, and match an LHS in the application of
another rule, then there is a conflict in the RHM between the edges added from
both rules’ RHSs. In the example from Figure 8.6(b) there were two applications
of reduction rules where a NAC was matched. With the changed behavior of NACs
the following happens. The rule from Figure 8.3(a) is applied which reduces the
place p to an edge labeled t place, named p’ in the figure. The touchTP relation
and transition t satisfy a NAC for this application (cf. Figure 8.6(e)). The situation
is very similar for the other rule that is applied, the one from Figure 8.3(b). It
reduces the transition t to an edge labeled t trans, named t’ in the figure. The
touchTP relation and place p satisfy a NAC for this application. Following the
informal statement made in the beginning of this paragraph, both edges t’ and p’
must have a conflict in the RHM, and this is the case shown in Figure 8.6(d).

In both rule applications the touchTP relation edge was necessary to match a
NAC. However, this edge is not in the match for an LHS of one of the rules. Still,
a conflict emerges in the RHM. Accordingly, relation edges are not relevant when
computing conflicts in the RHM, only shape edges are.

In the general case there can be more than just one shape edge in the match for
an LHS and NAC. Then, it is more difficult to determine a conflict in the RHM. To
express this circumstance precisely (and in preparation of the next chapter about
the parser), two additional attributes are required for edges added to the RHM,
the attributes shapeedges and nacs. The values of these attributes are set based
on the rule applications. They work in the following way. Let there be a rule
application r where

L = {l1, l2, . . .} is the set of edges in the match for the LHS of r

R = {r1, r2, . . .} is the set of edges in the match for the RHS of r

A = {A1, A2, . . .} is the set of all matches of all NACs of r

where each Ai ∈ A is the set of all edges in one match of one NAC of r

110 CHAPTER 8. REDUCER

In order to simplify the later definition of conflicts a function shape is required.
Let S be a set of edges from the HM. Then

shape(S) := {s|s ∈ S ∧ s is a shape edge}

denotes that subset of S containing all shape edges in S. Then for all ri ∈ R the
values of the two new attributes are set as follows.

ri.shapeedges = shape(L)

ri.nacs = {shape(A1), shape(A2), . . .}

For an edge e in the RHM both attributes describe which shape edges were re-
quired to create e, and which other combinations of shape edges were actually
supposed to prevent this. Using these attributes, conflicts in the RHM can finally
be defined. Let there be two edges e and e’ in the RHM. Then

e and e’ are conflicting⇔

(∃N ∈ e.nacs : N ⊆ e’.shapeedges)∨(∃N ∈ e’.nacs : N ⊆ e.shapeedges)

The last issue discussed in this section again refers to conflicts in the HM. In
the following it is assumed that the different touchXX relation types introduced
in Section 8.2 are left out from the specification, as well as all NACs requiring
these relation types. Given that both a transition and a place (a token, respec-
tively) are recognized in the sketch shown in Figure 8.7(a), the modeler creates
the HM shown in Figure 8.7(b). Because there are no NACs for the reduction
rules, the conflicting edges p and t are now valid matches for LHSs of reduction
rules, resulting in a t place edge and a t trans edge in the RHM. In doing so,
the original conflict from the HM would be lost (cf. Figure 8.7(c)). Consequently,
the original conflict from the HM must be represented in the RHM, and again this
can be accomplished with conflicts in the RHM (cf. Figure 8.7(d)). Informally
speaking, if there is a match for the LHS in an application of a reduction rule,
and edges conflicting with the edges from this match are themselves in a match
for the LHS in the application of another rule, then there is a conflict in the RHM
between the edges added from both rules’ RHS. Using the concept established
above, this can easily be expressed with the additional attribute nacs defined for
edges in the RHM. As before, let there be a rule application r where

L = {l1, l2, . . .} is the set of edges in the match for the LHS of r

R = {r1, r2, . . .} is the set of edges in the match for the RHS of r

A = {A1, A2, . . .} is the set of all matches of all NACs of r

8.3. CONFLICTS AND NEGATIVE APPLICATION CONDITIONS 111

21

2

1

12

attachedTo

attachedTo

a

c

b

transition

arrow

p:place

token

t:transition

(a)

21

2

1

12

attachedTo

attachedTo

a

c

b

transition

arrow

p:place

token

t:transition

(b)

21

abc

t_arrow

t_transt':t_trans p':t_place

(c)

21

abc

t_arrow

t_transt':t_trans p':t_place

(d)

Figure 8.7: (a) a sketched Petri net. (b) HM if places and transitions may overlap.
It is assumed that the recognizer identifies both a transition and a place (token)
from the shape on the left hand side. (c) RHM where information about conflicts
is lost. (d) RHM where information about conflicts is present. Note that the token
is not reduced due to its conflict with the place edge in the HM.

where each Ai ∈ A is the set of all edges in one match of one NAC of r

Let C be the set of all shape edges in the HM which have a conflict with an edge
in L, i.e.,

C = {c1, c2, . . .} :=

{e|e is a shape edge in the HM ∧ ∃l ∈ L : e and l are conflicting}

Using this definition, C cannot contain relation edges, as conflicts occur only
between shape edges in the HM. Now for all ri ∈ R the value of attribute
shapeedges is set as before, and the value for attribute nacs is set as follows.

ri.nacs = {shape(A1), shape(A2), . . .} ∪ {{c1}, {c2}, . . .}

This example shows that conflicts in the HM are automatically propagated to
the RHM, even if there are no suitable NACs. It can also be seen that conflicts
in the HM, as well as matches for NACs, are mapped to the same concept in the
RHM. In the RHM it does not matter from what circumstance a conflict emerged.
The parser, discussed in the next chapter, processes these conflicts.

In Section 5.5 ratings have been introduced for shapes. These ratings have to
be carried over to the RHM in order to influence the parsing process. We define

112 CHAPTER 8. REDUCER

the rating of an edge t in the RHM as

rating(t) :=
∑
{rating(e)|e ∈ t.shapeedges}

NACs, conditions and relation edges do not influence the rating of t.

8.4 Future Work
Interpreting NACs in a way that they do not prevent application of reduction rules,
but have extra information generated into the RHM as explained in Section 8.3,
has proven to be valuable for DSKETCH. The conflicts which are added to the
RHM are considered by the parser to compute only syntactically valid derivation
structures. However, regular diagram editors not based on sketching, but on tra-
ditional user interfaces, may also benefit from this changed interpretation. The
DIAGEN system is an example. The actual gains possible by interpreting NACs
differently have to be investigated. A possible benefit may be that the system could
show more precise error messages in case of syntactically erroneous diagrams.

8.5 Summary
Based on the HM created by the modeler, the reducer creates the RHM. It is
usually smaller than its predecessor in terms of number of edges and nodes. This
allows for a more efficient parsing. Invalid patterns in the HM are ignored by the
reducer, and do not have to be taken into account by the parser. The structure
of the HM is no longer domain-independent as the HM was, but depends on the
domain.

The reduced hypergraph contains information about conflicts between edges.
This information is generated either from conflicts between edges of different
matches in the HM, or by the application of NACs. The key idea of NACs is
to apply rules even if matches for NACs would actually prevent this. Then, the
parser can use the identified conflicts when processing the RHM.

Chapter 9

Parser

The final step in the processing of a hand-drawn diagram is the parsing of the
RHM (cf. Figure 1.4). This allows both for checking the syntax of the diagram
and for generating a derivation structure which can then be used to determine the
semantics of the diagram. The applied parser is a bottom-up parser which treats
the edges in the RHM as terminal symbols. For this reason the names of all edges
in the RHM start, by convention, with t to indicate their role. According to the
grammar and its production rules given in the specification, the parser tries to
deduce the start symbol of the grammar. If this succeeds, the semantics of the
drawing can be evaluated based on the derivation structure. If deduction of the
start symbol is not possible, no semantics can be computed, and the drawing is
found to be incorrect. The parser works on a best-effort basis. If it is not possible
to deduce the start symbol using all terminal symbols, a subset is considered, while
the remaining symbols are ignored. The subset is chosen based on the ratings of
the terminal symbols. The derivation structure is, depending on the productions,
either a tree, or a directed acyclic graph (DAG).

The parser works similar to a Cocke-Younger-Kasami (CYK) parser [1] for
string grammars. Consequently, the hypergraph grammar must be transformed
into Chomsky normal form (CNF). The consequences of this approach are inves-
tigated in Section 9.1. As stated in the previous chapter, the parser must regard the
conflicts found between edges in the RHM. This is necessary for every deduction
step, and defines the difference to the original DIAGEN approach. The basic idea
is to forbid the deduction of nonterminal symbols if this involves using conflict-
ing terminal symbols. The detailed discussion of this idea is split according to
the different kinds of production rules, and can be found in Sections 9.2 through
9.4. A larger example illustrating the interplay of the rules is given in Section 9.5.
Semantics based on attribute evaluation are explained in Section 9.6, along with
an illustration of which diagram is chosen if there is a selection of several possible
diagrams. Finally, Section 9.7 summarizes the chapter.

113

114 CHAPTER 9. PARSER

Production rules have an LHS and an RHS. In the following we say that
production rules are applied. The application of a production rule is a production.
The LHS of a production (rule) is said to be derived into the RHS, or the LHS is
said to be deduced from the RHS, which means the same, but reflects better that
the parser works bottom-up.

9.1 Production Rules
A CYK parser allows for parsing strings according to a context-free string gram-
mar. As a premise, the grammar must be transformed into CNF, which is possible
for context-free grammars if and only if the empty string is not in the language of
the grammar. DIAGEN adopts this approach, and allows for parsing context-free
diagram languages similar to CYK. The difference lies in the relation between
terminal symbols. In string grammars, terminal symbols are given as a sequence,
each having one predecessor (except for the first one), and one successor (except
for the last one). In diagram languages, terminal symbols (represented as hyper-
edges), do not form a sequence. Each terminal symbol is related to a fixed number
of other terminal symbols by visiting the same nodes (the actual number depends
on the label of the terminal symbol). It is not meaningful to speak of a predecessor
or a successor in this case.

As has been shown in [68], context-free hypergraph grammars can also be
transformed into CNF, and the CYK approach can be applied similarly. This
means that there are only two different kinds of production rules to be considered:

• A nonterminal symbol that is derived into two nonterminal symbols (a non-
terminal production rule, abbreviated NPR).

• A nonterminal symbol that is derived into a terminal symbol (a terminal
production rule, abbreviated TPR).

We omit rules where the start symbol is derived into the empty diagram. The
production rules for Petri nets are shown in Figure 9.1, before the transformation
to CNF. Hereby it is assumed that tokens are represented explicitly by edges in
the RHM (as in Figure 8.3). Production rules for arrows are not discussed now,
but below.

Edges from the RHM are called terminals in the following. Nonterminal sym-
bols, which are hyperedges as well, are called nonterminals. The labels of non-
terminals begin with an uppercase letter, again by convention. Furthermore, Fig-
ure 9.1 shows nonterminal symbols as rounded rectangles, and so all following
figures will do.

9.1. PRODUCTION RULES 115

a
t_token

a

::=

t_placePlace

aa

::=

t_placePlace
(a)

a
t_token

a

::=

aa

::=

Place t_place

t_placePlace

(b)

::=

::=

aa

::=

t_transTrans

SetTrans

Trans

SetTrans

Trans

SetTrans

(c)

::=

::=

aa

::=

t_transTrans

SetTrans

Trans

SetTrans

Trans

SetTrans

(d)

::=

::=

aa

::=

t_transTrans

SetTrans

Trans

SetTrans

Trans

SetTrans

(e)

::=

::=

::=

SetPlace

SetPlace SetPlace

Place

SetTrans SetPlacePetriNet

Place

(f)

::=

::=

::=

SetPlace

SetPlace SetPlace

Place

SetTrans SetPlacePetriNet

Place

(g)

::=

::=

::=

SetPlace

SetPlace SetPlace

Place

SetTrans SetPlacePetriNet

Place

(h)

Figure 9.1: Production rules for Petri nets. Rules for arrows are not shown. The
start symbol is labeled PetriNet.

As can be seen from the rules, the grammar for Petri nets exhibits five different
nonterminals labeled PetriNet, SetPlace, SetTrans, Place, and Trans. In this
simple example, only edges labeled Place or Trans visit a node, all other non-
terminals do not. Note that it would actually be sufficient for Place and Trans
edges not to visit any nodes as well, as these nodes are not referred to afterward.
However, they both do, in order to also show nonterminal edges visiting nodes in
this example.

The meaning of the rules is straightforward. The start symbol PetriNet is
derived into a set of places SetPlace and a set of transitions SetTrans (h). Set-
Place is either a single Place (f), or another SetPlace and a Place (g). The same
holds for a set of transitions SetTrans, (d) and (e). A Place is a terminal t place,
either with (a) or without a t token (b). A Trans simply is a terminal t trans (c).

The two rules creating a set of places (f) and (g) closely follow a pattern well-
known from string grammars (the same is true for rules (d) and (e) creating a set
of transitions). A sequence A of terminal or nonterminal symbols a in a string
grammar is usually obtained by two rules like A ::= a | a A which effectively

116 CHAPTER 9. PARSER

::=
≥ 2

::=
≥ 2

::=

aa

SetTrans

SetPlace
Place

Trans

BA

(a)

::=
≥ 2

::=
≥ 2

::=

aa

SetTrans

SetPlace
Place

Trans

BA

(b)

::=
≥ 2

::=
≥ 2

::=

aa

SetTrans

SetPlace
Place

Trans

BA

1

2

(c)

Figure 9.2: (a), (b) set production rules for Petri nets. (c) generic rule not part of
the grammar for Petri nets (each edge in a match of the RHS must visit the same
node a, and an arbitrary second node).

derive the symbols. For graph grammars the case is different. On the one hand,
the two pairs of rules mentioned above indeed collect all places and transitions.
On the other hand, as there is no ordering on the symbols, the set of all places
is deduced many times, one time for each possible order of all places. This does
not happen with string grammars and severely hurts performance, as we are not
interested in any order, but just in a set of all places. However, the issue is even
more severe, as not only each possible ordering of all places is deduced, but also
each possible ordering of each possible subset of all places. This results in a
combinatorial explosion which must be avoided.

To overcome this issue a new kind of production rule has been introduced in
DIAGEN, which is called set production rule (SPR) [70]. A set production rule
derives from a nonterminal the largest possible set of other nonterminals, each
with the same label, not regarding any order. The minimum number of nontermi-
nals in the set is 1 by default; however, a larger number may be specified. There
are no other edges in the RHS of an SPR. Figures 9.2(a) and (b) show two set
production rules which replace the four rules shown in 9.1(d) through (g). Graph-
ically, set production rules are always shown by a stack of edges in the RHS of the
rule. In this example, the minimum number of nonterminals for both productions
is set to 2, meaning that there must be at least two places and two transitions.
When deriving set productions, the parser still checks nodes visited by the edges.
All edges in the RHS can be required to visit the same node, or each edge may
visit an arbitrary node. The latter is graphically indicated by a stack of nodes and
tentacles as shown in 9.2(a) and (b). The former is indicated by just one node and
tentacle. A generic example for a set production is given in Figure 9.2(c). Non-
terminal A visits node a that is also visited by all edges B in the set. Additionally,
all these edges visit a second node, which does not need to be equal for all edges.

9.1. PRODUCTION RULES 117

a b a b1 2

::=

t_arrow

P:Place T:Trans P:Place T:Trans

a b a b2 1

::=

t_arrow

P:Place T:Trans P:Place T:Trans

(a)
a b a b1 2

::=

t_arrow

P:Place T:Trans P:Place T:Trans

a b a b2 1

::=

t_arrow

P:Place T:Trans P:Place T:Trans

(b)

Figure 9.3: Embedding production rules for Petri nets.

The problem with the arrows, which were omitted before, is that arrows cannot
always be described by context-free production rules. For diagrams with a tree-
like structure it is possible, for diagrams with a graph-like structure (like Petri
nets) it is not. A simple binary tree consisting of nodes connected by arrows
can indeed be specified using context-free rules only, for example. The presence
of non-context-free rules usually requires a parser with a higher complexity than
for the context-free case. However, DIAGEN has introduced a special kind of
production rule which allows for embedding arrows (and other shapes alike) in a
given context with acceptable costs. This kind of rule is the embedding production
rule (EPR), consisting of the same non-empty hypergraph in the LHS and the
RHS (called the context), with one additional edge in the RHS which is to be
embedded into the context (the embedded edge). It is important that the derivation
of the context must use context-free rules only. As arrows connect either a place
to a transition, or a transition to a place, two embedding production rules are
required. Both are shown in Figure 9.3. The embedded edge on the right-hand
sides of both rules is shaded in gray. It is important to give names to all nodes
and edges of the context both in the LHS and the RHS to account for a unique
correspondence between LHS and RHS. Note that it would also be possible to
embed t arrow edges into a context of a t place edge and a t trans edge.

While the parser deduces nonterminals in order to finally deduce start symbols,
contexts for embedded edges are deduced as well. After this, for each deduced
start symbol S, each embedded edge e is added to the derivation structure with
root S if all edges from the context of e are in the derivation structure as well.

All kinds of production rules (NPR, TPR, SPR, and EPR) can have an optional
condition. If this condition is specified, it is checked if it holds before the rule is
applied. Conceptually equal to the conditions of reduction rules, conditions of
production rules may refer to nodes, edges, and attributes of the edges.

118 CHAPTER 9. PARSER

9.2 Terminal and Nonterminal Production Rules

In this section and the following two it is discussed how conflicts are treated by
the parser. First some definitions are required. Two non-empty sets A and B
of terminal symbols are said to be conflicting or to have a conflict if there is a
terminal in A that conflicts with a terminal in B. Furthermore, each terminal or
nonterminal e is assigned a set of terminals, referred to as term(e). For a terminal
e we define term(e):={e}, for a nonterminal e we define that term(e) contains
exactly those terminals which are derived from e in one or more productions.
Finally, two terminals or nonterminals e and e’ are conflicting if term(e) and
term(e’) are conflicting.

The general principle which must hold for all kinds of production rules for the
deduction of nonterminals is the following: no nonterminal must be deduced from
two conflicting symbols in the match for RHS of a production rule. The direct
consequence of this requirement is that every nonterminal is always derived into
a set of terminals, where no two terminals in the set are conflicting. Hence, this
also holds for the start symbol, which means that indeed only legal diagrams are
derived from a start symbol, i.e., diagrams without conflicts. The only conflicts
that may occur (and do in practice) are those between terminals which are not
derived from the same nonterminal.

For terminal and nonterminal production rules (TPRs and NPRs) the situation
is simple. A TPR may always be applied if its condition holds. As there is only
one edge in the RHS of the rule, no conflicts can arise.

For NPRs with two nonterminals r and r’ in the RHS, the condition of the rule
must hold, and r and r’ must not be conflicting. This can be checked easily, given
that term(r) and term(r’) are known, which is just a matter of bookkeeping: Let
l be the nonterminal in the LHS of the production rule deriving r and r’. Then
term(l) is defined as the union of term(r) and term(r’). For TPRs with terminal
e in the RHS, where l is again the nonterminal in the LHS, term(l) is given by
term(e).

For NPRs, there is another issue which must be checked. For the two non-
terminals r and r’ in the RHS of an NPR, term(r) and term(r’) must be disjoint,
because no terminal must be derived from two different nonterminals. This con-
dition is known from string grammars as well. Therefore, the notion of a conflict
between nonterminals is extended, and two nonterminals r and r’ are called con-
flicting if either term(r) and term(r’) are not disjoint, or if term(r) and term(r’)
are conflicting.

9.3. SET PRODUCTION RULES 119

9.3 Set Production Rules
As described before, a set production rule (SPR) derives a nonterminal in the LHS
to an unordered set of (non)terminals in the RHS [70]. Each edge in the RHS has
the same label and, if specified, visits certain nodes. A minimum number of edges
required in the set can be specified, which prevents derivation of the LHS if this
number is not satisfied. Like all other production rules, a set production rule may
also have a condition.

Deduction of an SPR is similar to that of a nonterminal production rule. The
parser identifies all edges matching the RHS of the SPR. If the number of these
edges exceeds the required minimum, and if the condition of the rule holds, the
rule may be applied. As shown for nonterminal production rules in the previous
section, no two nonterminals may be deduced if they are conflicting. This crucial
condition must be satisfied as well when applying an SPR. The consequence
is that of each two conflicting edges in the set in the RHS, one must be left out.
However, in general there are further deductions necessary before the start symbol
is reached. Leaving out the wrong one of the two edges can lead to unforeseeable
consequences in the later steps.

As an example take a Petri net with several places, two of which are conflict-
ing. One of them, p1, has an arrow attached to a transition, the other, p2, has
not. p1 seems to be more valuable in this case, and should not be left out. If it
would, the arrow could not be embedded. However, as embedding productions
are applied last, the parser does not know about any embedding productions when
deducing the set production rule. The same is true for conflicts which may arise
in later applications of nonterminal production rules.

The solution is to postpone the decision about leaving out edges from the set
until the start symbol has been deduced. This solves the aforementioned issue
(even for embedding production rules, which are discussed in the next section).
After the start symbol has been deduced, all context information in terms of syn-
tactic structure is obtained, and reasonable decisions about leaving out symbols
can be made. Under certain circumstances, however, edges can actually be left
out before this. Figure 9.4 shows an exemplary derivation tree, and lists the ap-
plied productions. The text written inside each edge is not a label, but a unique
name; the labels of the edges are of no interest in this example. Nodes are not
shown. Set productions are encircled, two arrows leaving an edge and ending in
no other edge mean that the derivation tree continues here, which is also of no
interest for the example. As before, conflicts are shown by dashed lines.

After A3 has been deduced from B and F, it can be seen that B3 must be
immediately removed from its set, as it conflicts with F. F cannot be left out, as
it is in no set. This is the simplest case when an edge in a set can be left out even
before the start symbol is deduced. Accordingly, after D has been deduced from

120 CHAPTER 9. PARSER

C2 C3C1B2 B3B1

A1 A2 A3 A4

D

E

C

A

B F

S

G

H

start symbol

Nonterminal productions: Set productions:
S → A D A → A1 A2 A3 A4

A3 → B F B → B1 B2 B3
D → E G C → C1 C2 C3
G → C H

Figure 9.4: Exemplary derivation tree. Conflicts are shown as dashed lines.

E and G, C3 must be immediately removed, although it is not G which has been
deduced in a set production, but C. The third case regards the start symbol S being
deduced from A and D. Due to the conflict between H and B1, it is B1 which must
be left out.

In general, after an NPR is applied, conflicts between edges in sets and edges
not in sets can be immediately solved by removing those edges which are in sets.
This must also happen if set productions are cascaded, as seen in the example.
It may happen that a set has left too few edges according to its defined minimum
after the NPR is applied. If the set is not in another set (like the set derived from A,
and the set derived from C) the NPR must not be applied. If the set is in another
set (like the set derived from B), the respective edge must be removed from its
containing set. In the example, A3 must be removed from its set if the set derived
from B contains fewer edges than its minimum size.

Assuming that each of the three set productions is satisfied with one edge, the
derivation tree shown in Figure 9.5 is obtained after the start symbol is deduced.
Due to the removal of edges in sets in case of conflicts with edges not in sets

9.3. SET PRODUCTION RULES 121

C2C1B2

start symbol

A1 A2 A3 A4

D

E

C

A

B F

S

G

H

Figure 9.5: Exemplary derivation tree after some conflicts are solved.

(as described above), all remaining conflicts are between edges in sets, in this
example A2, A4, C1, and C2. In this case it seems to be most valuable to remove
C1, as this solves all conflicts at once. However, we propose a more sophisticated
solution, which is described in the following. Note that all edges in sets which do
not have any conflicts (in this example A1, A3, and B2) can be ignored, as there
is nothing to do here.

We define the rating rating(n) of an nonterminal n as the sum of all ratings of
the terminals in term(n), i.e.,

rating(n) :=
∑
{rating(t)|t ∈ term(n)}

For the start symbol, the rating is to be maximized, as ratings are defined
in a way that a greater rating corresponds to a better solution. Accordingly, the
task is to find a subset of the conflicting edges in the sets such that no two edges
in the subset are conflicting, and such that the accumulated rating of all edges
in the subset is maximized. We solve this optimization problem by a heuristic,
as it is NP-complete. Taking a quick glance at graph theory reveals the clique
problem, which was found to be NP-complete by Karp in 1972 [60]. Given an
undirected graphG (not a hypergraph), the clique problem is determining whether
G contains a clique of at least size k. A clique in G is a complete subgraph of G,
i.e., each node in the clique is adjacent to each other node in this clique [41].
The optimization problem linked to the clique problem is to determine the largest
clique in G.

Applied to our problem of conflicting edges in sets we can define G as a graph
where each conflicting edge from a set is a node, and where two nodes are adjacent
if and only if their corresponding edges are not conflicting. The graph G for the
example in Figure 9.5 is shown in Figure 9.6. If we set all ratings for all edges

122 CHAPTER 9. PARSER

C2

C1

A2

A4

Figure 9.6: GraphG, constructed from the derivation structure in Figure 9.5. Each
node inG corresponds to an edge in Figure 9.5 with a conflict. Nodes are adjacent
if the two corresponding edges are not conflicting. The largest clique is searched
for.

to 1, the solution to our problem also solves the clique problem. As the latter is
known to be NP-complete, our problem is as well.

Now the idea of the heuristic we apply to this problem is to prefer edges (i)
with a high rating, (ii) with few conflicts, and (iii) where the conflicting edges
have low ratings (in the next section there will even be a fourth aspect related to
embedding production rules, which we omit here). For each edge e we define the
weighted rating ω(e) as

ω(e) :=

{
rating(e)∑

{rating(c)|edge c has a conflict with e} if e has conflicts

∞ otherwise

Obviously, the weighted rating of an edge is higher the better (i)–(iii) are satis-
fied. Then the edge l with the lowest weighted rating is removed, and the weighted
ratings of all edges which had a conflict with l are updated, as they have one less
conflict now. Then again the edge with the lowest weighted rating is removed, and
all affected weighted ratings are updated, as long as there still is a conflict.

What can happen is that an edge is removed such that its set has too few edges
left and does not satisfy its minimum any longer. Then again a distinction must be
made whether the set is in another set, or not. In the former case, the respective
edge in the parent set is removed as well, which again may lead to the case that
the parent set does not satisfy its minimum any more. In this case, the removal has
to be repeated. In the latter case where the set is not in another set, the removal
must be undone, and the edge with the second lowest rating is tried. This in effect
is backtracking. The first solution which is found by this heuristic is immediately
accepted. If there cannot be found any solution, the start symbol is invalid, and
must not be regarded for further processing.

As an example, consider again Figure 9.6. Given that the rating of C1 is 3.0,
and the ratings of A2, A4, and C2 are 2.0, the weighted rating of C1 is 3/6, and

9.4. EMBEDDING PRODUCTION RULES 123

the weighted ratings of the other edges are 2/3, so C1 is discarded first, and the
optimal result is obtained.

Given that the rating of C1 is 2.9, and the ratings of A2, A4, and C2 are 1.0,
the weighted rating of C1 is 29/30, and the weighted ratings of the other edges
are 10/29, so one of them is removed first. The rating of C1 changes to 29/20, and
again one of the other edges is removed. Finally, the third of those is removed,
too, and only C1 remains. This is not the optimal solution, but still a very good
one, according to the ratings (2.9 compared to 3.0).

To conclude this section, conflicts within sets obtained by set productions are
ignored first. Conflicts between edges in sets and edges not in sets can be solved
immediately. After the start symbol is deduced, the remaining conflicts are also
solved based on a heuristic.

9.4 Embedding Production Rules
Embedding production rules (EPRs) are not considered before the start symbol
has been deduced. Then, for all EPRs the contexts are searched for in the deriva-
tion tree. For each match of a context, the respective edge is embedded in the tree
(as indicated by the rule), if there is a respective edge present. For EPRs where
the embedded edge is not a terminal, but a nonterminal, this nonterminal is re-
garded as start symbol for the EPR and deduced like the regular start symbol of
the grammar. This way, the embedded edge is always valid, as there is no conflict
in its terminal edges. What remains to be checked if an edge ee which is to be
embedded is that ee is not conflicting with the start symbol of the derivation tree
(which includes that there is no conflict with the context of the embedded edge,
and that ee is not conflicting with any other edge embedded before). If the latter
happens, that edge which has the higher rating is preserved, and the other edge
is discarded. By embedding edges in the derivation tree, the tree becomes a di-
rected acyclic graph (DAG). The rating of the start symbol is increased for every
embedded edge by the rating of that edge.

Obviously this approach can also be applied when set productions are present.
However, when conflicts in sets are resolved by the heuristic explained in the
previous section, additional care has to be taken for the embedding of edges. A
conflicting edge c is more valuable if it is part of a context for an embedded edge
ee. If c is removed, ee can no longer be embedded and the rating of the start
symbol decreases. Accordingly, the computation of the weighted rating of an
edge must be modified in order to also prefer those edges (iv) which are part of a
context for an embedded edge, or which have a child that is part of such a context.
(i)–(iii) remain as described before. Let e be an edge, and context(e) be the set
of all embedded edges where e or a child of e is part of their context. Then the

124 CHAPTER 9. PARSER

21
t_arrow

t_transt_placet_trans

T:Trans TransP:Place

SP:SetPlace SetTrans

PetriNet
Derivation DAG

RHM

Sketch

Figure 9.7: A sketch and the generated RHM and derivation DAG. The dashed
arrows indicate which terminals represent which shapes. The embedded t arrow
edge and its context are shaded.

weighted rating ω(e) of e is computed as

ω(e) :=

{
rating(e)+

∑
{rating(ee)|ee∈context(e)}∑

{rating(c)|edge c has a conflict with e} if e has conflicts

∞ otherwise

The heuristic works as before, but whenever a conflicting edge c is removed
(because it has the lowest weighted rating), not only the weighted ratings of those
edges must be updated which had a conflict with c, but also those which were
part of the same contexts, as the respective embedded edges can no longer be
embedded.

As an example we pick up the sketch shown in Figure 8.7(a) and its RHM
shown in Figure 8.7(d). These are also shown in Figure 9.7, together with the
derivation DAG generated by the parser. After the start symbol is deduced, one
conflict remains between edges T and P. As example calculation it is assumed
that all terminals in the RHM have the same rating, say 2.0. Then, the weighted
rating of T is 2.0/2.0 = 1, and the weighted rating of P is (2.0 + 2.0)/2.0 = 2.
ω(P) is greater than ω(T) as P is in the context of the arrow. Consequently, T is
discarded, and the desired result is obtained.

9.5. A LARGER EXAMPLE 125

In another example calculation different ratings are assumed for the terminals,
which leads to a configuration that requires backtracking. Given that the t trans
edges in the RHM each have a rating of 3.0, and the two other edges in the RHM
have a rating of 1.0, the weighted rating of T becomes 3.0/1.0 = 3, while the
weighted rating of P becomes (1.0 + 1.0)/3.0 = 2/3. As this rating is lower,
P will be removed to resolve the conflict. However, this results in SP having
no more children, so the removal must be undone, and the edge with the second
lowest weighted rating is removed, which is T.

9.5 A Larger Example
In Figure 7.7(a) a sketched Petri net has been shown with two places, one token,
one transition, and two arrows. The HM generated for this sketch is shown in
Figure 7.7(c). We assume the reduction rules in Figure 8.3. Using these reduc-
tion rules, the RHM shown in Figure 9.8(a) is obtained. There are two conflicts
between terminals. The conflict between p1 and tok emerges from the conflict
in the HM, and the conflict between p1 and p2 emerges from the fact that the
corresponding places are touching (not shown in Figure 7.7(c)). Note that tokens
not contained in places are not reduced. Furthermore, for the only non-omitted
contains relation edge in Figure 7.7(c), no t token edge is reduced, as the token
has a larger radius than the place, which contradicts the condition of the reduction
rule in Figure 8.3(c).

Figure 9.8(a) also shows the derivation DAG generated by the parser, assum-
ing the production rules established throughout this chapter (the ones shown in
Figure 9.1(a), (b), (c), (h), the set production rules shown in Figure 9.2(a), (b),
and the embedding production rules shown in Figure 9.3(a), (b)). Except for P4,
all Place edges are conflicting. P2 and P3 are conflicting as they are derived into
the same terminal p2. The two other conflicts emerge from the conflicts between
the terminals. For a1 there are two contexts possible, TR and P2, or TR and P3.
For a2 there is only one context, TR and P4. Note that the two contexts for a1
could also be avoided by using the terminal edges as contexts, as opposed to the
nonterminals as in (cf. Figure 9.3).

Using the weighted ratings and the heuristic, the conflicts between P1, P2,
and P3 are resolved. Obviously only one of the three nonterminals survives this
process, as each has a conflict with each other. The expected survivor is P2, as this
nonterminal represents the outer circle being a place, and the inner circle being a
token, and allows for embedding of a1.

Example ratings of the terminals are shown in Figure 9.8(b), as well as the
ratings for the nonterminals. Based on these ratings, the weighted ratings for the
three conflicting nonterminals can be computed, all of which are in the same set.

126 CHAPTER 9. PARSER

2

1

1 2

P4:Place

SetPlace

PetriNet

SetTrans

P2:Place

P3:PlaceP1:Place

Derivation DAG

RHM

tr:t_trans

a1:t_arrow

p2:t_place

tok:t_token

a2:t_arrow

p3:t_place

p1:t_place

TR:Trans

(a)

Terminals Nonterminals
Name p1 p2 p3 tr tok a1 a2 P1 P2 P3 P4 TR
Rating 3.9 3.8 4.1 4.0 3.9 2.7 2.6 3.9 7.7 3.8 4.1 4.0

(b)

P1 P2 P3

Initial weighted ratings 3.9
7.7+3.8

≈ .34 7.7+2.7
3.9+3.8

≈ 1.35 3.8+2.7
7.7+3.9

≈ .56

P1 is removed 7.7+2.7
3.8

≈ 2.74 3.8+2.7
7.7

≈ .84

P3 is removed ∞
(c)

Figure 9.8: (a) RHM for the HM from Figure 7.7(c), and its derivation DAG. Em-
bedded edges and their contexts are shaded. The reduction rules from Figure 8.3
are assumed. (b) ratings of terminals and nonterminals. (c) initial weighted ratings
and updates based on removal of conflicting edges.

9.6. ATTRIBUTE EVALUATION 127

Figure 9.8(c) shows these initial weighted ratings, and updated weighted ratings
after nonterminals are removed. Each row in the table represents the removal of
one nonterminal, until indeed P2 remains.

9.6 Attribute Evaluation

With one minor exception (see below), attribute evaluation works in DSKETCH

just like it does in DIAGEN. When specifying the grammar, each nonterminal
may be given attributes, depending on the label of the nonterminal, just like the
attributes of the shape edges used by the modeler (cf. Chapter 7), and attributes
of the terminals set by the reducer. The start symbol is required to have one dis-
tinguished attribute, the semantic attribute. Given a derivation DAG (or tree), its
root always is a start symbol. The final value of the semantic attribute of the root
is considered as the semantics of the DAG. It follows that the grammar is an at-
tributed grammar. Just like for reduction rules, each production rule, no matter
what kind, has an action which allows for setting the attributes of the nontermi-
nal(s) in the LHS based on the attributes of the edges in the RHS. Examples for
actions of production rules can be found in Appendix A.

If the value of the semantic attribute of the root cannot be evaluated for some
reason, then the shapes represented by the DAG are syntactically correct, but con-
sidered semantically wrong. Hence this DAG is no valid interpretation for the
sketch (or part of the sketch).

Depending on the grammar there may be different derivation DAGs deduced
by the parser. For Petri nets this cannot happen, but for NSD, for instance, it can.
Unlike DIAGEN, in this case that DAG is chosen to represent the sketch where the
root has the highest rating and the semantic attribute can be evaluated. All other
DAGs are discarded. The rationale behind this procedure is the following: two
different DAGs always represent two different interpretations of the sketch, and
occur because different sets of derivations led to the start symbol. For example, the
parser tries to derive the start symbol with each of two conflicting edges, albeit not
in the same derivation structure, of course. Also, we have established that a higher
rating means a better interpretation, either because it contains more symbols, or
more complex symbols, or more precisely drawn symbols, or a combination of the
three. Accordingly, it makes sense to discard all DAG but the one with the greatest
rating. If the semantic attribute cannot be evaluated for any root of the DAGs, the
sketch in turn cannot be interpreted. An example for attribute evaluation is given
in Appendix C.2.

128 CHAPTER 9. PARSER

9.7 Summary
This chapter has described how syntax can be checked based on the RHM, and
how semantics can be determined based on the derivation structure obtained by
parsing. The derivation structure is usually a DAG due to embedding productions.
The parser works bottom-up and requires the grammar to be context-free and in
CNF. Context-freeness is obtained by the available kinds of production rules, the
CNF can be computed automatically. Next to the obvious terminal production
rules (TPRs) and nonterminal production rules (NPRs), there are set production
rules (SPRs), and embedding production rules (EPRs). SPRs allow for more effi-
cient parsing if a set of edges with the same label is to be derived, and the order of
the edges does not matter. EPRs allow for describing rules which are not context-
free.

Settlement of conflicts in the RHM is assured for every production by not
deducing nonterminals which are derived into conflicting terminals. For set pro-
ductions, this condition can only be established after the root of the derivation
DAG is deduced. Then, a heuristic is used which solves a variant of the clique
problem, directed by ratings of edges.

Chapter 10

Evaluation

An obvious question about every approach is its correctness. In some fields it
is possible to give a formal proof of correctness. In the case of this thesis, a
formal proof cannot be given. It is impossible to show that the approach produces
the result intended by the user. Even more, it may happen that this result is not
produced at all. Another way to argue about correctness is an empirical evaluation,
which is performed in this chapter. It follows two goals. The first is to tell about
the actual recognition rate, i.e.,

recognition rate :=
of correctly recognized shapes

of shapes intended by user

The higher this rate is, the more often the correct shape is recognized, and the
more rarely the user has to manually correct his input. A recognition rate of 100%
means that every shape intentionally drawn by the user is correctly recognized.
Every approach to sketching strives to get as close to this value as possible, how-
ever there always will be misrecognized shapes.

The second goal of the evaluation in this chapter is to assess the performance
of the implementation. The faster the actual result is computed, the better the
system is likely to be perceived by the user. A long waiting period is bothersome,
and should be avoided by implementations.

In order to learn about recognition rate and performance of the implemen-
tation, a user study was conducted. 16 participants, all computer scientists or
students of computer science, each drew one example sketch of each of the six
diagram languages discussed in Chapter 2. For each diagram language a mas-
ter diagram was shown to the participants, which had to be copied. This assured
that the results from the different participants are comparable, as each participant
copied the same master. Figure 10.1 shows all six master diagrams. These are
equal to the example diagrams from Chapter 2; only for the GUI builder a simpler
diagram than the one shown in Figure 2.4 was used.

129

130 CHAPTER 10. EVALUATION

i > 0

cond

a b
i := i-1

print i

3
a

b

t1
2

c

b

a
&

>=
1

y

ready

busy

done

not done

Login Dialog

Administrator

Remember me

Ok Cancel

Figure 10.1: The six diagrams used as masters for the user study.

Most of the participants had never or very rarely used a pen display before, so
each participant was first allowed a training period to get used to the hardware (a
Wacom DTU-710 pen display). For the user study’s actual task of sketching, the
participants were encouraged to draw freely and unrestricted. To avoid any depen-
dencies from the order in which the six sketches had to be produced, their order
was shuffled for each participant. During the whole test, absolutely no feedback
was given to the participants about the recognition rate or other system behavior.
This means that there was no way to adopt the drawing style to the system. No
participant took more than 7 minutes for the training period, and only two partici-
pants took more than 5 minutes. The actual sketching was completed in less than
10 minutes for each participant.

From the 16 participants most decided to lay the display flat on the table,
which imitates pen and paper more closely. Still, many participants found it hard
to place the hand on the display (which is possible), and instead avoided touching
the display with their hand. This unnatural hand posture resulted in a diffident
drawing style, and was likely to increase imprecision. Regarding the size of the
produced sketches, the participants can be arranged into two groups. Participants
from the one group used the available screen space very liberal, thus producing
larger sketches that were neater. Participants from the other group tended to draw
the sketches very small, which had a negative impact both on the recognition rate
and processing time.

10.1. PROCESSING TIME 131

Figure 10.2: A GUI builder sketch from the user study in three copies. The copies
are identical and have been placed next to each other automatically in order to
linearly increase the load on the system.

The structure of this chapter is as follows. The next two sections discuss pro-
cessing times (Section 10.1) and recognition rates (Section 10.2) for the 6× 16 =
96 sketches obtained from the user study. The two aspects explained in Sec-
tion 6.1 and Section 6.3 (elimination of duplicates, and suppression of shapes
containing other shapes) have been intended to minimize the load on the analysis,
measured as the number of shapes, by removing shapes in the postprocessing step
of the recognition stage. Section 10.3 and 10.4 discuss to which extent this goal
is achieved, by means of selected examples. Section 10.5 concludes the chapter.

10.1 Processing Time
For each of the 96 sketches obtained by the user study it was measured how long
processing took. An ordinary PC was used as hardware1. In order to obtain more
stable results, each test was repeated ten times, and the average value was taken.
Furthermore, to evaluate how the implementation performs when the input size is
increased, the complete procedure was repeated nine times for each single sketch,
each time with one additional copy of the original sketch to be processed. Each
copy was placed with a considerable distance to all other copies to avoid side
effects. This way, both the input (counted as number of strokes and number of
texts) and the number of recognized shapes grew linearly. One of the participants’
sketches of the GUI dialog box with two additional copies is shown in Figure 10.2.

The averaged values for each single sketch were averaged again for all 16
sketches. The results can be seen in Figure 10.3, which shows the mentioned

1The PC ran Ubuntu Linux 8.10 64bit (kernel version 2.6.27), and was equipped with an Intel
quad core CPU at 2.66GHz and 4GB of physical main memory, and Java SE runtime environment
(64bit, build 1.6.0 10-b33). However, only one CPU core and a maximum of 2GB of main memory
have been allocated for the tests.

132 CHAPTER 10. EVALUATION

average processing time depending on the number of copies (1 to 10). Standard
deviation is shown as vertical black lines for each averaged value. Figure 10.4
shows the fraction of both stages (recognition and analysis) of the total processing
time, again broken down by the number of copies.

For all reported values, preprocessing is not included. The reason is that pre-
processing is performed incrementally and does not add to the perceived perfor-
mance of the system. For evaluating the performance of preprocessing single
strokes and text, the time for preprocessing was measured for the case of ten
copies of each diagram. The average time for preprocessing a single stroke was
0.36ms, the average time for preprocessing text was 0.04ms. These values indicate
that the performance impact of preprocessing can indeed be neglected, whether in
an incremental setting or not.

What becomes apparent from the actual measured values (not shown) is that
most of the time is spent either by the assembler, or by the parser. Accordingly,
performance for the assembler and postprocessing are aggregated in Figure 10.4,
and so are modeler, reducer, and parser aggregated for the analysis. The maximum
aggregated fraction of postprocessing, modeler, and reducer of the total processing
time for all sketches for 1 through 10 copies never exceeded 5%. An exception to
this rule is made by the GUI builder, where the modeler consumes relatively more
time, and the aggregated fraction of postprocessing, modeler and reducer thus
increases to about 15%. Still, the aggregation of values as described is justified.

For all six diagram languages the processing time grows roughly linear with
the input size. Only for Petri nets (cf. Figure 10.3(a)) and for statecharts (cf.
Figure 10.3(d)) a slightly greater increase can be observed. The implemented al-
gorithms are not all in O(n), but in higher complexity classes. This is especially
true for assembler and parser. The assembler, for example, takes considerably
more time for more compact sketches, because the input becomes more ambigu-
ous this way. The performance of the parser depends on the number of terminals,
and on the production rules. If the rules are not wisely specified, e.g., by not
using set productions, complexity increases. See [68] for more details. Despite
the over-linear complexity, the mentioned roughly linear time consumption can be
observed, which shows that the practical impact of these algorithms is not severe.

From the average total processing time, the average processing time can be
computed for a single shape drawn by the user. The result is shown in the follow-
ing table, dissected by the six diagram languages.

Petri nets NSD GUI builder Statecharts BLD Tic-tac-toe
10ms 23ms 4ms 28ms 3ms 3ms

NSD and statecharts show the highest values. The reason is that the total process-
ing time of these languages is also high, compared to the GUI builder, Tic-tac-toe
and BLD. Petri nets also show a low average processing time per shape, although

10.1. PROCESSING TIME 133

petri

146 300 466
656

870
1119

1403
1728

2043
2370

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10

To
ta

l p
ro

ce
ss

in
g

ti
m

e
in

 m
s

Number of copies

(a)

nsd

138 267 398 526 673 824 970 1131 1257 1376

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10

To
ta

l p
ro

ce
ss

in
g

ti
m

e
 in

 m
s

Number of copies

(b)

gui

26 54 74 101 127 150 178 202 230 254

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10

To
ta

l p
ro

ce
ss

in
g

ti
m

e
 in

 m
s

Number of copies

(c)

state 226
464

715
1000

1294
1639

2000
2392

2829
3221

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10

To
ta

l p
ro

ce
ss

in
g

ti
m

e
in

 m
s

Number of copies

(d)

logic

31 65 97 133 169 204 242 282 330 364

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10

To
ta

l p
ro

ce
ss

in
g

ti
m

e
in

 m
s

Number of copies

(e)

tic

17 37 57 78 98 120 147 173 196 220

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10

To
ta

l p
ro

ce
ss

in
g

ti
m

e
in

 m
s

Number of copies

(f)

Figure 10.3: Average total processing time for different diagram languages. The
vertical black lines show the standard deviation. For (c) and (f) the standard de-
viation is too small to be shown. (a) Petri nets. (b) NSDs. (c) GUI builder. (d)
statecharts. (e) BLDs. (f) Tic-tac-toe.

they take the second most time for processing. However, the Petri net master
comprises 13 shapes, compared to 9 shapes for statecharts, and only 6 shapes for
NSD.

For NSD, as well as for statecharts, the recognition stage contributes much
more to the total processing time than the analysis stage does (cf. Figure 10.4).
NSD shows a disadvantageous visual appearance of its shapes, which lead to the
recognition of too much shapes. This issue has been discussed before and led
to the addition of the configuration option to remove these false shapes (cf. Sec-
tion 6.3). However, these shapes are still recognized, so the option cannot improve
the performance of the recognition stage, but only for the analysis stage (cf. Sec-

134 CHAPTER 10. EVALUATION

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10Fr
ac

ti
o

n
 o

f
to

ta
l p

ro
ce

ss
in

g
ti

m
e

Number of copies

Recognition Analysis

(a)

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10Fr
ac

ti
o

n
 o

f
to

ta
l p

ro
ce

ss
in

g
ti

m
e

Number of copies

Recognition Analysis

(b)

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10Fr
ac

ti
o

n
 o

f
to

ta
l p

ro
ce

ss
in

g
ti

m
e

Number of copies

Recognition Analysis

(c)

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10Fr
ac

ti
o

n
 o

f
to

ta
l p

ro
ce

ss
in

g
ti

m
e

Number of copies

Recognition Analysis

(d)

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10Fr
ac

ti
o

n
 o

f
to

ta
l p

ro
ce

ss
in

g
ti

m
e

Number of copies

Recognition Analysis

(e)

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10Fr
ac

ti
o

n
 o

f
to

ta
l p

ro
ce

ss
in

g
ti

m
e

Number of copies

Recognition Analysis

(f)

Figure 10.4: Average fraction of recognition and analysis stages of total process-
ing time. (a) Petri nets. (b) NSD. (c) GUI builder. (d) statecharts. (e) BLD. (f)
Tic-tac-toe.

tion 10.4). For statecharts, it could be observed that the two circles forming a final
state led to many possible combinations of arcs by the assembler. Of course, most
of these combinations were false, and thus discarded, but they still have an impact
on the processing time.

Common to all six diagram languages is that the fractions of recognition and
analysis are independent of the input size (cf. Figure 10.4). The difference lies
only in the actual values. In general, the recognition stage consumes more time
than the analysis stage, even more than 90% of the total processing time for four of
the six diagram languages. For the GUI builder and for Tic-tac-toe, the analysis
stage has a higher fraction of the total processing time. However, in these two
cases the recognition stage performed very well, and the total processing time is
the lowest.

10.2. RECOGNITION RATES 135

10.2 Recognition Rates
As mentioned in the introduction to this chapter, the other relevant aspect next to
processing time are the recognition rates of the implementation. To begin with,
these are some terms we use in the following.

• a true positive is a shape that the user has drawn intentionally, and that is
correctly recognized. For example, each of the three transitions contained
in the Petri net master (cf. Figure 10.1) has been drawn intentionally.

• a false positive is a shape that is recognized, but which has not been intended
by the user. False positives may happen due to tolerances applied by the
recognizer, or due to misleading diagram syntax (for example, NSD, cf.
Figure 6.2).

• a false negative is a shape that the user has drawn intentionally, but which
is missed by the recognizer, for example, because it has been drawn too
sloppily.

Using the 96 sketches from the participants, the number of true positives is di-
vided by the number of intended shapes (as given by the master of each of the
six diagram languages) in order to obtain the recognition rate for a single sketch.
These recognition rates are averaged for the six diagram languages. Figure 10.5
shows the result. Except for Petri nets and statecharts, recognition rates range
around 90%. For the two exceptions, recognition rates are lower because the user
study’s participants tended to draw arrows (which occur only in these two dia-
gram languages among the six) sloppily, which led to many false negatives. Also,
rectangles, either used to express transitions, or to express states, were drawn con-
siderably more imprecise.

For the final result, obtained by the analysis stage, the following observations
hold for each of the 96 sketches.

• Either the result was as intended by the user, i.e., it contained only true
positives and no false negatives,

• or the result contained only intended shapes (true positives), but was incom-
plete due to shapes missed by the recognizer (false negatives),

• or false positives were included in the result in order to obtain a syntacti-
cally correct result at all, which would not have been possible with the true
positives only.

The third item is very important. It means that, in no case, a false positive
was included in the final result of processing in favor of a true positive. This fact

136 CHAPTER 10. EVALUATION

Petri nets
81%

NSD
93% GUI Builder

85%

Tic-tac-toe
89%

BLD
90%

Statecharts
73%

0%

20%

40%

60%

80%

100%

A
ve

ra
ge

 r
ec

o
gn

it
io

n
 r

at
e

Figure 10.5: Average recognition rates for the 16 diagrams for each of the six
examples.

is an important indicator to show that the analysis stage is correct and produces
valid results. For example, for Petri nets this means that tokens and places were
always correctly told apart. For NSD this means that no false positives similar to
those suggested by Figure 6.2 were included in the result, given that the smaller,
overlapped shapes were also recognized.

Note that the recognition rates shown in Figure 10.5 are calculated based on
the results of the recognition stage. It makes no sense to use the results of the
analysis stage for this purpose, since this stage produces an empty result if no
syntactically and semantically correct diagram can be found. The correctness of
the diagram relies in some cases on one single shape. For example, each statechart
must have an initial state. Each GUI builder sketch must contain a window con-
taining the single controls. Sketches of Tic-tac-toe require a grid. In these cases,
if the one crucial shape is missed by the recognizer, the result becomes empty, no
matter how many intended shapes were recognized.

10.3 Effect of the Elimination of Duplicates

The procedure described in Section 6.1 removes duplicates of shapes, which occur
due to the tolerances applied by the assembler. The idea is to spend a compara-
tively small amount of processing time on the removal process, in order to save
much more time in the analysis stage. This section examines the effect of this
procedure with the implementation.

Figure 10.6 shows the average total processing times for the six example lan-
guages with and without elimination of duplicates, for one copy of the diagram.

10.4. EFFECT OF THE SUPPRESSION OF SHAPES CONTAINING OTHER SHAPES137

!

"!!

#!!!

#"!!

$%&'(

)*+,-./

$0,(

)*+,-./

$%&'(

)*+,-./

$0,(

)*+,-./

$%&'(

)*+,-./

$0,(

)*+,-./

$%&'(

)*+,-./

$0,(

)*+,-./

$%&'(

)*+,-./

$0,(

)*+,-./

$%&'(

)*+,-./

$0,(

)*+,-./

1*&)%(2*&3 456 789(:;%/<*) =%>?&.>?&,* @A6 5&.&*>'.)&3

B*>,C2%&%,2 D2./E3%3

#F!GH

#GH #HI #IJ
K" G# #L

HGG

I#

I#G
KKH KLF

Figure 10.6: Average total processing time with and without removal of duplicates
for one copy of the diagrams, stacked by time for recognition and analysis.

The bars are stacked by time for recognition and analysis. As expected, recogni-
tion time (which includes postprocessing where duplicates are removed) remains
nearly constant, while analysis time increases by not removing duplicates. Com-
mon to all diagrams is that the recognition rates reported in the previous section
were not affected by removal of duplicates.

For Petri nets, for statecharts, and for the GUI builder, removal of duplicates
only shows a small impact. For NSD, for Tic-tac-toe, and for BLD, analysis time
increases considerably if duplicates are not removed. In the case of NSD the
average total processing time even grows to about 18 seconds. The problem of
NSD is that some of the 16 sketches show a high number of duplicates. If these
duplicates are not removed, the imposed load on the analysis is significant. If
duplicates were not removed, for the three sketches with the highest number of
recognized shapes which were passed to analysis, the average number of these
shapes was 147. In contrast, if duplicates were removed, the average number of
shapes for analysis of the same three sketches is only 10. Accordingly, the speed-
up for NSD achieved by removal of duplicates is very high. For Tic-tac-toe, and
for BLD, the speed-up is not as high as for NSD, but still remarkably.

10.4 Effect of the Suppression of Shapes
Containing Other Shapes

Section 6.3 has explained the rationale behind the removal of shapes containing
other shapes. Now it is investigated whether these considerations hold for the
implementation. If the 16 NSD sketches are processed again, without shapes con-

138 CHAPTER 10. EVALUATION

(a)

special case nsd

2619
5326

8028
11101

13819
16466

19371
21954

23925
26635

639 1233
1755 2284 2821 3343 3869 4632 4957 5769

0

16000

32000

1 2 3 4 5 6 7 8 9 10

To
ta

l p
ro

ce
ss

in
g

ti
m

e
 in

 m
s

Number of copies

Total (with removal) Total (w/o removal)

(b)

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10Fr
a

ct
io

n
 o

f
to

ta
l p

ro
ce

ss
in

g
ti

m
e

Number of copies

Analysis (with removal) Analysis (w/o removal)

(c)

Figure 10.7: Processing time for NSD with and without removal of shapes con-
taining other shapes. (a) a sketched NSD. (b) average total processing time for
the sketch for linear increase in load. (c) average fraction of the analysis stage of
the total processing time.

taining other shapes being removed, a negative effect is observed: the average
total processing time roughly doubles. The situation becomes even more severe
if another example is used. The example NSD diagram for the user study is very
small and has a simple structure (cf. Figure 10.1). Figure 10.7(a) shows a more
complex NSD. It comprises 13 shapes. Using this sketch, the positive effect of
the removal of shapes containing other shapes is greater.

For this sketch, the recognition stage yielded 29 shapes if shapes containing
other shapes were removed, otherwise 101 shapes. Accordingly, the analysis stage
produced different numbers of possible solutions (derivation DAGs where the se-
mantic attribute could be evaluated, cf. Section 9.6), 1154 in the case of removal,
otherwise 20964. Obviously, the processing time has to differ in a similar rela-
tion. Figure 10.7(b) shows the average total processing time with removal, and
without removal of shapes containing other shapes, again for 1 to 10 copies of
the sketch. While the time for the recognition stage is invariant to the setting
(removal of shapes containing other shapes took virtually no time), all the extra
time consumed if no shapes were removed was consumed by the analysis step.
Figure 10.7(c) confirms this fact. If shapes containing other shapes were not re-

10.5. CONCLUSION 139

moved, the fraction of the analysis stage on the total processing time increased
from about 30% to about 85%.

Like in the section before, the recognition rate is not affected by the option.
Consequently, the assumption made for the removal of shapes containing other
shapes is valid in this test setting.

10.5 Conclusion
In this chapter, performance and recognition rates of the implementation are evalu-
ated based on a user study. The overall result of the evaluation is that the approach
is fast, with average processing times per shape ranging from 3ms to 28ms, and
that the recognition rates are good, with about 90% for four of the six diagram
languages. The measures arranged to improve processing time (elimination of du-
plicates, suppression of shapes containing other shapes) all work as intended. On
the one hand, they greatly improve performance, but on the other hand they do not
influence recognition rates.

Taking a closer look at the evaluation results reveals interesting intricacies.
Both the performance and the recognition rates strongly depend on the diagram
language. This dependency is an important aspect, because the approach pre-
sented in this thesis is generic, and has been designed to handle different diagram
languages. However, the six example languages were carefully chosen in order to
be representative for a broad range of diagram languages (cf. Chapter 2).

Sketches where processing is not as fast (worse than the average), or recogni-
tion rates are not as good (worse than the average), nearly always exhibit a certain
drawing style. The style can be characterized by the sketch size and the precision.
There is a clear tendency that the less space a sketch covers on the canvas, the
higher its processing time is. This is due to the tolerances used in the recognition
stage. All respective threshold values are generously set in order to allow for an
easy and unconstrained drawing, and remain fixed for each participant of the user
study. If sketches are drawn very small, the threshold values are too high, result-
ing in much more combinations of primitives, and ultimately in more shapes that
are recognized.

Likewise, the less precision that is applied by the user, the lower the recog-
nition rate is. A typical behavior is to draw corners, e.g., from a rectangle, more
rounded than angular. Similar, most users drew the open-head arrows from Petri
nets and statecharts by first drawing the shaft in one stroke, and then drawing
the arrow head in a second stroke. Here, a similar observation could be made:
the arrow head was sometimes drawn like an arc, and not angled. On the other
hand, drawing straight lines, e.g., for transitions of Petri nets, or for NSD, or for
BLD, was rarely a problem. Circles, used in Petri nets, Tic-tac-toe, BLD, and

140 CHAPTER 10. EVALUATION

statecharts, were always drawn in one stroke, without any exception. Still, the
individual recognition rates for circles differ noticeably between the four diagram
languages. For Petri nets (92%) and Tic-tac-toe (95%) the recognition rates are
good, while for statecharts (79%) and BLD (72%) the values are lower. It could
be observed that circles were often drawn quite small in the sketches of these two
diagram languages.

Two final aspects have to be considered in order to assess the recognition rates
reported in this chapter. The first is that the approach recognizes individual shapes
from complete sketches. Segmentation and clustering are performed automati-
cally by the assembler step, based on the model data. There is no other indication
given to decide about these issues. This way, the drawing process is more com-
fortable and natural for the user, but recognition becomes more difficult. The other
aspect influencing the recognition rate is that the participants were not shown any
feedback about the recognition before they were finished drawing. Hence, the in-
dividual drawing style could not be adapted to the system. Without this stringent
precondition, higher recognition rates can be expected. The aforementioned is-
sues of small sketches, sloppy corners and sloppy arrow heads would be reduced.
Despite these two aspects, the implementation accomplished its task well, both in
terms of performance and recognition rate.

Future work can be derived from the conclusion. The mentioned issues of
imprecise arrows and corners of rectangles could be dealt with by more sophisti-
cated transformers, which take these issues into account. Then, recognition rates
would certainly improve. For example, the line transformer could elongate two
perpendicular lines in order to find their point of intersection as the corner point
that is missed due to the sloppy drawing style.

A more sophisticated approach to sloppy drawing style could be the intro-
duction of top-down aspects. The complete sketch processing chain described in
this thesis works bottom-up. If there are (sub-)strokes that do not contribute to
any shape, the system ignores these (sub-)strokes. But if we assume that the user
intends all of his strokes to represent something meaningful, these (sub-)strokes
should not be discarded. Accordingly, after the assembler has finished, all un-
used (sub-)strokes (and maybe other strokes in their direct spatial neighborhood)
could be extracted and searched again for shapes, but with relaxed thresholds. The
ratings of the additional shapes that are recognized this way could be reduced in
order to make the analysis stage prefer those shapes which have been found in the
first run of the assembler where the regular thresholds are applied.

Also an open question is how DSKETCH is perceived by users over a longer
period of time. Long-term observations of users could help to improve both
DSKETCH and its user interface in order to meet expectations and requirements
of users. Thereby, also the question could be answered of how much recognition
rates improve if the user is used to the system and has learned about its behavior.

Chapter 11

Summary and Conclusion

This thesis has explained DSKETCH, a generic approach to the understanding of
hand-drawn diagrams. Using specifications it can be tailored to specific diagram
languages. Understanding a diagram comprises two stages, recognition and anal-
ysis. The recognition stage identifies the shapes drawn by the user. The analysis
stage then analyzes the shapes in their context to resolve ambiguities. This pro-
cess is based on syntax and semantics of the diagram language. Each of the two
stages is made of three subsequent steps.

The first step of the recognition is preprocessing of strokes and text, which is
performed by independent transformers. Each transformer has a certain view and
processes data accordingly. For example, the line transformer maps the strokes to
straight lines, but does not regard other primitives. Thereby data gets abstracted,
which simplifies later processing, and decreases the amount of data. Each trans-
former creates one model where the preprocessing result is stored. The advantage
of this procedure is that there are several models in parallel. As all strokes are
processed by each transformer, several interpretations of a stroke may coexist in
different models. There is no need at this point to decide for one interpretation
(which is not even possible yet, as there is no information to guide this decision).
It is completely up to the transformers what preprocessing they perform. For ex-
ample, a transformer can try and map the input data to one kind of primitive, as
the line transformer does. A transformer could also map the input data to different
kinds of primitives, although no transformer in DSKETCH does so. Finally, there
can even be more than one transformer for one kind of primitive, as it is the case
for the arc transformer and the circle transformer.

The assembler is the second step in the recognition stage. Based on the data
in the models, it identifies shapes. The original input data, i.e., strokes and text,
are not present to the assembler. The rationale behind this is that the models only
contain highly abstracted data. Consequently, the assembler computes its result
very efficiently if it looks at the models only, and not at the verbose input data.

141

142 CHAPTER 11. SUMMARY AND CONCLUSION

This means that all relevant data must be processed by transformers, otherwise it
is lost. The assembler identifies shapes by querying primitives from the models,
and combining these primitives. A search plan, automatically generated from the
specification of shapes, guides this process and defines the order in which prim-
itives are searched for. This allows for searching primitives shared by different
shapes first, which makes the whole process more efficient. For example, places
and tokens from Petri nets, both drawn as circles, are identified in parallel and
do not have to be searched for a second time. An important aspect of the assem-
bler is that it has no specific information on any model. If a primitive is searched
for, every model is queried, and the results from all models are used to continue
the search process. This is a crucial aspect to the extensibility of the recogni-
tion stage. New transformers and assigned models can easily be added, and the
assembler does not have to be changed in any way.

The third step of the recognition stage is the postprocessing. The set of shapes
identified by the assembler is first examined for duplicates. Due to the tolerances
applied by the transformers and the assembler, it frequently happens that the same
shape is identified more than once, each time slightly different. These duplicates
are correctly handled by the analysis stage, i.e., this stage never includes dupli-
cates in the final result. However, removal of duplicates during postprocessing
improves the performance of the analysis stage. Using a further configuration op-
tion, set in the specification, the postprocessing step can remove even more shapes
to increase performance. This option, motivated by NSD, allows for suppression
of shapes containing other shapes. It must be optional, because its use depends on
the shape specifications and thus it cannot be applied in general. Moreover, the
postprocessing identifies ambiguities between shapes. An ambiguity means that
only one of two shapes can be correct. Ambiguities are explicitly modeled as so-
called conflicts for the analysis stage, which has shown to be a valuable approach
to their resolution. Finally, all shapes that have not been removed are rated. The
rating is later used to decide for one of two shapes, or one of two sets of shapes,
in case that the context information does not suffice to make this decision.

With the postprocessing step the recognition stage is over. The subsequent
analysis stage computes a syntactically and semantically correct subset of the rec-
ognized shapes, and respects the conflicts identified earlier. For this purpose, the
complete stage is based on the DIAGEN tool, and adopts three of its steps. The
first step is the modeler. It identifies relations between shapes and creates a hyper-
graph model representing all shapes and all relations. The specification describes
attachment areas defining which parts of shapes can be related to parts of other
shapes at all. The modeler takes into consideration that these attachment areas
can be deformed for actual shapes, due to the impreciseness of hand-drawing.

The second step of the analysis stage is the reducer, which reduces the hy-
pergraph model produced by the modeler in order to yield another graph model,

143

the reduced hypergraph model. This reduction process is guided by rules. The
key idea behind the reducer is to decrease the size of the hypergraph model by
replacing patterns with simpler patterns, comprised of less edges and nodes. In
doing so, invalid patterns are ignored, i.e., not reduced, and thus need not be dealt
with later. An example for an invalid pattern is an arrow in a Petri net connecting
two places. During the reduction process it is assured that conflicts between the
shapes are still present in the reduced model. Furthermore, negative application
conditions are a second source of conflicts. These special conditions are used to
constrain the application of reduction rules. In our case, the challenge is that rule
applications must not be omitted if these conditions are satisfied by misrecognized
shapes. As a solution, rule applications are never omitted, but conflicts are gen-
erated for matched application conditions as well. An advantage of DSKETCH

is that conflicts between shapes and conflicts due to these application conditions
are represented by the same concept in the reduced model, which simplifies the
subsequent processing step.

The final step in the analysis stage, and in understanding the complete sketch
therewith, is the parser. Controlled by production rules defined in the specifica-
tion, it creates a derivation structure in a bottom-up manner. The edges in the re-
duced hypergraph model are used as terminal symbols. The production rules are
essentially context-free. However, there are embedding production rules which
allow for the specification of not context-free language constructs. Furthermore,
there are set production rules which can be used to significantly improve the per-
formance of the parsing process. For the application of each production rule, the
parser respects conflicts by not using two terminal or nonterminal symbols in the
RHS of an application of a rule where the symbols are conflicting. The result of
the parsing process is a derivation DAG, or a set of DAGs. In the latter case, that
DAG is chosen which exhibits the highest rating. Then, semantics of the sketch
are computed on the basis of this DAG. The semantics is defined as the value of
one designated attribute of the start symbol. The value of this attribute is the final
result of sketch processing.

The complete approach has been thoroughly evaluated, based on a user study.
16 participants each drew six sketches from different domains. Performance and
recognition rates have been evaluated using a prototypical implementation. This
evaluation has shown that both are satisfying. A general rule of thumb cannot be
given on how to estimate both measures, as they depend on the diagram language,
but also on the actual sketch. The evaluation has also shown that the assumptions
underlying the removal of duplicates and the suppression of shapes containing
other shapes applied by the postprocessor (to reduce the number of shapes) are
valid, because their use improves processing time considerably, and does not de-
grade recognition rates.

The two central aspects DSKETCH is designed for are the understanding of

144 CHAPTER 11. SUMMARY AND CONCLUSION

sketched diagrams, while preserving a natural and flexible way of drawing for the
user. The approach combines the following attributes, which make it unique and
illustrate the scientific relevance.

• Generic – the approach is not customized to a specific diagram language, but
flexible. Using specifications, tailoring can be achieved. On top of this, also
the final result of diagram processing can be customized to domain-specific
needs.

• Two stages – diagram processing is comprised of the recognition stage and
the analysis stage. The recognition stage relies on transformers and models,
and is very flexible and extensible. The analysis stage is based on the pow-
erful DIAGEN framework, and performs diagram understanding by creating
the final processing result.

• Multi-stroke recognition – an important benefit of sketching is its natural
way of input. This benefit should not be mitigated by constraining the user’s
drawing style.

• On-line recognition – based on the motivation that sketching editors replace
traditional point-and-click editors, on-line stroke information is present and
can be exploited.

• Automatic clustering and segmentation – diagrams comprise more than one
shape. Accordingly, DSKETCH recognizes shapes in completed sketches,
and performs all necessary stroke clustering and segmentation automati-
cally.

• Geometry-based specification and recognition of shapes – like in other ap-
proaches, shapes are specified by primitives and their geometric relations.

• No limitations by features – the architecture of the recognizer does not rely
on features in general. A drawback of features is that they restrict the user’s
drawing style in order to match the features, if they are not chosen wisely.
Our only application of features is for the circle transformer.

• No training – as shapes are specified, and as recognition is not based on
features (apart from the circle transformer) no training samples are required,
which decreases start-up time for the user.

• Automatic resolution of ambiguities – ambiguities are solved automatically,
not based on inflexible meta-rules, but based on diagram language-specific
rules describing syntax and semantics.

145

• Lazy recognition – because only the user knows when a diagram is finished,
and because correct syntax and semantics are crucial, it is the user who has
to explicitly invoke recognition.

• Checking of syntax and semantics – automatic resolution of ambiguities is
interwoven with checking syntax and semantics. Using this checking it is
possible to compute a processing result that can be used immediately in
another application, which is a typical scenario for sketching.

• Good performance and recognition rates – shown by a user study, perfor-
mance and recognition rates are good.

The presented thesis has identified several starting points for further work,
which have been illustrated in their context in the respective chapters. For each
such chapter, a single section has been devoted exclusively to further work. Ac-
cordingly, we give only a brief overview here, without delving into all the details
that have been discussed before.

• For the preprocessing step, the use of a divider has been discussed, which
would allow for mode-less writing and drawing next to each other on the
canvas (Section 4.6).

• Coupled with the issue of a divider is to evaluate which text input metaphor
is more convenient to the user, different alternatives are conceivable (Sec-
tion 4.6).

• More kinds of primitives could be useful, for example, hatched and filled
regions, or dashed and dotted lines (Section 4.7). Also, repetitive patterns
like spirals or helices can neither be specified nor recognized.

• Low-level recognizers from other research groups can be integrated into
DSKETCH as an independent transformer, which could increase overall
recognition rates (Section 4.7).

• The evaluation revealed further issues of sloppy drawn arrows and corners
that could be handled during the preprocessing step, or even better by a
top-down approach (Section 10.5).

• The assembler, and all subsequent processing steps, could benefit from an
incremental approach, as this can be expected to greatly increase perfor-
mance. Other approaches that do have incremental processing are usually
very efficient, which supports this assumption (Section 5.6).

146 CHAPTER 11. SUMMARY AND CONCLUSION

• As an alternative to an incremental approach, or in addition, recognition
could be parallelized, as all search states involved in recognition are inde-
pendent of each other (Section 5.6).

• For the reducer, this thesis suggests a different mechanism to apply negative
application conditions. This mechanism may also be useful for respective
diagramming tools which do not rely on sketching, as it may help to give
the user a better feedback in the case of an erroneous diagram (Section 8.4).

A more general issue for further work, not discussed so far, regards the user
interface of our sketching application. The focus of this thesis only lies in the
technical aspects of sketching. However, a mature user interface that supports the
user in his work is crucial to the overall success of sketching. This includes, for
example, the question which typical workflows occur in a sketching application,
and what the user interface provides in order to enable such workflows in a flexible
and natural manner. This issue is tightly coupled with the research field of user
interfaces for pen-based computers and HCI.

Appendix A

Specification of Diagram Languages

This chapter shows the complete specifications for all six examples of diagram
languages illustrated in Chapter 2. For each diagram language is shown the spec-
ification of

• The shapes, comprising primitives (cf. Section 1.2), constraints (cf. Sec-
tion 5.1), and attachments areas (cf. Section 7.1).

• The settings for the configuration options applicable in the postprocessing
step (cf. Sections 6.2 and 6.3).

• The relation types (cf. Section 7.2).

• The terminal and nonterminal symbols.

• The reduction rules (cf. Section 8.2).

• The production rules (cf. Sections 9.1 through 9.4), and rules for attribute
evaluation (cf. Section 9.6).

A graphical representation of the specification is chosen where appropriate.
For text primitives, there is sometimes given a regular expression which further
describes the text. For the specification of constraints there is a choice between
more constraints, which lead to a more precise shape, and fewer constraints, which
allow more freedom in drawing shapes. We tend to use less constraints in order to
not over-constrain drawing.

The shape represented by a shape edge e is denoted as e.self(). For attribute
evaluation there are often function calls used, which are not further explained.
However, meaningful names are chosen to assure understandability. By conven-
tion, labels of all edges representing terminal symbols start with t , while labels
of all edges representing nonterminal symbols start with n . The numbers used to
distinguish the nodes visited by an edge are omitted if their mapping is obvious.

147

148 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES

A.1 Petri Nets

This section shows the specification for Petri nets (cf. Section 2.1). The final result
of sketch processing is a model of the sketched Petri net, if such a model can be
found. Note that the examples given in Chapters 7 through 9 sometimes differ
from the specification in this section, which has been necessary to better describe
aspects of the approach which would otherwise not become obvious.

top

bottom

rightleft

ul ur

ll lr

head

tail

sideB

sideA

Transition Place/Token Arrow

t_place t_trans t_token t_arrow

n_placesn_place n_trans n_arrow

n_transitionsn_net

A.1.1 Shape Place

primitives
arc from top to left, quadrant 2, counter-clockwise, unique id top left
arc from top to right, quadrant 1, clockwise, unique id top right
arc from bottom to left, quadrant 3, clockwise, unique id bottom left
arc from bottom to right, quadrant 4, counter-clockwise, unique id bottom right
text within polygon top left-top right-bottom right-bottom left, optional,

regex \d+, unique id capacity
text at polyline top left-top right-bottom right-bottom left, optional,

regex [a-zA-Z_].*, unique id label

attachment areas
polyline top left-top right-bottom right-bottom left, label place
polygon top left-top right-bottom right-bottom left, label place for tok

A.1.2 Shape Transition

primitives
line from ul to ur, horizontal right, unique id line1
line from ll to ul, vertical up, unique id line2
line from lr to ll, horizontal left, unique id line3
line from ur to lr, vertical down, unique id line4
text at polyline line1-line2-line3-line4, optional,

regex [a-zA-Z_].*, unique id label

A.1. PETRI NETS 149

attachment areas
polyline line1-line2-line3-line4, label trans

A.1.3 Shape Token
primitives
arc from top to left, quadrant 2, counter-clockwise, unique id top left
arc from top to right, quadrant 1, clockwise, unique id top right
arc from bottom to left, quadrant 3, clockwise, unique id bottom left
arc from bottom to right, quadrant 4, counter-clockwise, unique id bottom right

attachment areas
polygon top left-top right-bottom right-bottom left, label token

A.1.4 Shape Arrow
primitives
line from head to sideA, arbitrary direction, unique id lineA
line from head to sideB, arbitrary direction, unique id lineB
link from head to tail, unique id shaft
text at polyline shaft, optional, regex \d+, unique id cost

constraints
distance head-tail greater than 80, soft constraint
distance head-sideA greater than 50, soft constraint
distance head-sideB greater than 50, soft constraint
distance head-sideA less than distance head-tail, hard constraint
distance head-sideB less than distance head-tail, hard constraint
angle sideA-head-tail greater than 20◦, hard constraint
angle sideA-head-tail less than 70◦, hard constraint
angle tail-head-sideB greater than 20◦, hard constraint
angle tail-head-sideB less than 70◦, hard constraint

attachment areas
point head, label arrowEnd
point tail, label arrowEnd

A.1.5 Postprocessing
identify conflicts := true
remove larger shapes := false

150 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES

A.1.6 Relation Types
from place for tok to token, rigid, label has token
from arrowEnd to trans, not rigid, label at trans
from arrowEnd to place, not rigid, label at place

A.1.7 Parser Symbols
terminal symbols

top

bottom

rightleft

ul ur

ll lr

head

tail

sideB

sideA

Transition Place/Token Arrow

t_place t_trans t_token t_arrow

n_placesn_place n_trans n_arrow

n_transitionsn_net

nonterminal symbols (start symbol is n net)

top

bottom

rightleft

ul ur

ll lr

head

tail

sideB

sideA

Transition Place/Token Arrow

t_place t_trans t_token t_arrow

n_placesn_place n_trans n_arrow

n_transitionsn_net

attributes of the terminal symbols
t place.shape for the original shape that has been recognized
t trans.shape for the original shape that has been recognized
t arrow.shape for the original shape that has been recognized

attributes of the nonterminal symbols
n place.model for the place that is created for the final result
n trans.model for the transition that is created for the final result
n places.set for the set of all places
n transitions.set for the set of all transitions
n net.model for the Petri net that is created for the final result, semantic attribute
n arrow.model for the arrow that is created for the final result

A.1.8 Reduction Rules
s:Place

t:t_arrows:Arrow

Place Transition

t:t_place
1 2

a a

s:Transition t:t_trans

a a

1 1

1

2

2 2
a b a b

t:t_arrows:Arrow

Place Transition

2 2

1

2

1 1
a b a b

p:Place t:t_token
2 1

a a

s:Token
hasToken

atPlace

atPlace

atTrans

atTrans

t.shape := s.self()

A.1. PETRI NETS 151s:Place

t:t_arrows:Arrow

Place Transition

t:t_place
1 2

a a

s:Transition t:t_trans

a a

1 1

1

2

2 2
a b a b

t:t_arrows:Arrow

Place Transition

2 2

1

2

1 1
a b a b

p:Place t:t_token
2 1

a a

s:Token
hasToken

atPlace

atPlace

atTrans

atTrans

t.shape := s.self()
s:Place

t:t_arrows:Arrow

Place Transition

t:t_place
1 2

a a

s:Transition t:t_trans

a a

1 1

1

2

2 2
a b a b

t:t_arrows:Arrow

Place Transition

2 2

1

2

1 1
a b a b

p:Place t:t_token
2 1

a a

s:Token
hasToken

atPlace

atPlace

atTrans

atTrans

Condition s.self().radius < p.self().radius / 2

s:Place

t:t_arrows:Arrow

Place Transition

t:t_place
1 2

a a

s:Transition t:t_trans

a a

1 1

1

2

2 2
a b a b

t:t_arrows:Arrow

Place Transition

2 2

1

2

1 1
a b a b

p:Place t:t_token
2 1

a a

s:Token
hasToken

atPlace

atPlace

atTrans

atTrans

t.shape := s.self()

s:Place

t:t_arrows:Arrow

Place Transition

t:t_place
1 2

a a

s:Transition t:t_trans

a a

1 1

1

2

2 2
a b a b

t:t_arrows:Arrow

Place Transition

2 2

1

2

1 1
a b a b

p:Place t:t_token
2 1

a a

s:Token
hasToken

atPlace

atPlace

atTrans

atTrans

t.shape := s.self()

A.1.9 Production Rules

::=l:n_net p:n_places t:n_transitions

l:n_place r:t_place

a a
::=

l:n_trans r:t_trans

a a
::=

l:n_place r:t_place

a a
::= t_token

p:t_place

t:t_trans

::=
embed

p:t_place

t:t_trans

a:t_arrow

2

1

p:t_place

t:t_trans

::=
embed

p:t_place

t:t_trans

a:t_arrow

1

2

l:n_places ::= r:n_place
l:n_transitions ::= r:n_transl.net := createNet(p.set, t.set)

::=l:n_net p:n_places t:n_transitions

l:n_place r:t_place

a a
::=

l:n_trans r:t_trans

a a
::=

l:n_place r:t_place

a a
::= t_token

p:t_place

t:t_trans

::=
embed

p:t_place

t:t_trans

a:t_arrow

2

1

p:t_place

t:t_trans

::=
embed

p:t_place

t:t_trans

a:t_arrow

1

2

l:n_places ::= r:n_place
l:n_transitions ::= r:n_trans

l.set := takeAll(r.model)

152 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES::=l:n_net p:n_places t:n_transitions

l:n_place r:t_place

a a
::=

l:n_trans r:t_trans

a a
::=

l:n_place r:t_place

a a
::= t_token

p:t_place

t:t_trans

::=
embed

p:t_place

t:t_trans

a:t_arrow

2

1

p:t_place

t:t_trans

::=
embed

p:t_place

t:t_trans

a:t_arrow

1

2

l:n_places ::= r:n_place
l:n_transitions ::= r:n_trans

l.set := takeAll(r.model)

::=l:n_net p:n_places t:n_transitions

l:n_place r:t_place

a a
::=

l:n_trans r:t_trans

a a
::=

l:n_place r:t_place

a a
::= t_token

p:t_place

t:t_trans

::=
embed

p:t_place

t:t_trans

a:t_arrow

2

1

p:t_place

t:t_trans

::=
embed

p:t_place

t:t_trans

a:t_arrow

1

2

l:n_places ::= r:n_place
l:n_transitions ::= r:n_trans

l.model := createPlace(r.shape)

::=l:n_net p:n_places t:n_transitions

l:n_place r:t_place

a a
::=

l:n_trans r:t_trans

a a
::=

l:n_place r:t_place

a a
::= t_token

p:t_place

t:t_trans

::=
embed

p:t_place

t:t_trans

a:t_arrow

2

1

p:t_place

t:t_trans

::=
embed

p:t_place

t:t_trans

a:t_arrow

1

2

l:n_places ::= r:n_place
l:n_transitions ::= r:n_trans

l.model := createPlaceWithToken(r.shape)

::=l:n_net p:n_places t:n_transitions

l:n_place r:t_place

a a
::=

l:n_trans r:t_trans

a a
::=

l:n_place r:t_place

a a
::= t_token

p:t_place

t:t_trans

::=
embed

p:t_place

t:t_trans

a:t_arrow

2

1

p:t_place

t:t_trans

::=
embed

p:t_place

t:t_trans

a:t_arrow

1

2

l:n_places ::= r:n_place
l:n_transitions ::= r:n_trans

l.model := createTransition(r.shape)

::=l:n_net p:n_places t:n_transitions

l:n_place r:t_place

a a
::=

l:n_trans r:t_trans

a a
::=

l:n_place r:t_place

a a
::= t_token

p:t_place

t:t_trans

::=
embed

p:t_place

t:t_trans

a:t_arrow

2

1

p:t_place

t:t_trans

::=
embed

p:t_place

t:t_trans

a:t_arrow

1

2

l:n_places ::= r:n_place
l:n_transitions ::= r:n_trans

addArrow(t.shape, a.shape, p.shape)

::=l:n_net p:n_places t:n_transitions

l:n_place r:t_place

a a
::=

l:n_trans r:t_trans

a a
::=

l:n_place r:t_place

a a
::= t_token

p:t_place

t:t_trans

::=
embed

p:t_place

t:t_trans

a:t_arrow

2

1

p:t_place

t:t_trans

::=
embed

p:t_place

t:t_trans

a:t_arrow

1

2

l:n_places ::= r:n_place
l:n_transitions ::= r:n_trans

addArrow(p.shape, a.shape, t.shape)

A.2. NASSI-SHNEIDERMAN DIAGRAMS 153

A.2 Nassi-Shneiderman Diagrams
This section shows the specification for NSDs, which are illustrated in Section 2.2.
The final result of sketch processing is the pseudocode represented by the sketch.

tl tr

bl br

Statement

1 2

3 4

Condition

1 2

5

4

While Until

5 6

6

3

1

4

5 6

3

2

t_state t_cond t_while

n_state n_nsd

t_until

A.2.1 Shape Statement
primitives
line from tl to tr, horizontal right, unique id line1
line from bl to tl, vertical up, unique id line2
line from br to bl, horizontal left, unique id line3
line from tr to br, vertical down, unique id line4
text within polygon line1-line2-line3-line4, unique id statement

attachment areas
point tl, label corner
point tr, label corner
point bl, label corner
point br, label corner

A.2.2 Shape Condition
primitives
line from 1 to 2, horizontal right, unique id top
line from 5 to 6, horizontal right, unique id bottom
line from 1 to 3, vertical down, unique id left
line from 2 to 4, vertical down, unique id right
line from 1 to 5, diagonal down right, unique id diag l
line from 2 to 6, diagonal down left, unique id diag r
line from 3 to 5, horizontal right, unique id small l
line from 6 to 4, horizontal right, unique id small r
text within polygon top-diag r-bottom-diag l, unique id condition

154 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES

attachment areas
point 1, label corner
point 2, label corner
point 3, label corner
point 4, label corner

A.2.3 Shape While
primitives
line from 1 to 2, horizontal right, unique id top
line from 1 to 5, vertical down, unique id left
line from 5 to 6, horizontal right, unique id bottom
line from 2 to 4, vertical down, unique id right
line from 3 to 4, horizontal right, unique id hori
line from 3 to 6, vertical down, unique id vert
text within closed polygon top-right-hori, unique id condition

attachment areas
point 1, label corner
point 2, label corner
point 3, label corner
point 4, label corner
point 5, label corner
point 6, label corner

A.2.4 Shape Until
primitives
line from 1 to 2, horizontal right, unique id top
line from 1 to 5, vertical down, unique id left
line from 5 to 6, horizontal right, unique id bottom
line from 2 to 3, vertical down, unique id vert
line from 3 to 4, horizontal right, unique id hori
line from 4 to 6, vertical down, unique id right
text within closed polygon hori-right-bottom, unique id condition

attachment areas
point 1, label corner
point 2, label corner
point 3, label corner
point 4, label corner

A.2. NASSI-SHNEIDERMAN DIAGRAMS 155

point 5, label corner
point 6, label corner

A.2.5 Postprocessing
identify conflicts := false
remove larger shapes := true

A.2.6 Relation Types
from corner to corner, not rigid, label connect

A.2.7 Parser Symbols
terminal symbols

tl tr

bl br

Statement

1 2

3 4

Condition

1 2

5

4

While Until

5 6

6

3

1

4

5 6

3

2

t_state t_cond t_while

n_state n_nsd

t_until

nonterminal symbols (start symbol is n nsd)

tl tr

bl br

Statement

1 2

3 4

Condition

1 2

5

4

While Until

5 6

6

3

1

4

5 6

3

2

t_state t_cond t_while

n_state n_nsd

t_until

attributes of the terminal symbols
t state.statement for the statement represented by the edge
t cond.condition for the condition of the statement
t while.condition for the condition of the statement
t until.condition for the condition of the statement

attributes of the nonterminal symbols
n state.code for the pseudocode represented by this symbol
n nsd.code for the pseudocode represented by this symbol, semantic attribute

156 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES

A.2.8 Reduction Rules

t:State s:t_state

a b

c d

a b

c d

t:Cond s:t_cond

a b

c d

a b

c d

t:While s:t_while

a b

c d

f

e

a b

c d

f

e

t:Until s:t_until

a b

c d

f
e

a b

c d

f
e

connect
a b a=b

t.statement := s.statement
t:State s:t_state

a b

c d

a b

c d

t:Cond s:t_cond

a b

c d

a b

c d

t:While s:t_while

a b

c d

f

e

a b

c d

f

e

t:Until s:t_until

a b

c d

f
e

a b

c d

f
e

connect
a b a=b

t.condition := s.condition

t:State s:t_state

a b

c d

a b

c d

t:Cond s:t_cond

a b

c d

a b

c d

t:While s:t_while

a b

c d

f

e

a b

c d

f

e

t:Until s:t_until

a b

c d

f
e

a b

c d

f
e

connect
a b a=b

t.condition := s.condition

t:State s:t_state

a b

c d

a b

c d

t:Cond s:t_cond

a b

c d

a b

c d

t:While s:t_while

a b

c d

f

e

a b

c d

f

e

t:Until s:t_until

a b

c d

f
e

a b

c d

f
e

connect
a b a=b

t.condition := s.condition

t:State s:t_state

a b

c d

a b

c d

t:Cond s:t_cond

a b

c d

a b

c d

t:While s:t_while

a b

c d

f

e

a b

c d

f

e

t:Until s:t_until

a b

c d

f
e

a b

c d

f
e

connect
a b a=b

note: this reduction rule merges nodes a and b in the RHM.

A.2. NASSI-SHNEIDERMAN DIAGRAMS 157

A.2.9 Production Rules

l:n_state ::= s:t_state

a b

c d

a b

c d

l:n_state ::= c:t_cond

a b

c d

a b

c d

n1:n_nsd n2:n_nsd

l:n_state ::= c:t_cond

a b

c d

a b

n:n_nsd

c d

l.code := s.statement
l:n_state ::= s:t_state

a b

c d

a b

c d

l:n_state ::= c:t_cond

a b

c d

a b

c d

n1:n_nsd n2:n_nsd

l:n_state ::= c:t_cond

a b

c d

a b

n:n_nsd

c d

l.code := ”IF ” + c.condition +
” THEN ” + n1.code + ” ELSE ” + n2.code + ” FI”

l:n_state ::= s:t_state

a b

c d

a b

c d

l:n_state ::= c:t_cond

a b

c d

a b

c d

n1:n_nsd n2:n_nsd

l:n_state ::= c:t_cond

a b

c d

a b

n:n_nsd

c d

l.code := ”IF ” + c.condition + ” THEN” + n.code + ” FI”

w:t_while::=

a b

c d

n:n_nsd

l:n_state

a b

c d

::=

u:t_until

a b

c d

l:n_state

a b

c d

n:n_nsd

l:n_nsd ::= s:n_state

a b

c d

a b

c d

l.code := ”WHILE ” + w.condition + ” DO ” + n.code + ” OD”

158 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES

w:t_while::=

a b

c d

n:n_nsd

l:n_state

a b

c d

::=

u:t_until

a b

c d

l:n_state

a b

c d

n:n_nsd

l:n_nsd ::= s:n_state

a b

c d

a b

c d

l.code := ”DO ” + n.code + ” UNTIL ” + u.condition

w:t_while::=

a b

c d

n:n_nsd

l:n_state

a b

c d

::=

u:t_until

a b

c d

l:n_state

a b

c d

n:n_nsd

l:n_nsd ::= s:n_state

a b

c d

a b

c d

l.code := s.code

l:n_nsd ::= s:n_state

a b

c d

a b

n:n_nsd

c d

l.code := s.code + ”; ” + n.code

A.3. GUI BUILDER 159

A.3 GUI Builder
This section shows the specification for the GUI builder, which is illustrated in
Section 2.3. The final result of sketch processing is an actual dialog containing all
sketched control elements.

top

bottom

rightleft

RadiobuttonWindow

tl tr

bl br

ml mr

tl tr

bl br

Button/Textfield/

Checkbox

Combobox

tl tr

bl br

tm

bm

HorizontalSlider

tl

VerticalSlider

tr

bl br

rl ml mr

bl br
bm

tl tr
tm

t

b

A.3.1 Shape Window
primitives
line from tl to tr, horizontal right, unique id top
line from ml to mr, horizontal right, unique id middle
line from bl to br, horizontal right, unique id bottom
line from tl to ml, vertical down, unique id top left
line from ml to bl, vertical down, unique id bottom left
line from tr to mr, vertical down, unique id top right
line from mr to br, vertical down, unique id bottom right
text within polygon top-top right-middle-top left, unique id caption

attachment areas
polygon middle-bottom right-bottom-bottom left, label container

A.3.2 Shape Button
primitives
line from tl to tr, horizontal right, unique id top
line from bl to br, horizontal right, unique id bottom
line from tl to bl, vertical down, unique id left

160 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES

line from tr to br, vertical down, unique id right
text within polygon top-left-bottom-right, unique id caption

attachment areas
point tl, label element

A.3.3 Shape Textfield

primitives
line from tl to tr, horizontal right, unique id top
line from bl to br, horizontal right, unique id bottom
line from tl to bl, vertical down, unique id left
line from tr to br, vertical down, unique id right

attachment areas
point tl, label element

A.3.4 Shape Checkbox

primitives
line from tl to tr, horizontal right, unique id top
line from bl to br, horizontal right, unique id bottom
line from tl to bl, vertical down, unique id left
line from tr to br, vertical down, unique id right
text at polyline text line, unique id label

computation
point where x is 2 * tr.x - tl.x, y is tr.x, unique id c tr
point where x is 2 * br.x - bl.x, y is br.x, unique id c br
line from c tr to c br, unique id text line

constraints
distance tl-bl less than 100, hard constraint
distance tl-br less than 100, hard constraint

attachment areas
point tl, label element

A.3. GUI BUILDER 161

A.3.5 Shape Radiobutton

primitives
arc from top to left, quadrant 2, counter-clockwise, unique id top left
arc from top to right, quadrant 1, clockwise, unique id top right
arc from bottom to left, quadrant 3, clockwise, unique id bottom left
arc from bottom to right, quadrant 4, counter-clockwise, unique id bottom right
text at point right, unique id label

constraints
distance left-right less than 100, hard constraint

attachment areas
point left, label element

A.3.6 Shape Combobox

primitives
line from tl to tm, horizontal right, unique id top left
line from tm to tr, horizontal right, unique id top right
line from bl to bm, horizontal right, unique id bottom left
line from bm to br, horizontal right, unique id bottom right
line from tl to bl, vertical down, unique id left
line from ml to ml, vertical down, unique id middle
line from tr to br, vertical down, unique id right
text within polygon top left-middle-bottom left-left, unique id caption

attachment areas
point tl, label element

A.3.7 Shape HorizontalSlider

primitives
line from tl to tr, horizontal right, unique id top
line from bl to br, horizontal right, unique id bottom
line from tl to ml, vertical down, unique id top left
line from ml to bl, vertical down, unique id bottom left
line from tr to mr, vertical down, unique id top right
line from mr to br, vertical down, unique id bottom right
line from ml to l, horizontal left, unique id left track
line from mr to r, horizontal right, unique id right track

162 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES

text at point l, optional, unique id labelMin
text at point r, optional, unique id labelMax

constraints
distance tl-tr less than distance tl-bl, hard constraint

attachment areas
point tl, label element

A.3.8 Shape VerticalSlider
primitives
line from tl to tm, horizontal right, unique id top left
line from tm to tr, horizontal right, unique id top right
line from bl to bm, horizontal right, unique id bottom left
line from bm to br, horizontal right, unique id bottom right
line from tl to bl, vertical down, unique id left
line from tr to br, vertical down, unique id right
line from tm to t, vertical up, unique id top track
line from bm to b, vertical down, unique id bottom track
text at point b, optional, unique id labelMin
text at point t, optional, unique id labelMax

constraints
distance tl-bl less than distance tl-tr, hard constraint

attachment areas
point tl, label element

A.3.9 Postprocessing
identify conflicts := true
remove larger shapes := false

A.3.10 Relation Types
from container to element, rigid, label contains

A.3.11 Parser Symbols
terminal symbols

A.3. GUI BUILDER 163

t_window t_button t_check t_radio

t_textfield t_combo t_h_slider t_v_slider

n_window n_elements n_element

nonterminal symbols (start symbol is n window)

t_window t_button t_check t_radio

t_textfield t_combo t_h_slider t_v_slider

n_window n_elements n_element

attributes of the terminal symbols
t window.shape for the original shape that has been recognized
t window.caption for the caption of the window
t button.shape for the original shape that has been recognized
t button.caption for the caption of the button
t check.shape for the original shape that has been recognized
t check.label for the label of the checkbox
t radio.shape for the original shape that has been recognized
t radio.label for the label of the radio button
t textfield.shape for the original shape that has been recognized
t combo.shape for the original shape that has been recognized
t combo.caption for the caption of the combo box
t h slider.shape for the original shape that has been recognized
t h slider.min for the minimum label of the slider
t h slider.max for the maximum label of the slider
t v slider.shape for the original shape that has been recognized
t v slider.min for the minimum label of the slider
t v slider.max for the maximum label of the slider

attributes of the nonterminal symbols
n window.window for the resulting window, semantic attribute
n elements.elements for the set of all elements
n element.element for the single control element represented by this edge

A.3.12 Reduction Rules

contains
a

t:t_button

a

s:Checkbox

contains
a

t:t_check

a

s:Button

a

t:t_window

a

w:Window

164 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES

w.shape := s.self()
w.caption := s.caption

contains
a

t:t_button

a

s:Checkbox

contains
a

t:t_check

a

s:Button

a

t:t_window

a

w:Window

t.shape := s.self()
t.caption := s.caption

contains
a

t:t_button

a

s:Checkbox

contains
a

t:t_check

a

s:Button

a

t:t_window

a

w:Window

t.shape := s.self()
t.label := s.label

The next five rules are very similar to the two before, and hence omitted.
One after another they describe the reduction process for model edges representing radio

buttons, text fields, combo boxes, and the two sliders.

A.3.13 Production Rules
t:t_window e:n_elements::=w:n_window

l:n_elements ::= r:n_element

a a

::=
a

t:t_button

a

e:n_element ::=
a

t:t_check

a

e:n_element

w.window := createWindow(t.shape, t.caption, e.elements)
t:t_window e:n_elements::=w:n_window

l:n_elements ::= r:n_element

a a

::=
a

t:t_button

a

e:n_element ::=
a

t:t_check

a

e:n_element

l.elements := takeAll(r.element)

A.3. GUI BUILDER 165

t:t_window e:n_elements::=w:n_window

l:n_elements ::= r:n_element

a a

::=
a

t:t_button

a

e:n_element ::=
a

t:t_check

a

e:n_element

e.element := createButton(t.shape, t.caption)

t:t_window e:n_elements::=w:n_window

l:n_elements ::= r:n_element

a a

::=
a

t:t_button

a

e:n_element ::=
a

t:t_check

a

e:n_element

e.element := createCheckbox(t.shape, t.label)

The next five rules are very similar to the two before, and hence omitted.
One after another they describe the transformation of terminal edges representing radio

buttons, text fields, combo boxes, and the two sliders into nonterminal edges labeled
n element.

166 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES

A.4 Statecharts
This section shows the specification for statecharts (cf. Section 2.4). The final
result of sketch processing is a model of the sketched statechart, if such a model
can be found.

top

bottom

rightleft

ul ur

ll lr

head

tail

sideB

sideA

State Initial Transition

top

bottom

rightleft

Final

t

r

b

l

t_start t_transt_end t_state

t_nest_start t_nest_state

A.4.1 Shape State
primitives
line from tl to tr, horizontal right, unique id line1
line from bl to tl, vertical up, unique id line2
line from br to bl, horizontal left, unique id line3
line from tr to br, vertical down, unique id line4
text within polygon line1-line2-line3-line4, unique id name

attachment areas
polyline line1-line2-line3-line4, label border
polygon line1-line2-line3-line4, label area

A.4.2 Shape Initial
primitives
arc from top to left, quadrant 2, counter-clockwise, unique id top left
arc from top to right, quadrant 1, clockwise, unique id top right
arc from bottom to left, quadrant 3, clockwise, unique id bottom left
arc from bottom to right, quadrant 4, counter-clockwise, unique id bottom right

attachment areas
polyline top left-top right-bottom right-bottom left, label border

A.4.3 Shape Final
primitives
arc from top to left, quadrant 2, counter-clockwise, unique id top left
arc from top to right, quadrant 1, clockwise, unique id top right

A.4. STATECHARTS 167

arc from bottom to left, quadrant 3, clockwise, unique id bottom left
arc from bottom to right, quadrant 4, counter-clockwise, unique id bottom right
arc from t to l, quadrant 2, counter-clockwise, unique id t l
arc from t to r, quadrant 1, clockwise, unique id t r
arc from b to l, quadrant 3, clockwise, unique id b l
arc from b to r, quadrant 4, counter-clockwise, unique id b r

constraints
top.y less than t.y
left.x less than l.x
right.x greater than r.x
bottom.y greater than b.y

attachment areas
polyline top left-top right-bottom right-bottom left, label border

A.4.4 Shape Transition

primitives
line from head to sideA, arbitrary direction, unique id lineA
line from head to sideB, arbitrary direction, unique id lineB
link from head to tail, unique id shaft
text at polyline shaft, optional, unique id label

constraints
distance head-tail greater than 80, soft constraint
distance head-sideA greater than 50, soft constraint
distance head-sideB greater than 50, soft constraint
distance head-sideA less than distance head-tail, hard constraint
distance head-sideB less than distance head-tail, hard constraint
angle sideA-head-tail greater than 20◦, hard constraint
angle sideA-head-tail less than 70◦, hard constraint
angle tail-head-sideB greater than 20◦, hard constraint
angle tail-head-sideB less than 70◦, hard constraint

attachment areas
point head, label trans
point tail, label trans

168 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES

A.4.5 Postprocessing
identify conflicts := true
remove larger shapes := false

A.4.6 Relation Types
from area(s1) to border(s2), rigid, label contains,

condition s1.width > s2.width where
s1.width is s1.tr.x - s1.tl.x,
s2.width is s2.tr.x - s2.tl.x if s2 is a state,
s2.width is s2.right.x - s2.left.x if s2 is an initial

from trans to border, not rigid, label at

A.4.7 Parser Symbols
terminal symbols

top

bottom

rightleft

ul ur

ll lr

head

tail

sideB

sideA

State Initial Transition

top

bottom

rightleft

Final

t

r

b

l

t_start t_transt_end t_state

t_nest_start t_nest_state

nonterminal symbols (start symbol is n chart)

n_state n_states n_chart

n_nest_state n_nest_states n_nest_chart

attributes of the terminal symbols
t shape.name for the name of the shape
t trans.label for the label of the transition
t end.label for the label of the transition to a final state

A.4. STATECHARTS 169

attributes of the nonterminal symbols
n state.state for the represented state
n nest state.state for the represented state
n states.states for the represented states
n nest states.states for the represented states
n chart.chart for the represented state chart, semantic attribute
n nest chart.chart for the represented state chart

A.4.8 Reduction Rules

contains

Initial

Transition

t_start

State

StateState

contains

1

2

1

2

1

2

1 2 at

at

a
a

Final

Transition
t_end

State

1

2

2 1 atat
a

a

contains

Initial

Transition

t_start

State

StateState

contains

1

2

1

2

1

2

1 2 at

at

a
a

Final

t:Transition
e:t_end

State

1

2

2 1 atat
a

a

e.label := t.label

a:Arrow

State

1

2

1 2 atat
b

State

1

2

a t:t_arrow
1 2

ba

contains

s:State

State

1

2

1

2

a
t:t_state

1

2

b

a

b

t.name := s.name

170 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES

l:Transition

State

1

2

1 2 atat
b

State

1

2

a r:t_trans
1 2

ba

contains

s:State

State

1

2

1

2

a
t:t_state

1

2

b

a

b

l.label := r.label

2

2

contains

Initial

Transition

State

State

1

2

1
1 2 atat

a

State

1

2

contains

1

State
b

t_nest_start b

a

1
2

2

contains

s:State

State

1

2

1

a

State

1

2

c
contains

t:t_nest_state c

b

a

b

2

1

3

t.name := s.name

A.4.9 Production Rules

t:t_staten:n_state ::=
2

1

aa

t:t_staten:n_state ::=
2

1

aa

c:n_nest_chart

n:n_statec:n_chart ::=
t_start

n:n_statec:n_chart ::=
t_start

s:n_states

t_statet_states:n_states ::= n:n_state

n.state := createState(t.name)

A.4. STATECHARTS 171
t:t_staten:n_state ::=

2

1

aa

t:t_staten:n_state ::=
2

1

aa

c:n_nest_chart

n:n_statec:n_chart ::=
t_start

n:n_statec:n_chart ::=
t_start

s:n_states

t_statet_states:n_states ::= n:n_staten.state := createState(t.name, c.chart)

t:t_staten:n_state ::=
2

1

aa

t:t_staten:n_state ::=
2

1

aa

c:n_nest_chart

n:n_statec:n_chart ::=
t_start

n:n_statec:n_chart ::=
t_start

s:n_states

t_statet_states:n_states ::= n:n_state

s.states := takeAll(n.state)

t:t_staten:n_state ::=
2

1

aa

t:t_staten:n_state ::=
2

1

aa

c:n_nest_chart

n:n_statec:n_chart ::=
t_start

n:n_statec:n_chart ::=
t_start

s:n_states

t_statet_states:n_states ::= n:n_state

c.chart := createChart(n.state)

t:t_staten:n_state ::=
2

1

aa

t:t_staten:n_state ::=
2

1

aa

c:n_nest_chart

n:n_statec:n_chart ::=
t_start

n:n_statec:n_chart ::=
t_start

s:n_states

t_statet_states:n_states ::= n:n_state

c.chart := createChart(n.state, s.states)

n:n_nest_state ::=
a

t:t_nest_state b

a

2

1

3

b

2

1

n:n_nest_state ::=
a

t:t_nest_state b

a

2

1

3

b c:n_nest_chart

2

1

1

n_nest_staten_nest_states:n_nest_states ::=

a a
2

n:n_nest_state

n.state := createState(t.name)

172 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES
n:n_nest_state ::=

a

t:t_nest_state b

a

2

1

3

b

2

1

n:n_nest_state ::=
a

t:t_nest_state b

a

2

1

3

b c:n_nest_chart

2

1

1

n_nest_staten_nest_states:n_nest_states ::=

a a
2

n:n_nest_state

n.state := createState(t.name, c.chart)

n:n_nest_state ::=
a

t:t_nest_state b

a

2

1

3

b

2

1

n:n_nest_state ::=
a

t:t_nest_state b

a

2

1

3

b c:n_nest_chart

2

1

1

n_nest_staten_nest_states:n_nest_states ::=

a a
2

n:n_nest_state

s.states := takeAll(n.state)

c:n_nest_chart ::=
t_nest_start

n:n_nest_state

1

1

2

2

a

a

c:n_nest_chart ::=

t_nest_start

n:n_nest_state s:n_nest_states

a

1

1

2

2

a

::=
embed

n:n_state n:n_state

e:t_end

::=
embed

e:t_end

n:n_nest_state

2

1

n:n_nest_state

2

1

c.chart := createChart(n.state)c:n_nest_chart ::=
t_nest_start

n:n_nest_state

1

1

2

2

a

a

c:n_nest_chart ::=

t_nest_start

n:n_nest_state s:n_nest_states

a

1

1

2

2

a

::=
embed

n:n_state n:n_state

e:t_end

::=
embed

e:t_end

n:n_nest_state

2

1

n:n_nest_state

2

1

c.chart := createChart(n.state, s.states)

c:n_nest_chart ::=
t_nest_start

n:n_nest_state

1

1

2

2

a

a

c:n_nest_chart ::=

t_nest_start

n:n_nest_state s:n_nest_states

a

1

1

2

2

a

::=
embed

n:n_state n:n_state

e:t_end

::=
embed

e:t_end

n:n_nest_state

2

1

n:n_nest_state

2

1

setFinalTransition(n.state, e.label)

A.4. STATECHARTS 173

c:n_nest_chart ::=
t_nest_start

n:n_nest_state

1

1

2

2

a

a

c:n_nest_chart ::=

t_nest_start

n:n_nest_state s:n_nest_states

a

1

1

2

2

a

::=
embed

n:n_state n:n_state

e:t_end

::=
embed

e:t_end

n:n_nest_state

2

1

n:n_nest_state

2

1

setFinalTransition(n.state, e.label)

::=
embed

t:t_trans

2

1
a:n_nest_state

b:n_nest_state

2 1

2 1

a:n_nest_state

b:n_nest_state

2 1

2 1

::=
embed

t:t_trans

2

1
a:n_state

b:n_state

a:n_state

b:n_state

::=
embed

t:t_trans

2

1
a:n_state

b:n_nest_state
2 1

a:n_state

b:n_nest_state
2 1

::=
embed

t:t_trans

2

1
a:n_nest_state

b:n_state

2 1
a:n_nest_state

b:n_state

2 1

addTransition(a.state, b.state, t.label)

::=
embed

t:t_trans

2

1
a:n_nest_state

b:n_nest_state

2 1

2 1

a:n_nest_state

b:n_nest_state

2 1

2 1

::=
embed

t:t_trans

2

1
a:n_state

b:n_state

a:n_state

b:n_state

::=
embed

t:t_trans

2

1
a:n_state

b:n_nest_state
2 1

a:n_state

b:n_nest_state
2 1

::=
embed

t:t_trans

2

1
a:n_nest_state

b:n_state

2 1
a:n_nest_state

b:n_state

2 1
addTransition(a.state, b.state, t.label)

::=
embed

t:t_trans

2

1
a:n_nest_state

b:n_nest_state

2 1

2 1

a:n_nest_state

b:n_nest_state

2 1

2 1

::=
embed

t:t_trans

2

1
a:n_state

b:n_state

a:n_state

b:n_state

::=
embed

t:t_trans

2

1
a:n_state

b:n_nest_state
2 1

a:n_state

b:n_nest_state
2 1

::=
embed

t:t_trans

2

1
a:n_nest_state

b:n_state

2 1
a:n_nest_state

b:n_state

2 1

addTransition(a.state, b.state, t.label)

::=
embed

t:t_trans

2

1
a:n_nest_state

b:n_nest_state

2 1

2 1

a:n_nest_state

b:n_nest_state

2 1

2 1

::=
embed

t:t_trans

2

1
a:n_state

b:n_state

a:n_state

b:n_state

::=
embed

t:t_trans

2

1
a:n_state

b:n_nest_state
2 1

a:n_state

b:n_nest_state
2 1

::=
embed

t:t_trans

2

1
a:n_nest_state

b:n_state

2 1
a:n_nest_state

b:n_state

2 1

addTransition(a.state, b.state, t.label)

174 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES

A.5 Boolean Logic Diagrams

This section shows the specification for BLDs, which are illustrated in Section 2.5.
The final result of sketch processing is a boolean logic expression.

top

bottom

rightleft

BubbleInverter

upper

lower

right

ul ur

ll lr

Gate Link

a

b

t_input

t_output

t_link t_gate_unary

t_gate_binary

n_gate n_start

A.5.1 Shape Inverter

primitives
line from upper to right, arbitrary direction, unique id top
line from upper to lower, vertical down, unique id left
line from lower to right, arbitrary direction, unique id bottom

constraints
angle lower-upper-right greater than 45◦, hard constraint
angle lower-upper-right less than 90◦, hard constraint
angle right-lower-upper greater than 45◦, hard constraint
angle right-lower-upper less than 90◦, hard constraint

attachment areas
polyline left, label input
point right, label output

A.5.2 Shape Gate

primitives
line from ul to ur, horizontal right, unique id top
line from ll to ul, vertical up, unique id left
line from lr to ll, horizontal left, unique id bottom
line from ur to lr, vertical down, unique id right
text within polygon top-left-bottom-right, regex &|1|>=1, unique id label

attachment areas
polyline left, label input
polyline right, label output

A.5. BOOLEAN LOGIC DIAGRAMS 175

A.5.3 Shape Bubble
primitives
arc from top to left, quadrant 2, counter-clockwise, unique id top left
arc from top to right, quadrant 1, clockwise, unique id top right
arc from bottom to left, quadrant 3, clockwise, unique id bottom left
arc from bottom to right, quadrant 4, counter-clockwise, unique id bottom right

attachment areas
point left, label bubbleInput
point right, label output

A.5.4 Shape Link
primitives
link from a to b, unique id shaft
text at point a, optional, regex [a-zA-Z].*, unique id nameA
text at point b, optional, regex [a-zA-Z].*, unique id nameB

attachment areas
point a, label linkEnd
point b, label linkEnd

A.5.5 Postprocessing
identify conflicts := true
remove larger shapes := false

A.5.6 Relation Types
from linkEnd to input, not rigid, label inputLink
from output to linkEnd, not rigid, label outputLink
from output to bubbleInput, not rigid, label hasBubble

A.5.7 Parser Symbols
terminal symbols

top

bottom

rightleft

BubbleInverter

upper

lower

right

ul ur

ll lr

Gate Link

a

b

t_input

t_output

t_link t_gate_unary

t_gate_binary

n_gate n_start

176 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES

nonterminal symbols (start symbol is n start)

top

bottom

rightleft

BubbleInverter

upper

lower

right

ul ur

ll lr

Gate Link

a

b

t_input

t_output

t_link t_gate_unary

t_gate_binary

n_gate n_start

attributes of the terminal symbols
t input.var for the name of the input variable
t input.y for the y-value of the point where the input is connected
t output.var for the name of the output variable
t link.y for the y-value of the point where the link is connected as input
t gate unary.op for the operator that is represented
t gate unary.invert to describe whether the gate is inverted
t gate binary.op for the operator that is represented
t gate binary.invert to describe whether the gate is inverted

attributes of the nonterminal symbols
n gate.expr for the represented expression
n start.expr for the represented expression, semantic attribute

A.5.8 Reduction Rulesg:Gate t:t_gate_unary

g:Gate t:t_gate_binary

1 2

1 2

1 2

1 2

i o

i o i o

i o

g:Gate

t:t_gate_unary

1 2

1 2i

o

i o

hasBubble

Bubble
2 1

g:Gate

t:t_gate_binary
1 2i

o

i o

hasBubble

Bubble
2 1

Link

i o

t_link
1 2

i o

1 2

Link

i o

t_link
1 2

i o

2 1

outputLink inputLink

inputLinkoutputLink

Condition g.label = ”&” OR g.label = ”>=1”
t.op := g.label
t.invert := false

g:Gate t:t_gate_unary

g:Gate t:t_gate_binary

1 2

1 2

1 2

1 2

i o

i o i o

i o

g:Gate

t:t_gate_unary

1 2

1 2i

o

i o

hasBubble

Bubble
2 1

g:Gate

t:t_gate_binary
1 2i

o

i o

hasBubble

Bubble
2 1

Link

i o

t_link
1 2

i o

1 2

Link

i o

t_link
1 2

i o

2 1

outputLink inputLink

inputLinkoutputLink

Condition g.label = ”1”
t.op := g.label
t.invert := true

A.5. BOOLEAN LOGIC DIAGRAMS 177

g:Gate t:t_gate_unary

g:Gate t:t_gate_binary

1 2

1 2

1 2

1 2

i o

i o i o

i o

g:Gate

t:t_gate_unary

1 2

1 2i

o

i o

hasBubble

Bubble
2 1

g:Gate

t:t_gate_binary
1 2i

o

i o

hasBubble

Bubble
2 1

Link

i o

t_link
1 2

i o

1 2

Link

i o

t_link
1 2

i o

2 1

outputLink inputLink

inputLinkoutputLink

Condition g.label = ”&” OR g.label = ”>=1”
t.op := g.label
t.invert := true

g:Gate t:t_gate_unary

g:Gate t:t_gate_binary

1 2

1 2

1 2

1 2

i o

i o i o

i o

g:Gate

t:t_gate_unary

1 2

1 2i

o

i o

hasBubble

Bubble
2 1

g:Gate

t:t_gate_binary
1 2i

o

i o

hasBubble

Bubble
2 1

l:Link

i o

t:t_link
1 2

i o

1 2
outputLink inputLink

l:Link

i o

t:t_link
1 2

i o

2 1
inputLinkoutputLink

t.y := l.self().b.y

g:Gate t:t_gate_unary

g:Gate t:t_gate_binary

1 2

1 2

1 2

1 2

i o

i o i o

i o

g:Gate

t:t_gate_unary

1 2

1 2i

o

i o

hasBubble

Bubble
2 1

g:Gate

t:t_gate_binary
1 2i

o

i o

hasBubble

Bubble
2 1

l:Link

i o

t:t_link
1 2

i o

1 2
outputLink inputLink

l:Link

i o

t:t_link
1 2

i o

2 1
inputLinkoutputLink

t.y := l.self().a.y

t:t_input

l:Link

a o

t:t_input

o

1 2

l:Link

a o o

2 1

inputLink

inputLink

l:Link

i

t:t_output

i

1 2

l:Link

i

t:t_output

i

2 1

outputLink

outputLink

i:Inverter

t:t_gate_unary

1 2

1 2i

o

i o

hasBubble

Bubble
2 1

Condition l.nameA is set
t.var := l.nameA
t.y := l.self().b.y

t:t_input

l:Link

a o

t:t_input

o

1 2

l:Link

a o o

2 1

inputLink

inputLink

l:Link

i

t:t_output

i

1 2

l:Link

i

t:t_output

i

2 1

outputLink

outputLink

i:Inverter

t:t_gate_unary

1 2

1 2i

o

i o

hasBubble

Bubble
2 1

Condition l.nameB is set
t.var := l.nameB
t.y := l.self().a.y

t:t_input

l:Link

a o

t:t_input

o

1 2

l:Link

a o o

2 1

inputLink

inputLink

l:Link

i

t:t_output

i

1 2

l:Link

i

t:t_output

i

2 1

outputLink

outputLink

i:Inverter

t:t_gate_unary

1 2

1 2i

o

i o

hasBubble

Bubble
2 1

Condition l.nameB is set
t.var := l.nameB

178 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES

t:t_input

l:Link

a o

t:t_input

o

1 2

l:Link

a o o

2 1

inputLink

inputLink

l:Link

i

t:t_output

i

1 2

l:Link

i

t:t_output

i

2 1

outputLink

outputLink

i:Inverter

t:t_gate_unary

1 2

1 2i

o

i o

hasBubble

Bubble
2 1

Condition l.nameA is set
t.var := l.nameA

t:t_input

l:Link

a o

t:t_input

o

1 2

l:Link

a o o

2 1

inputLink

inputLink

l:Link

i

t:t_output

i

1 2

l:Link

i

t:t_output

i

2 1

outputLink

outputLink

i:Inverter

t:t_gate_unary

1 2

1 2i

o

i o

hasBubble

Bubble
2 1

t.op := g.label
t.invert := true

A.5.9 Production Rules

g:n_gate::=s:n_start o:t_output

i:t_input::=l:n_gate t:t_gate_unary
1 2

o

o

::=l:n_gate

i1:t_input

t:t_gate_binary

i2:t_input

1 2

o

o

1

::=l:n_gate

r:n_gate t_link

t:t_gate_unary

o

o

1 2
2

::=l:n_gate

r1:n_gate l1:t_link

t:t_gate_binary

r2:n_gate l2:t_link

o

o

1 2

1

1

2

2

l.expr := createUnaryExpr(t.op, t.invert, r.expr)

g:n_gate::=s:n_start o:t_output

i:t_input::=l:n_gate t:t_gate_unary
1 2

o

o

::=l:n_gate

i1:t_input

t:t_gate_binary

i2:t_input

1 2

o

o

1

::=l:n_gate

r:n_gate t_link

t:t_gate_unary

o

o

1 2
2

::=l:n_gate

r1:n_gate l1:t_link

t:t_gate_binary

r2:n_gate l2:t_link

o

o

1 2

1

1

2

2

Condition l1.y < l2.y
l.expr := createBinaryExpr(t.op, t.invert, r1.expr, r2.expr)

g:n_gate::=s:n_start o:t_output

i:t_input::=l:n_gate t:t_gate_unary
1 2

o

o

::=l:n_gate

i1:t_input

t:t_gate_binary

i2:t_input

1 2

o

o

1

::=l:n_gate

r:n_gate t_link

t:t_gate_unary

o

o

1 2
2

::=l:n_gate

r1:n_gate l1:t_link

t:t_gate_binary

r2:n_gate l2:t_link

o

o

1 2

1

1

2

2

l.expr := createUnaryExprWithInput(t.op, t.invert, i.var)

A.5. BOOLEAN LOGIC DIAGRAMS 179

g:n_gate::=s:n_start o:t_output

i:t_input::=l:n_gate t:t_gate_unary
1 2

o

o

::=l:n_gate

i1:t_input

t:t_gate_binary

i2:t_input

1 2

o

o

1

::=l:n_gate

r:n_gate t_link

t:t_gate_unary

o

o

1 2
2

::=l:n_gate

r1:n_gate l1:t_link

t:t_gate_binary

r2:n_gate l2:t_link

o

o

1 2

1

1

2

2

Condition i1.y < i2.y
l.expr := createBinaryExprWithInput(t.op, t.invert, i1.var, i2.var)

g:n_gate::=s:n_start o:t_output

i:t_input::=l:n_gate t:t_gate_unary
1 2

o

o

::=l:n_gate

i1:t_input

t:t_gate_binary

i2:t_input

1 2

o

o

1

::=l:n_gate

r:n_gate t_link

t:t_gate_unary

o

o

1 2
2

::=l:n_gate

r1:n_gate l1:t_link

t:t_gate_binary

r2:n_gate l2:t_link

o

o

1 2

1

1

2

2

s.expr := o.var + ” := ” + g.expr

180 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES

A.6 Tic-tac-toe

This section shows the specification for Tic-tac-toe (cf. Section 2.6). The final
result of sketch processing is a statement about the sketched game situation.

top

bottom

rightleft

ur

dr

Cross Nought Grid

center

ul

dl

cur

cdr

cul

cdl

ur

dr

ul

dl

ru

rd

lu

ld

t_fieldt_markA.6.1 Shape Cross

primitives
line from center to ul, diagonal up left, unique id ul
line from center to ur, diagonal up right, unique id ur
line from center to dl, diagonal down left, unique id dl
line from center to dr, diagonal down right, unique id dr

attachment areas
point center, label mark

A.6.2 Shape Nought

primitives
arc from top to left, quadrant 2, counter-clockwise, unique id top left
arc from top to right, quadrant 1, clockwise, unique id top right
arc from bottom to left, quadrant 3, clockwise, unique id bottom left
arc from bottom to right, quadrant 4, counter-clockwise, unique id bottom right

computation
point where x is (top.x + bottom.x) / 2, y is (top.y + bottom.y) / 2, unique id center

attachment areas
point center, label mark

A.6. TIC-TAC-TOE 181

A.6.3 Shape Grid

primitives
line from cul to cur, vertical right, unique id lcu
line from cur to cdr, horizontal down, unique id lcr
line from cdr to cdl, vertical left, unique id lcd
line from cdl to cul, horizontal up, unique id lcl
line from cul to ul, horizontal up, unique id lul
line from cur to ur, horizontal up, unique id lur
line from cdl to dl, horizontal down, unique id ldl
line from cdr to dr, horizontal down, unique id ldr
line from cul to lu, vertical left, unique id llu
line from cdl to ld, vertical left, unique id lld
line from cur to ru, vertical right, unique id lru
line from cdr to rd, vertical right, unique id lrd

computation
point where x is lu.x, y is ul.x, unique id c ul
point where x is ru.x, y is ur.x, unique id c ur
point where x is ld.x, y is dl.x, unique id c dl
point where x is rd.x, y is dr.x, unique id c dr
line from ur to c ur, unique id c uru
line from dr to c dr, unique id c drd
line from dl to c dl, unique id c dld
line from ul to c ul, unique id c ulu

attachment areas
polygon lul-lcu-lur, label board
polygon c uru-lur-lru, label board
polygon lru-lcr-lrd, label board
polygon lrd-ldr-c drd, label board
polygon ldr-lcd-ldl, label board
polygon lld-ldl-c dld, label board
polygon llu-lcl-lld, label board
polygon c ulu-lul-llu, label board
polygon lcu-lcr-lcd-lcl, label board

A.6.4 Postprocessing

identify conflicts := true
remove larger shapes := false

182 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES

A.6.5 Relation Types
from mark to board, rigid, label at

A.6.6 Parser Symbols
terminal symbols

top

bottom

rightleft

ur

dr

Cross Nought Grid

center

ul

dl

cur

cdr

cul

cdl

ur

dr

ul

dl

ru

rd

lu

ld

t_fieldt_mark

nonterminal symbols (start symbol is n grid)

top

bottom

rightleft

ur

dr

Cross Nought Grid

center

ul

dl

cur

cdr

cul

cdl

ur

dr

ul

dl

ru

rd

lu

ld

t_fieldt_mark

n_fieldn_grid

attributes of the terminal symbols
t mark.type for the type of mark (either cross or nought)

attributes of the nonterminal symbols
n field.mark for the mark contained in the field
n grid.config for complete configuration of all nine marks
n grid.result for the statement about the sketched game configuration,

semantic attribute

A.6.7 Reduction Rules

at
a

m:t_mark

a

Nought

at
a

m:t_mark

a

Cross

Grid t_grid

a b

c

def

g

h

i

a b

c

def

g

h

i

m.type := cross
at

a

m:t_mark

a

Nought

at
a

m:t_mark

a

Cross

Grid t_grid

a b

c

def

g

h

i

a b

c

def

g

h

i

m.type := nought

A.6. TIC-TAC-TOE 183

at
a

m:t_mark

a

Nought

at
a

m:t_mark

a

Cross

Grid

f2 f3

f6

f9f8f7

f4

f1

f5

t_field

f1

t_field

f2

t_field

f3

t_field

f4

t_field

f5

t_field

f6

t_field

f7

t_field

f8

t_field

f9

A.6.8 Production Rules

g:n_grid

f1:n_field f2:n_field f3:n_field

f4:n_field f5:n_field f6:n_field

f7:n_field f8:n_field f9:n_field

::=

t_field

f:n_field ::=
a b

a b

t_field

m:t_mark

f:n_field ::= a b

a b

f.mark := m.type

g:n_grid

f1:n_field f2:n_field f3:n_field

f4:n_field f5:n_field f6:n_field

f7:n_field f8:n_field f9:n_field

::=

t_field

f:n_field ::=
a b

a b

t_field

m:t_mark

f:n_field ::= a b

a b

f.mark := createEmptyMark()

g:n_grid

f1:n_field f2:n_field f3:n_field

f4:n_field f5:n_field f6:n_field

f7:n_field f8:n_field f9:n_field

::=

t_field

f:n_field ::=
a b

a b

t_field

m:t_mark

f:n_field ::= a b

a b

g.config := createCompleteConfig(f1.mark, f2.mark, f3.mark, f4.mark, f5.mark,
f6.mark, f7.mark, f8.mark, f9.mark)
g.result := checkConfig(g.config)

184 APPENDIX A. SPECIFICATION OF DIAGRAM LANGUAGES

Appendix B

The Complete Concept

The figure on the next page shows all processing units and data structures com-
prising the complete processing chain. This means that it merges all figures that
show only partially the processing chain. Note that the specification is shown two
times for the sake of a simpler layout only.

185

186 APPENDIX B. THE COMPLETE CONCEPT

S
k
e
tc

h
in

g
 E

d
ito

r
R

e
c
o
g
n
itio

n

L
in

e
 M

o
d
e
l

A
rc

 M
o
d
e
l

L
in

k
 M

o
d
e
l

fe
d
 in

to

q
u

e
rie

d
 b

y

T
e
x
t

C
irc

le
 M

o
d
e
l

…

g
e

n
e

ra
te

s

d
ic

ta
te

s
S

e
a
rc

h
 P

la
n

A
n
a
ly

s
is

H
y
p
e
rg

ra
p
h

M
o
d
e
l

R
e
d
u
c
e
d

M
o
d
e
l

P
re

lim
in

a
ry

S
h
a
p
e
s

S
h
a
p
e
s

P
o
s
tp

ro
c
e
s
s
in

g

interacts with

c
a
p
tu

re
s

is provided to

U
s
e
r

R
e

s
u

lt
(d

o
m

a
in

-d
e

p
e
n

d
e
n

t)

G
U

I

c
a

p
tu

re
s

A
s
s
e
m

b
le

r

T
e

x
t T

ra
n
s
fo

rm
e

r

L
in

e
 T

ra
n
s
fo

rm
e
r

A
rc

 T
ra

n
s
fo

rm
e
r

L
in

k
 T

ra
n
s
fo

rm
e
r

C
irc

le
 T

ra
n
s
fo

rm
e
r

…

S
tro

k
e
s

T
e
x
t M

o
d
e
l

M
o
d
e
le

r
R

e
d
u
c
e
r

P
a
rs

e
r

S
p
e
c
ific

a
tio

n

S
p
e
c
ific

a
tio

n

Appendix C

Detailed Example

This chapter gives an impression of how a real sketch is processed by the imple-
mentation. Figure C.1 shows a simple Petri net which is used as running example.
The following two sections describe the processing results obtained by the recog-
nition stage and the analysis stage. Note that all figures in this chapter are either
screenshots from the implementation, or exact reproductions.

Figure C.1: A simple Petri net used as running example.

187

188 APPENDIX C. DETAILED EXAMPLE

C.1 Recognition Stage
The first step in the recognition stage is preprocessing by the transformers. They
yield the five different models illustrated in Chapter 4. Figure C.2 shows the five
models.

(a) line model (b) arc model

(c) link model (d) circle model

(e) text model

Figure C.2: Contents of the models generated for the sketch shown in Figure C.1.
The sketch itself is grayed out.

C.1. RECOGNITION STAGE 189

The assembler recognizes 26 shapes from the data contained in the models:
two transitions, nine places, nine tokens, and six arrows. Figure C.3 shows these
26 shapes. However, as each circle is recognized as both a place and a token, the
figure only shows places in order to be less cluttered up. Note that tokens, unlike
places, do not consist of any text.

Figure C.3: 17 of the 26 shapes recognized from the models in Figure C.2. The
nine tokens corresponding to the nine places are omitted.

190 APPENDIX C. DETAILED EXAMPLE

The recognition stage’s final step is postprocessing. It has two tasks in the case
of Petri nets: removal of duplicates and identification of conflicts. The result of
this step is shown in Figure C.4. As before, dashed lines indicate conflicts. It can
be seen that the removal of duplicates cuts the number of shapes in half, resulting
in 13 shapes that are passed on to the analysis step. Compared to the nine shapes
that make the original sketch, 13 is a good figure. The four extra shapes are one
falsely recognized arrow, two tokens similar to places, and one place similar to a
token.

Arrow

Place

Place

Place

Arrow

Arrow

Arrow

Transition Transition

Token Token

Token

Arrow

Figure C.4: The 13 shapes left after removal of duplicates, and the conflicts be-
tween them. The check marks indicate which of the shapes are correct. Shapes
without check marks are false positives.

C.2. ANALYSIS STAGE 191

C.2 Analysis Stage
In the first step of the analysis stage, the modeler creates the HM shown in Fig-
ure C.5. The figure additionally shows the attributes of all shape edges. Obviously,
the figure’s structure is very similar to that of Figure C.4.

T1:Transition
label:transB

rating: 5.572

T2:Transition
label:transA

rating: 5.703

1 A1:Arrow
rating: 12.426

2

A3:Arrow
cost: 3

rating: 13.026

2 1

A2:Arrow
rating: 11.209

1 2

A4:Arrow
cost: 2

rating: 11.880

2 1

1

P1:Place
capacity: 5

label: placeA

rating: 7.485

2

2

P2:Place
label: placeB

rating: 7.114

1

To2:Token
rating: 5.827

To1:Token
rating: 5.627

To3:Token
rating: 5.851

2

P3:Place
rating: 5.627

1

A5:Arrow
rating: 11.658

2 1

at_trans

at_trans

at_trans

at_trans

at_place

at_place at_place

at_place

has_token

has_token

Figure C.5: The HM for the sketch shown in Figure C.1.

192 APPENDIX C. DETAILED EXAMPLE

The reducer then processes the HM and produces the RHM shown in Fig-
ure C.6. In doing so, the number of edges is reduced from 23 to ten, and the
number of nodes is reduced from 21 to five. Instead of six conflicts in the HM,
there is only one in the RHM. The reason is that some of the conflicting edges are
not reduced. The token To2 is not reduced because it is not contained in a (larger)
place, and so is To3. Arrow A5 is not reduced because it does not connect a place
and a transition.

t1:t_trans
shape: T1.self()

model: T1

rating: 5.572

t2:t_trans
shape: T2.self()

model: T2

rating: 5.703

1
a1:t_arrow

shape: A1.self()

mdl: P1, A1, T1

rating: 25.483

2

a3:t_arrow
shape: A3.self()

mdl: P2, A3, T1

rating: 25.712

2 1

a2:t_arrow
shape: A2.self()

mdl: P1, A2, T2

rating: 24.397

1 2

a4:t_arrow
shape: A4.self()

mdl: P2, A4, T2

rating: 24.697

2 1

p1:t_place
shape: P1.self()

model: P1

rating: 7.485

p2:t_place
shape: P2.self()

model: P2

rating: 7.114

p3:t_place
shape: P3.self()

model: P3

rating: 5.627

to:t_token
model: To1

rating: 13.112

Figure C.6: The RHM for the HM shown in Figure C.5. The attribute model is
sometimes abbreviated as mdl.

C.2. ANALYSIS STAGE 193

Figure C.7 shows the derivation DAG that is computed by the parser. The
conflict between p3 and to is carried over to N1 and N2. After the start symbol
N8 is reached, N1 is removed from the set production, as its weighted rating is
considerably less than the weighted rating of N2, as the latter has a greater rating
and one of its children is part of the context of two embedded edges (a1 and a2).
Accordingly, the ratings of N6 and N8 do not include the rating of N1. For N8
the values in parentheses include the four embedded arrows.

t1:t_trans
shape: T1.self()

model: T1

rating: 5.572

t2:t_trans
shape: T2.self()

model: T2

rating: 5.703

a1:t_arrow
shape: A1.self()

mdl: P1, A1, T1

rating: 25.483

a3:t_arrow
shape: A3.self()

mdl: P2, A3, T1

rating: 25.712

a2:t_arrow
shape: A2.self()

mdl: P1, A2, T2

rating: 24.397

a4:t_arrow
shape: A4.self()

mdl: P2, A4, T2

rating: 24.697

p1:t_place
shape: P1.self()

model: P1

rating: 7.485

p2:t_place
shape: P2.self()

model: P2

rating: 7.114

p3:t_place
shape: P3.self()

model: P3

rating: 5.627

to:t_token
model: To1

rating: 13.112

N1:n_place
term: p3

rating: 5.627

N2:n_place
term: p1, to

rating: 20.597

N3:n_place
term: p2

rating: 7.114

N4:n_trans
term: t1

rating: 5.572

N5:n_trans
term: t2

rating: 5.703

N6:n_places
term: p1, to, p2

rating: 27.711

N7:n_transitions
term: t1, t2

rating: 11.275

N8:n_net
term: p1, to, p2, t1, t2

(p1, to, p2, t1, t2, a1, a2, a3, a4)

rating: 38.986

(139.275)

embedded arrows

Figure C.7: The DAG created by the parser for the RHM shown in Figure C.6.
Set productions are encircled, edges removed from sets are grayed out.

194 APPENDIX C. DETAILED EXAMPLE

Based on the DAG shown in Figure C.7 the semantic attribute of the start sym-
bol N8 is evaluated. This can be accomplished by the following evaluation order:

N2.model := createPlaceWithToken(p1.shape)
N3.model := createPlace(p2.shape)
N4.model := createTransition(t1.shape)
N5.model := createTransition(t2.shape)
N6.set := {N2, N3}
N7.set := {N4, N5}
N8.net := createNet(N8.set, N7.set)

addArrow(t1.shape, a1.shape, p1.shape)
addArrow(p1.shape, a2.shape, t2.shape)
addArrow(p2.shape, a3.shape, t1.shape)
addArrow(t2.shape, a4.shape, p2.shape)

Depending on how the illustrated functions calls work, a model of the Petri
net could be obtained. A textual representation may look like this:

Petri net, 2 places, 2 transitions
====================
Place ”placeA”, capacity 5, contains a token
Place ”placeB”
Transition ”transA”
Transition ”transB”
Arrow from ”transB” to ”placeA”
Arrow from ”placeA” to ”transA”
Arrow from ”transA” to ”placeB”, cost 2
Arrow from ”placeB” to ”transB”, cost 3
====================

Bibliography

[1] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation, and
Compiling, Volume I: Parsing. Prentice Hall, 1972.

[2] C. Alvarado. Multi-Domain Sketch Understanding. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, 2004.

[3] C. Alvarado and R. Davis. Resolving ambiguities to create a natural
computer-based sketching environment. In Proceedings of the 17th In-
ternational Joint Conference on Artificial Intelligence (IJCAI ’01), pages
1365–1374, August 2001.

[4] C. Alvarado and R. Davis. SketchREAD: a multi-domain sketch recogni-
tion engine. In Proceedings of the 17th Annual ACM Symposium on User
Interface Software and Technology (UIST ’04), pages 23–32, New York,
NY, USA, 2004. ACM.

[5] C. Alvarado and R. Davis. Dynamically constructed bayes nets for multi-
domain sketch understanding. In Proceedings of the 19th International
Joint Conference on Artificial Intelligence (IJCAI ’05), pages 1407–1412.
Professional Book Center, 2005.

[6] A. Apte, V. Vo, and T. D. Kimura. Recognizing multistroke geometric
shapes: an experimental evaluation. In Proceedings of the 6th Annual ACM
Symposium on User Interface Software and Technology (UIST ’93), pages
121–128, New York, NY, USA, 1993. ACM.

[7] J. Arvo and K. Novins. Appearance-preserving manipulation of hand-
drawn graphs. In Proceedings of the 3rd International Conference on Com-
puter Graphics and Interactive Techniques in Australasia and South East
Asia (GRAPHITE ’05), pages 61–68, New York, NY, USA, 2005. ACM.

[8] S.-H. Bae, R. Balakrishnan, and K. Singh. ILoveSketch: as-natural-as-
possible sketching system for creating 3d curve models. In Proceedings of

195

196 BIBLIOGRAPHY

the 21st Annual ACM Symposium on User Interface Software and Technol-
ogy (UIST ’08), pages 151–160, New York, NY, USA, 2008. ACM.

[9] C. Berge. Graphs and Hypergraphs. North Holland, Amsterdam, the
Netherlands, 1973.

[10] C. M. Bishop, M. Svensen, and G. E. Hinton. Distinguishing text from
graphics in on-line handwritten ink. In Proceedings of the 9th International
Workshop on Frontiers in Handwriting Recognition (IWFHR ’04), pages
142–147, Washington, DC, USA, 2004. IEEE Computer Society.

[11] D. Blostein. General diagram-recognition methodologies. In Selected Pa-
pers from the 1st International Workshop on Graphics Recognition. Meth-
ods and Applications, pages 106–122, London, UK, 1996. Springer-Verlag.

[12] D. Blostein, E. Lank, A. Rose, and R. Zanibbi. User interfaces for on-
line diagram recognition. In Selected Papers from the 4th International
Workshop on Graphics Recognition Algorithms and Applications (GREC
’01), pages 92–103, London, UK, 2002. Springer-Verlag.

[13] C. Bongartz. Übersicht über Sketching: aktuelle Ansätze und Systeme im
Vergleich. Universität der Bundeswehr München, 2008. Diploma thesis,
UniBwM-ID 14/2007, only available in German.

[14] A. Caetano, N. Goulart, M. Fonseca, and J. Jorge. JavaSketchIt: Issues in
sketching the look of user interfaces. In Papers from the 2002 AAAI Spring
Symposium on Sketch Understanding, pages 9–14, Menlo Park, CA, USA,
2002. AAAI Press.

[15] C. Calhoun, T. F. Stahovich, T. Kurtoglu, and L. B. Kara. Recognizing
multi-stroke symbols. In Papers from the 2002 AAAI Spring Symposium on
Sketch Understanding, pages 15–23. AAAI Press, Menlo Park, USA, 2002.

[16] G. Casella, G. Costagliola, V. Deufemia, M. Martelli, and V. Mascardi.
An agent-based framework for context-driven interpretation of symbols in
diagrammatic sketches. In Proceedings of the IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC ’06), pages 73–80,
Washington, DC, USA, 2006. IEEE Computer Society.

[17] G. Casella, V. Deufemia, and V. Mascardi. A multi-agent system for hand-
drawn diagram recognition. Proceedings of the 9th International Con-
ference on Document Analysis and Recognition (ICDAR ’07), 2:739–743,
September 2007.

BIBLIOGRAPHY 197

[18] G. Casella, V. Deufemia, V. Mascardi, G. Costagliola, and M. Martelli.
An agent-based framework for sketched symbol interpretation. Journal of
Visual Languages & Computing, 19(2):225–257, 2008.

[19] R. Chung, P. Mirica, and B. Plimmer. InkKit: a generic design tool for the
tablet PC. In Proceedings of the 6th ACM SIGCHI New Zealand Chapter’s
International Conference on Computer-human Interaction (CHINZ ’05),
pages 29–30, New York, NY, USA, 2005. ACM.

[20] G. Costagliola, V. Deufemia, G. Polese, and M. Risi. A parsing technique
for sketch recognition systems. In Proceedings of the 2004 IEEE Sympo-
sium on Visual Languages and Human Centric Computing (VL/HCC ’04),
pages 19–26, Washington, DC, USA, 2004. IEEE Computer Society.

[21] G. Costagliola, V. Deufemia, and M. Risi. Sketch grammars: A formalism
for describing and recognizing diagrammatic sketch languages. In Pro-
ceedings of the 8th International Conference on Document Analysis and
Recognition (ICDAR ’05), pages 1226–1231, Washington, DC, USA, 2005.
IEEE Computer Society.

[22] G. Costagliola, V. Deufemia, and M. Risi. A trainable system for recog-
nizing diagrammatic sketch languages. In Proceedings of the 2005 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC
’05), pages 281–283, Washington, DC, USA, 2005. IEEE Computer Soci-
ety.

[23] G. Costagliola, V. Deufemia, and M. Risi. A multi-layer parsing strat-
egy for on-line recognition of hand-drawn diagrams. In Proceedings of
the IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC ’06), pages 103–110, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[24] G. Costagliola, V. Deufemia, and M. Risi. Using error recovery techniques
to improve sketch recognition accuracy. In W. Liu, J. Lladós, and J.-M.
Ogier, editors, Proceedings of the 7th International Workshop on Graphics
Recognition. Recent Advances and New Opportunities (GREC ’07), vol-
ume 5046 of Lecture Notes in Computer Science, pages 157–168. Springer,
September 2007.

[25] G. Costagliola, V. Deufemia, and M. Risi. Using grammar-based recog-
nizers for symbol completion in diagrammatic sketches. In Proceedings of
the 9th International Conference on Document Analysis and Recognition

198 BIBLIOGRAPHY

(ICDAR ’07), volume 2, pages 1078–1082, Washington, DC, USA, 2007.
IEEE Computer Society.

[26] G. Costagliola, R. Francese, M. Risi, G. Scanniello, and A. D. Lucia. A
component-based visual environment development process. In Proceedings
of the 14th International Conference on Software Engineering and Knowl-
edge Engineering (SEKE ’02), pages 327–334, New York, NY, USA, 2002.
ACM.

[27] G. Costagliola, A. D. Lucia, and S. Orefice. Towards efficient parsing of
diagrammatic languages. In Proceedings of the Workshop on Advanced
Visual Interfaces (AVI ’94), pages 162–171, New York, NY, USA, 1994.
ACM.

[28] G. Costagliola, A. D. Lucia, S. Orefice, and G. Polese. A classification
framework to support the design of visual languages. Journal of Visual
Languages & Computing, 13(6):573–600, 2002.

[29] G. Costagliola and G. Polese. Extended positional grammars. In Pro-
ceedings of the 2000 IEEE International Symposium on Visual Languages
(VL’00), pages 103–110, Washington, DC, USA, 2000. IEEE Computer
Society.

[30] A. Coyette, S. Kieffer, and J. M. Vanderdonckt. Multi-fidelity prototyping
of user interfaces. In Proceedings of the 13th International Conference on
Human-Computer Interaction (INTERACT ’07), volume 4662 of Lecture
Notes in Computer Science, pages 150–164. Springer, September 2007.

[31] A. Coyette and J. M. Vanderdonckt. A sketching tool for designing anyuser,
anyplatform, anywhere user interfaces. In Proceedings of the 12th Inter-
national Conference on Human-Computer Interaction (INTERACT ’05),
pages 550–564. Springer Verlag, 2005.

[32] A. Coyette, J. M. Vanderdonckt, and Q. Limbourg. SketchiXML: A design
tool for informal user interface rapid prototyping. In Proceedings of the
3rd International Workshop on Rapid Integration of Software Engineering
Techniques (RISE ’06), pages 160–176. Springer, September 2006.

[33] J. Davis, M. Agrawala, E. Chuang, Z. Popović, and D. Salesin. A sketching
interface for articulated figure animation. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’03),
pages 320–328, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurograph-
ics Association.

BIBLIOGRAPHY 199

[34] J. de Lara and H. Vangheluwe. AToM3: A tool for multi-formalism and
meta-modelling. In Proceedings of the 5th International Conference on
Fundamental Approaches to Software Engineering (FASE ’02), pages 174–
188, London, UK, 2002. Springer.

[35] P. Domingos and M. Pazzani. Beyond independence: Conditions for the
optimality of the simple bayesian classifier. In Proceedings of the 13th
International Conference on Machine Learning (ICML ’96), pages 105–
112. Morgan Kaufmann, 1996.

[36] K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer. Generation of visual
editors as eclipse plug-ins. In Proceedings of the 20th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE ’05), pages
134–143, New York, NY, USA, 2005. ACM Press.

[37] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story diagrams: A new
graph rewrite language based on the unified modeling language and java.
In Selected Papers from the 6th International Workshop on Theory and Ap-
plication of Graph Transformations (TAGT ’98), pages 296–309, London,
UK, 2000. Springer.

[38] M. J. Fonseca, C. Pimentel, and J. A. Jorge. CALI: an online scribble
recognizer for calligraphic interfaces. In Papers from the 2002 AAAI Spring
Symposium on Sketch Understanding, pages 51–58, Menlo Park, CA, USA,
2002. AAAI Press.

[39] I. J. Freeman and B. Plimmer. Connector semantics for sketched diagram
recognition. In Proceedings of the 8th Australasian User Interface Con-
ference (AUIC ’07), pages 71–78, Darlinghurst, Australia, Australia, 2007.
Australian Computer Society, Inc.

[40] L. Gennari, L. B. Kara, T. F. Stahovich, and K. Shimada. Combining geom-
etry and domain knowledge to interpret hand-drawn diagrams. Computers
& Graphics, 29(4):547–562, 2005.

[41] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs, Second
Edition (Annals of Discrete Mathematics, Vol. 57). North-Holland Publish-
ing Co., Amsterdam, the Netherlands, 2004.

[42] M. D. Gross and E. Y.-L. Do. Ambiguous intentions: a paper-like interface
for creative design. In Proceedings of the 9th Annual ACM symposium on
User Interface Software and Technology (UIST ’96), pages 183–192, New
York, NY, USA, 1996. ACM.

200 BIBLIOGRAPHY

[43] M. D. Gross and E. Y.-L. Do. Drawing on the back of an envelope: a
framework for interacting with application programs by freehand drawing.
Computers & Graphics, 24(6):835–849, 2000.

[44] J. Grundy and J. Hosking. Supporting generic sketching-based input of
diagrams in a domain-specific visual language meta-tool. In Proceedings
of the 29th International Conference on Software Engineering (ICSE ’07),
pages 282–291, Washington, DC, USA, May 2007. IEEE Computer Soci-
ety.

[45] J. Grundy, J. Hosking, N. Zhu, and N. Liu. Generating domain-specific
visual language editors from high-level tool specifications. In Proceedings
of the 21st IEEE/ACM International Conference on Automated Software
Engineering (ASE ’06), pages 25–36, Washington, DC, USA, 2006. IEEE
Computer Society.

[46] T. Hammond and R. Davis. Ladder: A language to describe drawing, dis-
play, and editing in sketch recognition. In Proceedings of the 18th In-
ternational Joint Conference on Artificial Intelligence (IJCAI ’03), pages
461–467, August 2003.

[47] T. Hammond and R. Davis. Automatically transforming symbolic shape
descriptions for use in sketch recognition. In The 19th National Conference
on Artificial Intelligence (AAAI ’04), Menlo Park, CA, USA, July 2004.
AAAI Press.

[48] T. Hammond and R. Davis. LADDER, a sketching language for user inter-
face developers. Computers & Graphics, 29(4):518–532, 2005.

[49] T. A. Hammond. Recognizing Free-form Hand-sketched Constraint Net-
work Diagrams by Combining Geometry and Context. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, 2007.

[50] T. A. Hammond and B. O’Sullivan. Ladder: a perceptually-based language
to simplify sketch recognition user interface development. In Eurographics
Ireland, pages 67–74, December 2007.

[51] R. Heckel. Graph transformation in a nutshell. Electronic Notes in Theo-
retical Computer Science, 148(1):187–198, February 2006.

[52] J. I. Hong and J. A. Landay. SATIN: a toolkit for informal ink-based ap-
plications. In Proceedings of the 13th Annual ACM Symposium on User
Interface Software and Technology (UIST ’00), pages 63–72, New York,
NY, USA, 2000. ACM.

BIBLIOGRAPHY 201

[53] H. Hse and A. R. Newton. Sketched symbol recognition using zernike
moments. In Proceedings of the 17th International Conference on Pattern
Recognition (ICPR ’04), volume 1, pages 367–370, Washington, DC, USA,
2004. IEEE Computer Society.

[54] J. Hu, M. K. Brown, and W. Turin. HMM based on-line handwriting recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(10):1039–1045, 1996.

[55] J. Hu, S. G. Lim, and M. K. Brown. Writer independent on-line handwriting
recognition using an HMM approach. Pattern Recognition, 33(1):133–147,
2000.

[56] T. Igarashi and J. F. Hughes. Clothing manipulation. In Proceedings of the
15th Annual ACM Symposium on User Interface Software and Technology
(UIST ’02), pages 91–100, New York, NY, USA, 2002. ACM.

[57] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: a sketching interface for
3D freeform design. In Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’99), pages
409–416, New York, NY, USA, 1999. ACM Press/Addison-Wesley Pub-
lishing Co.

[58] P. Isokoski. Performance of menu-augmented soft keyboards. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’04), pages 423–430, New York, NY, USA, 2004. ACM.

[59] J. A. Jorge, M. J. Fonseca, and F. M. G. Pereira. Visual syntax analysis for
calligraphic interfaces. In 13◦ Encontro Portugues de Computacao Grafica,
October 2005.

[60] R. Karp. Reducibility among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations. Plenum Press,
New York, 1972.

[61] J. A. Landay. Interactive Sketching for the Early Stages of User Interface
Design. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA,
December 1996.

[62] J. A. Landay and B. A. Myers. Interactive sketching for the early stages
of user interface design. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’95), pages 43–50, New York,
NY, USA, 1995. ACM Press/Addison-Wesley Publishing Co.

202 BIBLIOGRAPHY

[63] J. A. Landay and B. A. Myers. Sketching interfaces: Toward more human
interface design. Computer, 34(3):56–64, 2001.

[64] W. Lee, L. B. Kara, and T. F. Stahovich. An efficient graph-based symbol
recognizer. In Proceedings of the 3rd Eurographics Workshop on Sketch-
based Interfaces and Modeling (SBIM ’06), pages 11–18, New York, NY,
USA, 2006. ACM.

[65] J. Lin, M. W. Newman, J. I. Hong, and J. A. Landay. DENIM: finding a
tighter fit between tools and practice for web site design. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI
’00), pages 510–517, New York, NY, USA, 2000. ACM.

[66] J. Mankoff and G. D. Abowd. Cirrin: a word-level unistroke keyboard for
pen input. In Proceedings of the 11th Annual ACM Symposium on User
Interface Software and Technology (UIST ’98), pages 213–214, New York,
NY, USA, 1998. ACM.

[67] J. Mankoff, G. D. Abowd, and S. E. Hudson. OOPS: a toolkit supporting
mediation techniques for resolving ambiguity in recognition-based inter-
faces. Computers & Graphics, 24(6):819–834, 2000.

[68] M. Minas. Spezifikation und Generierung graphischer Diagrammeditoren.
Shaker-Verlag, Aachen, Germany, 2001. Professorial dissertation at Uni-
versität Erlangen-Nürnberg, 2000.

[69] M. Minas. Concepts and realization of a diagram editor generator based on
hypergraph transformation. Journal of Science of Computer Programming,
Special Issue on Applications of Graph Transformations, 44(2):157–180,
2002.

[70] M. Minas. Specifying graph-like diagrams with DiaGen. In T. Mens,
A. Schürr, and G. Taentzer, editors, Proceedings of the 1st International
Workshop on Graph-Based Tools (GraBaTs ’02), volume 72 of Electronic
Notes in Theoretical Computer Science, pages 102–111, Amsterdam, 2002.
Elsevier Science Publishers.

[71] M. Minas. Generating meta-model-based freehand editors. In Electronic
Communications of the EASST (GraBaTs ’06), September 2006.

[72] M. Nakai, T. Sudo, H. Shimodaira, and S. Sagayama. Pen pressure features
for writer-independent on-line handwriting recognition based on substroke
HMM. In Proceedings of the 16th International Conference on Pattern

BIBLIOGRAPHY 203

Recognition (ICPR ’02), volume 3, page 30220, Washington, DC, USA,
2002. IEEE Computer Society.

[73] I. Nassi and B. Shneiderman. Flowchart techniques for structured program-
ming. SIGPLAN Notices, 8(8):12–26, August 1973.

[74] M. Oltmans, C. Alvarado, and R. Davis. ETCHA sketches: Lessons learned
from collecting sketch data. In Making Pen-Based Interaction Intelligent
and Natural (AAAI Fall Symposium), pages 134–140, Menlo Park, CA,
USA, October 2004. AAAI Press.

[75] R. Patel, B. Plimmer, J. Grundy, and R. Ihaka. Ink features for diagram
recognition. In Proceedings of the 4th Eurographics Workshop on Sketch-
based Interfaces and Modeling (SBIM ’07), pages 131–138, New York, NY,
USA, 2007. ACM Press.

[76] B. Paulson and T. Hammond. PaleoSketch: accurate primitive sketch
recognition and beautification. In Proceedings of the 13th International
Conference on Intelligent User Interfaces (IUI ’08), pages 1–10, New York,
NY, USA, 2008. ACM.

[77] B. Paulson, P. Rajan, P. Davalos, R. Gutierrez-Osuna, and T. Hammond.
What!?! no rubine features?: using geometric-based features to pro-
duce normalized confidence values for sketch recognition. In Workshop
on Sketch Tools for Diagramming (VL/HCC ’08), pages 57–63, Septem-
ber 2008. https://www.cs.auckland.ac.nz/research/conferences/skekchws/
proceedings.html.

[78] K. Perlin. Quikwriting: continuous stylus-based text entry. In Proceed-
ings of the 11th Annual ACM Symposium on User Interface Software and
Technology (UIST ’00), pages 215–216, New York, NY, USA, 1998. ACM
Press.

[79] B. Plimmer and I. Freeman. A toolkit approach to sketched diagram recog-
nition. In Proceedings of the 21st British HCI Group Annual Conference
(HCI ’07), pages 205–213, September 2007.

[80] B. Plimmer and J. Grundy. Beautifying sketching-based design tool con-
tent: issues and experiences. In Proceedings of the 6th Australasian User
Interface Conference (AUIC ’05), pages 31–38, Darlinghurst, Australia,
Australia, 2005. Australian Computer Society, Inc.

https://www.cs.auckland.ac.nz/research/conferences/skekchws/proceedings.html
https://www.cs.auckland.ac.nz/research/conferences/skekchws/proceedings.html

204 BIBLIOGRAPHY

[81] P. Rajan and T. Hammond. From paper to machine: Extracting strokes
from images for use in sketch recognition. In Proceedings of the 5th Euro-
graphics Workshop on Sketch-based Interfaces and Modeling (SBIM ’08),
New York, NY, USA, June 2008. ACM.

[82] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation, Volume I: Foundations. World Scientific Publishing
Co., Inc., River Edge, NJ, USA, 1997.

[83] D. Rubine. Specifying gestures by example. Proceedings of the 18th An-
nual Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH ’91), 25(4):329–337, 1991.

[84] D. H. Rubine. The automatic recognition of gestures. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, USA, 1992.

[85] E. Saund and E. Lank. Stylus input and editing without prior selection
of mode. In Proceedings of the 16th Annual ACM Symposium on User
Interface Software and Technology (UIST ’03), pages 213–216, New York,
NY, USA, 2003. ACM.

[86] P. Schmieder, B. Plimmer, and J. Vanderdonckt. Cross-domain dia-
gram sketch recognition. In Workshop on Sketch Tools for Diagramming
(VL/HCC ’08), pages 64–73, September 2008. https://www.cs.auckland.
ac.nz/research/conferences/skekchws/proceedings.html.

[87] A. Schramm. Übersicht und Klassifizierung von Features für Feature-
basierte Erkennungssysteme. Universität der Bundeswehr München, 2008.
Bachelor thesis, UniBwM-IS 02/2008, only available in German.

[88] M. Schramm. Vergleich verschiedener Texteingabemöglichkeiten für
Sketchingsysteme. Universität der Bundeswehr München, 2008. Bache-
lor thesis, UniBwM-IS 03/2008, only available in German.

[89] T. M. Sezgin. Feature point detection and curve approximation for early
processing of free-hand sketches. Master’s thesis, Massachusetts Institute
of Technology, Department of EECS, Cambridge, MA, USA, May 2001.

[90] T. M. Sezgin and R. Davis. HMM-based efficient sketch recognition. In
Proceedings of the 10th International Conference on Intelligent User Inter-
faces (IUI ’05), pages 281–283, New York, NY, USA, 2005. ACM.

[91] T. M. Sezgin, T. Stahovich, and R. Davis. Sketch based interfaces: early
processing for sketch understanding. In Proceedings of the 2001 Workshop

https://www.cs.auckland.ac.nz/research/conferences/skekchws/proceedings.html
https://www.cs.auckland.ac.nz/research/conferences/skekchws/proceedings.html

BIBLIOGRAPHY 205

on Perceptive User Interfaces (PUI ’01), pages 1–8, New York, NY, USA,
2001. ACM.

[92] P. Taele and T. Hammond. Hashigo: A next-generation sketch interactive
system for japanese kanji. In 21st Innovative Applications Artificial Intel-
ligence Conference (IAAI ’09), July 2009.

[93] E. Tapia and R. Rojas. Recognition of on-line handwritten mathematical
formulas in the E-Chalk System. In Proceedings of the 7th International
Conference on Document Analysis and Recognition (ICDAR ’03), pages
980–984, Washington, DC, USA, 2003. IEEE Computer Society.

[94] R. Thierjung. Erkennung und Repräsentation schraffierter und ausgemal-
ter Flächen in Strichzeichnungen. Universität der Bundeswehr München,
2008. Diploma thesis, UniBwM-ID 1/2008, only available in German.

[95] R. Thierjung, F. Brieler, and M. Minas. On-line recognition of hatched and
filled regions in hand-drawings. In Workshop on Sketch Recognition (IUI
’09), February 2009. http://srl.csdl.tamu.edu/workshops/2009/iui/schedule.
html.

[96] M. Thorne, D. Burke, and M. van de Panne. Motion doodles: an inter-
face for sketching character motion. In Proceedings of the 31st Interna-
tional Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH ’04), pages 424–431, New York, NY, USA, 2004. ACM.

[97] E. Turquin, M.-P. Cani, and J. F. Hughes. Sketching garments for virtual
characters. In Proceedings of the 1st Eurographics Workshop on Sketch-
based Interfaces and Modeling (SBIM ’04), pages 175–182, August 2004.

[98] P. A. C. Varley, R. R. Martin, and H. Suzuki. Can machines interpret line
drawings? In Proceedings of the 1st Eurographics Workshop on Sketch-
based Interfaces and Modeling (SBIM ’04), pages 107–116, 2004.

[99] P. Wais, A. Wolin, and C. Alvarado. Designing a sketch recognition front-
end: User perception of interface elements. In Proceedings of the 4th Euro-
graphics Workshop on Sketch-based Interfaces and Modeling (SBIM ’07),
pages 99–106, New York, NY, USA, 2007. ACM.

[100] L. Wenyin. On-line graphics recognition: State-of-the-art. In Proceed-
ings on the 5th International Workshop on Graphics Recognition. Recent
Advances and Perspectives (GREC ’03), volume 3088 of Lecture Notes in
Computer Science, pages 291–304. Springer, July 2003.

http://srl.csdl.tamu.edu/workshops/2009/iui/schedule.html
http://srl.csdl.tamu.edu/workshops/2009/iui/schedule.html

206 BIBLIOGRAPHY

[101] L. Yeung, B. Plimmer, B. Lobb, and D. Elliffe. Levels of formality
in diagram presentation. In Proceedings of the 2007 Conference of the
Computer-human Interaction Special Interest Group (CHISIG) of Australia
on Computer-human Interaction: Design: Activities, Artifacts and Envi-
ronments (OZCHI ’07), pages 311–317, New York, NY, USA, 2007. ACM.

[102] Z. Yuan, H. Pan, and L. Zhang. A novel pen-based flowchart recognition
system for programming teaching. In 2nd Workshop on Blended Learn-
ing, Revised Selected Papers (WBL ’08), volume 5328 of Lecture Notes in
Computer Science, pages 55–64. Springer, August 2008.

[103] R. Zanibbi, D. Blostein, and J. R. Cordy. Recognizing mathematical ex-
pressions using tree transformation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(11):1455–1467, November 2002.

[104] S. Zhai and P.-O. Kristensson. Shorthand writing on stylus keyboard. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’03), pages 97–104, New York, NY, USA, 2003. ACM.

[105] N. Zhu, J. C. Grundy, and J. G. Hosking. Constructing domain-specific
design tools with a visual language meta-tool. In Proceedings of the 17th
Conference on Advanced Information Systems Engineering (CAiSE ’05),
CAiSE Forum. CEUR-WS.org, June 2005.

