
Efficient Change Management of XML Documents

Dissertation
zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

vorgelegt von
Dipl.-Inf. Sebastian Rönnau

im August 2010

Tag der mündlichen Prüfung: 09. Dezemver 2010
Vorsitzender der Kommission: Prof. Dr. Peter Hertling

1. Berichterstatter: Prof. Dr. Uwe M. Borghoff
2. Berichterstatter: Prof. Dr. Michael Koch

1. Prüfer: Prof. Dr. Ulrike Lechner
2. Prüfer: Prof. Klaus Buchenrieder, Ph.D.

Universität der Bundeswehr München
Fakultät für Informatik

Abstract

XML-based documents play a major role in modern information architectures and their corre-
sponding work-flows. In this context, the ability to identify and represent differences between
two versions of a document is essential. A second important aspect is the merging of document
versions, which becomes crucial in parallel editing processes.

Many different approaches exist that meet these challenges. Most rely on operational trans-
formation or document annotation. In both approaches, the operations leading to changes are
tracked, which requires corresponding editing applications. In the context of software devel-
opment, however, a state-based approach is common. Here, document versions are compared
and merged using external tools, called diff and patch. This allows users for freely editing
documents without being tightened to special tools. Approaches exist that are able to compare
XML documents. A corresponding merge capability is still not available.

In this thesis, I present a comprehensive framework that allows for comparing and merging
of XML documents using a state-based approach. Its design is based on an analysis of XML
documents and their modification patterns. The heart of the framework is a context-oriented
delta model. I present a diff algorithm that appears to be highly efficient in terms of speed
and delta quality. The patch algorithm is able to merge document versions efficiently and
reliably. The efficiency and the reliability of my approach are verified using a competitive test
scenario.

iii

iv

Acknowledgements

Many people have supported me in my work. First of all, I have to thank to my supervisor,
Uwe M. Borghoff, for giving me the opportunity to do my research. He allowed me to follow
my own research interests, with broad but precise constraints. He has always trusted in me
and my work and encouraged me to take on the responsibility for the organization of the ACM
DocEng 2009. I also have to thank my second advisor, Michael Koch. He provided me with
valuable comments, helping me to sharpen this thesis up.

Almost all of the time, I did really enjoy being member of the Institute of Software Tech-
nology. Apart from the excellent research conditions, the staff played a major role. Florian
Brieler, Nico Krebs, Sonja Maier, Steffen Mazanek, Mark Minas, Peter Rödig, Arne Seifert,
Thomas Triebsees, and Daniel Volk helped me elaborating my ideas in countless discussions.
Susanna Defendi, Harald Hagel, and Michael Minkus allowed me for discussing topics not
related to the domain of computer science. It was a pleasure and a honor to me to work with
my colleagues. Some of them became even friends.

Other people have contributed to my thesis. First of all, Jan Scheffczyk helped me writing
my first paper, opening me the way to an academic career. Many students supported my
research. Christian Pauli wrote the first prototype of XCC Patch. Geraint Philipp, a highly
skillful programmer, made a complete re-design of XCC Patch and programmed XCC Diff.
Maik Teupel designed a user interface and wrote converting tools. Arthur Müller developed
further applications of the XCC framework on the file system level. Manfred Pohlemann
supported my work by developing a test framework.

Finally, I have to thank my family. My wife Silvia and my children Luca and Lilith have
been very patient with me, accepting when I was coming home late or lost in thought. My
youngest girl, Lene, was being born just a few hours after the submission of my final draft.
Thanks for her patience, too.

v

vi

Contents

Abstract iii

Contents v

List of Figures xi

List of Tables xiii

List of Acronyms xv

1 Introduction 1
1.1 Motivation . 1
1.2 Document Change Control . 3
1.3 Goal and Approach . 4
1.4 Outline . 5

I Concepts and Notations 7

2 XML Documents 9
2.1 What is a Document? . 9
2.2 XML in General . 10
2.3 Document Formats . 15
2.4 Tree Properties . 18
2.5 Modification Patterns . 22
2.6 Conclusions . 28

3 Differencing Strings and Trees 29
3.1 String Editing . 29
3.2 Tree Editing . 33
3.3 Differencing XML Documents . 38
3.4 Conclusions . 46

4 Document Merging 47
4.1 Parallel Editing of Documents . 47

vii

Contents

4.2 State-Based Change Control . 51
4.3 Operational Transformation . 54
4.4 Annotation of Documents . 57
4.5 Other Approaches . 61
4.6 Conclusions . 61

II A Context-Sensitive Approach to XML Change Control 63

5 The XCC Framework 65
5.1 Basic Idea . 65
5.2 Architecture . 67

6 A Context-Oriented Delta Model 73
6.1 Definitions . 73
6.2 Edit Operations . 76
6.3 Dependencies . 78
6.4 Set-Based Delta vs. Edit Script . 80
6.5 Representing Context in XML . 81
6.6 Inversion, Aggregation, and Decomposition 84
6.7 Conclusions . 86

7 An Efficient Differencing Algorithm 87
7.1 Basic Idea and Outline . 87
7.2 Finding the Common Content . 88
7.3 Identifying Structure-Preserving Changes 90
7.4 Catching Structure-Affecting Changes . 92
7.5 Complexity Analysis . 95
7.6 Conclusions . 99

8 A Merge-Capable Patch Algorithm 101
8.1 Basic Idea . 101
8.2 Linear Patching . 102
8.3 Context-Aware Patching . 103
8.4 Conflicts . 106
8.5 Best-Effort Merging . 108
8.6 The Algorithm at a Glance . 111
8.7 Complexity Analysis . 113
8.8 Conclusions . 114

9 Evaluation 115
9.1 Experimental Setup . 115

viii

Contents

9.2 Test Scenarios . 117
9.3 Runtime . 118
9.4 Merge Quality . 122
9.5 Conclusions . 124

III Conclusions 127

10 A Comparative Evaluation of XML Differencing Tools 129
10.1 Experimental Setup . 129
10.2 Test Scenarios . 132
10.3 Differencing . 133
10.4 Delta Analysis . 136
10.5 Conclusions . 142

11 Conclusions and Future Work 143
11.1 Summary . 143
11.2 Scientific Contribution . 144
11.3 Applications . 145
11.4 Future Work . 148

Bibliography 151

A Resources for Document Evaluation 165
A.1 Selection Criteria . 165
A.2 Web Documents . 165
A.3 Office Documents . 166

B XML Document Hashing 169
B.1 Normalization . 169
B.2 XML Hashing . 171
B.3 Related Work . 172

C XCC Delta Specification 173

D A Running Example 175
D.1 Setting . 175
D.2 Differencing . 176
D.3 Merging . 179
D.4 Conclusions . 185

ix

Contents

x

List of Figures

1.1 Loosely coupled ad-hoc collaboration. 3
1.2 Non-conflicting merge, showing the impact of altered paths. 4

2.1 Normal XML representation vs. pretty printing. 13
2.2 ODF file structure. 17
2.3 Node distribution across the XML trees. 21
2.4 Node repetition ratio across the XML trees. 22
2.5 Simple markup change. 23
2.6 Change impact on the XML representation. 25
2.7 Example of Web page evolution. 27

3.1 Tree editing example. 34
3.2 Example of different tree traversal algorithms. 34
3.3 Representation of a string as tree. 37
3.4 Delta generated by Microsoft XML Diff. 40
3.5 Delta generated by diffxml. 42
3.6 Delta generated by jXyDiff. 43
3.7 Delta generated by faxma. 44

4.1 Branching of documents. 48
4.2 Example for a wrong merge. 50
4.3 Architecture of Diff3. 52
4.4 Example of context-based merging. 53
4.5 Change tracking vs. state-based differencing. 59

5.1 Architecture of the XCC framework. 68
5.2 XCC GUI. 70

6.1 Interfering changes. 80
6.2 Context fingerprint. 83

7.1 XML trees during the first algorithm step. 89
7.2 Detecting re-allocated leaves. 92
7.3 Detecting an insert operation. 93
7.4 Detecting a leaf update. 94

xi

List of Figures

8.1 A context fingerprint for delete operations. 104
8.2 Neighborhood generation. 105
8.3 Match weighting function. 110

9.1 XCC Diff runtime. 119
9.2 XCC Diff runtime with leaf update detection. 119
9.3 XCC Patch runtime. 121
9.4 XCC Patch runtime with merging. 121
9.5 Merge quality. 123

10.1 Runtime of the diff tools. 135
10.2 Memory consumption of the diff tools. 137
10.3 Number of operations in the deltas. 139
10.4 Size of the deltas. 141

11.1 A GUI for interactive merging. 146

C.1 An example delta. 174

D.1 Version A of the running example. 175
D.2 Versions A1 and A2 of the running example. 176
D.3 XML tree of A1 with edit operations. 177
D.4 XML tree of A1 after the first algorithm step. 180
D.5 Delta δA→A1 . 181
D.6 Delta δA→A2 . 182
D.7 Merging the conflicting change. 183
D.8 Merging the insert operation. 184
D.9 Merged XML tree. 186
D.10 Merged document. 187

xii

List of Tables

2.1 Size of the analyzed documents. 19
2.2 Depth of the XML trees. 20
2.3 Node distribution at the bottom of the XML trees. 20

3.1 Example LCS matrix. 30

6.1 Delta inversion rules. 85

8.1 Partial matching values. 110

10.1 List of compared diff tools. 130
10.2 On-line resources of the compared tools. 131
10.3 Results from the basic test run. 133
10.4 Distribution of operation types across the deltas. 140

A.1 List of the analyzed Web pages. 166
A.2 List of the analyzed text documents. 167
A.3 List of the analyzed spreadsheets. 168

B.1 Node prefixes. 171

D.1 List of matching leaves. 178
D.2 List of possibly deleted leaves. 178
D.3 List of possibly inserted leaves. 178

xiii

List of Tables

xiv

List of Acronyms

API Application Programming Interface

CMS Content Management System

CPU Central Processing Unit

CSCW Computer-Supported Cooperative Work

CVS Concurrent Versions System

DOM Document Object Model

DTD Document Type Definition

DUL Delta Update Language

EBNF Extended Backus-Naur Form

ECMA European Computer Manufacturers Association

FMES FastMatch EditScript

GNU GNU’s not Unix!

GUI Graphical User Interface

HTML Hypertext Markup Language

IEC International Electrotechnical Commission

ISO International Organization for Standardization

JAR Java Archive

JDK Java Development Kit

JRE Java Runtime Environment

LCS Longest Common Subsequence

MathML Mathematical Markup Language

xv

List of Tables

OASIS Organization for the Advancement of Structured Information Standards

ODF OpenDocument Format

OOXML Office Open XML

PI Processing Instruction

RCS Revision Control System

SGML Standard Generalized Markup Language

SVG Scalable Vector Graphics

SVN Subversion

USB Universal Serial Bus

W3C World Wide Web Consortium

WYSIWYG What you see is what you get

XCC XML Change Control

XHTML Extensible Hypertext Markup Language

XOM XML Object Model

XSLT XML Stylesheet Language Transformations

XML Extensible Markup Language

xvi

1 Introduction

This thesis deals with the efficient and reliable change control of XML documents, which build
the backbone of today’s business processes. First, I explain the motivation of my work which
shall support every-day ad-hoc collaboration without tightening the user to a strict work-flow
or editing tool. Afterwards, I discuss the term document change control. Finally, I briefly
sketch my approach, followed by the outline of this thesis.

1.1 Motivation

Nowadays, electronic documents are a major information exchange carrier. The creation and
editing of texts, spreadsheets, and presentations is an every-day task. Usually, these documents
are edited incrementally. A first draft is written, revisions are made, and so on. Especially
in the context of office work, documents are often edited collaboratively. Large documents
consist of different parts, contributed by different people from different organizational entities.
Even small documents are usually proof-read internally for quality control. In the past, these
processes have mostly been serial ones. The document was either printed and therefore tighten
to paper, or bound to its physical representation in a data carrier like a USB pen-drive. Since
ubiquitous network access has become the standard, the collaboration process became more
and more a parallel one. The document is either stored on a widely available network space or
distributed via e-mail.

Parallel editing of a document leads to the important question of document integrity. In
case that two users modify a document in parallel, the concurrent (write) access may lead to
severe problems. Either the last write access tampers with the document format, leading to an
unreadable document. Or the changes performed by the first access are discarded, overwritten
by the second version. To prevent this unacceptable drawback, several approaches exist. First,
locking can be used to prevent a parallel write access. If a user opens the document for writing,
no other user is granted write access until the first user has written his version [Borghoff and
Schlichter 2000]. Another approach is copy-modify-merge [Tichy 1982]. Here, each user
works on a local copy, and commits his changes to a centralized repository. The consolidation
of the modified versions is called merge. Alternatively, the document could be modified using
a collaborative editor [Koch 1997]. Here, all users work on virtually the same workplace.
Each change is displayed to all users as soon as possible.

All these approaches are common methods in the domain of computer-supported coopera-
tive work (CSCW). However, most of the software used in offices do not support these meth-
ods. Only file-based locking is provided. Especially for large documents, this approach is not

1

1 Introduction

very suitable, as it makes parallel editing of documents impossible. Here, more fine-grained
locking mechanisms would be helpful [Borghoff and Teege 1993b]. Nevertheless, locking is
only a solution if all participants have access to the same repository. In case that documents
are exchanged via e-mail, however, locking does not provide any advantage. The changes have
to be merged anyway. Collaborative editors have a similar drawback by requiring a permanent
connection of the participants. Although editors exist that allow for asynchronous collabora-
tion, all participants have to use the same editor. On the other hand, different applications may
be used to display and/or edit a document, due to the limited capabilities of the displaying
device (e.g. netbook or Blackberry), or due to the low user experience. As an example for
latter case, complex calculations are performed within a spreadsheet application by an expert
user. Other users may only see the final table displayed within a text. Different applications
are needed to handle these highly complex and user-specific issues. Copy-modify-merge is
a well-established approach in the domain of software source code. However, corresponding
merging applications for office documents are not mature yet.

Tool support for the described collaboration model is still in its infancy. Therefore, doc-
uments or parts of them are usually exchanged completely. Document versions are merged
manually which is both time-consuming and error-prone. In the context of office documents,
the “change tracking” feature of the corresponding applications has become a de-facto stan-
dard for displaying the changes made. Here, each change is tracked on a character-level and
in-lined within the document. However, these changes are hard to understand [Neuwirth et al.
1992]. Especially if different versions ought to be merged, the user interface is confusing.
Additionally, the tracked changes contain a lot of meta-data that offer a deep insight into the
editing process. In many cases, this should be hidden from the other participants. At last, the
tracked changes may even miss some changes. In some cases, format changes are not tracked
and cannot be merged for that reason [Rönnau and Borghoff 2009].

One of the basics of the success of the Internet was the availability of the Hypertext Markup
Language (HTML). This language is used to describe different kinds of documents, trying
to separate the content from the markup information. HTML, however, is closely tightened
to text documents; content and markup separation is not straightforward. Therefore, XML
has been designed as a meta-language to allow for a broader class of documents. Today,
XML has emerged as lingua franca in many domains. A huge variety of XML dialects is
used to encode documents. Agreed-upon XML-based document standards exist for texts,
spreadsheets, presentations, and many more kinds of documents. Therefore, I focus on the
issues of XML documents, without restraining to a specific dialect of document format.

In this thesis, I address the issue of collaborative editing of XML documents through arbi-
trary exchange of document versions. The motivation is to enable users to compare, recon-
struct, and merge document versions efficiently and reliably.

2

1.2 Document Change Control

t
A A1

Alice

t
A A1 A1,2

Carol

t
A A2 A2,1

Bob

δA→A1
δA→A2

Figure 1.1: In a loosely coupled collaborative environment, changes are exchanged arbitrarily,
leading to many merges.

1.2 Document Change Control

Figure 1.1 shows an example of loosely coupled ad-hoc collaboration groups, working on
document A. Alice initiates the editing by distributing the first version to Bob and Carol. She
continues working on her draft, while Bob starts to perform his changes. Alice sends her
changes to Carol, requesting her comments. After that, Bob sends his changes to Carol. Carol
merges both changes to A1,2. After Carol’s approval, Alice sends her changes (indicated by
δA→A1) to Bob. Now, Bob has to merge Alice’s changes into his version, leading to A2,1. If
the changes are merged manually, the probability that all participants have the same version in
the end is quite low. Document change control tools shall ensure a deterministic merge result.
In case of non-conflicting changes, the merged documents must be identical across all copies,
independent from the merge order.

As already pointed out, users shall not be tightened to a specific application to edit their
documents. This raises the questions how users can exchange their changes. In a naive ap-
proach, the changes could be described in another document which is attached to the modified
document. Although this is a substantial overhead and error-prone, it is a common practice
in office collaboration1. Automatic finding and encoding of the changes is more efficient (in
terms of labor time) and effective. Additionally, the description of changes cannot be forgotten
by the authors anymore. A diff tool compares two document versions (aka states) and stores
the changes in a delta. The differencing tool is also called diff, the delta is also referred to as
edit script2. The application of a delta to a file to create the new version is called patch. If a
delta is applied to another version of the document as is has been computed for, a merge is
performed.

Diff, patch, and merge lay the basis of state-based document change control. In this context,
the encoding of the changes within a delta is essential. As the delta is the information carrier

1Here, I have to distinct between the description of the changes themselves or their intention. Obviously,
comments on the changes as additional notes may be important and helpful.

2The terms delta and edit script are not fully equivalent. I will discuss the differences in Section 6.4.

3

1 Introduction

A:
09:00 Keynote
09:30 Coffee Break
10:00 Session 1

A1:
09:00 Keynote
09:30 Coffee Break
10:15 Session 1

A2:

08:30 Welcome
09:00 Keynote
09:30 Coffee Break
10:00 Session 1

A1,2:

08:30 Welcome
09:00 Keynote 1
09:30 Coffee Break
10:15 Session 1

A2,1:

08:30 Welcome
09:00 Keynote 1
10:15 Coffee Break
10:00 Session 1

∆A→A1

δA→A2

δA→A2

δA→A1

Figure 1.2: Absolute paths may lead to unwanted merge results. Performing the delta marked
with a dashed line would affect the wrong node, leading to a wrong result.

between the diff and the patch tool, only the information contained within the delta can be
used to patch and merge document versions. Merging documents by applying deltas from
other versions can be ambiguous. Changes may affect the structure of the document, thus
affecting the addressing of the subsequent parts of the document. Figure 1.2 exemplifies this
problem using a schedule. In version A1, a time is modified, in version A2, a new entry
is inserted. If delta δA→A1 encodes the change like “change column 1, row 3 into 10:15”,
the application of δA→A1 would address the wrong cell. Therefore, the delta should contain
additional information to ensure a reliable merge.

As a side-note, the mentioned techniques only cover the technical aspects of document
change control. Organizational and psychological aspects play an important role, too. How-
ever, they are not part of my research and are not discussed further. Nevertheless, I may point
out that diff and patch have been enjoying great popularity in the domain of software source
control for nearly 35 years [Rochkind 1975; MacKenzie et al. 2002].

1.3 Goal and Approach

In this thesis, I develop a framework for differencing, patching, and merging XML documents.
The heart of the framework is a novel delta model that stores the syntactic context of an edit
operation. This syntactic context is used as additional source of information during merging.
This way, a reliable merge can be ensured.

The use of the syntactic context for merging is not new. Davison [1990] has proposed this
approach for the domain of line-based documents. Today, this context-oriented delta format is

4

1.4 Outline

still the state-of-the-art in source code control [MacKenzie et al. 2002]. However, the mapping
of the one-dimensional line-based view onto two-dimensional trees as used in XML is not self-
evident. A first approach has been presented by Mouat [2002], but has not reached maturity3.
My approach is the first comprehensive context-oriented delta model. Using the syntactic
context, the patch procedure is enabled to reliably merge document versions including conflict
detection.

Complexity is another important aspect of change control. The comparison of XML trees
is a difficult task. Evaluations, e.g. by Rönnau et al. [2005], have shown that even for quite
simple documents, existing XML diff tools may take more than a minute to compare two
documents. Apparently, this is not acceptable in every-day use. Therefore, I also focus on
the question of efficient differencing and patching. Efficient XML diff algorithms have been
presented before, e.g., by Cobéna [2003] and Lindholm et al. [2006]. However, none of these
approaches is able to merge document versions.

In this thesis, I present an efficient differencing algorithm especially designed for XML
documents. It bases on a computation of the longest common subsequence of leaf nodes,
combined with a bottom-up comparison of the non-leaf nodes. As the content of the docu-
ments lay within the leaves, my algorithm focuses on content changes, before investigating
markup and structure changes.

The corresponding patch algorithm is efficient and merge-capable. It uses the syntactic
context for reliably identifying the correct path to an edit operation. The efficiency is gained
by restraining the search space to the neighborhood of the expected path.

1.4 Outline

This thesis is divided into three parts. Part I deals with the basics of document change control.
Here, I define the problem statement and present the related work in this research domain. In
Part II, I present my approach to change control of XML documents. Part III concludes the
thesis.

The preliminaries of this thesis are discussed in Chapter 2. Here, I define the term document
as well as the XML model used. In the following, I present different XML document formats.
Using an empiric analysis, I investigate the properties of common XML documents, as well
as the modification patterns which arise during the editing process. In Chapter 3, I present
the basics of document differencing, including the common solutions for string and tree dif-
ferencing. Existing approaches to XML differencing are presented last. Chapter 4 deals with
the problem of document merging. The most common approaches are presented and I discuss
their applicability to the domain of XML documents.

In Chapter 5, I sketch the architecture of my change control framework, including basic im-
plementation details. In Chapter 6, I present my XML context-oriented delta model that builds
the heart of the framework. An efficient differencing algorithm is presented in Chapter 7. I

3I will discuss this approach in Section 6.5.

5

1 Introduction

present a corresponding merge-capable patch algorithm in Chapter 8. Both algorithms have
been implemented and are evaluated in terms of efficiency and reliability in Chapter 9.

Finally, I compare the proposed differencing algorithm and the resulting deltas in an evalua-
tion against the state-of-the-art approaches in this domain. After this evaluation in Chapter 10,
I give a summary of the thesis in Chapter 11. Here, I also present different applications of my
framework and give an outlook on future research.

Appendix A lists the documents that have been analyzed in the evaluation of the XML
document properties. In Appendix B, I present the XML hashing model used in my frame-
work. Appendix C defines the XML representation of the context-oriented deltas. Finally,
Appendix D shows a running example of a whole document editing process using the pro-
posed framework.

6

Part I

Concepts and Notations

7

2 XML Documents

The Extensible Markup Language (XML) has emerged as lingua franca in many domains,
including the Web and office documents. The simplicity and the clear design, in addition with
powerful and easy-to-use tools have built the basis of the success of XML. Many different
XML dialects exist. Each of them has its own characteristics and design goals. However,
there are many similarities.

This chapter contains the preliminaries in the context of XML documents. It starts with a
brief discussion of the term “document”. It is followed by an overview of XML in general,
introducing some basic notations. Afterwards, two major XML document formats, ODF and
XHTML, are presented. I explain the background of these formats first, before performing
an empiric analysis of real-world documents. The main goal of this evaluation is to gain
knowledge about the properties of XML document trees. Finally, I explore the modification
patterns in the course of the evolution of the documents. These findings aim to lay the basis
for the design of an efficient differencing algorithm later on.

2.1 What is a Document?

The question, which properties specify an artifact to define it as “document” has been exten-
sively discussed in the first half of the 20th century, mostly in the context of bibliography. Doc-
uments were commonly seen as physical artifacts, created with an intention. For an overview
on this discussion, please refer to Buckland [1997]. Beginning with the 1980’s, the applicabil-
ity of the term “document” to digital artifacts was discussed. In context of my work, I define
the term document as follows:

Definition 2.1 A document is the digital representation of knowledge. It must exist an un-
ambiguous way of converting it into a physical representation (e.g. by printing). A document
consists of content and markup and must have an inner ordering (i.e., the reading direction).
A document may evolve over time, but must have a definite state at any time.

Some implications arise from this definition. First, it is arguable whether a graphic may be
seen as document, as a graphic does not provide a common inner ordering. Some graphics, e.g.
diagrams, may have a reading direction, but this is a domain-specific one. Therefore, graphics
are not part of my research. A second implication affects the field of active documents. Re-
cently, approaches have been presented that add application-logic to documents, e.g. by Boyer
et al. [2008]. In these active documents, the current state of the document is not determinable

9

2 XML Documents

at any time. Thus, the document property defined earlier is not satisfied. Therefore, active
documents are not part of my research as well.

Even if I do not aim to research on graphics and active documents, some of my findings
may be applicable to these domains. In Section 11.3.4, I will present research directions that
could ensure the applicability of my approach to a broader definition of the term “document”.

2.2 XML in General
XML is a universal metalanguage for a wide variety of applications. It is an application-
independent metalanguage with a clear and precise definition that allows for defining human-
legible and reasonably clear documents [Bray et al. 2008]. One of the main goals during the
design of XML was to separate the content from the markup of a document. This was mainly
intended by the experienced gained from the prevailing binary-based document formats that
could only be interpreted using specific tools. Therefore, Borghoff et al. [2006] recommend
to use XML to ensure the long-term readability of documents.

An XML document is a tree that can be represented either by a text file or a corresponding
object model like the Document Object Model (DOM) [Hors et al. 2004]. Usually, the text
representation is used for serialization; the object model is mostly used for processing the tree
within an application.

In this section, I briefly present my notation regarding XML documents first, before de-
scribing the node types of XML. Aspects of parsing the text representation into an object
model are discussed afterwards, as well as validity constraints of documents. I present an
elementary addressing scheme for XML nodes that is used throughout this thesis. Finally, I
differentiate the ordered tree model of XML documents from the unordered model used in
dataset-representations.

2.2.1 Notations
From a theoretical point of view, an XML tree is an undirected acyclic graph. Each node may
have an arbitrary number of children, where each child has only one parent node. The node
without a parent is called root, all nodes without children are leaves. All parent nodes on the
path up to root are the ancestors of a node. All child nodes on the possible paths to the leaves
are called descendants. The descendants of a node n build a subtree, with n being their root.
Nodes with the same parent node are called siblings.

The depth of a node conforms to the length of the path from the root to the node. The root
node has a depth of 0. The height of a node is the length of the longest path from the node
to the leaves. A leaf has a height of 0, the height of the root node corresponds to the highest
depth. A top-down level of the tree is defined as all nodes with the same depth. Additionally,
the bottom-up level comprises all nodes with the same height1. The top-down level and the
bottom-up level can be equal, which is unlikely in complex documents.

1In literature, the term level is mostly used according to my definition of the top-down level.

10

2.2 XML in General

Definition 2.2 The basic set of all XML documents shall be denoted as A. An XML document
is denoted as A ∈ A. Different versions of A are denoted as A1, . . . ,An, with n ∈ N.

In this context, I define a document version as follows:

Definition 2.3 A document A1 is a version of another document A, if and only if it has been
transformed from this document or another version of that document using any editing action.

Two versions of one document essentially share a common content and markup as far as
possible. However, this is not a requisite.

2.2.2 Node Types
XML distinguishes different types of nodes. A node can either be an element node, a text
node, a processing instruction, or a comment [Bray et al. 2008]. Comments may be omitted
during parsing of the document and do not affect the content or markup of the document.
Therefore, this node type is mostly neglected. Processing instructions (PI) are intended to
pass non-XML-coded commands to the corresponding application. They are a relict from the
preceding SGML format that remained for compatibility reasons. Goldfarb [1990] stressed
that even for SGML, the use of processing instructions is a bad design that should be used
sparingly. They are often neglected, too. I follow this decision for my XML model.

Text nodes (also known as CDATA nodes) store the content of the XML document. They
are not parsed but directly passed to the application. In this context, the term “text node” is
somewhat misleading. Basically, any kind of data, including binary representations, can be
stored within a text node. As I focus on document representations where the content is mostly
stored as text, I use the term text node throughout this thesis. Deriving from its definition as
non-parsed entity, text nodes are leaf nodes on principle.

Element nodes contain the markup of the document. Basically, all non-leaf nodes within the
XML tree are element nodes. An element node consists of its label and an arbitrary number of
attributes. Attributes are name-value assignments that are stored as an unordered list attached
to the element. An element node can be encoded in different ways. Due to different character
encodings, name-space resolutions, or attribute orderings, the syntactic appearance of one and
the same node may differ. To resolve these ambiguities, a node has to be normalized.

Definition 2.4 The node value is the normalized representation of the node label, including a
normalized representation of the attribute list.

A normalized node label means a representation where character encodings and name-space
prefixes are used in a uniform way. In a normalized list of attributes, all entries are ordered
unambiguously. A normalization scheme is presented in Appendix B. It is based on Canonical
XML by Boyer [2001] and DOMHash by Maruyama et al. [2000]. Using the node value, I
define the equivalence of nodes as follows:

Definition 2.5 For two nodes n1,n2 ∈ A : n1 = n2 is true, if and only if value(n1) = value(n1)

That means that the two nodes are equal if their normalized node values are equal.

11

2 XML Documents

2.2.3 Parsing XML

XML documents are usually exchanged in their text-based representation. Basically, this
is a simple text file encoded in Unicode, a text encoding format designed for handling all
kinds of characters [Davis and Collins 1990]. By parsing this text representation, the corre-
sponding object model is built. There exist common object models like the Document Object
Model (DOM) [Hors et al. 2004] and application-specific object models as well. However,
most application-specific object models are only a further abstraction of DOM, like the ODF
Toolkit2 for office documents. The reason for this is the availability of well-documented and
reliable frameworks for DOM handling.

The text representation is a sequence of different nodes, representing the tree structure by
nested delimiters, called tags. The text representation is parsed from left to right, correspond-
ing to a preorder traversal of the tree.

Definition 2.6 The term document order denotes the order in which nodes are encountered,
one after another, as the document that contains them is parsed [DeRose and Clark 1999].

Definition 2.7 For two nodes n1,n2 ∈ A, n1 < n2 is true, if and only if n1 comes before n2 in
document order.

These definitions ensure an explicit ordering on the XML tree, thus allowing for addressing
nodes with respect to their position on the tree.

Within the text representation, element tags are delimited by angle brackets. Subtrees are
delimited by an opening and a closing element tag. Elements without children can be repre-
sented as a single tag with a special notation (slash at the end).

Figure 2.1 shows an example document, whose text representation is parsed into a tree
representation. It contains text and element nodes, the latter one with attributes. During
parsing, the tree is constructed from the text representation from top to down, according to the
document order. The first line contains the prologue of the text representation, specifying the
version of the XML specification used.

Basically, all nodes are written subsequently within the text representation, without sepa-
ration of the nodes. White-space like blanks and line breaks are only used within text nodes.
Obviously, this representation is not very human-readable. To illustrate the tree structure,
the text representation is often structured in a way that resembles the tree representation in
Figure 2.1, using line breaks and indentations. This process is called pretty-printing, result-
ing in an undesired side-effect: the white-space used for pretty-printing is parsed as (empty)
text node and added to the tree representation. It is basically possible to ignore this white-
space, but the decision whether the white-space is significant to the document content is not
straightforward [Murata et al. 2005]. Therefore, I expect the text representation to be not
pretty-printed.

2http://odftoolkit.openoffice.org/

12

2.2 XML in General

doc
styles

normal

bold

italic

text

p style=italic

Carmen 1,11
p style=normal

aetas:
span style=bold

carpe diem
quam minimum credula postero

XML tree

Text representation
<?xml version="1.0"?>
<doc><styles><normal/><bold/><italic></italic></styles><text>
<p style=italic>Carmen 1,11</p><p style=normal>aetas:carpe diemquam minimum credula postero</p></text>
</doc>

node label

attribute

text node

Figure 2.1: The XML tree can be constructed by parsing the corresponding text representation.
The line breaks in the text representation have been added for a better readability.

2.2.4 Well-Formedness and Validity

An XML document is required to be well-formed. That means that the document fulfills the
requirements specified by Bray et al. [2008]. Among others, one important requirement is that
the document must conform to the properties of a tree. This includes the rule that overlapping
tags must not occur. Although this seems trivial, overlapping tags are commonly used in the
domain of Web documents coded in HTML, as many browsers display them despite their
non-well-formedness. XML parsers must not process a non-well-formed document.

XML is intended to act as universal meta-language for any kind of data representation. To
ensure the interpretability of an XML document, a grammar can be defined. A document
conforming to this grammar is called valid. An application may only interpret valid docu-
ments. The validation is performed using tree automata [Neven 2002]. There exists a large
amount of grammar languages for XML. Their major distinction lies in their expressiveness.
In this context, expressiveness is mostly influenced by the capability of defining recursions
and context-sensitive production rules. The most common grammar languages are (in order

13

2 XML Documents

of expressiveness) DTD, XML Schema, and Relax NG. Sadly, an increased expressiveness re-
sults in a higher complexity of validation [Murata et al. 2005]. However, Martens et al. [2006]
have shown that complex expressions are rarely used in commonly used grammars.

As the word “extensible” in XML may suggest, an XML document is not restricted to
one comprehensive grammar. Different types of (sub-)documents may be used within one
document. For example, an office document may consist of a text, with drawings included.
The drawings can be parsed independently from the text document and vice versa. To enable
the parser to distinguish between different sub-documents, name-spaces are used. An XML
name-space allows for a non-ambiguous assignment of a node to its respective grammar [Bray
et al. 2006].

2.2.5 Addressing Nodes

A major issue when editing XML documents is the ability to address single nodes. XPath has
been defined as a unified language for node addressing [DeRose and Clark 1999]. XPath al-
lows for arbitrarily walking through the tree. That includes absolute addresses that start from
the root, but also relative addresses, starting from any node within the tree. Using relative
addresses, single nodes and node sets can be selected, mostly using the parent-children rela-
tionship. To address single nodes using an absolute address, I introduce a simplified notation.

Definition 2.8 A path to a node denotes the position of a node from the perspective of the root
element and is denoted as follows: the root node is denoted with a slash (/). Its children are
indexed from left to right recursively across the levels of the tree. The children index n ∈ N0
starts at 0, with an increment of 1. Each level is separated by a slash.

The path /0/2/2/0 in my notation would refer to /*[1]/*[3]/*[3]/*[1] in XPath
notation3. XPath has been designed to address not only single nodes but complete node sets.
Comprehensive queries can be defined, which in turn require a high complexity upon eval-
uation [Gottlob et al. 2003]. Simple queries require a noticeable evaluation overhead, too.
Additionally, the database-like view of nodes as elements of a set is not suitable for the doc-
ument domain. Therefore, the proposed addressing scheme is more suitable for addressing
single nodes efficiently.

2.2.6 Node Ordering

From its original intention, XML is an ordered tree, where the ordering of the children is
significant. This ordered tree model reflects the properties of documents, where the ordering
of the content is significant, too. As I focus on XML documents, I base my research on this
model.

3XPath starts the node ordering at 1. According to most conventions in computer science, I start the ordering at
0, especially to avoid confusion with other non-XPath addressing schemes.

14

2.3 Document Formats

On the other hand, XML emerged not only as document description language, but also
as data exchange format. Especially in the domain of databases, data representation models
commonly rely on a set property of the data. In turn, the ordering of elements within the XML
tree is neglected. This unordered tree model is adequate for data representation, yet unusable
for the encoding of documents. One might argue that hypertexts define their reading direction
using links. However, the corresponding linked parts have their own reading direction that
must be preserved. Furthermore, the use of an unordered tree model leads into a complexity
trap when comparing documents, as I will discuss in Section 3.2.3.

The unordered tree model is often used if the XML data is reconciled from a database
representation, e.g. by Abiteboul et al. [2006]. However, ordered XML documents may also
be stored in (basically unordered) databases, as shown by Tatarinov et al. [2002].

2.3 Document Formats

Different types of documents can be represented by corresponding XML formats. In this
section, I describe two major formats, XHTML in the domain of Web documents and ODF in
the domain of office documents. I explain their importance in their respective domain as well
as their technical properties. Other formats are mentioned at the end of this section.

2.3.1 XHTML

The Extensible Hypertext Markup Language (XHTML) originates from HTML, the Hyper-
text Markup Language that builds the standard for Web documents, developed by the World
Wide Web Consortium (W3C) [Pemberton 2002]. XHTML provides a vocabulary equiv-
alent to HTML, but adopts XML’s strict rules on well-formedness. Furthermore, standard
tools for XML like parsers, validators, and XPath processors can be used. However, XHTML
and HTML are not fully equivalent. XHTML allows for including foreign XML dialects for
special purposes like Scalable Vector Graphics (SVG) for graphics representation or Math-
ematical Markup Language (MathML) for formulas. For this reason, HTML can be easily
converted to XHTML without loss of information, but the opposite way may imply a lossy
conversion [Carey 2008]. An XHTML document is basically a single XML file. Embedded
pictures are not part of the document and are not considered further for this reason.

2.3.2 ODF

Web documents have been developed in an open process by the W3C. A common standard
for all participants in the Web is a major goal of the W3C. In the domain of office documents,
however, file formats have been developed by the corresponding software manufacturer and
tightened to the office application, like Lotus 1-2-3, Microsoft Word, or Word Perfect. These
proprietary file formats used a binary encoding, a publicly available documentation was not

15

2 XML Documents

available. This helped mostly the larger software manufacturers to defend their market posi-
tion, as competing applications were not able to edit the widely-deployed office documents
flawlessly [Weir 2009].

To overcome this tight bonding of application and file format, an XML-based office doc-
ument format has been developed that should build the basis for any kind of office appli-
cation [Eisenberg 2004]. Originally developed by the Open Office Project, this format has
been refined in an open process, resulting in the Open Document Format (ODF) standard that
is currently maintained by the Organization for the Advancement of Structured Information
Standards (OASIS). The ODF version 1.0 has been standardized by the International Organi-
zation for Standardization (ISO) as ISO/IEC 26300:2006. Currently, ODF version 1.2 is under
active development.

ODF’s popularity has increased significantly in recent years. Especially governmental au-
thorities adopt ODF as standard document format. The ODF Alliance [2008] gives an annual
overview of the world-wide adoption of ODF. There are several reasons for fostering the use
of ODF. On the one hand, agreed-upon standards allow for interoperability and facilitate long-
term accessibility of documents [Borghoff et al. 2006]. On the other hand, DeNardis and
Tam [2007] have emphasized the importance of open standards for enabling free and demo-
cratic markets. In this context, “open” means free access, as well as independence from patent
claims.

An ODF document consists of different XML files stored within a JAR archive [Brauer et al.
2007]. A JAR archive is basically a ZIP archive demanding for a defined directory structure
which ensures that certain meta-data is contained within the archive. Using the archive has
two reasons: First, the archive compresses the contained data to save storage space. Second,
resources not native to the document format, like bitmap pictures, can be embedded within
the archive and are tightened to the document that way [Eisenberg 2004]. However, in this
thesis, only the XML files are respected. The XML files contain information regarding the
content and the style-sheets used, as well as meta-data. The most important and largest file
by far is the content.xml, containing all content and most of the markup. Usually, an
ODF document can still be interpreted if the style-sheets and the meta-data are not present, as
shown by Rönnau [2004]. Therefore, I consider the content.xml to be the core document.

Office suites cover a wide range of applications. They include a word processor, a spread-
sheet application, a presentation engine, and many more. One important aspect of office doc-
uments is that different document types can be nested within each other. For instance, a text
may contain a table that has been edited in the context of the spreadsheet application. A
presentation may contain text elements and drawings. In ODF, this nesting of documents is
represented by storing the sub-documents in separate sub-directories in the archive that in
turn contain their own content.xml. Figure 2.3.2 shows the structure of an example ODF
document. It contains a sub-document, as well as pictures. For a detailed description of the
different files within an ODF document, please refer to Eisenberg [2004] and Brauer et al.
[2007].

Office applications can not only create texts and spreadsheets. Slides or drawings may be
created. Even simple databases are usually part of office applications. To the best of my

16

2.3 Document Formats

example.ods

Configurations2

META-INF

manifest.xml
Object_1

content.xml
settings.xml

styles.xml

ObjectReplacements

Object_1

Pictures
1000000000000175000000B0DA627770.jpg

100000000000007100000036B5C6086D.jpg

Thumbnails
thumbnail.png

content.xml

meta.xml
mimetype

settings.xml

styles.xml

ODF JAR archive

Application-specific configura-
tions like the visibility of tool-
bars may be stored here.

Each subdocument has its own
style definitions and content.
The replacement provides a
placeholder for a faster layout.

Bitmaps are stored using a
unique identifier.

A thumbnail of the title page is
provided for document preview.

The content.xml builds the
core of the ODF document. This
file is indispensable.

Figure 2.2: An example ODF document structure. It contains a sub-document, as well as
pictures.

knowledge, all databases of office applications rely on the relational model by Codd [1970].
They are implemented using the transaction model by Gray [1978]. The key concepts of data
sets and transaction systems prevent these databases to be seen as XML documents. For ODF,
the database engine and the storage layer are not part of the format specification. Drawings
do not provide an inner ordering like texts or spreadsheets. For two non-overlapping lines,
the order of their appearance within the XML representation is irrelevant. Therefore, two
documents with identical appearance might differ in terms of their representation. For this
reason, a drawing does not meet my earlier presented definition of a document. The same
holds for presentations. However, the presentation might contain texts and tables as sub-
documents, which can in turn be treated as XML documents.

17

2 XML Documents

2.3.3 Competing Formats

There is no major opponent to XHTML in the domain of Web documents. In 2009, the W3C
announced the discontinuation of the XHTML development4. However, it was clarified that
this only affects the development of an independent format5. The upcoming HTML5 standard
contains a specification for encoding Web documents in XML [Hickson and Hyatt 2010].
Therefore, all findings presented in this thesis are applicable to HTML5, too.

In the domain of office documents, Microsoft made great efforts to keep its dominant posi-
tion. Under the pressure of governmental requirements, the binary office document format has
been undisclosed in 2008. In parallel, Microsoft switched to an XML-encoding of their for-
mat, too, called Office OpenXML (often abbreviated as OpenXML or OOXML). OpenXML
has been standardized by the European Computer Manufacturers Association (ECMA) [Paoli
et al. 2006]. An ISO standardization was achieved as ISO/IEC 29500:2008, even if the stan-
dardization process came along with some irregularities6. The mere size of the specification,
consisting of over 7,000 pages and different references to non-disclosed binary data repre-
sentations are the main reasons for objecting to OpenXML. These are also the reasons why
I decided not to consider OpenXML documents separately. However, the basic structure of
OpenXML documents strongly resembles the ODF structure, including the usage of a ZIP
archive for document storage. Additionally, tools exist that are able to convert these two doc-
ument formats into each other. Therefore, I assume my findings on ODF to be applicable to
OpenXML as well.

2.4 Tree Properties

The specifications do not show how the XML tree of a “typical” document will look like.
However, having a deep knowledge of the properties of the tree may help to design an appro-
priate algorithm for comparing XML documents. To obtain real-life results, I analyze office
documents from public repositories and Web pages. The focus of this analysis lies on two as-
pects. First, I investigate the appearance of the tree, i.e., how the nodes are distributed within
the tree. Secondly, I evaluate the similarity of the nodes.

4http://www.w3.org/News/2009#entry-6601
5http://www.w3.org/2009/06/xhtml-faq.html
6For example, in the Norwegian sub-committee, the overall vote on OpenXML was turned into “accept”, despite

80% of the committee members voting “reject” (http://blogs.freecode.no/isene/2008/03/
31/norwegian-committee-chairman-to-iso-count-the-vote-as-no). Members of the
German sub-committee could only decide between “accept” and “abstain” (http://www.heise.de/
newsticker/meldung/DIN-sagt-Ja-zur-ISO-Standardisierung-von-OOXML-
193470.html).

18

2.4 Tree Properties

Spreadsheet Text Web Page

Size in KByte
min < 1 2 8
max 16,444 773 233

average 297 48 89

Nodes
min 10 7 295
max 238,868 18,826 4,685

average 4,147 739 1,905

Table 2.1: 177 documents are analyzed, covering a wide range of applications and sizes.

2.4.1 Test Data

For the evaluation, three kinds of document types are taken into account: spreadsheets, text
documents, and Web pages. The documents cover a wide variety of application scenarios.

For the spreadsheets, 33 documents are evaluated, from a simple ratings overview up to a
complex financial model. Concerning the text documents, 16 different documents, ranging
from a one-page Curriculum Vitae up to a 125-page software documentation, are part of the
evaluation. Especially the more complex office documents contain several sub-documents that
are inspected independently. By this, not only 49, but 160 documents are evaluated.

To evaluate the properties of Web pages, 18 documents are analyzed. They cover major
auction sites, news sites, governmental sites, and blogs. In total, 178 documents undergo the
analysis, emerging from 67 base documents. Table 2.1 gives an overview of the size of the
documents. The resources of the documents including a short description of them are listed in
Appendix A.

Apparently, far more office documents than Web documents are analyzed. The decision for
this is motivated by following considerations: Web pages are somewhat limited in terms of the
amount of content. This limitation does not derive from technical but usability constraints. In
the domain of Web page design, it is common knowledge that pages should fit onto the screen
of the user [Krug 2000]. Nielsen and Pernice [2009] have enforced this statement using eye-
tracking methods. They have shown that the part of Web pages that does not fit onto the
screen without scrolling is seldom read by users. Additionally, a comprehensive analysis of
Web pages by Fetterly et al. [2003] has revealed that most of the pages have almost the same
size.

2.4.2 Node Distribution

The appearance of the tree is mostly influenced by following dimensions: the breadth and the
depth of the tree. For document formats, the reading direction of the document is expressed
by the breadth of the tree. The depth is mostly used for representing the complexity of the
markup, which leads to flat yet wide trees. Admittedly, these are theoretical assumptions

19

2 XML Documents

Spreadsheet Text Web Page

Depth
min 6 4 10
max 13 15 23

average 9 8 17

Table 2.2: XHTML trees are generally higher than ODF trees, as ODF uses sub-documents to
model complex document structures.

Spreadsheet Text Web Page

Node proportions
level 0 (leaves) 55% 56% 56%

level 1 23% 26% 22%

total 78% 82% 78%

Table 2.3: XML document trees have far most of their nodes in the lowest levels.

deriving from the specifications of the document formats. The specifications do neither give
any hint on the minimum or maximum depth of documents nor the actual appearance.

The analysis reveals that even complex documents are rather flat. Table 2.2 shows the
depth of the documents, ordered by their type. Even for a 16MByte spreadsheet document,
the maximum tree depth does not exceed 13 levels. In this case, however, I recall the ODF
approach to model complex documents using sub-documents. All of the 238.868 nodes are
in fact stored within the 13 levels, but some complex structures like figures with captions are
independent sub-documents again. In turn, these sub-documents usually have very small trees.
For these reasons, XHTML trees are generally higher than ODF trees.

Apparently, the trees are not very high, taking into account the amount of nodes. As al-
ready mentioned at the beginning of this chapter, the content of the document is basically
stored within the leaves, whereas the non-leaf nodes represent the markup of the document.
Following this proposition, one could expect most of the nodes being leaves. The document
analysis enforces this proposition partially. Table 2.3 shows the proportion of the nodes from
a bottom-up perspective. As average, over 50% of the nodes are leaf nodes throughout all
document types. Interestingly, the second-lowest level in the tree contains nearly one quarter
of all nodes. All together, the two deepest levels cover around 80% of all nodes.

As the tree depth is varying, comparing more than the deepest levels is not appropriate. To
set up comparableness despite different tree depths, I mapped all levels on a relative scale,
with 0% meaning the leaves, and 100% the root. Figure 2.3 illustrates the node proportions
using this relative scale in a comparative way. Even if displaying different kinds of documents,
the ODF dialects for texts and spreadsheets show a similar node distribution. Web documents
are even stronger in narrowing towards the root.

The analysis reveals that the trees are flat and wide. However, the decrease of the node

20

2.4 Tree Properties

20%

40%

60%

80%

100%

leaves 20% 40% 60% 80% root

N
od

e
P

ro
po

rt
io

n

Bottom-up Level in XML Tree

Node Distribution

Spreadsheet
Text

Web Page

Figure 2.3: XML Document trees are flat and wide. Especially Web documents narrow
strongly towards the root.

proportion against the depth is not that high as one could expect due to the fact that the content
is mostly stored in the leaf nodes. Nearly one quarter of all nodes lays in the second-lowest
level, which means that markup information is extensively used.

2.4.3 Repeating Nodes

Assuming that non-leaf nodes contain the markup, one could expect non-leaf nodes to be
mostly identical. This results from the consideration that different markups should be spar-
ingly used in a good document layout [Krug 2000]. To turn the argument on its head, it
means that leaves should contain only few identical nodes, as a text should contain only few
repetitions [Strunk Jr. and White 1979].

To investigate this assumption, I introduce the repetition ratio of nodes, where values de-
notes the amount of different values among all nodes on one bottom-up level:

repetition_ratio(nodes,values) := 1− values
nodes

(2.1)

The repetition ratio denotes the likelihood for a given node i that a node j with i 6= j and
height(i) = height(j) has the same node value. For many different nodes, the repetition ratio
tends to 0. If the nodes values are mostly equal, the repetition ratio approximates 1. In the

21

2 XML Documents

20%

40%

60%

80%

100%

leaves 20% 40% 60% 80% root

R
ep

et
iti

on
 R

at
io

Bottom-up Level in XML Tree

Repeating Nodes

Text
Spreadsheet

Web Page

Figure 2.4: Identical markup identifiers lead to a high repetition ratio especially at the lower
levels of the tree. The repetition ratio becomes very low towards the root due to
the narrowness of the tree.

special case that there is only one node per level, the repetition ratio is 0, which is a likely case
near the root node.

It is interesting that the analysis does not enforce the initiatory assumption. Figure 2.4 shows
the repetition ratio on a relative scale. Among the leaf nodes, a repetition ratio of 36% for texts
and spreadsheets, respectively 58% for Web pages is reached. A closer inspection reveals that
many leaf nodes are in fact markup elements. They act as delimiter for formatting options,
where the text nodes to format are not child nodes but siblings. Generally, the repetition ratio
decreases in direction of the root node, which is mostly influenced by the narrowness of the
trees near the root.

The analysis shows a wavelike decrease of the repetition ratio towards the root for all doc-
ument types. Again, both ODF dialects for texts and spreadsheets show a similar behavior.
Repeating nodes are frequent within the tree and at the leaves as well.

2.5 Modification Patterns

XML documents are usually not edited on the tree level. Applications provide user-friendly
graphical interfaces to the underlying document tree. For Web sites, content management
systems (CMS) assemble a Web site from a given repository. In this section, I analyze the

22

2.5 Modification Patterns

Figure 2.5: Two text snippets are highlighted using a different markup. These changes are not
detected by the “compare documents” function of Open Office.

effects of changes on the application-level on the underlying XML tree.

2.5.1 Changes to Office Documents

Office documents are presumably edited using the corresponding office application. The office
application tries to ensure a WYSIWYG (what you see is what you get) representation of the
document. In this context, the document is displayed as it would be printed, not as it is stored
in its XML representation. The navigation within the application is also tightened to the
optical representation. This WYSIWYG approach appears to be very user-friendly, especially
for the less experienced user. It is the de-facto standard for office applications since the 1990’s
[Myers 1998]. According to Meyrowitz and van Dam [1982], I call the screen representation
and the interaction capabilities the user model of the document. On the other hand, I call the
XML representation the document model of the document.

The user model and the document model may diverge. For example, a user can switch
to the next line in a text displayed on his screen using the arrow-down button, even if the
corresponding paragraph contains no new-lines in the document model. The divergence of
the user model and the document model can have a more serious impact, indeed. Figure 2.5
shows two versions of a simple text document with two paragraphs in the user model. Some
parts of the text are highlighted using italics and bold font face. If these both versions of the

23

2 XML Documents

document are compared by the built-in “compare documents” function of Open Office, the
documents are reported to be equivalent, as the text did not change and the structure remained.
Figure 2.6 shows the effects of these simple changes on the corresponding XML tree, i.e. the
document model. Here, three changes emerge. First, the previously unknown font styles for
italics and bold font face have to be defined using two adjacent subtrees. The style change
of the whole paragraph is represented by an update of the attribute value. The highlighting
of two single words within a paragraph, however, leads to a more complex change. The text
node containing the paragraph is split up into three parts – the part before the style change, the
highlighted words, and the remaining part of the paragraph.

The previous example shows that slight changes within the user model of a document may
have a rather large impact on the XML representation. Boundaries within the two models do
not correlate. An implicit page break is a “natural” boundary of a text that is basically not
represented in the document model7. Vice versa, boundaries set by the tree representation
may not be visible within the user model.

For spreadsheets, the user model and the document model are slightly closer. Each cell
in the user model is basically represented by a node within the document model. Most edit
operations act cell-oriented, which does not provide the same structure-changing impact com-
pared to text documents. Interestingly, all cells within the matrix spanned by the first and the
right-most outer-most filled cell are stored in the document model, no matter whether they are
filled or not.

Resulting from the example above and similar tests, some assumptions can be made con-
cerning the modification pattern of office documents:

Assumption 2.1 A leaf node may be replaced by a subtree.

Assumption 2.2 Adjacent subtrees may be inserted or deleted.

Assumption 2.3 Structure-preserving changes (attribute changes) are a frequent operation.

The second last assumption affects mostly text documents, but holds for spreadsheets as well.
These assumptions are a refinement of my earlier work [Rönnau 2004]. I am not aware of any
other investigation of the modification patterns in the XML representation of office documents.

2.5.2 Evolution of Web Pages

The evolution of Web pages has been studied before, e.g. by Fetterly et al. [2003]. However,
the main interest of these studies was to obtain statistical data on the update frequency and
update quantity for optimizing search engines [Ntoulas et al. 2004]. The quality of the changes
has been mostly neglected. Recently, Adar et al. [2009] have performed a qualitative analysis

7To be precise, the office application may add a tag to the document, denoting an implicit page break at that
point. It is mostly used for a faster layouting. However, the application does not have to respect this implicit
page break.

24

2.5 Modification Patterns

o
f
f
i
c
e
:
d
o
c
u
m
e
n
t
-
c
o
n
t
e
n
t

o
f
f
i
c
e
:
s
c
r
i
p
t
s

o
f
f
i
c
e
:
f
o
n
t
-
f
a
c
e
-
d
e
c
l
s

s
t
y
l
e
:
f
o
n
t
-
f
a
c
e

s
t
y
l
e
:
n
a
m
e
=
"
T
i
m
e
s
"

s
t
y
l
e
:
f
o
n
t
-
f
a
c
e

s
t
y
l
e
:
n
a
m
e
=
"
A
r
i
a
l
"

s
t
y
l
e
:
f
o
n
t
-
f
a
c
e

s
t
y
l
e
:
n
a
m
e
=
"
D
e
j
a
V
u
"

o
f
f
i
c
e
:
a
u
t
o
m
a
t
i
c
-
s
t
y
l
e
s

o
f
f
i
c
e
:
b
o
d
y

o
f
f
i
c
e
:
t
e
x
t

t
e
x
t
:
s
e
q
u
e
n
c
e
-
d
e
c
l
s

t
e
x
t
:
s
e
q
u
e
n
c
e
-
d
e
c
l

t
e
x
t
:
s
e
q
u
e
n
c
e
-
d
e
c
l

t
e
x
t
:
s
e
q
u
e
n
c
e
-
d
e
c
l

t
e
x
t
:
s
e
q
u
e
n
c
e
-
d
e
c
l

t
e
x
t
:
p

t
e
x
t
:
s
t
y
l
e
-
n
a
m
e
=
"
S
t
a
n
d
a
r
d
"

C
ar

m
en

1,
11

:
t
e
x
t
:
p

t
e
x
t
:
s
t
y
l
e
-
n
a
m
e
=
"
S
t
a
n
d
a
r
d
"

ae
ta

s:
ca

rp
e

di
em

qu
am

m
in

im
um

cr
ed

ul
a

po
st

er
o

o
f
f
i
c
e
:
d
o
c
u
m
e
n
t
-
c
o
n
t
e
n
t

o
f
f
i
c
e
:
s
c
r
i
p
t
s

o
f
f
i
c
e
:
f
o
n
t
-
f
a
c
e
-
d
e
c
l
s

s
t
y
l
e
:
f
o
n
t
-
f
a
c
e

s
t
y
l
e
:
n
a
m
e
=
"
T
i
m
e
s
"

s
t
y
l
e
:
f
o
n
t
-
f
a
c
e

s
t
y
l
e
:
n
a
m
e
=
"
A
r
i
a
l
"

s
t
y
l
e
:
f
o
n
t
-
f
a
c
e

s
t
y
l
e
:
n
a
m
e
=
"
D
e
j
a
V
u
"

o
f
f
i
c
e
:
a
u
t
o
m
a
t
i
c
-
s
t
y
l
e
s

s
t
y
l
e
:
s
t
y
l
e

s
t
y
l
e
:
n
a
m
e
=
"
P
1
"

s
t
y
l
e
:
t
e
x
t
-
p
r
o
p
e
r
t
i
e
s

s
t
y
l
e
=
"
i
t
a
l
i
c
"

s
t
y
l
e
:
s
t
y
l
e

s
t
y
l
e
:
n
a
m
e
=
"
T
1
"

s
t
y
l
e
:
t
e
x
t
-
p
r
o
p
e
r
t
i
e
s

w
e
i
g
h
t
=
"
b
o
l
d
"

o
f
f
i
c
e
:
b
o
d
y

o
f
f
i
c
e
:
t
e
x
t

t
e
x
t
:
s
e
q
u
e
n
c
e
-
d
e
c
l
s

t
e
x
t
:
s
e
q
u
e
n
c
e
-
d
e
c
l

t
e
x
t
:
s
e
q
u
e
n
c
e
-
d
e
c
l

t
e
x
t
:
s
e
q
u
e
n
c
e
-
d
e
c
l

t
e
x
t
:
s
e
q
u
e
n
c
e
-
d
e
c
l

t
e
x
t
:
p

t
e
x
t
:
s
t
y
l
e
-
n
a
m
e
=
"
P
1
"

C
ar

m
en

1,
11

:
t
e
x
t
:
p

t
e
x
t
:
s
t
y
l
e
-
n
a
m
e
=
"
S
t
a
n
d
a
r
d
"

ae
ta

s:
t
e
x
t
:
s
p
a
n

t
e
x
t
:
s
t
y
l
e
-
n
a
m
e
=
"
T
1
"

ca
rp

e
di

em
qu

am
m

in
im

um
cr

ed
ul

a
po

st
er

o

in
se

rt

re
pl

ac
e

up
da

te

Fi
gu

re
2.

6:
T

he
si

m
pl

e
m

ar
ku

p
ch

an
ge

s
sh

ow
n

in
Fi

gu
re

2.
5

le
ad

to
th

re
e

ch
an

ge
s

in
th

e
un

de
rl

yi
ng

X
M

L
tr

ee
.

Tw
o

of
th

es
e

ch
an

ge
s

af
fe

ct
th

e
tr

ee
st

ru
ct

ur
e

si
gn

ifi
ca

nt
ly

.

25

2 XML Documents

of Web page evolution. As a result, the structure of Web pages appears to be seldom changed.
The content is visually organized in blocks that can be swapped or moved. Within these
blocks, only minor content changes occur.

An example enforces these findings easily. Figure 2.7 shows the evolution of the Yahoo!
portal site within one hour in three steps. On the top left, a list of articles is presented, in-
cluding a teaser for one of these articles. As one can see, the list of articles is continuously
re-arranged to attract as much readers as possible. On the bottom left, a box contains the news-
worthy headlines. In this box, minor changes are performed on the headlines. New articles
are basically inserted at the top, pushing the lowest headline out. The stock information is up-
dated periodically without affecting the structure. On the right side, advertisements are placed.
They are usually taken from a repository of possible advertisements depending on the adver-
tising contract. The advertisement blocks change often, but the advertisements themselves are
seldom change.

There is no “universal” way of representing blocks in XHTML. On some pages, the blocks
are represented using adjacent subtrees, other pages use a single subtree. The reason for these
differences lies in the fact that many different applications are used to create Web documents.
A wide variety of Web page editors and content management systems exist which all use
different serialization engines to map the user model onto the document model. Additionally,
some parts of Web documents (e.g. advertisements) are provided by third parties, leading to a
inconsistent representation of blocks. Nevertheless, modification patterns for Web documents
can be formulated:

Assumption 2.4 Structure-preserving changes (text changes) are a frequent operation.

Assumption 2.5 Subtrees are often re-arranged.

Additionally, the insertion and deletion of adjacent subtrees appears to be common, which is
already covered by Assumption 2.3.

2.5.3 Modification Amount and Distribution

Another important aspect of document evolution is the question of the modification amount,
i.e. how many changes arise between two document versions. This question cannot be an-
swered in general, as the ways of changing a document are numerous. For example, using
“search and replace” when editing a document will most likely result in a large amount of
changes covering the whole document. Nevertheless, assumptions on the typical modification
amount can be made. In an analysis of several major Web sites with frequent changes, Adar
et al. [2009] have shown that after two hours, 99.3% of all nodes remained unchanged. After
one week, 91.7% of all nodes were still the same. This means that the modification amount
is relatively small compared to the document size, even for frequent changes. A data-mining
analysis of the change patterns on software repositories by Zimmermann et al. [2006] have
shown that updated HTML and text files contained only few changes as well. I assume these

26

2.5 Modification Patterns

Figure 2.7: The evolution of the Yahoo! portal within one hour shows some typical properties
of the evolution of Web documents. The pages are organized in blocks that mostly
contain re-arrangements and small updates. The structure is seldom changed.

27

2 XML Documents

results to be applicable to the domain of office documents, too. This also confirms previously
published assumptions on the modification properties of XML documents, which have been
formulated without empiric background by Lee et al. [2004].

Assumption 2.6 A new version of a document likely has only few changes compared to the
size of the document.

Beside the amount of changes, the distribution of the changes throughout the document is
an interesting question. Hill et al. [1992] have developed a notion to display the distribution
of changes and reading operations as well, called edit wear and read wear. They have shown
that in general, only few parts of a document are read and changed at once. Large contiguous
parts of the document remain unchanged and even unread.

Assumption 2.7 Changes on a document affect only small parts of the document in general.

2.6 Conclusions
XML is a powerful meta-language suitable for many tasks. Certainly, the simplicity of its
design does not confirm the human perception of documents. Applications map the human-
centric user model onto the well-specified document model.

In this chapter, I have analyzed different XML document formats, namely ODF for office
documents and XHTML for Web pages. In the course of the analysis, I have studied the prop-
erties of “typical” XML documents, gained from public repositories and Web pages. As a main
result, the XML document trees appear to be flat and very wide. Additionally, many identical
node labels exist. In the following, I have studied common modification patterns. Simple
changes on the user model may cause significant changes in the XML document model. The
most frequent operations are subtree-oriented insert and delete operations, as well as updates
of single nodes.

During the analysis, I have elaborated seven assumption on the modification patterns of
documents. These assumptions help to design an appropriate delta model for representing
changes between document versions. The knowledge on the tree properties helps to formulate
heuristics for efficient differencing algorithms.

28

3 Differencing Strings and Trees

This chapter gives an overview of the basics in document differencing, with a special focus on
their application to the XML domain. One of the first approaches to document differencing
was the comparison of strings, with a focus on the longest common subsequence, which I
describe first. Later on, algorithms for comparing other data structures have been developed.
Since XML documents are a special case of trees, I describe the tree-to-tree editing problem
afterwards. It founds the basis of most XML differencing approaches. The most common of
them are presented at the end of this chapter.

3.1 String Editing

Strings can be regarded as a sequence of characters. Therefore, theoretical considerations
concerning sequence comparison can be applied to the domain of string editing. The most
common approach to comparing two strings is the computation of the longest common subse-
quence, which I introduce first. I briefly describe other notions like the Levenshtein distance
afterwards. In the following, I discuss the complexity bounds, before giving a brief overview
of the state-of-the-art in text differencing.

3.1.1 The Longest Common Subsequence

The longest common subsequence (LCS) of two strings has been defined by Wagner and
Fischer [1974] as the maximum length of a sequence of characters being included in both
strings. The common approach to find the LCS is to create a matrix, using both strings to
compare as spanning vectors. The cells of the matrix contain the possible prefix combinations
of the LCS at the given position.

Using this longest common subsequence, a sequence of edit operations can be created that
transforms one string into another one. This sequence is also called an edit script. The avail-
able edit operations are insert and delete. Most approaches try to find a minimum edit script
that contains as few edit operations as possible.

To show the computation of the LCS, the strings S1 := BDAFDFCC and S2 :=CADABFC
shall be compared exemplary. Table 3.1.1 shows the corresponding matrix. Each cell contains
the LCS for the prefixes indicated by the indices of the cell. It is computed by taking the
prefix LCS of the entries on the adjacent left and upper cell into account. Afterwards, the
corresponding characters at the given position are compared. In case of a match, the character
is appended to the longest prefix LCS. The cell in the lower right corner indicates one LCS of

29

3 Differencing Strings and Trees

0 B 1 D 2 A 3 F 4 D 5 F 6 C 7 C
0 C /0 /0 /0 /0 /0 /0 C C
1 A /0 /0 A A A A A,C A,C
2 D /0 D A,D A,D AD AD AD AD
3 A /0 D DA DA AD,DA AD,DA AD,DA AD,DA
4 B B B,D DA DA AD,DA AD,DA AD,DA AD,DA
5 F B B,D DA DAF DAF ADF,DAF ADF,DAF ADF,DAF
6 C B B,D DA DAF DAF ADF,DAF ADFC,DAFC ADFC,DAFC

Table 3.1: The LCS can be computed using a matrix and is not necessarily unique. The bold
entries highlight one possible path through the LCS matrix.

both strings. As shown in the example, the LCS may not be unique. ADFC and DAFC are both
a valid LCS, which could be created on different paths through the matrix. A possible path
is highlighted by a bold font-face. For this path, the resulting edit script transforming S1 into
S2 would be as follows: delete(0 B), delete(4 D), delete(5 F), delete(7 C), insert(0 C), insert(1 A),
insert(4 B). Note that the unnecessary characters are removed first, thus transforming S1 into
the LCS. Afterwards, the LCS is transformed into S2 by inserting the new characters. The edit
operations must not be swapped, as each operation affects the numbering of the subsequent
indices. To transform S2 into S1, the edit script must be inverted. Each insert has to be
replaced by an delete operation and vice versa. Afterwards, the delete operations have to be
moved to the beginning of the edit script, without breaking their respective order.

The edit script is intended to reduce the first sequence to the LCS, and to reconstruct the sec-
ond sequence from the LCS. Deriving from this definition, an update operation which means
the substitution of a single element is not possible. The same holds for a move operation that
moves one element to another offset within the sequence. To allow for that kind of operations,
the resulting edit script has to be parsed again to find matching pairs of insert and delete op-
erations [Tichy 1984]. Update operations are easy to find, as the position within the sequence
is equal. Move operations are only useful in short sequences or if the sequence does not have
many replicating entries. In case of many replications, an unambiguous matching of moved
nodes becomes impossible and the resulting edit script becomes less meaningful, as described
by Chawathe et al. [1996].

3.1.2 Other Sequence Comparison Approaches

One important property of the LCS formulation is the ability to construct an edit script. Earlier
work focused on the question to which degree two sequences are identical. For example, Lev-
enshtein [1966] has defined a metric for the similarity of binary sequences. The Levensthein
distance determines the length of the minimum edit script that contains not only the insertion
and deletion of bits, but also the substitution of a single bit.

The formulation of the string-to-string correction problem is based on prior work on spelling

30

3.1 String Editing

correction by Morgan [1970], basing on insert, delete, and update operations, too. Also in the
context of bio-nuclear sequences, the problem of finding the longest common subsequence by
allowing for inserted or deleted elements has been investigated by Sankoff [1972]. However,
these approaches just focused on the computation of the length of the LCS, not on the creation
of the edit script.

According to Ishida et al. [2005], recent research focuses on the question of efficiently
computing the LCS from the end of the sequences to the beginning. The main application for
this is log-file analysis and suffix comparison of biological sequences. Also, the incremental
comparison of increasing sequences has been studied by Landau et al. [1998], which is highly
useful for the analysis of streams. Other approaches, e.g. by Cormode and Muthukrishnan
[2007] increase the computational speed by allowing non-optimal results.

All these approaches do not relate well to the problem statement of comparing document
versions, where an exact knowledge about the changes themselves is needed, including the
corresponding edit script. Therefore, I will not consider these approaches any further.

3.1.3 Complexity
Basically, the LCS computation can be solved in quadratic time using a dynamic programming
approach. The lower bound is O(n2), with n denoting the length of the sequences. The lower
bound relates to two equal sequences to compare. One significant optimization can be done by
restraining the input alphabet. A limited input alphabet with size σ allows for a lower bound
of O(σn) [Bergroth et al. 2000]. Especially for large documents, this is an important benefit
in terms of efficiency, especially for strings. In terms of XML, however, this optimization
loses much of its achievements. In this domain, the input alphabet is limited, too, but can
be arbitrarily enlarged. Assuming a node-centric granularity, the input alphabet relates to the
amount of different nodes within a document to compare. Section 2.4 has shown that the
amount of different nodes may be significant. Therefore, this optimization is not suitable for
the domain of XML documents.

Beside the time complexity, the space complexity is an important issue when using LCS
algorithms. Most approaches compare two strings with sizes n and m using a matrix as shown
in the example above. This leads to an O(nm) space complexity. Using clever heuristics,
the search space within the matrix can be restrained, thus avoiding the computation of the
complete matrix. The main idea is to drop search paths within the matrix that do not promise a
meaningful result. As shown in the previous example, most of the entries within the matrix are
duplicates that do not offer any new information. Many of the entries would never be reached
by a search algorithm for the LCS and may be skipped during computation. Most heuristics
still ensure the generation of a minimum edit script.

To illustrate the need for a sub-quadratic space complexity, consider following simple exam-
ple: An ODF document can easily reach 10.000 nodes. Comparing all nodes using a complete
matrix requires 100.000.000 entries. Even if assuming only 4 Bytes per matrix entry, this re-
sults in a memory consumption of over 381 MByte just for the LCS matrix. As the example in
Table 3.1.1 shows, most entries within the matrix contain several LCS candidates. Therefore,

31

3 Differencing Strings and Trees

the actual memory consumption of the matrix would actually be far higher.
Some algorithms are able to compute the LCS with linear space, which is an important

achievement when applying the LCS problem to XML documents. One of the best studied
algorithms with a good general applicability has been presented by Myers [1986]. It is pri-
marily intended for use-cases where the sequences to compare are similar to a high degree.
The algorithms runs in O(ND) time, where N = n+m denotes the summarized size of the
compared documents, and D denotes the size of the minimum edit script. Apparently, it is
well suitable for documents with N� D, which relates to a high similarity of the sequences.
Its space complexity evolves in a linear way with O(N). The algorithm does not make any
assumptions on the size of the input alphabet, which ensures the applicability on the domain
of XML documents.

3.1.4 Differencing Line-Based Documents

In the beginnings of the computer age, input and output was performed using punch-cards.
Later on, cathode-ray tubes (CRTs) were used for displaying files. These CRTs did not offer
a graphics capability that is common nowadays. They were only able to display characters
line-by-line [Irons and Djorup 1972]. This line-based orientation is suitable for the domain of
document editing, as texts are usually displayed line-by-line, too. The graphical representa-
tion of documents was closely tightened to the capabilities of typewriters. For these reasons,
first text editing applications stored their files as they have been displayed on the screen. This
line-based orientation was also standardized as American standard code for information inter-
change (ASCII) [Gorn et al. 1963]. This format and its successors are still a popular form for
storing text-based documents.

To compare text documents, the sequence of the lines are compared using LCS algorithms.
This application is called diff and has been introduced by Hunt and McIlroy [1976]. Each
differing line leads to a corresponding insertion and deletion of a line. In this approach, lines
are considered as atomic entities, which are not inspected further. Additionally, lines are only
represented as hash values for the sake of efficiency, as proposed by Miller and Myers [1985].
If each line would be analyzed respectively using the LCS, the runtime of the algorithms
would be unusable. Another reason for comparing lines using their hash values is the intended
application. Version control systems for source code were the first to use a diff tool to reveal
changes during development of software [Tichy 1985]. As lines in source code are rather
short, it is quite easy for the human reader to gather the differences between two lines without
computer-assistance. For lines containing contiguous text, however, finding the differences
manually appears to be an error-prone task [Neuwirth et al. 1992].

The result of a diff run is called a delta. Wall [1985] has presented a tool, called patch, which
is able to apply a delta to the former version of a document. With the usage of diff, patch, and
deltas, a repository can be hold up to date efficiently, as only changes are exchanged. Full
document versions are seldom transmitted.

32

3.2 Tree Editing

3.2 Tree Editing
Early work on tree editing has been highly influenced by a graph-theoretical view towards the
tree. With the rise of tree-oriented document languages like XML, other interpretations of the
tree property have become popular. The most important distinction between these views is the
definition of the edit operations. In general, graph-oriented approaches have a node-centric
view towards the change granularity. Document-centric approaches tend to have a subtree-
oriented view.

Here, I discuss the graph-oriented aspects of tree editing, as they also build the basis for
a subtree-oriented view. First, I introduce the tree-to-tree editing problem and the tree edit
distance, which directly relates to it. For the sake of completeness, I shall mention other ap-
proaches briefly, before discussing the complexity bounds. Finally, I present first approaches
to differencing tree-based documents.

3.2.1 The Tree-to-Tree Editing Problem

Finding and describing the changes between two ordered, labeled trees has been introduced
as tree-to-tree editing problem by Selkow [1977]. It is an application of the string editing
problem to the domain of trees. From the very first definition, tree editing included not only
insert and delete operations, but also an update operation that does not affect the structure of
the tree. Only leaf nodes can be inserted or deleted. If the inner structure of the tree has to be
changed, the corresponding subtree has to be deleted node by node from the leaves up to the
designated position, and re-inserted in reversed order node by node.

Obviously, Selkow’s definition of insert and delete operations requires a large amount of
operations to represent changes on the tree structure. To overcome this, Tai [1979] has in-
troduced a different notion of tree edit operations that allows for inserting and deleting nodes
arbitrarily within the tree. If a node being the root of a subtree is deleted, its subtree is placed
in the position of the deleted node, which means that all nodes in the subtree are pulled one
tree level towards the root. Vice versa, an inserted node pushes an already existent node forest
down one level, becoming the new root of that subtree. According to Bille [2005], this behav-
ior has become the most common node-based edit model of trees. Nevertheless, Selkow’s view
on leaf-level editing of trees has prevailed in the document-oriented algorithms of Chawathe
et al. [1996].

Figure 3.1 shows examples for the edit operations using Tai’s edit model. In contrast to
this, Selkow’s edit model would result in three edit operations for the insertion of node i, that
is, delete(/1 e), insert(/1 i), insert(/1/0 e). The deletion of node f would require five opera-
tions instead of two, namely delete(/2/0 g), delete(/2/1 h), delete(/2 f), insert(/2 g), insert(/3 h).
Apparently, Tai’s model creates significant shorter edit scripts.

Creating a minimum edit script is a challenging task in the domain of tree editing. Whereas
the cost of edit operations are usually neglected in the domain of string editing, some tree-
editing approaches use a cost-model to take the complexity of operations into account. Each
operation is assigned a cost value. The cost of an edit script is the sum of the costs of all edit

33

3 Differencing Strings and Trees

/

a

/0

b
/1

e
/2

f

/0/0

c
/0/1

d
/2/0

g
/2/1

h

(a) Original

/

a

/0

b
/1

i
/2

f

/0/0

c
/0/1

d
/1/0

e
/2/0

g
/2/1

h

(b) Insertion of Node i

/

a

/0

b
/1

e
/2

g
/3

h

/0/0

c
/0/1

d

(c) Deletion of Node f

/

a

/0

j
/1

e
/2

f

/0/0

c
/0/1

d
/2/0

g
/2/1

h

(d) Update of Node b to j

Figure 3.1: Inserting a node pushes an existing subtree towards the bottom. Deleting a node
lets the descendants raise a level within the tree. Updates are structure-preserving.

a b c d e f g h
(a) Preorder Traversal

c d b e g h f a
(b) Postorder Traversal

Figure 3.2: Tree traversal algorithms align the tree onto a sequence. This example shows two
possible traversals of the tree displayed in Figure 3.1(a).

operations of this script. The edit distance between two trees is the minimum cost of all edit
scripts. This view has been introduced by Tai [1979]. The introduction of operation-specific
costs is motivated by the consideration that the structure-preserving update operation is less
costly in most implementations of trees. Usually, a fixed-cost model is used, assigning each
edit operation type a static cost value.

The solution of the tree-to-tree editing problem is not as straightforward as in the sequence
comparison domain. Due to their two-dimensional structure, trees do not offer a “natural”
linear ordering. Tree traversal algorithms may map the tree structure onto a sequence, hence
breaking the parent-children relationship. There are two major traversal algorithms that are
commonly used in tree editing algorithms. The preorder traversal starts at the root of the
tree and visits the subtrees starting at the left-most child, resulting in a top-down pass of the
tree. The postorder traversal is a bottom-up pass of the tree, starting at the left-most leaf.
Both traversal types are exemplary shown in Figure 3.2. The used traversal algorithm has a
significant influence on the resulting edit script. As there usually exist different edit scripts

34

3.2 Tree Editing

with equal edit cost, different tree traversal algorithms lead to completely different results, as
shown by Barnard et al. [1995].

3.2.2 Other Approaches

Jiang et al. [1995] have introduced tree alignment as an alternative to the tree editing problem
described before. The main idea is to first transform the structure of the first tree into the
other one using insert and delete operations, regardless of their node labels. Afterwards, the
node labels are adjusted using update operations. While the tree edit distance computes the
largest common subtree, the tree alignment is used to find the smallest common supertree.
A major drawback of this approach is the high increase of edit operations in some scenarios
compared to the tree edit distance. However, even the fastest known tree alignment algorithm
by Jansson and Lingas [2001] does not provide a gain of efficiency. Therefore, I do not follow
this approach.

The tree edit distance is an important factor in the natural language processing domain
[Mehdad 2009]. There, the closeness of two trees is most important. Therefore, some research
focuses on efficiently computing the tree edit distance, without being able to create an edit
script efficiently. Additionally, approximations to the tree edit distance have become popular.
Bernard et al. [2008] have introduced a probabilistic cost model for efficient approximation.
As the work in this domain neglects the generation of an edit script, I will not follow these
approaches either.

All the approaches mentioned up to now considered every node individually. In contrast
to this, Valiente [2001] has defined the bottom-up distance of two trees. From his point of
view, a node is only considered to be unchanged if none of its descendants has been changed.
Using this definition, if one leaf node has been changed, all its ancestors up to the root node
are considered to be changed, too. Apparently, this leads to a high increase of edit operations.
Although the bottom-up distance is efficient to compute, I do not consider this edit model
any further. As each small change results in comprehensive edit scripts, this approach is
inappropriate for handling documents for the reason of meaningfulness and space efficiency
of the result.

The node-centric definition of insert and delete operations is not suitable for each domain.
Beside from document editing and natural language processing, trees are widely used to rep-
resent RNA structures in the domain of bioinformatics. The applicability of tree editing for
RNA sequence comparison has been shown by Shapiro [1988]. As the RNA has a very limited
alphabet, the edit scripts may include operations that do not reflect the nature of the change.
Allali and Sagot [2004] have introduced more complex edit operations that allow for more
meaningful change representation in the domain of RNA comparison. As this is clearly not
the domain of document editing, I do not follow this approach. However, the need for more
domain-specific edit operations arises in the document editing domain, too. I will discuss this
issue in Section 3.2.4.

35

3 Differencing Strings and Trees

3.2.3 Complexity

The tree-to-tree correction problem is usually solved using a dynamic programming approach.
For two trees T1 and T2, a basic algorithm computes a minimum edit script in O(|T1|2×|T2|2),
where |T1| denotes the number of nodes of T1 [Bille 2005]. The basic algorithm can be im-
proved by reducing the search space, still ensuring a minimum edit script. Zhang and Shasha
[1989] have presented an efficient algorithm that is referred to as best-known general solu-
tion. It runs in of O(|T1| × |T2| ×min{depth(T1), leaves(T1)}×min{depth(T2), leaves(T2)}).
This lowers the complexity bound especially for flat or thin and deep trees. Chen [2001]
has presented an algorithm running in O(|T1|×|T2|+min{leaves(T1)

2×|T2|+ leaves(T1)
2.5×

leaves(T2), leaves(T2)
2× |T1|+ leaves(T2)

2.5× leaves(T1)}) time . This algorithm performs
better for thin and deep trees, but is inferior to the approach by Zhang and Shasha in the
general case.

Refinements of Zhang and Shasha’s algorithm have been presented by Klein [1998] and
Touzet [2005]. Klein’s algorithm has a better worst-case complexity, but does not perform as
well for flat or thin and deep trees. Therefore, it is not suitable for XML documents. Touzet’s
algorithm requires the maximum tree edit distance to be known in advance. Her algorithm is
only more efficient if this maximum edit distance is noticeably lower than the amount of leaves
or the depth of the trees to compare. However, it is unlikely to learn about the maximum degree
of changes between document versions without prior similarity analysis which cost must be
taken into account as well.

All known solutions that compute a minimum edit script still offer a super-quadratic time
complexity, which is far less efficient than in the sequence comparison domain. To achieve
better complexity bounds, the goal of an edit script conforming to the tree edit distance is
dropped. Nevertheless, the edit script should be close to the tree edit distance. Zhang [1996a]
has introduced the constrained edit distance, where disjoint subtrees are not mapped onto each
other, thus reducing the complexity to O(|T1|× |T2|). Chawathe et al. [1996] have introduced
the weighted edit distance, where the size of subtrees is taken into account when computing
the edit distance. Using some assumptions1 on the characteristics of the input trees, the time
complexity bounds can be lowered to O((leaves(T1)+ leaves(T2))× e+ e2), with e denoting
the weighted edit distance. This is obviously far more efficient than all approaches mentioned
previously.

Instead of reducing the tree edit distance property, Zhang [1996b] has proposed to solve
the tree-to-tree editing problem more quickly by using parallel algorithms. Since multi-core
processors have become standard on today’s computers, this is a promising idea. However, the
separation of the trees to compare into different parts restricts the computed edit script to leaf-
oriented insert and delete operations according to Selkow’s edit model. The time complexity
of the proposed algorithm yields O((log(leaves(T1)+ log(leaves(T2))× log(|T1|)× log(|T2|)).
Additionally, the processor complexity of O((|T1|×|T2|)/ log(min{|T1|, |T2|})) has to be taken
into account. Zhang has related his algorithm to the parallel sequence editing algorithm of

1I will discuss the mentioned tree characteristics in more detail in Section 3.3.3.

36

3.2 Tree Editing

/

ε

/0

B
/1

D
/2

A
/3

F
/4

D
/5

F
/6

C
/7

C

Figure 3.3: Tree-to-tree editing is a generalization of string editing. Strings can be represented
by a tree with a height of two.

Apostolico et al. [1990]. According to Apostolico et al., even the best parallel algorithm is
inferior to sequential algorithms by means of complexity. As the distribution overhead in
parallel algorithm is significant and the change model is inappropriate, I do not follow this
approach.

As already mentioned, I only consider ordered trees. Beside domain-specific reasons for
that decision, Zhang et al. [1995] have proven the NP-hardness of the tree-to-tree correction
problem for unordered trees in general. Later, Akutsu et al. [2008] has shown that the largest
common subtree of two unordered trees with bounded height can be computed in polyno-
mial time. Obviously, these complexity bounds do not allow for computing the edit script in
acceptable time.

Also in the domain of tree editing, the space complexity is an important yet often forgotten
aspect. As with string editing approaches, a matrix is usually used to compute the edit script,
thus yielding a quadratic complexity. Wang and Zhang [2005] have presented an optimized
algorithm with O(log(|T1|)× |T2|) space complexity. To the best of my knowledge, this is
the only published improvement in this domain. To be able to compute large trees, Chawathe
[1999] has proposed an algorithm using external memory, i.e. hard disks.

3.2.4 Differencing Tree-Based Documents

From its intention, the tree-to-tree editing problem has been seen as generalization of the string
editing problem [Selkow 1977]. In this view, the characters of the strings are the leaves of a
tree with height of two and are therefore not directly connected to each other. Figure 3.3 shows
an example string. This view has lead to Selkow’s definition of leaf-based insert and delete
operations. Later, the string-oriented view towards trees as been relaxed. Most of the work on
tree editing in the 1980’s and 1990’s has been influenced by graph-theoretical aspects, mostly
reflected by Tai’s interpretation of inner-tree insert and delete operations.

With the rise of highly-structured tree-oriented document formats like SGML, the tree edit-
ing problem has been revisited from a document editing perspective. Barnard et al. [1995]
have analyzed different tree editing algorithms as well as different modification scenarios of
SGML documents. As a result, the insertion and deletion of whole subtrees appeared to be a
common task in these scenarios, which are no discrete operations in the traditional tree edit-
ing algorithms. To solve this drawback, Barnard et al. [1995] have developed an extension

37

3 Differencing Strings and Trees

to the algorithm by Zhang and Shasha [1989], thus allowing for subtree insertion and dele-
tion. Nevertheless, this algorithm still relies on the tree edit distance that does not account
for subtree-oriented changes. Therefore, it is unclear how often subtree changes are actu-
ally detected. Unfortunately, no evaluation examining the use of subtree changes has been
performed.

LATEX-code can be regarded as tree-oriented document, too. An efficient algorithm for the
comparison of trees (with LATEX-documents in mind) has been presented by Chawathe et al.
[1996]. They have adapted the leaf-based edit operations of Selkow [1977]. According to their
empirical evaluation, the tree-oriented view appears to be much more suitable for this kind of
documents than the line-based view of the conventional diff tool.

3.3 Differencing XML Documents

With the increasing spread of XML data formats, the tree-to-tree correction problem has been
revisited. Some tools have been presented that apply existing tree differencing algorithms to
XML documents. Other researchers have questioned the existing change models, creating new
ones.

In this section, I present four XML differencing tools that implement tree differencing al-
gorithms. After presenting the selection criteria, I briefly present the tools including their un-
derlying algorithm and output format. For the sake of completeness, several non-competitive
approaches are mentioned at the end of the section, before discussing the importance of the
change representation model.

3.3.1 Selection Criteria and Comparison

A major distinction between XML differencing tools is the algorithm used. All selected tools
use different algorithms. As a precondition, the differencing algorithm had to be published to
allow for a meaningful investigation. Additionally, an implementation had to be available, at
least as research prototype.

For all XML differencing tools, the basic idea is explained. Additionally, the time complex-
ity of the algorithm used is presented. As most of the algorithms have no published statement
on their space complexity, it is only mentioned if known.

Another important aspect of a tool is the representation of changes. In the last section, dif-
ferent change models have been presented, e.g. the node-oriented editing by Tai [1979] or the
leaf-oriented model by Selkow [1977]. The question how these edit operations are represented
within a delta has not been discussed yet. In this context, the addressing of an edit operation
plays a major role. Each of the presented tools uses a different change model. I do not intend
to present the change model of all tools in detail. However, a glance at the generated output
quickly shows significant differences. As I relate XML differencing tools to the domain of
XML document evolution, the text documents presented in Figure 2.6 (see Section 2.5.1) are
used as test case. I repeat the properties of this test case. A simple document, containing two

38

3.3 Differencing XML Documents

paragraphs is changed by applying a bold font face and italics. As a result, the underlying
XML tree is changed not only at the two parts where the formatting changed. Additionally,
new style definitions are added to the document. From a human perspective, 3 changes have
been performed on the trees, if “replace” is considered as one operation. Otherwise, 4 opera-
tions are needed. As the definition of the tree edit distance does not allow for subtree-oriented
operations, the edit distance between both trees numbers to 8. All presented XML tools have
to compare these two versions.

3.3.2 Microsoft XML Diff (Zhang-Shasha)

Earlier, the algorithm by Zhang and Shasha [1989] was referred to be the best known general-
purpose algorithm for ordered trees. It solves the tree-to-tree editing problem in its formulation
by Tai [1979], thus allowing for inserting and deleting nodes arbitrarily throughout the tree.
The tree edit distance is computed using a matrix. The basic idea of this algorithm is to restrain
the search path throughout the matrix, thus computing only the needed parts. This way, the
algorithm computes an optimal solution in terms of the edit distance with time complexity2

O(|A1|× |A2|×min{depth(A1), leaves(A1)}×min{depth(A2), leaves(A2)}). As XML docu-
ments appear to be very flat compared to their size, the time complexity can be converged to a
quadratic complexity. The space complexity of the algorithm is quadratic with O(|A1|× |A2|).

Microsoft has developed an XML differencing tool and claims that it implements the Zhang-
Shasha algorithm. It is part of the .NET framework and is implemented using C#. The source
code is un-disclosed. Additionally, the documentation is rather short, which makes it diffi-
cult to retrace the behavior of the implementation. Being strict, this tool does not meet the
selection criteria presented before. I decided to discuss this tool despite these deficiencies
for different reasons. First, it is the only implementation of the Zhang-Shasha algorithm for
XML documents that has left the stadium of a prototype. Second, the delta model is different
from the other approaches and should be presented, too. Third, this tool is widely used, which
makes it the state-of-the-art on Windows systems. Therefore, it should be considered in the
comparative evaluation in Chapter 10.

A curiosity of this implementation is the change model used. Whereas the algorithm by
Zhang and Shasha has been designed to support insert and delete operation only on the node
level, the Microsoft XML diff also detects subtree insertions and deletions. Additionally, a
move operation is supported, which is not known in the original definition of the algorithm
either. Following a black-box interpretation, I assume this XML diff tool to be a refinement
of the SGML differencing algorithm by Barnard et al. [1995].

The output of the test case is shown in Figure 3.4. As an interesting property, a hash value
of the original document version is stored. This is done to prevent the delta to be applied
to another document, which would possibly create erroneous results. The idea of the delta
is to traverse the target document. Only parts that contain changes are accessed, indicated

2Here, I use the notation of A for a document to distinct between the tree differencing algorithms and their
applications to the XML differencing domain.

39

3 Differencing Strings and Trees

xd:xmldiff srcDocHash="375842907363673063"

xd:node match="2"

xd:node match="3"

xd:add
style:style style:name="P1"

style:text-properties style="italic"

style:style style:name="T1"

style:text-properties weight="bold"

xd:node match="4"

xd:node match="1"

xd:node match="2"
xd:change match="@text:style-name"

P1
xd:node match="3"

xd:change match="1"

aetas:
xd:add

text:span text:style-name="T1"

carpe diem
quam minimum credula postero

Figure 3.4: Microsoft XML Diff uses a tree-walking relative addressing of nodes.

by instructions of the form xd:node match="2". If the correct position for a change
is reached, the change itself is applied, e.g. by xd:add. In total, this delta contains 4 edit
operations, which corresponds with the human interpretation of the changes to the tree. Note
that these edit operations do not correspond to the original definition of the algorithm which
ensures a minimum edit script in terms of the minimum edit distance, thus resulting in 8 edit
operations.

3.3.3 Diffxml (Chawathe)

Chawathe et al. [1995] have revisited the tree-to-tree editing problem with hierarchically struc-
tured data in mind. As a result, they favored Selkow’s leaf-oriented edit model over Tai’s edit
model allowing for arbitrary insert and delete operations. Additionally, they have introduced
a move operation for subtrees. A corresponding differencing algorithm has been presented
later, called FastMatch EditScript (FMES) [Chawathe et al. 1996]. Its initial intention was to
find differences in LATEX document versions. The basic idea is to compute the longest com-
mon subsequence of leaves to detect insert and delete operations. FMES works in five phases.
In the first phase, structure-preserving update operations are identified. In a second phase,
re-arranged subtrees are identified, which are represented using move operations. In the next
three phases, the tree is transformed into its target appearance using insert, move, and delete
operations. The XML tree is basically parsed bottom-up.

FMES does not guarantee an optimal solution in terms of the tree edit distance. This allows

40

3.3 Differencing XML Documents

for reducing the complexity bounds significantly. However, a near-optimal solution shall be
ensured in the general case. FMES has a time complexity of O((leaves(A1)+ leaves(A2))×
e+ e2), with e denoting the weighted edit distance, i.e. the length of the computed edit script.
The ratio of e/d, where d denotes the tree edit distance, is bounded by logn for the general
case. The general case only holds under the assumption that there exist only few leaves with
identical label [Chawathe et al. 1995]. In Section 2.4.3, however, I have shown that typical
XML documents contain many repeating leaves. A comparative evaluation in Section 10.4
will show the significant influence on the size of the edit script. The space complexity of
FMES has not been investigated by the authors. Performing a sketchy review of the algorithm,
I estimate the algorithm to scale linearly in terms of the input size.

Three XML-aware implementations of FMES are available. The first one has been pre-
sented by Logilab, a French software manufacturer. The implementation uses the Python
programming language, and is part of many Linux distributions under the name xmldiff. The
second implementation has been developed by Mouat [2002], called diffxml. It uses Java
and has been updated recently. Hottinger and Meyer [2005] have reviewed the xmldiff im-
plementation, stating that the implementation does not fully conform the FMES algorithm.
Additionally, this implementation is not competitive in terms of speed, as shown in an empiri-
cal scenario by Rönnau et al. [2005]. Hottinger and Meyer [2005] have also presented an own
implementation of FMES. However, this implementation is yet in a prototype state and not
usable due to several small bugs. Therefore, only diffxml will be considered further on.

In diffxml, attributes are regarded as independent nodes, too. Each edit operation is ad-
dressed using an absolute path in XPath notation. Figure 3.5 shows the resulting delta for
the test case. It contains 18 edit operations, which is far above the minimum edit script of 8
operations. The reason being that an insertion of a single node is represented by several insert
operations, one for the node label, and one for each attribute. The delta model of diffxml is
well-defined, yet cumbersome. Additionally, the XPath notation used for the addressing of
nodes is hard to read and inefficient in terms of space.

3.3.4 XyDiff (Cobena)
Marian et al. [2001] have tried to track the changes of XML documents on the Web in
the context of a data warehouse. They have formulated an edit model that allows for in-
serting, deleting, and moving subtrees. Single nodes can be addressed by update opera-
tions. This edit model is caused by a deductive analysis of a given XML tree. Marian
et al. have decided to completely discard the node-orientation for insert and delete opera-
tions that is used in the formulation of the tree-to-tree editing problem. Based on this edit
model, Cobéna et al. [2002] have presented a new differencing algorithm for XML documents,
called XyDiff. This algorithm lowers the complexity bound significantly again. Normally,
XyDiff runs in linear time and space with O(|A1|+ |A2|). The worst case time complexity
is O(|A1|+ |A2| × log(|A1|+ |A2|)). This increase of efficiency is gained for the sake of the
minimality of the resulting edit script. The basic idea of XyDiff is the so-called bottom-up,
lazy down (BULD) propagation. XyDiff traverses the tree bottom-up, propagating matching

41

3 Differencing Strings and Trees

delta
insert childno="1" name="style:style" nodetype="1" \

parent="/node()[1]/node()[3]"/

insert name="style:name" nodetype="2" \

parent="/node()[1]/node()[3]/node()[1]"

P1
insert childno="2" name="style:style" nodetype="1" \

parent="/node()[1]/node()[3]"

insert name="style:style" nodetype="2" \

parent="/node()[1]/node()[3]/node()[2]"

T1
insert childno="1" name="style:text-properties" nodetype="1" \

parent="/node()[1]/node()[3]/node()[1]"/

insert name="style" nodetype="2" \

parent="/node()[1]/node()[3]/node()[1]/node()[1]"

italic
insert childno="1" name="style:text-properties" nodetype="1" \

parent="/node()[1]/node()[3]/node()[2]"/

insert name="weight" nodetype="2" \

parent="/node()[1]/node()[3]/node()[2]/node()[1]"

bold
insert childno="2" name="text:p" nodetype="1" \

parent="/node()[1]/node()[4]/node()[1]"/

insert name="text:style-name" nodetype="2" \

parent="/node()[1]/node()[4]/node()[1]/node()[2]"

P1
move childno="1" length="12" new_charpos="1" old_charpos="1" \

parent="/node()[1]/node()[4]/node()[1]/node()[2]"

node="/node()[1]/node()[4]/node()[1]/node()[3]/node()[1]"

insert childno="1" nodetype="3" \

parent="/node()[1]/node()[4]/node()[1]/node()[3]"

aetas
insert charpos="8" childno="2" name="text:span" nodetype="1" \

parent="/node()[1]/node()[4]/node()[1]/node()[3]"

insert name="text:style-name" nodetype="2" \

parent="/node()[1]/node()[4]/node()[1]/node()[3]/node()[2]"

T1
insert childno="3" nodetype="3" \

parent="/node()[1]/node()[4]/node()[1]/node()[3]"

quam minimum credula postero
insert childno="1" nodetype="3" \

parent="/node()[1]/node()[4]/node()[1]/node()[3]/node()[2]"

carpe diem
delete charpos="1" length="46" \

node="/node()[1]/node()[4]/node()[1]/node()[4]/node()[1]""

delete node="/node()[1]/node()[4]/node()[1]/node()[4]"

Figure 3.5: Diffxml relies on a leaf-oriented change model with attribute granularity, resulting
in a large amount of edit operations.

42

3.3 Differencing XML Documents

delta
Deleted pos="0:1:3:0:2:0"

aetas: carpe diem quam minimum credula postero
Inserted pos="0:1:2:0"

style:style style:name="P1"

style:text-properties style="italic"

Inserted pos="0:1:2:1"

style:style style:name="T1"

style:text-properties weight="bold"

Inserted pos="0:1:3:0:2:0"

aetas:
Inserted pos="0:1:3:0:2:1"

text:span text:style-name="T1"

carpe diem
Inserted pos="0:1:3:0:2:2"

quam minimum credula postero
AttributeUpdated nv="P1" name="text:style-name" \

ov="Standard" pos="0:1:3:0:1"

Figure 3.6: JXyDiff uses absolute paths. Insertions and deletions target subtrees. Attributes
can be updated directly. Old values are stored in the delta to reconstruct former
versions of the document.

nodes towards the root. Nodes are weighted using the amount of descendants. In a subsequent
top-down pass, the node weight is used to quickly decide whether a modified subtree will be
deleted with its original appearance and inserted with its target appearance again, or whether
a set of more fine-granular operations is used, which means inserts on lower levels or up-
dates. Generally speaking, the “brute-force” method by deleting and inserting large subtrees
is preferred.

XyDiff has originally been implemented using C on Linux. Unfortunately, this implemen-
tation is no longer being maintained. As a result, it can only be used on highly modified Linux
systems with outdated libraries and compiler versions. A Java implementation, called jXyD-
iff, has been developed later. However, this implementation lacks a corresponding patch tool
to apply a computed delta to an XML document.

The output format of (j)XyDiff is straightforward and intuitive, the delta is shown in Fig-
ure 3.6. Each operation uses an absolute path. Delete and update operations store the old value
of the changed parts, which allows for reconstructing the former version of a document using
the delta. In total, seven edit operations are used to represent the changes.

3.3.5 Faxma (Lindholm)

All previously mentioned approaches traverse an XML document using its tree representation.
Another approach, called faxma, has been presented by Lindholm et al. [2006]. They applied
the idea of greedy matching of sequences to the domain of XML. Originally, this approach

43

3 Differencing Strings and Trees

diff:diff op="insert"

ref:node id="/0"

diff:copy run="2" src="./0"

ref:node id="./2"

style:style style:name="P1"

style:text-properties style="italic"

style:style style:name="T1"

style:text-properties weight="bold"

ref:node id="./3"

ref:node id="./0"

diff:copy run="1" src="./0"

text:p text:style-name="P1"

diff:copy run="1" src="./1/0"

ref:node id="./2"

aetas:
text:span text:style-name="T1"

carpe diem
quam minimum credula postero

Figure 3.7: The output of faxma is a script, containing references to the original document and
inserted nodes.

has been used in the domain of binary synchronization algorithms by Tridgell [1999]. A
sliding window is used to compare two input sequences using highly efficient rolling-hash
algorithms that have been introduced by Rabin [1981]. An XML document is transformed
into a sequence using the XAS format presented by Kangasharju and Lindholm [2005]. In
this XAS format, nodes are transformed in document order to tokens in a sequence stream.
This tokenization prevents the greedy matcher to split the XML document into unparsable
fragments. In the general case, faxma runs in linear time and space with O(|A1|+ |A2|).
Faxma has been implemented using Java.

An interesting property of faxma is the change model used. Due to its linear parsing of
the document, an edit script in its conventional form is not created. Instead, the output of the
document consists of the inserted parts and references to the unchanged parts of the origi-
nal document. Figure 3.7 shows the delta for the test case. The commands ref:node and
diff:copy reference to a single node or several subtrees, respectively. This change rep-
resentation is efficient in terms of space, but hard to read by humans. To some extent, it
resembles the Microsoft XML Diff format.

3.3.6 Other Approaches

One important distinguishing factor for the selection of XML differencing algorithms is the
availability of an implementation to verify the claimed achievements. Xu et al. [2002] have
claimed to have developed an XML differencing algorithm supporting the ordered and un-
ordered tree model running in linear time. Unfortunately, I was not able to get the implemented

44

3.3 Differencing XML Documents

system. As the algorithm description is rather imprecise, a new implementation cannot be per-
formed using that description. Some approaches do only support selected properties of XML
document. For example, the approach by Lee et al. [2004] neglects attributes, which lowers
the applicability of this approach significantly. Other approaches, as presented by Al-Ekram
et al. [2005] or Iorio et al. [2009], do not provide a better time complexity than previous
approaches.

Some approaches make domain-specific assumptions on the XML format. BioDIFF for
example has been designed for the annotation of biological data [Song et al. 2007]. In the
domain of bioinformatics, Hedeler and Paton [2008] have shown the shortcomings of general-
purpose differencing algorithms.

Differencing XML documents has also been investigated from a graph-theoretical perspec-
tive. A corresponding tool, SSDDiff, has been presented by Schubert et al. [2005]. However,
the graph-theoretical approach is far less competitive in terms of efficiency, thus leading to an
unusable runtime already with rather small documents.

An overview of XML differencing approaches for ordered trees has been performed by Pe-
ters [2005]. XML differencing algorithms have also been developed for unordered documents.
The most prominent solution has been presented by Wang et al. [2003].

3.3.7 Discussion

The resulting deltas for the test case reveal fundamental differences between the four different
XML differencing tools. The amount of edit operations ranges from 4 to 18, which is a
significant deviation, mostly resulting from the granularity of the change model. Beside the
change granularity, the addressing of operations is handled differently. The deltas of Microsoft
XMLDiff and faxma basically describe a walk through the source document, creating the
target document by in-lining edit operations. This model demands that all edit operations of a
delta are subsequently applied. An edit operation cannot be interpreted without taking the rest
of the delta into account.

In my opinion, the subtree-oriented representation of changes is far more intuitive for the
domain of XML documents, as it does reflect the nature of the changes better that a node-
oriented granularity. As the content is stored in the leaves, and non-leaf nodes are used for
markup, the subtree-oriented view offers a contiguous representation of the changes relating
to an edit operation in terms of the user model.

When taking the readability by humans into account, the absolute addressing scheme by
XyDiff and diffxml is far more appropriate than the in-line-representation of Microsoft XML
Diff and faxma. Especially the dense representation of XyDiff allows the user for estimating
the content of the changes at a glance – which is not possible for the fine-grained diffxml
delta format. In my opinion, this is an important aspect concerning the user-acceptance of a
differencing tool.

45

3 Differencing Strings and Trees

3.4 Conclusions
Finding and representing changes between document versions has been an extensively studied
problem since the 1970’s. First approaches have only considered the string representation,
leading to the definition of the longest common subsequence problem. In this chapter, I have
presented the LCS, as it is still widely used. For example, the well-known diff tool relies on
a common LCS solution. The computation of the LCS is solvable in nearly linear time for
similar documents.

Trees have been seen as generalization of strings. The tree-to-tree editing problem maps the
LCS problem onto the domain of trees. However, the complexity of the comparison of trees
is significantly higher than for strings. Even the best known solutions run in super-quadratic
time and space. To deal with this challenge, recent approaches relax the need for optimal solu-
tions, using best-effort approaches to find reasonable small edit scripts, thus yielding a linear
complexity in the average case. In this chapter, I have presented different change represen-
tation models in the tree editing domain, altogether with prominent solutions for the efficient
computation of the edit script for trees.

Differencing XML documents is a kind of natural application of the tree-to-tree editing
problem. Several tools have been developed. Some of them implement known tree-correction
algorithms. Others take the properties of XML documents into account. In this chapter, I
have presented the four best-known algorithms for XML differencing, altogether with their
implementation. They all use a different representation of the changes. Several approaches
introduce subtree-oriented operations that have not been known in the original formulation of
the tree-to-tree editing problem. Using a simple test case, I have shown that the change model
and the representation of changes is a major distinguishing feature between XML differencing
tools. However, this aspect has mostly been disregarded in the literature up to now. The
presented tools will act as competitors in the evaluation of my algorithm in Chapter 10.

46

4 Document Merging

Parallel editing of documents is an every-day task. Comparing documents versions allows
for reconstructing the evolution of a document by extracting the changes. However, the doc-
ument versions can only be reconstructed linearly. Parallel editing rises the need to merge
two document versions that have been edited independently. Merging document versions is a
challenging task, as evolving paths and conflicting updates have to be taken into account.

In this chapter, I give an overview of the most common approaches to document merging,
including the state-based model on which I base my work. I start by giving a short introduction
to parallel editing processes, including the resulting challenges. In the following sections,
three major strategies for document merging are presented and discussed: state-based change
control, operational transformation, and the annotation of documents. Other approaches are
briefly discussed at the end of the chapter.

4.1 Parallel Editing of Documents

Documents are often edited by different persons. In a paper-based office, a physical document
is usually tightened to a file. Only one person can perform any action on this document at a
given time. Electronic documents, however, may have multiple physical representations (ei-
ther electronically or printed), and may be distributed arbitrarily. First approaches to support
collaborative editing of documents mapped this serial access model on electronic documents,
e.g. by Neuwirth et al. [1990]. At this time, parallel editing of a file was already state-of-the-art
in version control systems for source code of software [Tichy 1982]. Later, the parallel editing
model has been applied to the domain of document editing, too. When editing documents in
parallel, merging different document versions including the detection of conflicts becomes the
main challenge.

4.1.1 Version Control Systems

Up to now, the source code of software projects is mainly organized in files. These files are
usually stored within a repository, which is managed by a version control system [Pilato 2004].
The version control system handles concurrent reading and writing accesses to the repository
and ensures that each change is tracked. Any prior version of a file shall be reconstructible.

Bennett and Rajlich [2000] have stressed that software products usually have parallel evo-
lution strings. Even if a new version of the software is available, former versions still receive
support, resulting in bug fixes and other changes. Version control systems model this parallel

47

4 Document Merging

A A1

A2

TRUNK

BRANCH

A1,2

t

Figure 4.1: In a structured editing process, a document may evolve in parallel in different
branches.

evolution by the use of branches. One file may have different valid versions in parallel, one in
each branch. Figure 4.1 shows a file A, which is branched and independently edited, resulting
in the versions A1 and A2. In terms of the evolution of the file, A is the nearest common an-
cestor of A1 and A2. The main branch is usually referred to as trunk. It is generally possible to
reunite branches. This requires the merge of A1 and A2, resulting in A1,2. The same holds if a
delta should be applied to different branches in parallel, e.g. for bug fixing. I will discuss the
issues of merging in Section 4.1.3. For a more detailed description of source code evolution
models, please refer to Conradi and Westfechtel [1998].

Branching has to be actively initiated by a user and is used for an intended parallel develop-
ment. Another important aspect of version control systems is to handle the concurrent (writ-
ing) access to the files in the repository. A common approach is to lock a file that is opened
for editing, thus hindering other users to perform a write operation onto that file [Borghoff and
Schlichter 2000]. Especially for large files, more optimistic collaboration models are used,
though. Each user is allowed for changing a local copy of the document. When committing
his changes to the repository, his document version is merged with the changes of other users
that emerged in the meantime1. This optimistic model relies on the assumption that users usu-
ally change different parts of the document. Delisle and Schwartz [1986] have enforced this
assumption using an empirical analysis.

4.1.2 Collaborative Editing of Documents

Version control systems have a fixed document access model. Each access on a file is logged,
changes can be tagged with version numbers. This behavior reflects the precise collaboration
models used in the domain of software development, where each minor change may have
a great impact. Developers frequently commit their changes to the repository to be able to
revert single changes isolated and quickly, which has been shown in an empirical analysis of
repository commits by Zimmermann et al. [2006]. Additionally, source code of software is
highly structured. Entities like objects, procedures etc. have unique identifiers.

For documents, these restrictions do not hold. Documents have an implicit structure. An
explicit structure may be defined, e.g. on the level of sections and subsections [Borghoff and
Teege 1993a]. However, tracking the evolution of this structure has to be done explicitly. An

1One could consider the local copy to be an implicit branching. Indeed, this terminology has recently become
popular in distributed version control systems.

48

4.1 Parallel Editing of Documents

implicit tacking is not possible outside a closed system, as a paragraph does not offer a natural
identifier. Additionally, even simple changes on the user level may cause far more changes on
the XML representation of a document, as already shown in Section 2.5.

There exist numerous models for the collaborative editing of documents, e.g. by Flower
and Hayes [1981]. Koch [1997] has performed a thorough analysis of the different aspects of
collaboration and their support by computer-based tools. In my work, I focus on the technical
aspects of the merging of document versions. The social aspects of collaborative systems are
mostly disregarded. Nevertheless, a social perspective may also help to promote the technical
development. Performing an analysis of the social aspects of collaboration, Mitchell et al.
[1995] have identified a key requirement for collaborative systems: a user wants to see all
changes performed on the document at a glance to be aware of its current state and the prior
modification process as well.

4.1.3 Merging
The reconciliation of a new document version out of two (or more) prior versions of the docu-
ment is called merge. Basically, syntactic and semantic merges have to be distinguished [Shen
and Sun 2002]. Syntactic merges rely only on the written word, without respect to the seman-
tic meaning of it. A semantic merge takes the semantic meaning of the documents to merge
into account. This is a for more complex task than a syntactic merge. For highly structured
documents in formal languages like source code, there exist semantic merge approaches. They
mostly rely on an analysis of the code tree; a survey of these approaches has been performed
by Mens [2002]. For less-structured documents using natural language, no corresponding
approach is known to me. Natural language processing is a complex task which is only ap-
plicable to a restricted class of problems [Toland 2000], suffering from a low accuracy [Lease
2007]. It appears to be unlikely that usable semantic merge approaches for documents in nat-
ural language will be developed within the next decade. Additionally, Shen and Sun [2002]
have stressed that a semantically consistent merge can only be achieved by having a proper
definition of the authors’ roles. According to Koch [1997], a common awareness of the goals
of the work is a key prerequisite for meaningful collaborative editing (and merging). As I
focus on efficiency and general applicability, I will only consider syntactic merging.

Adams et al. [1986] have presented a first merging application for text files. They distin-
guish overlapping and non-overlapping changes. Non-overlapping changes do not affect the
same lines. These changes can be merged automatically in their approach. Khanna et al.
[2007] have shown that even non-overlapping changes may interfere with each other due to
identical parts, leading to unwanted merge results. I will discuss that issue in Section 4.2.1.

A main challenge in merging documents is the addressing of an operation. In a serial col-
laboration model, a change addresses the position using a path. A line may be identified by
a line number, an XML node by an addressing scheme as presented in Section 2.2.5. Two
persons performing actions on a document create two new versions from their nearest com-
mon ancestor. In this context, the amount of changes is irrelevant. The changes are addressed
basing on the nearest common ancestor. If the second person tries to apply her changes, the

49

4 Document Merging

/

a

/0

b
/1

e
/2

f

/0/0

c
/0/1

d
/2/0

g
/2/1

h

(a) Original version

/

a

/0

e
/1

f

/1/0

g
/1/1

h

(b) Version A1. The subtree
rooted at /0 has been deleted.

/

a

/0

b
/1

e
/2

f

/0/0

c
/0/1

d
/1/0

i
/2/0

g
/2/1

h

(c) Version A2. Node /1/0 has been inserted

/

a

/0

e
/1

f

/1/0

i
/1/1

g
/1/2

h

(d) Version A1,2. The node is in-
serted at the wrong place.

Figure 4.2: Interim changes affect the addressing of other operations to merge. If no measures
are taken, operations may be performed at the wrong place of the document.

addresses of the operations might be affected by the prior changes of the first person. As
an example, Figure 4.2 shows an incorrectly merged tree. Here, the negative offset resulting
from a delete operation leads to the insertion of a node into the wrong subtree. Handling these
offsets resulting from prior changes is a major challenge in document merging.

4.1.4 Conflict Handling

Up to now, only non-overlapping changes have been considered. If two users try to change
the same part of a document, a conflict arises [Lippe and van Oosterom 1992]. In general,
conflicts cannot be resolved automatically. The most common approaches are to favor one
of the versions [Shen and Sun 2002], to reject a change until it does not conflict any more
[MacKenzie et al. 2002], or to prompt the user for a decision [Ignat and Norrie 2006].

The previous definition of a conflict relies on a linear representation of a document. How-
ever, most documents are structured. Therefore, Borghoff and Teege [1993b] have extended
this view. Every change on a higher level of the document marks the subordinate parts as
changed, too. This view is also applicable to the domain of trees. A change of a node may
be interpreted as change to all of its descendants. I will discuss this issue in Section 8.4 more
thoroughly.

Detecting conflicts is a crucial capability needed for the merging of documents. In this con-

50

4.2 State-Based Change Control

text, conflicts are also defined on a syntactic level. Semantic conflicts arising from a contradic-
tory content of the document are not considered. Approaches exist that require the definition
of consistency rules for highly formalized documents, e.g. by Scheffczyk [2004]. Using his
approach, a merge could be rejected in case of the violation of a consistency rule. However,
formal consistency rules are not applicable on documents in general. Proof-reading by the user
will most likely prevail as ultimate instance for conflict-detection and resolution on a semantic
level.

4.2 State-Based Change Control

In state-based change control systems, changes between document versions are identified by
a differencing tool, as described in the last chapter. Documents can either be merged using a
three-way differencing tool, which compares the documents with their nearest common ances-
tor. Alternatively, deltas can be enriched with context information that allows for identifying
edit operations using their syntactic context.

4.2.1 Three-Way Differencing

When documents are updated independently, they usually base on a common ancestor version.
A three-way differencing tool compares two document versions with respect to their nearest
common ancestor. The basic idea is to be able to determine how two operations in both
document versions relate to each other. The first three-way differencing tool for line-based
documents, called diff3 has been developed by Smith [1988].

Khanna et al. [2007] have performed a thorough analysis of diff3. The basic approach of
diff3 is shown in Figure 4.3. First, the longest common subsequence of the original version
with either of the two documents is computed. The two documents are merged using these
two sequences afterwards. The nearest common ancestor allows for determining whether an
operation does not match in order of a conflict or a matched node. Apparently, a three-way
differencing is more complex than a simple comparison of two documents.

Even the availability of the nearest common ancestor does not ensure an unambiguous de-
cision whether a node conflicts. This issue arises already in the context of line-based differ-
encing, where Khanna et al. [2007] have revealed some unwanted behavior of diff3. Conflicts
may arise if an element occurs multiple times within a document. At this point, It should be
remembered that in common documents, many nodes are identical (see Section 2.4). How-
ever, a sufficient distance between two edited parts of the documents lowers the probability
for merge errors significantly.

4.2.2 Context-Aware Patching

Three-way differencing has two major drawbacks. First, the high complexity becomes notice-
able, especially for large documents. Second, the nearest common ancestor has to be known

51

4 Document Merging

A

A1

A2

LCS(A,A1)

LCS(A,A2)

A1,2

diff(A,A1)

diff(A,A2)

merge

Figure 4.3: Diff3 computes the longest common subsequence between the nearest common
ancestor A and the two modified versions first. Afterwards, the merged document
is computed.

and to be available. Both may be severe issues, especially in loosely coupled collaboration en-
vironments. For example, if documents are exchanged via e-mail, a reliable version-tracking
is not available. In distributed version control systems, all versions of a document may not be
available locally, too.

To overcome these drawbacks, Davison [1990] has introduced a new delta format for line-
based documents, containing context information. Figure 4.4 shows an example. By default,
three lines before and after the line affected by an operation are added to the delta, as shown
in Figure 4.4(c), where a blank line has been inserted. Afterwards, this delta is applied to
a version of the document, where an additional line has been inserted at the beginning (see
Figure 4.4(b)). Using the context, the patch tool is able to find the correct insertion point of
the blank line, despite the offset of one line caused by the new headline. This context diff is
also known as unified diff format. Today, a slightly modified version of this format is used in
common diff and patch tools [MacKenzie et al. 2002].

4.2.3 XML Support

Merging approaches for XML documents relying on a state-based model are very rare. An
XML-aware three-way differencing algorithm has been presented by Lindholm [2004]. The
complexity of the merging procedure is reasonable with O(n log(n)). However, the time
for comparing the trees twice has to be considered, too, which is super-quadratic (see Sec-
tion 3.2.3). Additionally, this approach is not able to handle conflicting updates, as the detec-
tion of conflicts appears to be far more tricky in the domain of trees [Horwitz et al. 1989].

The definition of syntactic context is straightforward in a line-based document model. How-
ever, there is no intuitive mapping onto a tree-based document model. Mouat [2002] has pre-
sented an XML delta format, called Delta Update Language (DUL) that allows for adding

52

4.2 State-Based Change Control

Carmen 1,11:
Tu ne quaesieris (scire nefas) quem mihi, quem tibi
finem di dederint, Leuconoe, nec Babylonios
temptaris numeros. Ut melius quidquid erit pati!
Seu pluris hiemes seu tribuit Iuppiter ultimam,
quae nunc oppositis debilitat pumicibus mare
Tyrrhenum, sapias, vina liques et spatio brevi
spem longam reseces. Dum loquimur, fugerit invida
aetas: carpe diem, quam minimum credula postero.

(a) Original

Quintus Horatius Flaccus
Carmen 1,11:
Tu ne quaesieris (scire nefas) quem mihi, quem tibi
finem di dederint, Leuconoe, nec Babylonios
temptaris numeros. Ut melius quidquid erit pati!
Seu pluris hiemes seu tribuit Iuppiter ultimam,
quae nunc oppositis debilitat pumicibus mare
Tyrrhenum, sapias, vina liques et spatio brevi
spem longam reseces. Dum loquimur, fugerit invida
aetas: carpe diem, quam minimum credula postero.

(b) Updated

-- orig.txt 2010-03-14 21:14:14
+++ upd.txt 2010-03-15 11:10:02
@@ -3,6 +3,7 @@
finem di dederint, Leuconoe, nec Babylonios
temptaris numeros. Ut melius quidquid erit pati!
Seu pluris hiemes seu tribuit Iuppiter ultimam,
+
quae nunc oppositis debilitat pumicibus mare
Tyrrhenum, sapias, vina liques et spatio brevi
spem longam reseces. Dum loquimur, fugerit invida

(c) Context delta with meta-data

Quintus Horatius Flaccus
Carmen 1,11:
Tu ne quaesieris (scire nefas) quem mihi, quem tibi
finem di dederint, Leuconoe, nec Babylonios
temptaris numeros. Ut melius quidquid erit pati!
Seu pluris hiemes seu tribuit Iuppiter ultimam,

quae nunc oppositis debilitat pumicibus mare
Tyrrhenum, sapias, vina liques et spatio brevi
spem longam reseces. Dum loquimur, fugerit invida
aetas: carpe diem, quam minimum credula postero.

(d) Merged

Figure 4.4: Adding syntactic context to a delta allows for reliably finding the correct address
of an edit operation. In this example, the new headline in the merged document
version causes an offset of one line.

syntactic context to edit operations. In DUL, an edit operation may contain the siblings of the
node addressed by the edit operation, as well as the parent and children nodes. However, the
DUL specification has some weak points, which I will discuss in Section 6.5.4. Additionally,
no corresponding patch application is known to me.

In general, most of the work on state-based XML versioning focuses on the aspect of effi-
cient change detection. The subsequent merge of documents has mostly been disregarded in
literature. None of the XML differencing tools presented in Section 3.3 is able to merge XML
documents.

4.2.4 Discussion

Three-way differencing and context-aware patching are commonly used for merging line-
based documents. Established version control systems like CVS or Subversion rely on these
state-based approaches [Pilato 2004]. However, they cannot ensure a correct merge result.

Major research efforts have been made to develop merge approaches that try to offer a bet-

53

4 Document Merging

ter reliability or accuracy [Mens 2002]. Nevertheless, none of these approaches achieved to
supersede the conventional approach. From my personal perspective, the reason for the pre-
vailing success of the classic diff and patch tools is their general applicability, in combination
with their ease-of-use. The deltas are human-readable, and the merge of document versions is
nearly self-explaining. Additionally, these tools do not bond the user to a special application
or edit model. They have been adopted in a large variety of tools on a higher level.

Up to now, no diff and patch toolkit offers this broad applicability and merge-support for
XML documents. First approaches exist that apply the well-proven diff3 and context-aware
patch tools to the domain of XML. However, these approaches are still in their infancy. A
general-purpose XML diff, patch, and merge toolkit would close that gap.

4.3 Operational Transformation

Operational Transformation (OT) has been introduced by Ellis and Gibbs [1989] in the context
of a real-time group editor. Each participant in the collaboration environment has its own
working context with a local copy of the document, called site. Each operation performed on
one site is transferred to the other sites, where the operation is applied within the corresponding
context.

4.3.1 Basic Idea

In the original definition, a character-based granularity has been defined. Any character
change (i.e. a keystroke) results in an insert or delete operation. The basic idea is to trans-
form each operation in a way matching its current context. This transformation mainly targets
the adaption of the addressing of a change to handle interim changes caused by the local user
or other sites. The transformation step is the real heart of any OT algorithm.

A major goal of OT approaches is to ensure that all copies of the document are in the same
state after a certain timespan for transmission and reconciliation. This is hard to achieve, es-
pecially in high-latency connections. Due to network constraints, operations may be received
not in the order they have been performed, which requires sophisticated transformers [Nichols
et al. 1995].

The reconciliation of former versions of a document (i.e. an “undo” operation) is often im-
possible in OT approaches. Oster et al. [2006a] have introduced an annotation method that
marks deleted items as removed. This way, changes can be reverted which is a major im-
provement. As a drawback, the document size increases linearly with the amount of changes,
which can become space-consuming.

4.3.2 XML Support

The operational transformation approach has been mapped from the domain of line-based texts
to trees by Davis et al. [2002]. Molli et al. [2002] have presented an XML-aware group editor,

54

4.3 Operational Transformation

called SAMS. In SAMS, the character-centric granularity of the text-based domain is mapped
onto a node-based granularity. Attribute changes are considered as independent operations. A
similar approach has been presented by Ignat and Norrie [2003].

Recently, Google has presented a new collaboration environment, called Wave2. Google
Wave relies on an operational transformation approach to XML documents, described by
Wang and Mah [2009], which has been highly influenced by the work of Nichols et al. [1995].
Instead of using a tree-based edit model, Google Wave relies on an XML representation by
sequences, similar to the XAS serialization format by Kangasharju and Lindholm [2005],
which is used in the faxma XML differencing algorithm (see Section 3.3.5). Node labels are
considered to be atomic, whereas text nodes are treated on a character-granularity level.

4.3.3 Merging

The operational transformation approach is basically intended to allow users for the parallel
editing of a document. In this context, conflict handling is an important yet difficult issue. In
general, only delete and update operations can cause conflicts, as the same item is addressed
by two or more operations [Shen and Sun 2002]. Insert operations do not lead to conflicts,
as they do not affect items addressed by other nodes. However, insert operations in the same
syntactic context may lead to meaningless results, e.g. if a sentence is edited by two persons
independently. Here, an awareness for the editing operations of other persons may be appro-
priate [Schlichter et al. 1998]. Additionally, a paragraph edited by a user can be locked to
prevent changes by other users [Borghoff and Teege 1993b].

Basically, the reconciliation of document versions is a transparent process that is not de-
signed for user interaction. Therefore, Shen and Sun [2002] have decided to generally favor
the local version in case of conflicts. Sun and Sosič [1999] have proposed a fine-grained lock-
ing scheme for real-time editors to prevent the rise of conflicts. Another approach has been
followed by Ignat and Norrie [2006]. They display conflicting changes in a separate window,
requesting the user to vote for one of the possible versions.

Parallel editing by different users raises the question of scheduling the different operations,
especially in low-bandwidth and high-latency environments, or with many parallel users. This
way, a semantically correct merge of changes shall be ensured. Preguiça et al. [2003] have
presented an approach that respects integrity constraints. However, finding an optimal solution
appears to be NP-hard. Therefore, only a heuristic best-effort approach is used.

4.3.4 Complexity

The transformation of the operations may be an complex task. Ignat and Norrie [2008] have
shown that the transformation runs in quadratic time O(n2), where n denotes the number

2Due to low success, Google has already discontinued to provide this service. Nevertheless, Google Wave
proved the maturity of OT in the XML domain even in large environments. The code was released as Open
Source and is actively developed by a vibrant community.

55

4 Document Merging

of operations to perform. This is reasonably fast for collaborative editors where changes
are exchanged contiguously in short time intervals. However, operational transformation can
be used for asynchronous collaboration as well. There, the number of operations to apply
increases significantly, leading to a noticeable increase of the runtime.

To achieve a faster reconciliation in asynchronous collaboration system, Ignat and Norrie
[2008] have introduced a distributed operation history instead of a centralized operation list.
The distribution follows the tree structure of the XML document. By this, the different op-
eration lists can be worked off in their local context, which is more efficient than processing
the whole operation list at one time. A second benefit of distributed operation histories has
been described by Papadopoulou et al. [2006]. Due to the locally available operation list, a
common awareness about the changes can be established efficiently.

In the classic approach, all sites of a collaborative editor are equal and exchange their editing
information on a peer-to-peer basis. This approach scales bad in environments with many sites
[Oster et al. 2006b]. Many redundant information is exchanged and the number of conflicts
may increase dramatically. To overcome this issue, a common server can be defined which
hosts the master document. Especially in case of conflicts, this master document represents
the valid state of the whole system. The server also integrates different changes into one,
which reduces the overhead during the transmission. As an example, Google Wave uses this
server-centric operational transformation approach [Wang and Mah 2009].

4.3.5 Discussion

Implementing the operational transformation approach in the domain of group editors has
some benefits. Usually, the user input is directly caught and mapped onto the corresponding
operations for reconciliation. This way, there is no need to perform complex diff runs, as
would be needed in a state-based approach. Even if the overhead due to the transformation of
the operations and the high amount of network traffic are significant, editors using operational
transformation are quite fast. This results from the fact that the operations are exchanged
in short time intervals which distributes the complexity over time to an acceptable degree.
However, this only holds for synchronous editors. In asynchronous editors, the drawbacks of
the overhead become severe.

Beside the network availability constraints, there are other reasons for favoring an asyn-
chronous approach. Privacy and security become a more and more important aspect of collab-
orative work. Although group awareness is an important benefit for supporting collaboration
and co-operation, private workspaces are essential [Olson et al. 1990]. Especially extensive
changes (like the re-organization of chapters) are usually tested in a private workspace before
presenting them to other authors. To meet these concerns, Ignat et al. [2008] have intro-
duced so-called ghost operations that are not displayed to the other users, but applied to the
document. The user acceptance of ghost operations has not been investigated, however. Ad-
ditionally, this is a kind of internal branching which is hard to reconcile in case of a later
merge.

56

4.4 Annotation of Documents

4.4 Annotation of Documents
In a document-centric view of collaboration, all editing information should be part of the doc-
ument itself. Different approaches have been presented that use annotations of the XML doc-
ument to represent version information. Most approaches are highly inspired by the domain
of temporal queries in databases [Wang et al. 2006]. The basic idea is to represent different
states of the document within the document itself.

4.4.1 Basic Idea

In general, single nodes are annotated, thus applying the tree edit model by Tai [1979]. Usu-
ally, attributes are used to annotate the node. As a simple example, the node comment could
be annotated this way: comment created="March, 2, 2010". The annotation con-
tains the operation applied and the date of that operation. This scheme is straightforward for
insert and delete operations, yet difficult to apply for update operations. To be able to revert
an update operation, the former value of a node, can be stored as an attribute. For the example
above, an update could be represented as newcomment update="March, 3, 2010",
ov="comment". For subsequent updates on the same node, this model has to be extended.
Chawathe et al. [1999] have presented a method that allows for multiple updates of a single
node, where all former values are preserved in attribute values. Respecting attribute changes
requires an even more complicated representation of the changes [Wang and Zaniolo 2008].

The example above uses a chronological date to order the changes. In this time-based
annotation model, each annotation contains temporal information concerning the validity of
the performed operation. The granularity of the timestamps should conform the edit pattern
used. For a frequently updated document, a more fine-grained resolution than dates may be
appropriate. A time-based annotation model for XML documents has been presented, e.g., by
Amagasa et al. [2000].

Another approach is to label each operation of a new version with a unique identifier. This
way, several edit operations can be part of a new version. The version identifier is usually a
number representing the evolution step. This version-based approach to annotation requires
the user (or the application) to actively define a new version. For example, this approach is
used in the domain of normative documents [Grandi et al. 2005].

An extension of the annotation model is to provide not only the initial date/version of a
change, but to define a validity period for a modified node, too. This validity period is defined
by the start and the end. For a still valid node, a virtual date (e.g. “December, 31, 9999”) or a
code word (e.g. “now”) can be used [Amagasa et al. 2000].

4.4.2 Querying States

The annotations should not be visible to the end-user. In general, the user is given the state of
the document at a given time or version. This is usually performed by a middle-ware [Grandi
et al. 2005]. Two approaches exist to extract a given state of the document. The first is to

57

4 Document Merging

use a specific query language with temporal operators, which is inspired by temporal database
queries. A solution has been presented by Nørvåg [2002]. In the second approach, the XML
document is transformed into the requested version using a transformation language like XSLT
[Grandi and Mandreoli 2000].

4.4.3 Change Tracking in Documents
One of the most prominent applications of the annotation approach is the change tracking
feature in office applications. During the editing of a document, all changes are recorded and
stored within the document.

Office applications may operate on an internal document model, which is not necessarily
equal to the document model given by the XML document format used for serializing the in-
ternal representation. The change tracking is performed on this internal representation, which
does not have a tree structure like XML. This has some implications. First, the operation types
may not conform to the tree structure. For example, ODF supports following operation types:
insert, delete and format-change [Brauer et al. 2007]. The last one is not a tree-related opera-
tion. Second, changes are tracked with the granularity of characters. Because office document
formats usually store a whole paragraph within one text node, measures have to be taken to
map this on the XML domain which is less fine-grained. Third, edits are allowed to span over
parts of adjacent subtrees, without breaking the original structure, which does not conform to
the tree structure of XML, where each node has at most one parent node.

Any tracked change is registered in a change list at the beginning of the document. This
list records the change type, the time when it was performed, and by whom. Furthermore, a
reference to the change itself is included via ID attribute. In case of a delete operation, the
deleted part is stored within the change list, too. The tracked change itself is delimited by two
nodes, called change-start and change-end, identified by their unique ID attribute.
By introducing these leaf nodes, changes spanning over adjacent subtrees can be covered. The
part in between these delimiting nodes has been inserted or formatted differently, respectively.
As the deleted part is stored in the change list, a delete operation is only delimited by one
empty node which would act as insert position in case of an inversion of the delete. The
reason for storing deletions in the change list is straightforward. This way, a removal of prior
versions and the corresponding metadata can be performed easily without parsing the whole
document.

As update operations are not supported, each character update results in an insert and a
delete operation. This reflects the presentation within the office application, where deleted
parts are striked out und inserted parts are underlined. However, this presentation makes it
difficult to capture the changes by humans [Neuwirth et al. 1992]. Additionally, the high
granularity on the character level complicates a later merging of changes, as a single character
only has a low information value.

Basically, the tracked changes should be invertible to recover former versions. However,
only inserts and deletes are invertible. In case of format changes, the former format is not
stored within the change list, hence the change can not be reverted. There are two reasons for

58

4.4 Annotation of Documents

A: "Hello, world!"
document-content

styles

body

text

p style="standard"

Hello, world!

A1: "Hello, World!"
document-content

styles

style name="P1"

font-weight="italic"

body

text

p style="P1"

Hello, World!

document-content
styles

style name="P1"

font-weight="italic"

body

tracked-changes

changed-region id="ct162024864"

format-change

change-info

creator

Sebastian Roennau
date

2010-05-19T20:53:00
changed-region id="ct156662296"

deletion
change-info

creator

Sebastian Roennau
date

2010-05-19T20:53:00
p style="standard"

w
changed-region id="ct156989080"

insertion
change-info

creator

Sebastian Roennau
date

2010-05-19T20:53:00
changed-region id="ct161192008"

format-change

change-info

creator

Sebastian Roennau
date

2010-05-19T20:53:00
text

p style="P1"

change-start id="ct162024864"

Hello, world!
change-end id="ct162024864"

change id="ct156662296"

change-start id="ct156989080"

W
change-end id="ct156989080"

change-start id="ct161192008"

orld!
change-end id="ct161192008"

Figure 4.5: Change tracking (right) has a significant overhead compared to single files (left).

59

4 Document Merging

this behavior. First, format descriptions are stored in a separate style list at the beginning of the
document. Changes on this style list are not recorded by the “track changes” feature. Second,
a format change may be applied at a higher hierarchy level, e.g., paragraph level. Still, only
the text parts affected by this change would be marked by the format-change delimiters.

Figure 4.5 shows an example. A document A has been changed from “Hello, world!” to
“Hello, World!”, which includes a content change by capitalizing one letter and a markup
change due to an italic fontface. The format change has been applied using the style-name
attribute of the corresponding paragraph node p. The tracked changes do not capture this, they
only mark the parts that have been affected by this change, resulting in two change-regions
before and after the character update.

4.4.4 Merging Annotated Documents
Including all editing information within the document itself is basically contradictory to merg-
ing. If the document is referred to as an object, it cannot be at two places (i.e. editing pro-
cesses) at a time. Nevertheless, merging is an important task for annotated documents, too.

Rosado et al. [2007] have proposed to include the graph of the whole document evolution
within the document, including branches. This allows for representing parallel editing pro-
cesses within an annotated document. However, no solution for merging of these parallel
versions is presented. To solve the merging issue, Fontaine [2002] has combined the annota-
tion approach with an XML differencing engine. This way, a reliable merge can be performed.
On the other hand, this approach is not able to handle parallel branches. A similar approach
is performed by office applications. A code review of OpenOffice shows that the content (i.e.,
the text) is merged on the application level by differencing the two documents to merge.

4.4.5 Discussion
The annotation of documents solves a problem common to all XML differencing approaches.
As the changes are in-lined within the document, the addressing does not matter. Changes in
other regions of the document do not affect the correctness of the actual change, which is a
major benefit compared to other approaches relying on path descriptions for addressing.

On the other hand, all editing information is tightened to the document. This has two signif-
icant drawbacks. First, the space overhead might become considerable, especially for often-
changed documents. One might argue that other approaches have to store all this information,
too. But for annotated documents, all the changes have to be transferred every time when the
document is exchanged. A separation of the current version and the history of a document is
not possible. Second, the annotation might cause severe security and privacy issues. Espe-
cially tracked changes in office applications collect metadata about the author and the time the
change was performed, The unwanted side-effects of undisclosured internal workflows may
be unpleasant.

Except for office documents, the annotation is not part of the document grammar. An anno-
tated document will most likely not conform to that grammar, as the annotations are not part

60

4.5 Other Approaches

of it. To verify the validity of a document, a single version has to be extracted. Otherwise, the
corresponding grammar must be adapted to the annotation performed, as proposed by Bertino
et al. [2002] However, this is time-consuming and error-prone, and therefore not a viable way
in my opinion.

An interesting question arises when inspecting how changes are discovered, before the doc-
ument can be annotated. Annotation approaches rely either on a state-based diff run [Fontaine
2002] or an operation-based approach, e.g. with the change tracking of office documents. Es-
pecially the first one requires additional tools to track the changes and map them onto the
annotation model. In conclusion, the annotation approach is not very suitable for document
merging. All approaches offering merge support rely on some kind of differencing run to
estimate the operations to merge.

4.5 Other Approaches

Research on the structured evolution of documents has been mainly driven by the needs of soft-
ware engineering. Version control systems like RCS, CVS, or Subversion have been mainly
designed to support the software development process [Pilato 2004]. In the evolution of soft-
ware, branching and merging are every-day tasks, with some special characteristics. For ex-
ample, if the name of a procedure is changed, all invocations of that procedure have to be
updated. Most of the research on document merging focuses on the needs of source code,
which is definitely out of scope of my thesis. Mens [2002] has presented a concise overview
of the research on software merging, which is a good starting point for further reading.

Other research on document merging is highly inspired by the domain of relational databases.
Gropengießer et al. [2009] have presented a novel transaction scheme that applies the transac-
tion model of Gray [1978] to XML. This data-centric approach is applicable to ordered trees,
but relies on an unordered XML model by design. Therefore, this approach is not well suitable
for the domain of XML documents.

4.6 Conclusions

Merging documents is a complex yet important task. The main challenges in merging are the
addressing of changes and the handling of conflicts. Any change within a document affects the
paths of all subsequent parts of the document. Other edit operations that address these parts
become invalid due to the resulting offset. Conflicts can arise on a syntactic and semantic level.
Only syntactic conflicts can be handled by common software tools. The automatic resolution
of conflicts is error-prone; usually, the user is prompted for a decision on ambiguous merges.
Semantic conflicts have to be resolved manually by proof-reading the document.

Several tools provide a merge capability for documents. Most of them try to merge using a
state-based approach, operational transformation, or by annotating the document with version
information. In this chapter, I have presented these approaches, including their assets and

61

4 Document Merging

drawbacks.
Operational transformation is mostly suitable for on-line collaborative editors. It is designed

to frequently merge only few changes. To avoid a complexity trap, a server-side transformation
is appropriate for many concurrent users. Operational transformation is also able to support
disconnected, i.e. asynchronous operations on the document. However, complexity becomes
an issue in this case. Additionally, operational transformation bonds the user to a specific
application, which does not match the intended-use case. Koch and Koch [2000] have stressed
the importance of a flexible composition of different tools as major prerequisite for the user
acceptance of collaborative systems.

In the annotation approach, all changes are in-lined into the document. This is a major
benefit, as the problem of addressing the changes is avoided. A conventional differencing tool
is used to merge annotated documents. The annotation approach has some drawbacks, as the
whole version history is carried with each transmission of the document. First, this is not very
efficient in terms of space, especially for frequently updated documents. Secondly, privacy
and security questions arise from it. The annotation is performed using an on-line change
tracking similar to an collaborative editor or by comparing document states using a diff tool.

Despite several sophisticated merge approaches (especially for software source code), the
state-based syntactic merge of documents is still the most common method for merging. In a
state-based approach, two document versions are compared with respect to their nearest com-
mon ancestor. Another approach is to enrich the edit operations of a delta with the syntactic
context of each operation. Both approaches allow for a simple yet reliable merge of document
versions. However, XML-aware applications using this model are not available yet.

The presented approaches are not mutually exclusive. Rönnau and Borghoff [2009] have
shown how to map the annotations of tracked changes onto a state-based versioning model.
Fraser [2009] has developed a collaborative editor using state-based differencing and merging
tools. All approaches have their benefits. But in terms of a wide applicability, the state-based
approach has a definitive advantage in my opinion. Therefore, I base my work on this model.

62

Part II

A Context-Sensitive Approach to XML
Change Control

63

5 The XCC Framework

Change control of documents comprises the aspects of document differencing, patching, and
merging. The last chapters have shown that the change control support for XML documents
is not mature yet. Existing approaches either concentrate only on specific aspects of change
control (e.g. differencing) or do not offer the efficiency and reliability that is required for
every-day use.

In this thesis, I present a first comprehensive approach to state-based change control of
XML documents. In this chapter, I present a framework that enables users and applications
to control the evolution of XML documents using a context-oriented approach. I start by
describing the basic idea of the context-orientation. Afterwards, I sketch the architecture of the
whole framework. Finally, I describe some aspects of the implementation of the framework.
The different components of the framework are described in the following chapters.

5.1 Basic Idea

The design of a change control architecture depends on the intended use-case. Here, I describe
the collaboration model which I have in mind during the design of my framework. Deriving
from this model, I decide to use a context-oriented merge approach, which I reason for after-
wards. Finally, I briefly describe the representation of the syntactic context in my approach.

5.1.1 Intended Collaboration Model

Collaboration across organizational borders usually implies the absence of a common col-
laborative system. Each participant may have his or her own collaborative system, with the
possibility to grant the other participants several access rights. However, an overarching col-
laborative system with a corresponding common concept for roles and privileges will most
likely not exist. If the system of one participant is opened towards the user users, all other
participants would have to abandon their own systems. Additionally, security issues and
inner-organizational policies may prohibit granting foreign participants comprehensive access
rights. These issues have lead to the accepted practice of exchanging documents via e-mail or
USB pen-drive. Apparently, this is a state-based collaboration model.

The exchange of document versions via e-mail is easy, but the version tracking is cumber-
some. In contrast to closed collaborative systems, where the server knows about each access
to a document, the highly distributed collaboration via e-mail cannot be tracked automati-
cally. Therefore, organizational solutions are established by the participants. For example, the

65

5 The XCC Framework

changes have to be marked, or written separately as change-wish-list. The user who merges
the document versions has to perform the merge manually, which is both time-consuming and
error-prone.

5.1.2 Scope

My goal is to support this ad-hoc collaboration by a framework for merging document ver-
sions. Additionally, the framework shall be applicable to closed collaboration systems as well.
Among all merging approaches presented in Chapter 4, state-based merging and the annotation
of document versions are the only ones working outside a closed environment.

The annotation approach needs all changes to be tightened to the document, which is ineffi-
cient in the context of the collaboration model as described before. Therefore, this approach is
excluded as solution. Among the state-based approaches, three-way differencing is a reliable
solution for merging. However, it requires the nearest common ancestor of two document
versions to be available. This cannot be ensured in the described scenario. First, it might be
physically unavailable. Second, it might be unknown, which version actually is the nearest
common ancestor. Among the possible solutions, conventional differencing remains. Two-
way differencing and patching have not been applicable in merge scenarios in their initial
design. The merge-capability has been achieved by storing the syntactic context of an edit
operation, introduced by Davison [1990].

The freedom of the collaboration model is one of the reasons for the prevailing success of
the diffutils1. The other one is the simplicity of its usage, altogether with the reliability of
the merge result. The scope of my thesis is to develop a framework for XML differencing,
patching, and merging that provides an ease-of-use and reliability as the diffutils do.

5.1.3 Mapping the Line-Based World onto XML

The basic idea of my approach is to map the context-orientation used in the line-based diff-
utils onto XML documents. In this model by Davison [1990], for each each operation, the
surrounding lines are stored within the delta. This allows the subsequent patch tool for per-
forming a reliable merge taking this syntactic context into account (see Section 4.2.2). The
main difficulty of representing context in XML is the two-dimensional structure of the tree.
Where the line-based domain offers a “natural” representation of the context, a straightfor-
ward solution for XML does not exist. A first approach to mapping the syntactic context onto
the domain of XML has been performed by Mouat [2002]. However, this model is partially
inconsistent, which I will discuss in Section 6.5.4.

In my approach, the syntactic context of an edit operation is represented using a so-called
context fingerprint. This fingerprint contains the hash values of the adjacent nodes in document

1The GNU implementation of the line-based diff and patch tool is called diffutils, too. I use this term to
refer to the framework of differencing and patch tools, including its programming interface. If not indicated
otherwise, this implies no restriction to the GNU implementation.

66

5.2 Architecture

order. Due to the hashing, the fingerprints remain quite small. The document order is used to
cover a wide range of XML document types. This is especially motivated by the document
analysis which I have performed in Chapter 2. I will discuss this issue in more detail in
Section 6.5.4, too.

During a subsequent merge, the fingerprint is used to find the correct path of an edit oper-
ation. The merge is performed by the patch tool and can be controlled by several parameters.
For example, sub-optimal results may be accepted in case that parts of the context do not
match. Additionally, a conflict detection prevents the deletion or update of previously edited
parts of the document.

Syntactic context is a commonly used for merging in different domains. As an example, it
is a common approach in software source control [Mens 2002] or model merging [Lai 2009].

5.2 Architecture

The architecture of the framework is closely coupled to the provided capabilities and aims to
provide a simple yet powerful access to the components of the framework. The framework
itself is called XCC framework. It consists of a delta model, a differencing algorithm, and
a patch algorithm with merge capabilities. These components are explained in the following
pages. Afterwards, I will describe some implementation details, and briefly mention the tools
provided by the framework. Finally, I will describe the features of the application interface.

5.2.1 Components

XCC Delta is the delta model that builds the heart of the XCC framework. In a two-way
approach, no additional information apart from the delta can be used to decide upon an edit
operation to merge. Therefore, a delta must contain all information concerning the changes
performed. The expressiveness of the delta model directly relates to the (merge) capabilities
of the patch algorithm. Generally speaking, the delta model is the common language of a
change control framework. The differencing algorithm (XCC Diff) and the merge-capable
patch algorithm (XCC Patch) are built around the delta model, providing the services of the
framework.

XCC Diff compares two document versions and represents the changes in a delta. The
design of the differencing algorithm is deduced from the document properties and the expected
modification patterns that have been elaborated in Section 2.4 and Section 2.5, respectively.
The main focus of XCC Diff is to compute the changes efficiently in terms of time and space.
Additionally, the computed deltas shall be comparably small and human-understandable. The
latter requirement is difficult to evaluate. On the other hand, the comparison of the state-
of-the-art in XML document differencing has shown that the amount of edit operations may
differ significantly (see Section 3.3). In my approach, I favor a smaller quantity of more
comprehensive edit operations.

67

5 The XCC Framework

Applications

XCC Diff XCC Patch

XCC Delta

Figure 5.1: The delta model builds the heart of the XCC framework. The diff and the patch
algorithm provide the corresponding functionality. Application may also directly
access the delta layer.

XCC Patch applies the edit operations contained in a delta to an existing document. In
a linear evolution model, the delta is only applied to the file the delta has been computed
for, thus creating the expected document version. In a merge scenario, however, the delta is
applied to another version of the document. Here, the edit operations may not be applicable.
The behavior of XCC Patch can be controlled via different parameters. They control the
degree of the acceptable merge quality, as well as the behavior in case of conflicts.

Figure 5.1 shows the architecture of the XCC framework at a glance. The diff and the patch
tool exchange information using the delta access layer. In this context, the diff tool creates
deltas, which can be processed by the patch tool. Applications can interact with both tools as
well, or with the delta access layer itself. The latter one enables the possibility for applications
to create conforming XCC deltas themselves, or to merge an existing delta in their respective
application context.

5.2.2 Implementation

The XCC framework has been implemented in an evolutionary process by different program-
mers. The first approach has been performed by Pauli [2008]. Here, only the patching aspects
have been implemented using Java and the XOM object model2. This implementation has
laid the basis of the evaluation of the merge quality [Rönnau et al. 2008]. Philipp [2008] has

2http://www.xom.nu

68

5.2 Architecture

performed a re-engineering of the existing implementation to achieve a better runtime. Us-
ing a new implementation architecture based on Java and DOM, he was able to achieve an
increase of efficiency by an order of magnitude. Due to its advantages, I will briefly describe
this implementation in the following.

Nodes are compared using their node value, which is the hash value of the normalized
representation of the node (see Section 2.2.2). Nodes may be accessed several times during
differencing and patching. To avoid a re-computation of the hash value at each access, the
implementation uses a wrapper class around the DOM. The hash value is computed during
the first access to the node. Afterwards, it remains in main memory, attached to the node.
Therefore, a later access to the node does not increase the runtime. In case that the node is
changed, the hash value is re-computed accordingly. One might argue why the nodes are not
hashed during parsing while starting up. Two reasons enforce the presented approach. First,
the differencing and patching algorithms may be initialized either by giving a path to a file,
or handing over a DOM tree. In case of the latter one, the document has already been parsed.
A second parse run would need additional time, which directly leads to the second reason.
During patching, only the parts of the document that are targeted by an edit operation need to
be hashed. A comprehensive hashing does not need to be performed, and would in turn lead
to a higher runtime.

The implementation of the differencing algorithm has been performed by Philipp [2009].
The architecture of the implementation is closely related to the architecture of the framework
itself and contains the differencing and the patching engine, as well as an XML access layer.
The XML access layer relates to the XCC Delta layer in the framework architecture. It pro-
vides all features of node addressing, hashing, and fingerprint generation. The whole XCC
framework is packed within one JAR archive. This way, an installation of different libraries is
not necessary. As the basic libraries for XML handling and the DOM representation are part
of the standard installation of the Java Runtime Environment, the XCC JAR is self-containing
and works out of the box.

5.2.3 Tools
The XCC framework provides a command-line tool, as well as a graphical user interface for
an easy drag-and-drop access to the differencing and patching algorithms.

The command-line tool runs in two modes, which are selected via shell parameter. It can act
either as diff or as patch tool. In both modes, the tool offers a variety of different options. I will
not describe these options in detail at this point. They are described within the corresponding
Chapter later on. The command-line tool provides a user interface familiar to users of the
conventional diffutils.

Outside the domain of software development, users are not used to the command-line shell.
Therefore, the XCC framework additionally provides a simple graphical interface that allows
for differencing and patching documents using a drag-and-drop user interface. This interface
offers the same options as the command-line tool. The interface for differencing and patching
is the same. It provides three spots – two for XML documents and one for a delta. A user may

69

5 The XCC Framework

The documents can be dropped
here.

The delta can be dropped here.

Here, the selected options and
the results of a diff or patch run
are displayed

The output of the differencing
and patch runs is logged.

Figure 5.2: XCC provides a graphical user interface that allows for differencing and merging
documents using drag-and-drop.

drop files on two of them. If two documents are given, the corresponding delta is computed. If
in turn a delta and a document are given, a patch is performed. Figure 5.2 shows a screen-shot
of the GUI after a patch run. Here, a merge has been performed. Not all edit operations of the
delta have been applied. I will discuss the meaning of such a merge result in Section 8.5 and
Section 9.4.

5.2.4 Application Interface

Change control of single documents on a small scale can be ensured by the proposed tools. On
a large scale, however, more sophisticated applications are needed to ensure an efficient and
user-friendly change control. This may incorporate version control systems, auto-versioning
repositories, and many more.

To allow those applications for using the XCC framework, an application programming
interface (API) is provided. The framework provides following functionality (in alphabetical
order):

• Addressing of nodes using the simplified addressing scheme defined in Section 2.2.5

• Computing of context fingerprints for single nodes and operations

• Differencing document versions

70

5.2 Architecture

• Hashing of single nodes and complete subtrees

• Merging of documents with the possibility to treat each edit operation individually.

• Patching of documents

The applications may pass an XML document to the framework either as path to a file or as
already parsed object model. The latter possibility is important to directly modify a document
within the application context, without being forced to serialize the document to its file rep-
resentation. Different applications already use the XCC framework. I will present them in
Section 11.3.

71

5 The XCC Framework

72

6 A Context-Oriented Delta Model
A key prerequisite to a delta-based change management of documents is a consistent delta
model. The most important aspect of a delta model is the definition of the change represen-
tation between document versions to be able to reconstruct subsequent document versions.
Prior work on XML versioning mainly focused on the question of computing the delta. The
question of the delta model itself, mostly in terms of merge-ability and reliability, has mostly
been disregarded yet.

In this chapter, I present a context-oriented delta model for XML documents. It is based
on the findings gathered from the analysis of XML documents performed in Section 2.4. The
delta model shall cover a wide range of applications, not being bound to a specific XML
dialect. The delta is defined to ensure enough information allowing for reliably merging doc-
ument versions, without being gossipy. Human-readability of the output is a second design
principle. The user should be able to understand the meaning of an edit operation without tool
support. This is mostly important in loosely coupled collaborative environments where the
availability of tools cannot be guaranteed at all times.

The remainder of this chapter is structured as follows: First, I give a formal definition of
diff, patch, and deltas. Afterwards, I describe the edit operations used in my delta model
and motivate them. I introduce different dependencies that can arise between edit operations,
followed by a discussion of the implications deriving from my definition of the delta. After
that, I introduce my notion of syntactic context. Finally, the aggregation and inversion of
deltas are shown.

6.1 Definitions
Up to now, I did use a non-formal description of differencing, merging, and deltas. At this
point, I introduce a more rigorous formal model. From this model, dimensions for the correct-
ness of a differencing and merging tools arise.

6.1.1 Equality of Documents
First, the equality of document versions has to be defined. Loosely speaking, two documents
are equal if their structure is the same and all corresponding nodes have the same node value.

A = A1, if and only if (∀n ∈ A : (∃n1 ∈ A1 : n = n1∧ path(n) = path(n1)))∧
(∀n ∈ A1 : (∃n1 ∈ A : n = n1∧ path(n) = path(n1))) (6.1)

73

6 A Context-Oriented Delta Model

As this definition relies on the definition of equality for node values (see Section 2.2.2), the
equality of documents is estimated upon the normalized representation of the nodes. This en-
sures robustness against different encoding formats, name-space representations, and attribute
orderings.

6.1.2 Diff and Patch
Two versions of a document are compared by a diff-function, which computes the differences
and creates a delta δ containing the edit operations to construct one document version from
the other one. The basic set of all edit operations is denoted as ∆, with δ ⊂ ∆. The signature
of the diff function is as follows:

diff : A×A→ ∆ (6.2)

In the following, the term delta is used synonymously for a δ describing the differences
between two document versions. The counterpart function of diff is called patch. It constructs
a document version out of the other one by applying the edit operations of a delta:

patch : A×∆→ A (6.3)

Thus, given a correct diff and patch algorithm and A ∈ A, following equations apply:

diff(A,A) = /0 (6.4)

patch(A, /0) = A (6.5)

Obviously, a diff must not detect a change in two equal documents. Additionally, patching
a document with an empty delta must not affect the document. To turn this argument on its
head, for two differing documents, the delta must contain all information needed to describe
the differences. Therefore, for two document versions A,A1 ∈ A, with A 6= A1, following
equations apply:

diff(A,A1) = δ1, with δ1 6= /0 (6.6)

patch(A,δ1) = A1 (6.7)

This ensures the patch function to be the counterpart function of diff.

6.1.3 Edit Operations
A non-empty delta consists of edit operations, conforming to the set property. Thus, the
ordering of the operations is irrelevant. An operation must occur only once within a delta.
This definition differs from the definition of edit scripts significantly, even if the terms delta
and edit script have been used almost synonymously up to now. I will discuss the impact
resulting from the different definitions and my motivation for introducing a novel definition in
Section 6.4. Formally, an edit operation is denoted by a tuple.

op ∈ ∆ : (type,path,v,v′) (6.8)

74

6.1 Definitions

The first item refers to the type of the edit operation, which can turn into insert, delete, and up-
date. The properties of the different operation types will be described in Section 6.2, including
the handling of moves. The path refers to the point where the edit operation shall be applied.
I will discuss the addressing scheme in Section 6.4. The entry v contains the new value intro-
duced by the edit operation. The former value is represented by v′. The representation of the
value depends on the operation type and will be described in Section 6.2. By storing v and v′,
the edit operations are complete in terms of Marian et al. [2001], thus allowing for reverting
changes.

6.1.4 Tree Sequences

A tree sequence is a list of adjacent subtrees rooted on the same hierarchy level. All root
nodes of a tree sequence share the same parent node. The first root node is called head, the
remaining nodes tail. The head of a single node is the node itself, the tail is empty. A tree
sequence can be regarded as ordered forest in terms of graph theory.

6.1.5 Atomicity

Each edit operation is atomic. An edit operation is applied completely or rejected. In this
context, a complete application means that the new value v is imposed on the document to
patch. A partial application of an operation must not occur, which means imposing a subset
of v. Note that this definition does not imply a statement on the handling of v′. I will discuss
this issue in the context of conflicting edit operations in Section 6.3.3.

6.1.6 Uniqueness

Each edit operation within the same delta will be performed at most once. An edit operation
must address clearly one path. An edit operation must not address multiple paths. This defi-
nition distinguishes the delta model from document transformation models like XSLT [Clark
1999] or XUpdate [Laux and Martin 2000]. In these models, an operation may be applicable
on multiple nodes.

6.1.7 Symmetry

Each delta is invertible. That requires that for each edit operation op, a counterpart operation
op−1 exists.

∀op ∈ δ : (∃op−1 ∈ ∆ : patch(A,δ ∪{op−1}) = patch(A,δ \{op})) (6.9)

An inverted delta allows for the reconstruction of a former document version. The inversion
of a delta requires symmetrical edit operations.

75

6 A Context-Oriented Delta Model

6.2 Edit Operations

Edit operations reflect the expressiveness of a delta model. In this section, I describe the gran-
ularity used in my delta model, before describing the different edit operation types. Finally, I
discuss possible other operation types and granularity models.

6.2.1 Granularity of Changes

My delta model supports inserts, deletes, and moves with a granularity of subtrees or tree
sequences, respectively. Updates point to single nodes arbitrarily within the tree. The defini-
tion of the single operation types emerges directly from the assumptions on the modification
patterns of documents which have been elaborated in Section 2.5. I will repeat the five as-
sumptions that affect the granularity of changes:

Assumption 2.1: A leaf node may be replaced by a subtree.

Assumption 2.2: Adjacent subtrees may be inserted or deleted.

Assumption 2.3: Structure-preserving changes (attribute changes) are a frequent operation.

Assumption 2.4: Structure-preserving changes (text changes) are a frequent operation.

Assumption 2.5: Subtrees are often re-arranged.

The delta model meets the first assumption by allowing for the insertion and deletion of a
subtree, where a leaf node is a subtree with only one root element. The second assumption is
met by the ability to express the insertion and deletion of tree sequences. Update operations
represent both attribute and text changes, thus meeting the third and the fourth assumption.
The re-arrangement of subtrees mentioned in the last assumption is expressed by the move
operation. In general, my delta model resembles the delta model by Cobéna [2003]. However,
his delta model is not able to address tree sequences.

6.2.2 Insert

An insert operation addresses a subtree or a tree sequence. The path of an insert operation
points to the path where the root of the inserted subtree will be placed after patching. An
already existent node at this address and all of its following siblings will be shifted to the
right. A subtree designated to be inserted as the last element of a subtree would also refer
to the path where it will be placed, even if the path does not exist in the original document
already. In an insert operation, v is empty, whereas v′ contains the subtree or tree sequence to
insert. The counterpart operation of insert is delete.

76

6.2 Edit Operations

6.2.3 Delete

The delete operation is the counterpart operation of an insert. It addresses a subtree or a tree
sequence. It points to the path where the root of the subtree to delete is placed before patching.
In a delete operation, v contains the subtree or tree sequence to delete, v′ remains empty. As
a delete operation may address single subtrees and tree sequences as well, the question arises
how a patch procedure knows which nodes are to be deleted. They can be estimated by taking
v into account. As v contains the part of the document to be delete, the nodes to delete directly
emerge from that.

6.2.4 Move

Moving subtrees or tree sequences is more difficult than inserting or deleting them. This
results from the fact that this operation points to two paths: the first for the source of the
move, the second for the target. To avoid an extended notation, I represent a move operation
by linking a delete operation with a congruent insert operation.

Definition 6.1 A delete operation op1 and an insert operation op2 are congruent, if and only
if vop1 = v′op2

.

This definition ensures that the targeted subtrees or tree sequences are identical. Both opera-
tions receive an attribute containing a common unique identifiers1. As a move is atomic, too,
the patch application has to ensure that the linked edit operations are either both applied or
both rejected. The counterpart operation of a move is a move again, where both operations
have been inverted.

6.2.5 Update

In contrast to the other edit operations, an update operation may address a single node arbi-
trarily within a tree. The path points directly to the addressed node. The former value of the
node is stored in v, the new value in v′. The counterpart operation of update is an update again.
The main intention of an update is to represent attribute changes in element nodes, or content
changes in text nodes. An update is a structure-preserving edit operation.

6.2.6 Discussion

Insert, delete, and update are the basic operations in tree editing. As a re-arrangement of
subtrees may be likely, I have introduced the move operation, as, e.g. Chawathe et al. [1995].
However, other operation types would be possible either.

1In the current implementation, the uniqueness is ensured by using the system time in nanoseconds. I assume
the probability of collisions to be in a negligible magnitude.

77

6 A Context-Oriented Delta Model

Barnard et al. [1995] have defined a swapping operation, exchanging two subtrees with
each other without changing them. This is a special case of re-arranging subtrees that can be
expressed with a move operation, too.

Chawathe and Garcia-Molina [1997] have introduced the copy operation that expresses the
multiplication of a subtree across the document. As their delta model demands for symmetrical
edit operations, too, they have introduced a counterpart operation to copy, called glue. A glue
represents the collapsing of two identical subtrees into one. The motivation for the copy
operation may become apparent, but the glue operation does not reflect a “natural” editing
action in a document. Additionally, copy and glue demand for a more complicated notation,
which in my opinion hinders the human-readability of that operation. For these reasons, my
model does not support copy and glue operations.

Several new edit operations have been introduced by Iorio et al. [2009] that aim to reflect
the natural editing process on documents. They have defined a split operation that breaks a
text node into two nodes. The counterpart operation is join. Once again, the readability of
these operation is questionable. They have also defined a upgrade and a downgrade operation.
These operations correspond to the node-centric insert and delete operations defined by Tai
[1979]. The arguments for using a subtree-oriented granularity of insert, delete, and move are
apparent. However, there are also reasons for supporting the node-centric granularity by Tai
[1979]. For example, a paragraph may be turned into a subparagraph by adding a parent node
within the tree. This would correspond to a node insert [Tai 1979] or a downgrade operation
[Iorio et al. 2009]. In my model, this change would be represented by a move or a pair of
an insert and a delete operation, which is obviously less meaningful. On the other hand, this
example does not justify to switch to a node-centric granularity, which would lead to far more
edit operations within a delta, precluding a human-readability.

The Microsoft XML Diff tool presented in Section 3.3.2 uses a hybrid model that allows for
subtree-oriented insert and delete operations, as well as for node-centric operations. This way,
the benefits of both approaches are combined. However, a node-centric and a subtree-oriented
operation cannot be represented within one operation type in my delta model. This results
from the merge-capability that is not given in the Microsoft XML Diff tool, as following
example shows. Given a single node to delete within the tree with child nodes, the patch
algorithm cannot decide whether the children have been there before, or whether the delete
conflicts (see Section 6.3.3). To avoid this hazard, my edit model would need additional insert
and delete operations that are only defined on single nodes. As this complicates the edit model
significantly, I decide to not support node-centric insert and delete operations.

6.3 Dependencies

Edit operations may change the structure of the tree, thus affecting the paths to existing nodes.
In this case, the nodes and the corresponding edit operation interfere. A delta may contain an
arbitrary number of edit operations. However, they may not address the same nodes to avoid
overlapping edit operations. Finally, conflicts can arise during patching. In the following,

78

6.3 Dependencies

these notions are defined. The section ends with an example showing the implications of the
definitions.

6.3.1 Interfering Edit Operations

Insert, delete, and move operations change the structure of the document. An edit operation
performed on a previous part of the document may affect the paths to all subsequent nodes.

Definition 6.2 An edit operation op ∈ δ interferes with a node i ∈ A, if and only if pathop < i
and the application of op does affect the path to i.

An edit operation may only interfere with nodes located in a subtree that shares a common
parent node. Update operations are structure-preserving. Therefore, they cannot interfere
with other nodes.

Definition 6.3 For an edit operation op ∈ δ that interferes with a node i ∈ A, offset(op, i)
denotes the difference that, if added to the path to i, would result in the right path.

Note that the offset can also become negative in order of deletions.

6.3.2 Non-Overlapping Edit Operations

Edit operations in a delta must not address the same nodes. They must describe non-overlapping
parts of the documents.

Definition 6.4 Two edit operations op1,op2 ∈ δ , with op1 6= op2 are non-overlapping, if and
only if vop1 ∩ vop2 = /0∧ v′op1

∩ vop2 = /0∧ vop1 ∩ v′op2
= /0.

A delta must not contain overlapping changes:

Definition 6.5 ∀op ∈ δ : (∀op1 ∈ δ\op : op and op1 are non-overlapping).

These definitions ensure the order of the edit operations within a delta to be irrelevant, which
is directly reasoned from the set property of the delta. Non-overlapping edit operations are
therefore commutative and can be applied in any order.

6.3.3 Conflicts

A conflict arises in case that for an edit operation op∈ δ , vop does not match the corresponding
pattern found in the document to patch. As v is empty for insert operations, an insert may not
conflict. Conflicts strongly resemble to overlapping changes. However, conflicts arise from
changes performed outside the same delta. As conflicts only occur during patching, I will
discuss the identification and the handling of conflicts in context of the patch algorithm in
Section 8.4.

79

6 A Context-Oriented Delta Model

/

a

/0

b
/1

e
/2

f

/0/0

c
/0/1

d
/2/0

g
/2/1

h

(a) Original

/

a

/0

b
/1

e
/2

f

/0/0

c
/0/1

i
/0/2

d
/2/0

g
/2/1

h

(b) Node i is inserted at /0/1

/

a

/0

b
/1

e
/2

f

/0/0

c
/0/1

i
/0/1

d
/2/0

g
/2/1

j

(c) Node h is updated to j

/

a

/0

b
/1

e

/0/0

c
/0/1

i
/0/1

d

(d) Subtree /2 is deleted

Figure 6.1: The insertion of i interferes with node d, but not with the other subsequent nodes,
as they do not share the same parent node. The deletion in 6.1(d) overlaps with the
update of 6.1(c), which is not allowed in my delta model.

6.3.4 Examples

Figure 6.1 shows an example for an interfering edit operation and overlapping edit operations
as well. A document tree 6.1(a) is first changed by inserting node i at path /0/1 in 6.1(b).
This insert interferes with node d located at /0/1, which is pushed to the path /0/2. As no
other subsequent node shares the same parent node, this is the only interfering node for this
edit operation. In a second step, node h at /2/1 is updated to j in 6.1(c). The third edit
operation in 6.1(d) deletes the subtree rooted ad /2. This edit operation would overlap with
the previous update operation. Therefore, the edit operations in 6.1(c) and 6.1(d) cannot be
represented within one delta. If both edit operations would be represented by different deltas
and applied subsequently, this would result in a conflict.

6.4 Set-Based Delta vs. Edit Script

Usually, the output of a diff algorithm is stored as an edit script. This edit script is used to
reconstruct a document version sequentially. Before using a discrete patch tool, edit scripts
have been applied by the editing application itself. For example. the classical editor ed uses
a command language for processing text that has been used for the application of edit scripts
[MacKenzie et al. 2002].

80

6.5 Representing Context in XML

Within an edit script, all operations are addressed assuming the previous operations having
been applied. This design is appropriate when one can ensure that the edit script is only applied
to the document version it was computed for. However, I expect my delta to be applied on a
document version different from the version the delta was created upon. This has two major
implications. First, the paths of the edit operations may point to a wrong path, resulting from
offsets from foreign changes, which corresponds to interfering edit operations. Second, some
edit operations of the delta may not be applied, just in case that the correct path cannot be
found by the patch algorithm. In both cases, the relative offsets between the edit operations
may be broken, requiring a re-computation of the paths of the edit operations.

In my approach, all edit operations are addressed with respect to the original version of
the document, on which the delta was created upon. This design is directly derived from the
set property of the delta. By this, rejected edit operations from the delta cannot affect the
addressing of subsequent edit operations.

The set-based delta has a second big advantage that appears during interactive merging. The
user may decide upon ambiguous edit operations in an arbitrary order. This enables the user
to navigate through the whole document to estimate the impact of an applied edit operation. I
will present a corresponding interactive editor in Section 11.3.1.

6.5 Representing Context in XML

Line-based text documents can be regarded as a one-dimensional entity, i.e., a sequence of
lines. The definition of the syntactic context of an edit operation on this kind of documents by
Davison [1990] is straightforward: take the surrounding lines and store them within the delta.
This definition was made with source code in mind, where code lines are usually limited to 80
characters2. Mapping the syntactic context onto XML documents raises two questions. First,
how to represent the context within a tree, as it is a two-dimensional entity. Second, how to
deal with XML nodes that can have an arbitrary length.

In my approach, I decide to use the document order for the representation of the context,
including the node value to normalize the node lengths (and encodings). This results in the
definition of the context fingerprint, which shows a standard behavior at the borders of the
document, where no context nodes exist. Afterwards, I present two example fingerprints. I
discuss my definition related to the context notion of Mouat [2002] at the end of this section.

6.5.1 The Context Fingerprint

The context of an edit operation is stored in a so-called fingerprint, which is a sequence of the
values of all nodes within a given radius r (r≥ 0) around the edit operation in document order.

Before defining the fingerprint, I introduce Afingerprint, which denotes the document A where

2In fact, this limitation is not a technical one, but most coding guidelines limit the line length.

81

6 A Context-Oriented Delta Model

every node of a delete operation is removed, except its head:

Afingerprint
def
= A\tail(v) (6.10)

This definition ensures that the fingerprint does not refer to the parts to remove within a delete
operation. The fingerprint of a node i is a sequence, ordered by the distance relating to i:

fingerprinti[r]
def
= {value(j)},where j ∈ Afingerprint ∧ 0 < |dist(i, j)| ≤ r (6.11)

The element of the fingerprint with distance d relating to i is denoted as fingerprinti[d]. The
value of fingerprinti[0] is referred to as anchor. The value of the anchor depends on the type
of the edit operation:

fingerprinti[0]
def
=

{
value(head(v′)) for insert operations
value(head(v)) otherwise

(6.12)

For a delete operation, the anchor contains the head of the subtree or tree sequence to delete.
The anchor of an update operation is the node value before the update. During a patch, the
anchor can be used to detect conflicting updates as well as for finding the right offset for a
delete operation. For insert operations, however, no former value v is given. Using the head
of v′ avoids an empty anchor for insert operations and allows for a simpler inversion of these
operations (see Section 6.6.1).

The fingerprint has a size of n = 2r+1, with the anchor node in the middle of the sequence.
According to the definition of the fingerprint as a sequence, hash values may occur multiple
times. This is important to represent repeating node values, which are common in XML
documents.

The fingerprint basically does not contain any information about the path of the edit op-
eration within the document tree. The type of the edit operation does not emerge from the
fingerprint as well. Additionally, the fingerprint may not only be computed for edit opera-
tions. Basically, each node of an XML tree has a fingerprint. In this case, however, Afingerprint
does not need to be computed – using A is sufficient.

6.5.2 Fingerprinting Document Borders

In case there are less than the required number of nodes available to fill the fingerprint, a
special “null value” is used to represent the document borders. Appendix B decries the com-
putation of the null value.

6.5.3 Examples

Two examples shall illustrate the computation of the context fingerprint. Figure 6.2 shows a
simple tree.

82

6.5 Representing Context in XML

/

a

/0

b
/1

e
/2

f

/0/0

c
/0/1

d
/2/0

g
/2/1

h

i

(a) Node i shall be inserted at /1 with its tail

/

a

/0

b
/1

e
/2

f

/0/0

c
/0/1

d
/2/0

g
/2/1

h
null

f

(b) The subtree at /2 shall be deleted

Figure 6.2: The anchor of an insert operation contains the head of the tree sequence to insert.
For a delete operation, the subtree is not represented in the fingerprint. At the end
of the document, a null value is used to fill the fingerprint.

First, a node sequence shall be inserted at path /1 in 6.2(a). The anchor is highlighted in
gray and contains the head i of the tree sequence3. The context nodes are taken from the tree
in document order, thus leading to the fingerprint c,d,i,e,f. This fingerprint has a radius
of 2 and a size of 5. Note that the fingerprint itself does not show whether i is inserted as
single node or whether it has a subtree. This can only be gathered from v of the corresponding
edit operation.

The delete operation shown in 6.2(b) exemplifies the use of Afingerprint and the behavior at
the document borders. The subtree rooted ad /2 shall be deleted. Therefore, its descendants
have to be removed to compute Afingerprint. The root of the subtree is stored as anchor of the
fingerprint. As the document reaches its borders, null nodes have to be used to fill the docu-
ment. On a later application of the delta, they would indicate that the edit operation shall be
applied at the end of the document. The resulting fingerprint would be d,e,f,null,null.

6.5.4 Document-Order vs. Parent-Child Relationship
A first attempt to define a context-aware delta format for XML has already been performed.
Mouat [2002] has presented a delta format, called Delta Update Language (DUL). In DUL, an
edit operation may contain the siblings of the node addressed by the edit operation, as well as
the parent and children nodes. However, DUL raises some questions.

First, the context shall be symmetric, i.e., the same amount of nodes should be stored in
either direction. My context fingerprints demand to be symmetric, too. However, the handling
of the document borders is not defined in Mouat’s delta model. Additionally, a subtree basi-
cally contains far less nodes, but only nodes with the same parent node are considered to be

3To be precise, the anchor contains the value of i. This notation is used for a better readability throughout all
examples on fingerprints.

83

6 A Context-Oriented Delta Model

siblings. The DUL specification does not cover the case where not enough siblings are present
to fill the context. The same problem arises for leaf nodes. A tree is far larger in direction
to the leaves than to the root. The question, how a symmetry should be ensured in a parent-
children relationship, especially for edit operations on leaf nodes is not covered by Mouat’s
delta model.

A second issue affects the inclusion of child nodes for the deletion of subtrees. The DUL
specification does not cover this special case that has lead to the definition of Afingerprint in my
delta model. Therefore, it seems that a delete operation considers the nodes to delete being
part of the operation context, which is obviously not meaningful.

Admittedly, the mentioned weaknesses of the definition could be refined, thus creating a
more precise and comprehensive specification of DUL. Nevertheless, I consider my approach
to be more appropriate for the domain of XML documents, which is motivated by a simple
example. Consider a document where the text of a paragraph is changed. Every paragraph
will likely have a similar parent node, as I assume paragraphs to be typeset in a similar way.
In that case, the parent-child relationship does not offer any helpful information for merging.
Only the content of the surrounding paragraphs (covered by the fingerprint) provides a major
possibility of distinction.

6.6 Inversion, Aggregation, and Decomposition

The inversion of deltas is an important aspect of document change control. Shen and Sun
[2002] have stressed the importance of inverted edit operations to be able to revert changes.
In case that an edit operation cannot be applied, it might be appropriate to revert the other
changes, too, even if they have already been applied. First, I show the inversion of single
edit operations, before discussing the inversion of deltas as a whole. The section ends with a
discussion on delta aggregation and decomposition. Note that I use a non-formal notation as
a thorough formalization would require a significant overhead. A more formal notation has
been proposed by Vion-Dury [2010].

6.6.1 Inverting Edit Operations

Inverting single edit operations is rather simple. Here, the advantage of defining both the
former value as well as the new value of a node becomes apparent. This allows for defining the
inversion of edit operations according to Table 6.1. A move operation is inverted by inverting
the corresponding insert and delete operation.

6.6.2 Inverting Deltas

The inversion of whole deltas for version reconstruction is slightly more complicated. In this
context, interfering edit operations have to be taken into account. The inverted delta is applied
to a document version where the non-inverted edit operations have already been applied. The

84

6.6 Inversion, Aggregation, and Decomposition

Original edit operation Inverted edit operation

(insert,path, /0,v′,fingerprint) (delete,path,v′, /0,fingerprint)
(delete,path,v, /0,fingerprint) (insert,path, /0,v,fingerprint)
(update,path,v,v′,fingerprint) (update,path,v′,v,fingerprint),

where fingerprint[0] := value(v′)

Table 6.1: Delta inversion is basically done by swapping parameters. Update operations re-
quire to modify the fingerprint for inversion. A move is inverted by inverting the
corresponding insert and delete operation.

application of these edit operations may have been interfering with nodes targeted by the
inversed edit operations. Therefore, the path stored within the inversed edit operations may
point to a wrong node.

To avoid this hazard, all paths have to be recomputed, taking the offsets caused by the
non-inversed edit operations into account.

6.6.3 Aggregation and Decomposition of Deltas

Deltas that describe subsequent changes may be aggregated into a larger one. Here, two
constraints must be considered. First, all edit operations of a delta are addressed relating to
the document version it has been computed for. Consider two deltas δ1,δ2 that describe the

evolution of a document A across the version A1 into A2 in the following way A
δ1→ A1

δ2→
A2. The paths of all edit operations in δ2 have to be adapted with respect to A to build the
aggregated delta δ1,2. Once again, this is done by respecting the offsets resulting from the
application of δ1.

The second constraint affects non-overlapping changes. Basically, a node can be targeted
by different edit operations from different deltas, thus leading to overlapping changes. To
recover a single delta with non-overlapping changes, two overlapping edit operations have to
be merged into one edit operation.

Decomposing a delta means splitting a delta up into one or more deltas. A delta δ1,2 with

more than one edit operation, describing A
δ1,2→ A2 can be decomposed into two deltas δ1 and δ2

that way that A
δ1→ A1

δ2→ A2 holds. The decomposition can be regarded as a sort of counterpart
operation to the aggregation. It is not, however, as merged edit operations are not split up
again. During the decomposition, interfering changes are an issue, too.

A delta could be decomposed in a way that divides a delta in one delta with one edit op-
eration and a second delta containing the remaining edit operations. On the one hand, the
computation is not that complex. On the other hand, a completely decomposed delta results
in single deltas containing one edit operation each. This decomposition is nearly equivalent to
the operational transformation approach presented in Section 4.3.

85

6 A Context-Oriented Delta Model

6.7 Conclusions
The ability to precisely describe changes between document versions is a key prerequisite to
a reliable change control of documents.

In this chapter, I have presented a concise state-based delta model for XML documents. It
allows for describing insert, delete, move, and update operations within a delta. It is com-
pletely invertible, which enables the user to revert changes. Additionally, deltas can be ag-
gregated and decomposed. With an aggregated delta, comprehensive changes can be consoli-
dated into a more compact representation. Decomposition allows for a fine-grained depiction
of the document evolution, resembling the edit model used in the operational transformation
approach of collaborative editors.

An important aspect of my delta model is the enrichment of edit operations with their syn-
tactic context. I have introduced the context fingerprint as an efficient representation of the
surrounding nodes around an edit operation. It enables a patch procedure to merge document
versions using deltas. I present a corresponding algorithm in Chapter 8. The computation of a
context delta using a differencing algorithm is described in the following chapter.

86

7 An Efficient Differencing Algorithm
A differencing algorithm computes a representation of the changes between two document
versions. In this chapter, I present XCC Diff, an XML differencing algorithm, based on the
delta model presented in the last chapter. The focus of the algorithm design lies on a competi-
tive time complexity, as well as on human-understandable deltas. In general, a understandable
change representation is favored over a small delta. The basic idea of the algorithm is pre-
sented in the following section, including the outline of this chapter.

7.1 Basic Idea and Outline
The goal of the diff algorithm is to compute an intuitive representation of the changes between
two document versions that should be human-understandable. I do not provide a metric for
intuitiveness and human-readability, but a simple rule applies. In general, one larger edit
operation is favored over several small edit operations in a cluster. This proposition is based
on the findings of Neuwirth et al. [1992] who performed a user study. They have stressed that
clustered changes are difficult to understand by humans.

In general, I distinguish between structure-preserving changes, i.e., update operations, and
structure-affecting changes, like insert operations. Structure-preserving changes are easier to
identify, as they affect only single nodes. Structure-affecting changes address whole subtrees,
which makes them harder to delimit by a diff algorithm. Therefore, the algorithm tries to
reduce the complexity by working off the structure-preserving changes first. The algorithm
works in three steps:

1. Find the common content by calculating the longest common subsequence of leaf nodes.

2. Identify the structure-preserving changes in the common parts.

3. Construct the structure-affecting changes for the differing parts.

During the diff run, matching nodes from both documents are identified and added to a list.
Edit operations are created for the non-matched node pairs. At the end of the diff algorithm,
each node is either part of the match list or the delta.

The key idea of the algorithm is straightforward: the longest common subsequence of all
leaf nodes is computed. The corresponding parent nodes are compared during a bottom-up
pass using a dynamic programming approach. The leaf-orientation of the algorithm is chosen
to catch the common content of the document versions. At this point, one should recall the
assumption on the amount of modifications, which has been elaborated in Section 2.5.3:

87

7 An Efficient Differencing Algorithm

Assumption 2.6: A new version of a document will likely have only few changes compared
to the size of the document.

Deriving from this assumption, I expect the length of the LCS to be close to the amount of
leaves. For these unchanged parts of the document, the corresponding ancestors have to be
checked for updates, which are easier to identify, as they are structure-preserving changes.

After the handling of the common parts of the documents, the structure-affecting edit op-
erations have to be caught. Basically, this targets insert, delete, and move operations, which
are created upon the leaf nodes that are not part of the common subsequence. In this step, the
challenge is to identify non-overlapping edit operations without missing changes. Here, I call
to mind the assumption on the distribution of the modifications within the document tree:

Assumption 2.7: Changes on a document affect only small parts of the document in general.

Deriving from this assumption, the algorithm tries to glue adjacent edit operations together
into one edit operation containing a tree sequence.

In the following, I describe these steps in more detail. In the end, I analyze the time and
space complexity of the proposed algorithm.

7.2 Finding the Common Content
The content of an XML document is stored within the leaves of the tree. The diff algorithm
has a content-centric view towards the changes in a document. Therefore, the algorithm starts
by computing the longest common subsequence of the leaves of the two trees to compare.

7.2.1 Longest Common Subsequence of Leaf Nodes
In the first step, the node values of the leaves are transformed into one sequence for each tree,
ordered by their respective document order. Basically, this step of the diff algorithm shall
identify the unchanged parts of the document.

Certainly, a comparison of leaf nodes does not allow for estimating the changes performed
on higher levels of the tree. In this context, I recall the differentiation of structure-preserving
and structure-affecting changes. Structure-preserving changes (represented by update opera-
tions) cannot be estimated by comparing the leaf nodes. However, leaf nodes allow for catch-
ing most structure-affecting changes by taking their depth into account. Therefore, the LCS
respects the depth of the leaves to compare.

Definition 7.1 Two leaf nodes l1 ∈ A1, l2 ∈ A2 match, if and only if value(l1) = value(l2)∧
depth(l1) = depth(l2).

Two leaf nodes with equal node value but differing depth do not match. This meets the case
where a node is inserted or deleted from the ancestors of the leaf, which would require an
insert and a delete operation to represent the change using the delta model presented in the
previous chapter.

All matched node pairs are added to the match list.

88

7.2 Finding the Common Content

/

a

/0

b
/1

e
/2

f

/0/0

c
/0/1

d
/2/0

g
/2/1

h

(a) Original

/

a

/0

b
/1

i
/2

j
/3

f
/4

k

/0/0

c
/0/1

d
/2/0

e
/3/0

g
/4/0

h

(b) Updated

Figure 7.1: Node k matches, although it is part of another subtree. Node e does not match, as
its depth has changed. The resulting leaf LCS is c,d,g,h.

7.2.2 Reallocated Leaves

Not all structure-affecting changes are caught by the definition above. A leaf node that has
been reallocated to another subtree on the same top-down level will be considered equal, even
if this is apparently not meaningful. This step of the diff algorithm strictly focuses on the leaf
nodes. A misinterpreted match of leaf nodes will be corrected in a later step of the algorithm,
presented in Section 7.3.3.

7.2.3 The Algorithm

Algorithm 1 shows a simplified version of this step of the differencing algorithm. An imple-
mentation of this algorithm should rely on an existing algorithm for the computation of the
longest common subsequence, e.g., on the algorithm presented by Myers [1986]. A common
LCS algorithm would compare two nodes only upon their value, thus neglecting their depth.
Therefore, it is important to add the matching criterion to the LCS algorithm.

Algorithm 1 Calculate the longest common subsequence of leaf nodes.
for all (l1, l2), l1 ∈ leaves(A1), l2 ∈ leaves(A2) : l1 matches l2 do

add (l1, l2) to matchList
end for

7.2.4 Example

Figure 7.1 exemplifies the computation of the LCS of leaf nodes. The tree in 7.1(a) is changed
by inserting a new leaf node i at path /1. Leaf node e is pushed a level down by inserting a
new parent node j. Leaf node h is reallocated from its parent f to the newly inserted node k.
Computing the LCS of the leaves between the trees shown in 7.1(a) and 7.1(b) would result
in the sequence c,d,g,h. The newly inserted node i is obviously not part of the LCS. Even

89

7 An Efficient Differencing Algorithm

if e keeps its relative position with respect to the other nodes, it is not part of the LCS, as its
depth changed due to the insertion of j. Despite having another parent node, h is part of the
LCS, as its value and depth did not change.

7.3 Identifying Structure-Preserving Changes

Updates are a structure-preserving edit operation. They may occur on parent elements of
matched leaves. This step of the diff algorithm identifies updated parent nodes and detects
reallocated leaves that must be removed from the list of leaf LCS. A dynamic programming
approach is used to avoid unnecessary computation steps.

7.3.1 Update Operations

This step of the algorithm is performed for all elements of the leaf LCS. Nodes that are not
part of the LCS have been inserted or deleted by definition. Therefore, they are part of a
structure-affecting change that is not covered by an update operation. Therefore, updates on
leaf nodes are handles by a later step of the algorithm (see Section 7.4.2).

To identify update operations, the tree is traversed bottom-up from each matched leaf of
the LCS up to the root. This traversal is performed in parallel for both trees compared. The
traversal is performed as long as the corresponding nodes match.

Definition 7.2 Two non-leaf nodes n1 ∈A1, n2 ∈A2 match, if and only if value(n1)= value(n2)
∧∃l1 ∈ descendants(n1) : (∃l2 ∈ descendants(n2) : (l1 matches l2)) ∧depth(n1) = depth(n2) .

In case that the nodes do not match, but the descendants, a corresponding update operation is
added to the delta: (update,path(n1),value(n1),value(n2)).

7.3.2 Optimizing the Tree Traversal

A tree significantly narrows towards the root. The higher the height of a node, the higher is the
probability of the node for being ancestor of many different leaves. In a naive approach, all
ancestors of all matched leaves would be compared. This approach has two severe drawbacks.
First, many unnecessary computation steps would be performed, significantly affecting the
runtime. Second, an update would be identified multiple times if the node has more than one
leaf. To avoid this, for each identified update operation, the delta must be verified whether the
update is already part of it.

To avoid these drawbacks, the algorithm tags a node as soon as it is handled. For the first
element of the leaf LCS, the tree is traversed up to the root. For the following elements, the
tree is traversed until the first already visited node is reached. This dynamic programming
approach ensures that each node is only handled once, thus significantly reducing the time
complexity. Additionally, an update cannot be identified twice.

90

7.3 Identifying Structure-Preserving Changes

7.3.3 Detecting Reallocated Leaves

As already described in Section 7.2.2, a pair of leaf nodes may be considered matching, even
if they are parts of different subtrees. This case occurred seldom during the tests of the diff
algorithm, but must be covered in order to guarantee a correct result.

The reallocated leaves are detected during the tree traversal that is performed to identify
structure-preserving changes. The detection is based on following consideration: The bottom-
up traversal will lead to an already matched node pair. A reallocated node, however, will have
other siblings in the same subtree, and a different path towards the root. Therefore, an inner
node will already be marked as visited, whereas its counterpart in the other tree has not been
visited yet. As a result, the reallocated nodes are removed from the match list. They will be
handled during the creation of structure-affecting changes in Section 7.4.

7.3.4 The Algorithm

The code of this step is shown in Algorithm 2. Each node pair is either appended to the
match list or added to the delta as update operation. Reallocated leaves are removed from the
match list. This way, they can be targeted by insert or delete operations in the next step of the
algorithm.

Algorithm 2 Structure-preserving changes on the ancestors of the already matched parts are
identified by the second step of the algorithm.

for all (l1, l2) ∈matchList do
for all a1 ∈ ancestors(l1),a2 ∈ ancestors(l2) do

if (a1,a2) has not been visited then
if a1 does not match a2 then

add (update,path(a1),value(a1),value(a2)) to δA1→A2

else
add (a1,a2) to matchList

end if
mark (a1,a2) as visited

else if (a1,a2) have been visited then
break

else if (a1,x2) or (x1,a2), with x1 ∈ A1,x1 6= a1,x2 ∈ A2,x2 6= a2 have been visited
then

remove (l1, l2) from matchList
break

end if
end for

end for

91

7 An Efficient Differencing Algorithm

/

a

/0

b
/1

e
/2

f

/0/0

c
/0/1

d
/2/0

g
/2/1

h

(a) Original

/

a

/0

i
/1

j
/2

f
/3

k

/0/0

c
/0/1

d
/2/0

g
/3/0

h

(b) Updated

Figure 7.2: Computing the structure-preserving changes. The leaf LCS is c,d,g,h. Node
/0 is detected as update and h as reallocated.

7.3.5 Example

The identification of structure-preserving changes is shown using the documents in Figure 7.2.
The non-leaf node b is changed to i, the leaf e to j, and the leaf h is reallocated to the newly
inserted node k. The first step of the diff algorithm computes c,d,g,h as longest common
subsequence of leaf nodes. The subsequent bottom-up pass is started at /0/0, because of c
being part of the match list. As no node has been visited yet, all ancestors up to the root are
visited. For the node at /0, the node values do not match. Therefore, a corresponding update
operation is created and added to the delta. For node d, the bottom-up pass stops already at
/0, as it has already been visited.

The same procedure is performed for node g. Node h, however, has been reallocated.
The bottom-up pass starts at /2/1 in the original document and at /3/0 in the modified
document. In the original document, f is the first ancestor which is accessed. It is marked as
visited from the previous bottom-up traversal for g. In the modified document, however, k is
accessed, which is not marked as match for f. Therefore, h is identified as being reallocated,
and removed from the match list created by the LCS run on the leaves.

7.4 Catching Structure-Affecting Changes

After having identified the common parts of the documents including structure-preserving
changes, the non-matched parts of the document have to be considered. These are basically
the inserted or deleted parts of the document. As they have a subtree-based granularity, the
corresponding nodes have to be joined to a subtree. However, an insert or delete on the leaf
level may also mean an update operation, which has to be identified, too. Adjacent subtrees
targeted by edit operations are glued together into one edit operation containing the whole tree
sequence. Congruent insert and delete operations are connected into a move operation.

92

7.4 Catching Structure-Affecting Changes

/

a

/0

b
/1

e
/2

f

/0/0

c
/0/1

d
/2/0

g
/2/1

h

(a) Original

/

a

/0

i
/1

e
/2

f

/0/0

c
/0/1

j
/0/2

d
/2/0

k
/2/1

l

(b) Updated

Figure 7.3: Computing structure-affecting changes. The leaf LCS is c,d,e, the update on /0
has been identified in a previous step. Node j is detected as inserted. The subtree
rooted at /2 is represented as a delete and an insert operation.

7.4.1 Constructing Insert and Delete Operations

Basically, any non-matched node is part of an insert or delete operation. A node which is only
present in the modified document is part of an insert operation, any non-matched node in the
original document is part of a delete operation.

The construction of insert and delete operations starts at the leaves, too. Any leaf that is
not part of the longest common subsequence of leaves is considered to be either inserted or
deleted. This step of the algorithms starts at the first non-matched leaf. A bottom-up traversal
is performed, until a node is reached that has already been visited by the previous step of the
algorithm. Clearly, this pass can only be performed on one of the trees, as the nodes to insert
or delete are not part of the other tree.

An already visited node indicates that at least one of its children has already been matched.
Therefore, the structure-affecting edit operation is only created for the subtree rooted below
the already matched node. If a subtree is only present in the modified document, an insert
operation is added to the delta: (insert,path, /0,subtree(path)). Otherwise, a delete operation
is created: (delete,path,subtree(path), /0).

After the creation of an edit operation, all nodes from the targeted subtree have to be added
to the match list. This ensures that an edit operation is not created multiple times for each leaf
node that is part of the affected subtree.

Figure 7.3 shows an example of the construction of insert and delete operations. After
computing the LCS of the leaves and the detection of the structure-preserving changes, the
algorithm starts at leaf j, which has been inserted, as it is only part of the updated document.
Its first ancestor is i, which has already been visited (and handled as update operation) by the
previous step of the algorithm. Therefore, an insert operation is defined and added to the delta.
The next non-matched leaf node is at position /2/0. The following bottom-up pass stops at
the root, as the non-changed node f has not been visited before. The subtree spanned by f is
added to the delta as insert and as delete operation, respectively.

93

7 An Efficient Differencing Algorithm

/

a

/0

b
/1

e
/2

f

/0/0

c
/0/1

d
/2/0

g
/2/1

h

(a) Original

/

a

/0

l
/1

e
/2

f

/0/0

c
/0/1

i
/2/0

j
/2/1

k

(b) Updated

Figure 7.4: The algorithm detects leaf update operations for the nodes at /0/1, /2/0, and
/2/1. The update at /0 has been handled by the previous step.

7.4.2 Updates on Leaf Nodes
In the current state of the algorithm, each change on a leaf will be represented by an insert and
a delete operation, as non-matched leaves are not part of the leaf LCS. At this point, I call to
mind one assumption on the modification pattern (see Section 2.5.2):

Assumption 2.4: Structure-preserving changes (text changes) are a frequent operation.

Apparently, the representation by insert and delete operations does not reflect the nature of the
change. Even if this is human-understandable, a representation by update operations would be
more intuitive.

To achieve this, the context of insert and delete operations on the leaf level is taken into
account. This step is performed in case that the parent node of the corresponding leaf has
already been matched or is part of the update list, respectively. Now, the algorithm checks
whether the previous and the next already matched sibling are identical. In that case, an
update operation is created on the leaf.

Text nodes are often the only leaf of their parent node. Therefore, an update operation is
also created in case that the parent node is identical and no already matched sibling exists
which could be analyzed.

Figure 7.4 shows an example of the update identification on leaves. During the bottom-up
pass for node /0/1, the algorithm checks the parent and the sibling node. The parent node
has changed, but is already part of the update list, resulting from the previous step of the
algorithm. The sibling is identical. Therefore, an update operation is created. Updates are
also created for the nodes at /2/0 and /2/1. Here, the parent node is identical and j has no
already matched sibling which could be analyzed. When k is inspected, its sibling has already
been matched.

7.4.3 Gluing Adjacent Operations
The delta model requires changes to be non-overlapping. This property is met by the actual
differencing algorithm. However, the resulting delta may contain edit operations that target

94

7.5 Complexity Analysis

adjacent nodes. In my opinion, this is less meaningful than having one operation containing
the adjacent changes within a tree sequence. Therefore, adjacent edit operations should be
merged into one by gluing the adjacent subtrees together.

As soon as an already matched node is reached during the bottom-up pass, the algorithm
checks whether the preceding sibling is affected by an insert or delete operation. In that
case, the actual operation is attached to the preceding one. The reason for considering only
the previous sibling is simple. As the leaves are traversed in document order, the following
sibling cannot be handled by the algorithm, except if it has been already parsed in the step
covering structure-preserving changes. In that case, however, the edit operations cannot be
merged, as only edit operations of equal type can be glued together.

7.4.4 Move Operations

Move operations consist of a delete operation and a congruent insert operation. Both edit
operations are created independently. However, the algorithm keeps a hash map containing
the hash values of the subtrees targeted by the already created edit operations. During the
creation of a structure-affecting edit operation, a lookup in the hash-map shows whether a
congruent edit operation already exists. In that case, both edit operations are linked with an
ID attribute. As value of the ID attribute, the system time in nano seconds is chosen. This time
stamp is fast to compute and ensures an unique identification of the corresponding operations.

7.4.5 The Algorithm

The third step of the differencing algorithm starts by identifying the insert operations. Each
leaf that is part of the modified document but has no matching counterpart in the original
document is considered as inserted. Before starting the bottom-up pass, the algorithm checks
whether a leaf update has been performed. The corresponding code is shown in Algorithm 3.

After handling the insert and update operations, the delete operations are identified. The
code is shown in Algorithm 4. The code is nearly the same as in the bottom-up pass for insert
operations. Basically, the identification of leaf updates can be performed during the handling
of insert or delete operations as well. However, it must be performed during the run which
starts first. Otherwise, the possible counterparts of updated nodes would have been already
covered by the edit operations of the first run.

Finally, the algorithm handles the move operations, as shown in Algorithm 5. Here, the hash
table lookup is explicitly named. In general, hash tables are widely used in the implementation
of the algorithm by Philipp [2009]. They are mostly used to efficiently compare nodes.

7.5 Complexity Analysis

In this section, I analyze the cost of comparing two document versions A1 and A2. This covers
the time complexity and the space complexity as well, which are presented after elaborating

95

7 An Efficient Differencing Algorithm

Algorithm 3 The third step of the algorithm starts by identifying update operations on leaves.
Additionally, insert operations are identified.

for all l2 ∈ leaves(A2) : l2 6∈matchList do
{identification of updates on leaves}
if (x1,parent(l2)) ∈matchList or parent(l2) is part of an update operation on x1 then

for all l1 ∈ children(x1) : (l1,x2) 6∈matchList and l1 is not part of an update operation
do

if previousMatchedSibling(l1) = previousMatchedSibling(l2) and
nextMatchedSibling(l1) = nextMatchedSibling(l2) then

add (update,path(l1),value(l1),value(l2)) to δA1→A2

break
end if

end for
if no update operation has been created then

add (insert,path(l2), /0, l2) to δA1→A2

end if
else

{bottom-up pass including gluing}
for all a2 ∈ ancestors(l2) do

if (x1,parent(a2)) has already been visited then
if previousSibling is root of an insert operation then

append subtree(a2) to insert operation
else

add (insert,path(a2), /0,subtree(a2)) to δA1→A2

end if
end if

end for
end if

end for

the complexity of the three steps of the algorithm separately.

7.5.1 Computing the LCS

The computation of the longest common subsequence of leaf nodes is the far most complex
step of the algorithm, as I expect over 50% of the nodes being leaves (see Section 2.4.2). The
LCS algorithm has to be robust against large input alphabets. In context of the differencing
algorithm, the nodes are compared using their value. Therefore,the size of the input alphabet
is bounded by the amount of possible hash values, which is a significant parameter.

The current implementation of the differencing algorithm relies on the LCS algorithm pre-
sented by Myers [1986]. It is known for its broad applicability and computes a minimum

96

7.5 Complexity Analysis

Algorithm 4 Delete operations are identified during a bottom-up pass.
for all l1 ∈ leaves(A1) : l1 6∈matchList do

for all a1 ∈ l1∪ ancestors(l1) do
if (parent(a1),x2) has already been visited then

if previousSibling is root of a delete operation then
append subtree(a1) to delete operation

else
add (delete,path(a1),subtree(a1), /0) to δA1→A2

end if
end if

end for
end for

Algorithm 5 The third step of the algorithm ends by linking moved parts of the document
using an ID attribute.

for all i ∈ δA1→A2 : i is insert operation do
if ∃d ∈ δA1→A2 : hash(i) = hash(j), i 6= j then

add move flag to i,d, with ID = systemNanoTime
end if

end for

edit script [Bergroth et al. 2000]. One of the main advantages of this algorithm is the lack of
assumptions about the sequences to be compared. The LCS algorithm runs in O(ND) time.
Here, N denotes the total number of elements to compare, D represents the number of edit
operations. Apparently, this algorithm is optimized for a use case where N�D. At this point
the assumption on the modification amount should be recalled, elaborated in Section 2.5.3:

Assumption 2.6: A new version of a document will likely have only few changes compared
to the size of the document.

Therefore, the LCS algorithm is suitable for the intended use case, as it runs in almost linear
time for similar documents.

In a previous version of my algorithm, common prefixes and suffixes were explicitly re-
moved to restrain the complexity of the LCS run. This idea was inspired by the thoughts of
Fraser [2009]. However, the LCS algorithm by Myers [1986] already contains a prefix and
suffix detection. Therefore, this step is omitted in the algorithm presented here. Experimental
results enforced this decision, showing an increase of runtime when performing an explicit
prefix and suffix detection in context of the diff algorithm itself.

Mapping the complexity of the LCS algorithm to the diff algorithm yields a time complexity
of O((|leaves(A1)|+ |leaves(A2)|)×D. In this context, D denotes the size of the minimum edit
script between both leaf sequences.

97

7 An Efficient Differencing Algorithm

7.5.2 Identification of Structure-Preserving Changes

The second step of the algorithm is performed only for the leaves that have already been
matched by the LCS run in the previous step. Here, each ancestor node is visited once due to
the dynamic programming approach. Therefore, the bottom-up traversal for the detection of
update operations runs in linear time, namely O(|ancestors(LCS)|).

7.5.3 Identification of Structure-Affecting-Changes

Constructing the insert and delete operations creates a bottom-up traversal for each of the
document versions. This step of the algorithm is performed only on the leaves that are not part
of the leaf LCS computed in the first step. Here, each node is visited once, too. However, the
leaves must also be traversed. Basically, this results in a linear time complexity, too.

Each node that is not part of the longest common subsequence is represented in the mini-
mum edit script which can be computed by the LCS algorithm. In the first step of the diff-
erencing algorithm, D was used to denote the size of the minimum edit script. Therefore,
the amount of non-matching leaves corresponds to D. The resulting time complexity can be
denoted as O(D+ |ancestors(non-LCS)|).

One might argue that the search for leaf updates increases the complexity of the second
step of the algorithm. The leaf update detection is only started if the parent node has been al-
ready visited, which means that a sibling of the leaf has already been matched. The document
analysis has shown that on bottom-up level 1, the quantity of nodes reaches half of the quan-
tity of leaves. Deriving from that, I deduce that most leaf nodes do not have many siblings.
Therefore, the search for already matched siblings is less complex as the rest of the algorithm
by order of magnitude. By this, the leaf update detection can be neglected in the complexity
class. I will underline these considerations empirically in Section 9.3.1.

7.5.4 Overall Time Complexity

Adding the complexity bounds of all steps of the differencing algorithm yields O((|leaves(A1)|+
|leaves(A2)|)×D+ |ancestors(LCS)|+D+ |ancestors(non-LCS)|). Both items covering the
bottom-up passes can easily be subsumed as |ancestors(A1)|+ |ancestors(A2)|. Here, I use
the notion A, indicating the sum of both trees A1,A2 to compare. This leads to the simplified
equation O(leaves(A)×D+ |ancestors(A)|+D).

7.5.5 Overall Space Complexity

The space complexity of the differencing algorithm is linear, I claim an upper bound of O(A).
I justify this by following considerations: the chosen LCS algorithms runs in linear space,
yielding O(|leaves(A)|) [Myers 1986]. During the bottom-up pass, additional space is required
to compare all nodes, thus leading to O(A).

98

7.6 Conclusions

Additionally, each node is stored either in the match list or in the delta. Therefore, O(A) has
to be added to the complexity consideration again. However, all three steps are in the same
complexity class that can be subsumed under O(A).

7.6 Conclusions
In this chapter, I have presented a novel XML differencing algorithm. The algorithm design is
directly derived from the analysis of XML documents, which has been performed in Chapter 2.
As the content of the documents is stored in the leaves, which represent over 50% of all nodes,
the algorithm starts by computing the longest common subsequence of the leaves. Changes
on higher levels of the tree are identified using a bottom-up approach.

The changes between the document versions are represented using the delta model pre-
sented in Chapter 6. By relying on a well-established LCS algorithm and using dynamic pro-
gramming techniques, the proposed algorithm achieves a highly competitive time and space
complexity. The time complexity is O(|leaves(A)|×D+ |ancestors(A)|+D), with D denoting
the amount of changes. Therefore, the algorithm is especially suitable for documents with
A� D, which meets the expected average case. The space complexity is linear with O(A).
This is an important aspect, as XML documents can become quite large.

In conclusion, the proposed algorithm promises a highly efficient way of comparing XML
files, using a change representation model especially suitable for XML documents.

99

7 An Efficient Differencing Algorithm

100

8 A Merge-Capable Patch Algorithm

In Chapter 6, I have introduced a context-aware delta model. There, some aspects of merging
of document versions have already been discussed. This chapter deals with the details of delta
application during the patching of a document. The hardest challenge is to reliably merge
document versions. This requires the patch tool to be flexible enough to accept non-optimal
results, still being strict enough to reject ambiguous results. Obviously, this is a borderline
task.

In this chapter, I present XCC Patch, a patching algorithm that is able to merge document
versions using a context delta. The basic idea of the algorithm is sketched first. Afterwards, I
present the aspects that conform to conventional XML patch tools. In the following, I explain
the use of the context fingerprint for a reliable identification of the correct path to an edit
operation, before presenting the conflict handling abilities of my algorithm. A weighting
method for partially matching fingerprints allows for non-optimal yet reliable merge results.
Finally, I present the algorithm at a glance, followed by a complexity analysis.

8.1 Basic Idea

Conventional XML patch tools patch a document as described in the delta. This means that all
edit operations are entirely applied at their respective paths in order of their appearance. Of
course, this is the standard case in a sequential document evolution model. However, parallel
editing of documents cannot be represented by this procedure. Due to a lack of a suitable delta
model, other XML patch algorithms are not able to merge document versions using a delta.

To allow for the merging of document versions, I adopt the basic idea from conventional
patch tools for line-based documents to the domain of XML documents. In the line-based
domain, the patch algorithm starts at the given path of an edit operation and uses the syntactic
context stored in the delta to verify whether the context at the document to patch is still the
same [Davison 1990]. If not, the patch algorithm tries other paths nearby to search for the
correct context. Beside the context, the delta contains also the former value of a line to change.
This former value is used to verify whether the line has been edited in the meanwhile, thus
leading to a conflict.

My patch algorithm uses the context fingerprint defined in Section 6.5.1 to search for the
correct path of an edit operation and to detect conflicts as well. In contrast to one-dimensional
line-based documents, XML trees are two-dimensional. Therefore, I will introduce a corre-
sponding tree traversal algorithm to search for the correct path.

During the merging of line-based documents, non-optimal results may be accepted. The

101

8 A Merge-Capable Patch Algorithm

user may decide how many lines of the context have to match in minimum, before an edit
operation is applied [MacKenzie et al. 2002]. In this approach, each line of the context is
given equal weight. This behavior was inspired by the needs of software source control.
Source code is highly structured. The syntactic appearance, e.g., the indentation, is used to
represent the structure. Most lines contain only few code, blank lines are widely used.

In XML documents, however, this syntactic structure is not given. The leaves contain the
content which in turn should not contain structuring information, as the layout is represented
by the tree structure [Goldfarb 1990]. The context fingerprint contains the surrounding nodes
in document order, which means that it may contain leaves and inner nodes as well. Especially
if changes are clustered, the fingerprints of different edit operations may overlap. If all entries
of the fingerprint would be weighted equally, the probability of accepting an edit operation
would decrease significantly in that case, even if a human reader would accept it. To handle
this issue, I introduce a distance-aware weighting function for the entries of the context fin-
gerprint. An entry near the anchor, i.e., near the edit operation itself is given a higher weight
than an entry far away. This allows for a reliable merge without losing a broad applicability.

8.2 Linear Patching

Patch algorithms in XML are seldom described in detail. This derives from the fact that they
are only able to apply a delta to the document it has been computed for. If a delta is applied to a
modified version of the document, all interfering edit operations will fail (see Section 6.3.1). If
the path is still existent, the patch will most probably apply the edit operation at the wrong path.
If the path has become invalid, an error will be thrown. To prevent these failures, Microsoft
XML Diff (presented in Section 3.3.2) stores a hash signature of the whole document to patch
within the delta. It is used to verify whether the delta is applied to the correct document
version. If not, the patch aborts with an error message.

XCC Patch is able to act like a conventional XML patch tool, too. This is an important
aspect in the sequential reconstruction of document versions, for example in the context of
version control systems [Tichy 1985]. Each edit operation is applied as described in the delta.

To be precise, the algorithm actually does not perform the edit operation at the time of the
processing. Instead, only a reference is stored to the corresponding path, and the edit operation
is added to a list. Two reasons exist for that behavior. First, the delta is a set, edit operations
may be in arbitrary order. All paths are described with respect to the original version of the
document. If the edit operation would be applied, other interfering edit operations of the delta
would point to wrong paths, resulting in errors. This directly leads to the second reason for
applying all edit operations at once. Ko and Lee [2006] have stressed the high cost of the
re-labeling of XML paths. Each structure-affecting change would require the following nodes
to be re-labeled in terms of their path. This re-labeling is switched off before applying all
edit operations at the end of the algorithm, as the stored reference is used to access the edit
operation.

102

8.3 Context-Aware Patching

8.3 Context-Aware Patching
In case that a delta is applied to a modified document version, some of the edit operations in the
delta will likely point to wrong paths of the document due to interfering changes resulting from
previous edit processes. The patch algorithm uses the context fingerprint to verify whether the
given path of an edit operation still points to the correct position within the XML tree. If
not, the neighborhood of the given path is searched for the correct position. In the end, I will
discuss the suitability of the defined neighborhood for the given use-case.

8.3.1 Matching the Context Fingerprint
Each edit operation within a delta contains a context fingerprint, as introduced in Section 6.5.1.
It contains the hash values of the surrounding nodes that have been around the part targeted
by the edit operation in the document version for which the delta has been computed. Before
applying an edit operation, the patch algorithm verifies whether the context fingerprint matches
the syntactic context found at the given path in the document to patch.

Whether the context fingerprint matches is verified by computing the fingerprint of the given
path. Each entry of the fingerprint has to match the corresponding nodes of the document to
patch. For delete and update operations, the fingerprint has corresponding nodes for each
entry of the fingerprint. For insert operations, however, the anchor points to the root of the
subtree to insert, not having a counterpart node in the document to patch. Therefore, I define
the environment I, containing the distances of the counterpart nodes depending on the edit
operation type.

I def
=

{
[−r, ..,−1,1, ..,r] for insert operations
[−r, ..,r] otherwise

(8.1)

Definition 8.1 A fingerprint f ∈ δ matches a path p in document A, if and only if ∀n ∈ I :
f [n] = fingerprintp[n].

Before computing the matching of a fingerprint, the type of the edit operation has to be taken
into account. At this point, recall the definition of Afingerprint in Equation 6.10, which ensures
that the tail of a subtree or tree sequence to delete is not contained in the context fingerprint
(see Section 6.5.1). This way, the fingerprint does not refer to itself. During patching, this
behavior has to be taken into account.

Figure 8.1 shows an example. The context fingerprint for the deletion of the subtree rooted
at f would be d,e,f,null,null. Computing the fingerprint around node f without the
knowledge that its children should be deleted would in turn result in the fingerprint d,e,f,g,h.
Apparently, the patch algorithm would reject the application of that edit operation, as two of
the entries do not match. Therefore, for any delete operation, the patch algorithm has to ne-
glect the nodes that correspond to the nodes targeted by the edit operation.

During this step of the algorithm, neither the content of the nodes nor their structure are
compared. Non-matching nodes would lead to a conflict, which will be handled in Section 8.4.

103

8 A Merge-Capable Patch Algorithm

/

a

/0

b
/1

e
/2

f

/0/0

c
/0/1

d
/2/0

g
/2/1

h
null

d e f

Figure 8.1: The context fingerprint of a delete operation does not refer to the deleted parts.
This has to be taken into account during patching by computing the matching
fingerprint on the document to patch according to the delete pattern defined in the
edit operation.

Instead, the patch algorithm looks up the number of subsequent subtrees contained in the
delete operation and hides the same number starting at the targeted path to the fingerprint
generation. This is a simple and efficient way of respecting the properties of delete operations.
Other operation types do not require such a special handling.

8.3.2 Neighborhood Search
Assuming that the delta is applied to a modified version of the document, prior changes (not
known to the patch algorithm) may interfere with the edit operations to apply, resulting in
invalid paths. Nevertheless, a reliable merge is still possible. Here, I recall an assumption on
the change distribution across a new version of a document, elaborated in Section 2.5.3:

Assumption 2.7: Changes on a document affect only small parts of the document in general.

Additionally, assuming that the authors are aware of their responsibilities and roles, the edit
actions will be separated locally from each other [Shen and Sun 2002]. Deriving from these
assumptions, the context of an edit operation has only moved with respect to the path stored
in the edit operation.

To find the correct application context of an edit operation, I define a neighborhood around
the stored path, containing candidate nodes that are considered to be potentially the correct
path.

Definition 8.2 The neighborhood of a path p is a sequence of 2ρ +1 nodes on the same top-
down level around p in each direction, ordered by their distance to p. The node at position 0
is the node at p. ρ is the radius of the neighborhood.

In case that the context fingerprint does not match at the stored path, the matching for all nodes
of the neighborhood is computed, too. The matching is computed in order of the distance

104

8.3 Context-Aware Patching

/

a

/0

b
/1

e

/0/0

c
/0/1

d
/1/0

f
/1/1

h
/1/2

k

/1/0/0

g
/1/1/0

i
/1/1/1

j
/1/2/0

l

null

a b c d e

b c d e f

d e f g h

f g h i j

i j k l

Figure 8.2: The neighborhood with radius 3 around node /1/0.

between the candidate node and the path of the edit operation. The reason for this ordering is
simple. The patch algorithm does not have any knowledge whether the prior edit operations
have been deletions or insertions. Therefore, it has to walk in both directions. Using my
ordering, small changes resulting in small offsets are handled before large changes.

Figure 8.2 shows the neighborhood of node /1/0 with radius of 3. The fingerprints are
computed in following order: f, d, h, c, k.

It is possible that an edit operation has no matching context anymore. This mostly appears
if parts of the context (or the anchor node itself) have been modified previously. In that case,
the patch algorithm has to reject the edit operation or to perform a best-effort approach (see
Section 8.5). The neighborhood has been defined to prevent the patch algorithm from per-
forming an exhaustive search across all nodes of the document, searching for a non-existent
context. Additionally, Khanna et al. [2007] have shown that spurious changes may occur if the
merge algorithm finds a matching context far away from its original path. As the document
analysis in Section 2.4.3 has revealed that the ratio of repeating nodes is relatively high across
all levels of the XML tree, I cannot neglect the possibility of a second matching context across
the whole document. This is an argument for a restrained search space, too. In case of a small
neighborhood, I assume that the probability of identical fingerprints can be neglected.

105

8 A Merge-Capable Patch Algorithm

8.3.3 Discussion
The neighborhood of a node contains only nodes of the same top-down level. This is in
fact a noticeable restriction. It is motivated from the following consideration: the top-down
level of a node also reflects its position in the XML grammar used for validation. A node
on top-down level 7 can be accessed using 7 resolution steps in the corresponding grammar.
It cannot be ensured that it can also be accessed by 6 or 8 steps. Examples exist for this
possibility. However, I do not assume these examples to be the standard case. One might
argue that the context fingerprint would hinder the patch algorithm to apply the edit operation
at the wrong path. Although this is correct, I cannot justify the overhead of computing the
unnecessary matchings for finding only few possible positive matches. Additionally, a much
higher neighborhood radius would be required to get the same width within the XML tree as
with the proposed definition.

Apart from that, domain-specific neighborhood generation rules are considerable. For ex-
ample, within a spreadsheet, only cells on the same column could be taken into account. As
those domain-specific rules would prevent my approach from being generally applicable, I do
not follow this approach.

In case that the patch algorithm finds the correct path of an edit operation, the resulting
offset could be stored. This offset could be added to all edit operations within the delta that
interfere with the matched operation. Basically, this is a promising idea. Nevertheless, I do
not follow it as the delta is basically a set. Implementing this feature would require to order
all edit operations with respect to their interferences before starting a patch run. I estimate
the gain of efficiency during the patch run lower than the loss of efficiency due to the prior
ordering of edit operations, which must be performed to ensure the correct ordering, even if
the edit operations are already ordered.

8.4 Conflicts
An edit operation might target a part of the document that has been edited before. In case
that the nodes stored in the edit operation do not match the pattern found in the document to
patch, a conflict arises. A conflict is also given if two edit operations from different deltas are
overlapping.

8.4.1 Definition
Formally, an edit operation conflicts if one of the nodes of v do not match. Here, one should
remember that v contains the previous value of the part affected by an edit operation.

Definition 8.3 A node n ∈ v of op ∈ δ matches an path p ∈ A, if and only if value(n) =
value(p+path(n)).

The matching is defined with respect to the targeted path of the edit operation by adding the
offset of the path within v.

106

8.4 Conflicts

Definition 8.4 An edit operation op ∈ δ conflicts for a path p ∈ A, if and only if ∃n ∈ v of
op : n does not match p.

For insert operations, v is empty, as an insert does not affect the value of an existing node.
Therefore, only delete and update operations can cause conflicts.

8.4.2 Conflict Handling

For update operations, a conflict can directly be derived from the matching of the anchor,
which is already performed in the previous step. For a delete operation, a matching anchor
indicates that the head of the subtree or tree sequence is conflict-free. The remaining parts of
the delete operation are compared using the recursively computed hash over the subtrees. In
case that the hash values match, the operation is conflict-free, too.

Two possibilities exist to handle a conflict automatically: applying or rejecting the edit
operation. In terms of version control systems or operational transformation, the application
of the edit operation would correspond to a client-side, the rejection to a server-side preference
[Shen and Sun 2002]. In the current implementation, the user may decide which version to
keep by setting a flag before the patch run.

8.4.3 Discussion

Another possibility of conflict handling is to reject the whole delta until no conflict arises
[MacKenzie et al. 2002]. This forces the user to resolve a conflict manually, preventing an
accidental corruption of the document. My algorithm does not support that behavior for two
reasons. First, this behavior is mostly intended for software source control, where a delta
is assumed to have comprehensive changes on one functionality. There, any rejected edit
operation will likely lead to a malfunction of the code in case that the other edit operations of
the delta have been applied. In the domain of document editing, however, it is common that
only parts of an editing step are applied to the document, e.g., two authors correcting the same
misspelling. A second reason is derived from the set property of the delta. Patching algorithms
for edit script-based deltas use a subsequent addressing of edit operations. Any rejected edit
operation would distract the following edit operations by the missing path offset. Due to this,
a complete application or rejection of a delta is preferred in these approaches. As my delta is
set-based, all edit operations but the conflicting ones can be applied, whereas the conflicting
edit operations could be inspected independently, and applied one after another afterwards.

During the merging of document versions, the user could be prompted whether a conflicting
edit operation shall be applied or not [Ignat and Norrie 2006]. This interactive decision is gen-
erally favorable over automatic rule-based solutions. However, this requires the user to assist
each merge run. I will present an interactive editor for XML documents in Section 11.3.1,
which allows for a detailed manual resolution of conflicts.

According to my definition, an insert operation cannot conflict. This directly follows from
the fact that an insert does not overwrite any existing node. Nevertheless, an insert operation

107

8 A Merge-Capable Patch Algorithm

may be not meaningful, e.g. because it has been applied before. In these cases, however, the
context will most likely be different, thus resulting in a rejection of the insert. I assume the
probability of an erroneous insert operation with identical context to be in neglectful magni-
tude.

8.5 Best-Effort Merging
An edit operation is rejected if one of the entries does not match the given path. However, a
user would have probably decided to apply the edit operation, as all other entries did match.
To allow for a sub-optimal merge, I introduce partial matchings. In these partial matchings, a
node near the anchor is given a higher importance using a distance-aware weighting function
that estimates the match quality. Whether an edit operation is applied or not is decided upon a
user-defined threshold for the match quality.

8.5.1 Partial Matching
The context fingerprint offers a possibility to identify the correct context of an edit operation.
To increase the reliability of the merge result, a user could try to increase the fingerprint radius
to store a larger fingerprint. Although this is possible, another problem arises. The larger
the fingerprint radius, the higher the probability of erroneously rejected edit operations due to
other changes in the surroundings of the context. A partial matching of a fingerprint denotes
that there exist matching entries, as well as non-matching ones.

Definition 8.5 A partial matching of a fingerprint f ∈ δ on path p in document A is given, if
and only if ∃n ∈ [−r..r] : f [n] = fingerprintp[n]∧∃n ∈ [−r..r] : f [n] 6= fingerprintp[n].

8.5.2 Distance-Aware Weighting
The quality of a partial matching could be estimated by dividing the amount of matching nodes
by the amount of nodes in total. This would reflect the behavior of the line-based differencing
tools for source code, where each line is considered to be equally important [MacKenzie et al.
2002]. In the domain of source code, blank lines are commonly used to structure the code.
Assuming that an edit operation contains a new code block, it is likely that an operation is
delimited by blank lines. Due to their quantity, blank lines do not offer a high reliability to
judge about the correct context of an operation. Therefore, the more remote lines are assigned
with the same priority as the lines near the designated path of the operation.

One of the advantages of XML is the separation of content and markup. Therefore, “struc-
turing content” like blank lines is mostly obsolete. One might argue that in text documents,
blank lines are used to structure the text, too. First, this is a kind of bad document layouting.
Second, in the XML representation of office documents, a blank line is stored using at least
two nodes. That is, the paragraph node and a special “empty text” node [Brauer et al. 2007].
Therefore, I do not consider the structuring content as notable.

108

8.5 Best-Effort Merging

Especially for large context fingerprints, the probability for a non-matching entry at the
borders of the fingerprint becomes significant. In my opinion, a non-matching entry near the
anchor of an edit operation will more likely indicate an ambiguous merge than a non-matching
entry with higher distance. I will exemplify my considerations. In a text document, each text
node contains a paragraph or another rather large portion of text. Each paragraph has a corre-
sponding parent node, denoting the type and the markup of the text. An update on a paragraph
with a fingerprint radius of 6 would cover the surrounding three paragraphs including their
parent nodes. I assume a text change three paragraphs before less important than on the pre-
vious paragraph. Therefore, I introduce a function that weights the matchings of a fingerprint
entry depending on its distance to the anchor. Here, I introduce a more formal refinement
of the matching of entries of a fingerprint f with respect to a path p (see Definition 8.1 in
Section 8.3.1).

match(f [n], p) def
=

{
1 if f [n] = fingerprintp[n]
0 otherwise

(8.2)

Once again, the type of an edit operation plays an important role. For insert operations, the
anchor of the fingerprint points to the document to insert, which has no counterpart in the
document to patch. Therefore, the environment I is used again, which has been defined in
Equation 8.1.

Basing on the match function, the quality of a partial matching of f on p can be computed
using the weighting function matchQuality(δ ,A)→ [0;1]:

matchQuality(f , p) def
=

∑
i∈I

match(f [i],p)
2|i|

∑
i∈I

1
2|i|

(8.3)

The numerator counts all matches, whereas the denominator normalizes the result onto a value
between 0 and 1. A quality of 0 indicates no matchings, 1 means a complete match.

Figure 8.3 shows the appearance of the un-normalized weighting function, which has a
bell-shaped figure. The anchor node is given the highest importance, directly followed by the
adjacent nodes1. Table 8.1 shows the match quality for an update operation, where one of the
entries in the fingerprint of radius 3 does not match.

8.5.3 Merging

If a fingerprint does not match completely at its given path, the neighborhood search starts.
At this step, the match quality of each candidate is already computed. If a complete matching
does not exist for any of the candidate nodes, their match quality is compared. The algorithm
applies the edit operation on the candidate with the highest match quality.

1For insert operations, the anchor is not considered. Here, the adjacent nodes have the most influence on the
weight.

109

8 A Merge-Capable Patch Algorithm

 0

 0.5

 1

 1.5

 2

-4 -2 0 2 4

W
ei

gh
t

Distance to Anchor

Weighting Partial Matchings

f(x)

Figure 8.3: The weigthing function shows a bell-shaped figure, highly favoring the nodes next
to the anchor.

i matchQuality if match(f [i], p) = 0

0 0.636
1 0.818
2 0.909
3 0.955

Table 8.1: The match quality for a fingerprint of an update operation with r = 3 for one non-
matching node with distance i to the anchor.

To avoid erroneous merges, the user has to define a threshold value which will be used as
lower bound for accepting a computed match quality. This threshold allows for easily defining
to which degree the user accepts ambiguities in the merge result. A threshold of 1 means that
only complete matchings are accepted, a threshold of 0 accepts any edit operation, even if it
has no matching.

8.5.4 Discussion

The proposed weighting function shows a strong digression depending on the distance to the
anchor. A fingerprint radius larger than 4 would not influence the partial matching signifi-

110

8.6 The Algorithm at a Glance

cantly. For example, a Gauss error distribution curve could be used with corresponding pa-
rameters for a smoother decrease, or a linear digression. My motivation is to foster the use of
small fingerprints. First, a fingerprint means a storage overhead in the delta. Especially for
update operations, the fingerprint can easily be larger than the rest of the edit operation. In the
line-based domain, 2 to 3 lines are common context radii, too [MacKenzie et al. 2002]. Sec-
ond, a larger fingerprint increases the probability for partial matchings. A user might intend to
use a large fingerprint to get a higher reliability of the merge result. However, the merge run
would likely lead to a partial matching resulting from changes far away, making the user feel
insecure about the merge result.

The proposed matching function is a binary one. A fingerprint entry matches or it does not.
Already small changes in surrounding nodes lead to non-matching entries, probably forcing
the patch algorithm to reject an edit operation. This is mostly important for attribute changes
or minor changes in text nodes. Here, the matching function could be used to express the
similarity between the fingerprint entry and the node. One might argue that the fingerprint
contains only a hash value that completely changes even for small changes. This behavior is
mostly intended by the needs of cryptography. Recently, Stein [2005] has presented a new
class of hashing functions that is able to express the similarity of texts. These functions could
be used to allow for an even more meaningful and fine-grained merge. I will discuss this issue
in Section 11.4.3.

8.6 The Algorithm at a Glance

The proposed algorithm can be controlled via different parameters. The most important are
the neighborhood radius ρ and the threshold for partial matchings. Additionally, the patch
tool can run in different modes. In the first mode, it acts like a conventional patch tool, which
I called linear patching earlier. In addition, this mode also supports conflict detection, which
can be disabled by the user. The code is shown in Algorithm 6. Here, the context of a node is
not respected. Applying a delta to a modified version of the document will most likely lead to
rejected edit operations.

Algorithm 6 The algorithm for linear patching with conflict detection.
for all op ∈ δ do

if op does not conflict then
add op to accepted operations

end if
end for

The second mode respects the context of an edit operation, as well as its neighborhood.
Algorithm 7 shows the code. Here, only complete matchings of the fingerprint are accepted.
Conflict detection is switched off. This mode mostly corresponds to the behavior of line-based
patch tools.

111

8 A Merge-Capable Patch Algorithm

Algorithm 7 The complete merge-capable algorithm with neighborhood search.
for all op ∈ δ do

if matchQuality(fingerprintop,pathop) = 1.0 then
add op to accepted operations

else
for all n ∈ [−ρ..−1;1..ρ] do

if matchQuality(fingerprintop,pathop) = 1.0 then
add op to accepted operations
break

end if
end for

end if
end for

Finally, the third mode allows for best-effort merging, including conflict detection. This
is the default mode of the patch tool, shown in Algorithm 8. Even if designed for merging,
the algorithm checks whether the operation can be applied as it is. This design decision was
motivated by the thought that users will most probably use the tool without switching to the
linear patching mode, even if they are applying the delta to the correct document version. The
proposed design ensures that the performance in this case is not significantly slower than in
the first mode of the tool.

Algorithm 8 The complete algorithm in best-effort mode with conflict detection.
for all op ∈ δ do

if matchQuality(fingerprintop,pathop) = 1.0∧op does not conflict then
add op to accepted operations

else
for all n ∈ [−ρ..−1;1..ρ] do

if matchQuality(fingerprintop,pathop)> threshold∧op does not conflict then
add op to candidates

end if
end for
add candidate with highest quality to accepted operations

end if
end for

In the proposed code, all edit operations are added to a list of accepted operations. As
described earlier in Section 8.2, this means that a reference to the corresponding path of the
edit operation is stored. The edit operations are applied altogether at the end of the patch
run. This is done to prevent erroneous merge results due to previous edit operations with
overlapping fingerprints and to avoid the re-computation of paths.

112

8.7 Complexity Analysis

8.7 Complexity Analysis
The proposed patch algorithm can operate in different modes, which have a different com-
plexity. Apparently, the linear patching is the simplest, whereas the best-effort merge is the
most complicated. In this section, I present an analysis of the time and the space complexity
of the algorithm.

8.7.1 Time Complexity

The algorithm for linear patching is very simple, yielding O(A× δ), where δ denotes the
amount of edit operations within the delta. Conflict detection would add more complexity. I
will discuss that issue later.

Respecting the context fingerprint during patching adds more complexity, too, depending
on the fingerprint radius. The resulting time complexity yields O(A× δ × r). In general, the
assumption A� r holds, except for very small documents. As r remains constant, it can be
neglected, thus achieving O(A×δ).

Comparing the fingerprint is really simple. One might argue whether the computation of the
hash values has to be respected in the complexity analysis, too. The current implementation
uses a wrapper class, ensuring that each hash value is computed only once (see Section 5.2.2).
Therefore, I do not consider the hash computation separately. The proposed design is espe-
cially helpful for the neighborhood search, where each node is accessed multiple times.

The neighborhood search is time consuming. Depending on its radius, the worst-case time
complexity increases to O(A× δ ×ρ). The complexity for the general case will be better, as
the algorithm stops if the correct node is found. As this would not lower the complexity class
significantly, I do not distinguish between the different cases. The best-effort merge does not
consume more time, as the algorithm structure is the same. Throughout all edit operations, ρ

remains constant. Therefore, ρ can be regarded as constant factor, which leads – again – to
the complexity class of O(A×δ).

For the conflict detection, it is not sufficient to use the context fingerprint. Each node
targeted by a delete operation has to be inspected. If the conflict detection is switched on, the
previously named complexity classes have to extended by O(nodes(opdelete)). However, this
holds only for very large delete operations, where A� nodes(opdelete) is not valid. Therefore,
the overhead for the conflict detection has not to be considered in the average case.

8.7.2 Space Complexity

The algorithm loads the complete document to patch into main memory. Additionally, the
delta is loaded. This leads to a space complexity of O(A+ δ). One might argue that the
edit operations are interim stored, thus leading to a higher space complexity. However, the list
does only contain references to the correct paths of the operations, which makes it comparably
small. Additionally, the list is covered by the second parameter of the complexity class, as the
amount of edit operations is the upper bound of that list.

113

8 A Merge-Capable Patch Algorithm

8.8 Conclusions
Applying a delta to a different document version is a challenging task. Paths of edit operations
may point to wrong addresses due to prior changes. The context of an edit operation might
have been altered. Even the nodes addressed by the edit operation might have changed, leading
to a conflict. A patch algorithm has to respect all of these issues to offer a reliable merge result.

In this chapter, I have presented a merge-capable patch algorithm for XML documents. It
supports three operating modes. First, a delta can be applied as described in the delta, offering
no merge support. This mode is fast and intended for sequentially edited documents. It reflects
the behavior of most other XML patching approaches. In the second mode, offsets due to prior
edit operations are respected. Around the path of an edit operation, the context fingerprint is
used to find the correct position for that change. The third mode also accepts sub-optimal
matchings. Here, a weighting function is used to estimate the quality of a partially matching
context fingerprint. The user decides to which degree a non-optimal merge result is acceptable.

Across all three modes, conflicts can be detected. The user has to decide whether conflicting
parts of the document are meant to be overwritten, or if the previous version has to be kept un-
changed. This decision is made for all conflicting edit operations within a patch run. I present
a graphical user-interface allowing for interactive decisions on conflicts in Section 11.3.1.

114

9 Evaluation

Theoretical considerations are the basis of any new algorithm. Even if these considerations
are based on empiric findings, they should be verified whether they hold in practice. To dos
so, I evaluate the proposed XCC framework in this chapter.

First, I describe the experimental setup and the test scenarios used. Afterwards, I analyze
the runtime of the diff and the patch algorithm. Finally, I verify the merge-capabilities of the
patch algorithm. Here, the focus lies on the reliability of the merge result.

9.1 Experimental Setup
The experiments are carried out on a commercial-of-the-shelf machine, which is briefly de-
scribed first. Afterwards, I present the test methodology for measuring the runtime. Finally, I
show a notation for measuring the merge quality of documents.

9.1.1 Test Environment

All tests are performed on a machine equipped with an Intel Core Duo T2600 processor with
2.16 GHz and 2 GB RAM. The operating system is Linux, kernel 2.6.32 (32bit). The Java
environment is OpenJDK 1.6.0_18.

9.1.2 Methodology

The measured runtime is the time elapsed between the start of the differencing or patching
algorithm and the finished write of the delta or patched document. In this context, start of the
algorithm actually refers to the execution of the first command within the corresponding tool.
This methodology has some implications. First, the parsing of the documents is measured,
too. This is important, as the parsing has to be performed at every run of the algorithm.
Additionally, the XCC frameworks does some initialization during start-up that would not be
tracked otherwise. Second, the overhead for loading the Java Runtime Environment (JRE) is
not part of the measured runtime. This is reasoned by the fact that this overhead cannot be
omitted or affected by XCC. Additionally, the load time highly depends on previously loaded
JRE instances that still might be in the cache of the operating system.

Document parsing takes a significant part in the overall runtime. The runtime mainly de-
pends on the document size, as each byte has to be parsed. In a first test, I did order the
documents with respect to their node amount. This has lead to misleading test results. The

115

9 Evaluation

total size appears to be a better indicator for the complexity of a document than the quantity
of nodes.

In each scenario, each step is computed three times. The displayed runtime shows the aver-
age of this three runs. This shall lower the influence of the operating system and the hardware.
For example, the cache of the CPU or the hard disk may contain parts of the documents to
compare or the program code. A cache hit decreases the load time by several milliseconds.
On the other hand, the scheduler of the operating system may prioritize other processes. All
tests have been performed in the Single User Mode of Linux to prevent other processes to
disturb the evaluation. Nevertheless, some processes (e.g., Syslog) are still present and have a
higher priority by design, which could affect the runtime.

9.1.3 Measuring the Merge Quality

As already explained in Section 2.2.2, there may exist different ways of syntactically rep-
resenting a semantically equivalent document. Additionally, the user model of a document
may not reflect the actual document model in the file representation (see Section 2.5.1). To
estimate whether an edit operation is correctly merged, I rely on the user model. The main mo-
tivation for this decision derives from usability considerations. A syntactically correct merge
that is misconstrued by the user is unacceptable. Users would not trust that tool. Apparently,
a non-trusted merge tool is useless.

For each edit operation to merge, I have defined an expected behavior. For non-conflicting
operations, this is the correct path to apply on. If the edit operation conflicts, I expect the
patch algorithm to not apply the operation. Each edit operation of an applied delta can be
categorized as follows:

• positives have been applied to the delta.

• false positives are positives which have been applied to a path where they have not been
supposed to. This includes conflicting inserts and updates.

• negatives have been rejected due to a match quality below the threshold value.

• false negatives are negatives which have been rejected, even if a matching path would
have been available in terms of the user model.

Apparently, false negatives are the most undesirable result. In this case, an edit operation has
been applied, although it has not been supposed to. This is a severe drawback, as no error is
reported, and the user would assume a successful merge. To avoid this, stricter merge rules
are preferred rather than accepting a false positive. However, this implies that acceptable edit
operation may be rejected, leading to a false negative.

116

9.2 Test Scenarios

9.2 Test Scenarios

The evaluation follows two goals. First, the time complexity shall be verified empirically,
which requires a synthetic test suite that ensures a constant modification pattern across all test
cases. This test suite is used to verify the runtime of the diff and the patch algorithm. The
runtime of the patch algorithm is tested for patching and for merging, which are treated as
different scenarios.

The second goal of the evaluation is to estimate the quality and the reliability of the merge
results. Here, an every-day scenario is used to gain realistic results.

9.2.1 Differencing

The evaluation of the differencing algorithm follows two goals. First, the runtime of the
algorithm shall be evaluated depending on the document size. Second, the impact of some
design decisions of the differencing algorithm shall be evaluated.

To evaluate the performance, similar documents with different sizes are taken. In this con-
text, I use the term “similarity” for documents with similar tree structure. The similarity shall
lower the influence of the tree structure on the runtime of the differencing tool. Here, ODF
spreadsheets are especially suitable, as each cell is stored within the document, thus ensuring
a common structure of rows and columns, no matter which value the cells contain. The eval-
uation is performed on 21 spreadsheets, ranging from 12 to 377 KByte (106 to 3823 nodes).
The same documents have been used for the document analysis in Section 2.4. They are listed
in Appendix A.

On these documents, changes are performed. Three types of changes emerge, namely an
insertion of a subtree, an update of a leaf node, and an update of a non-leaf node. I will
discuss these changes later on. Only one change from each type is performed at any time.
This way, the quantity of edit operations is isolated from the size of the document, because
latter one is an important factor of the complexity class of the algorithm. The influence of the
change quantity will be evaluated in Section 10.3. Updates are performed on the leaf level
and on the non-leaf level as well, as they are handled by different steps of the algorithm. The
insertion consists of a subtree with a height of 2, containing a simple paragraph. This text can
be inserted arbitrarily within the cells without breaking the validity of the document.

9.2.2 Patching

The patch scenario relies on the deltas gained from the diff scenario. The deltas describing
the leaf updates are applied to their respective original document. This way, no conflict or
ambiguity can arise. Here, the linear patching is compared with the default behavior of the
algorithm.

117

9 Evaluation

9.2.3 Merging

I use two different scenarios for evaluating the merge capability. The first scenario relies on
the previous scenario. The leaf updates are applied to the documents that already contain
the insert operation. In the document order, all leaf updates occur after the insert operation,
causing an interfering edit operation. By this scenario, I intend to evaluate the additional
overhead due to the merge case, compared to the normal patching. This includes the influence
of the neighborhood radius on the runtime.

The focus of the second scenario lies on the merge quality and reliability. In this scenario,
different office text documents are taken and edited independently. The changes are grouped
nearby to force a non-optimal merge, and to reflect a natural editing process as described in
Section 2.5.3. The merge is performed on 6 documents with a size between 2 and 100 KB.
Deltas are applied to a changed document, forcing a merge. The deltas consist of 1 to 10 edit
operations, resulting in 60 edit operations in total. The test scenario contains 3 conflicts. Most
edit operations interfere with each other to force the tool to perform a neighborhood search.
During the tests, the neighborhood radius stays constantly at 6, which is the default radius.

9.3 Runtime

The runtime of the algorithm is one of the most important usability aspects. Especially if a
document is handled often by the XCC framework (e.g., in an auto-versioning file-system),
runtime becomes a crucial factor.

The runtime of the differencing tool is examined first. Afterwards, time for patching is
evaluated. Finally, I evaluate the influence of the neighborhood radius in the merge case,
before discussing the results.

9.3.1 Differencing

As the proposed test scenario has a constant quantity of edit operations throughout all doc-
ument sizes, the runtime of the differencing tool should scale linearly with respect to the
document size. This follows directly from the claimed complexity class of O(|leaves(A)| ×
D+ |ancestors(A)|+D). With D = 1, the complexity should yield O(A).

Figure 9.1 shows the runtime for the different types of edit operations. As expected, the
runtime increases linearly. The line is fitted with a maximum asymptotic standard error of
5.873%. The gradient approximates 3, the offset is about 200 ms. This is the time needed for
initialization, including the parsing of the document.

The runtime of the detection of the leaf update is the shortest. This is not surprising, as
the leaves are investigated first. The insertion of the subtree takes slightly more time in most
cases, as more nodes are affected by this change, and the subtree has to be constructed for the
edit operation. It is not possible to give a prediction on the runtime needed by the different
edit operation types. Other factors like the path of the edit operation within the tree or the size

118

9.3 Runtime

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300 350 400

T
im

e
in

 m
s

Size in KByte

Performance of XCC Diff

Insert
Insert (fitted)

Node Update
Node Update (fitted)

Leaf Update
Leaf Update (fitted)

Figure 9.1: The runtime of the differencing tool increases linearly with the document size,
conforming to the claimed complexity class.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300 350 400

T
im

e
in

 m
s

Size in KByte

Performance of XCC Diff (Leaf Updates)

Default
No Leaf Update Detection

No Leaf Update Detection, No Move Detection

Figure 9.2: The detection of leaf updates does not affect the runtime significantly. In some
cases, it even saves runtime.

119

9 Evaluation

of a structure-affecting change are also important, which prevents a generally applicable rule.
Nevertheless, the evaluation enforces the claimed complexity class.

The ability to detect updates on the leaf level is an important aspect of my algorithm.
However, this requires additional computation during the identification of structure-affecting
changes (see Section 7.4.2). In the complexity analysis, I argued that this additional time can
be neglected (see Section 7.5.3), which ought to be verified by the evaluation. To do this, the
test scenario has been solved by a version of the algorithm that omits the detection of leaf
updates. Figure 9.2 shows the (non-fitted) results. Interestingly, they are not straightforward.
In most cases, the runtime without leaf update detection is slightly shorter than in the default
version of the algorithms. For the larger documents, the simpler version of the algorithm runs
even slower. This derives from the fact that the leaf updates are represented as a pair of an
insert and a delete operation. By this, the algorithms verifies whether these operations build a
move operation later on. Figure 9.2 also shows the runtime of the algorithm in case that the leaf
update detection and the move detection are both disabled. Here, the tool preforms slightly
faster. However, it is still slightly slower than in the default configuration. Obviously, it needs
more time to create two structure-affecting changes including their context fingerprints, than
creating one update operation. This example shows that the detection of leaf updates does not
affect the complexity class of the algorithm.

9.3.2 Patching
Patching a document is even faster than differencing. Figure 9.3 shows the results. The lines
are fitted with a maximum asymptotic standard error of 5.519%. The gradient approximates
1.2, whereas the offset counts approximately 130 ms. The initiation is faster than for the
differencing tool as only the document to patch and the delta have to be parsed. The runtime
increase is significantly lower as the patch algorithm may directly jump to the path where the
edit operation has to be applied.

In its default settings, the tool performs a best-effort merge with a neighborhood radius of
6 and a threshold of 0.7. However, the neighborhood is not searched, as the algorithm finds
a perfect match at the expected path. Therefore, the linear patching is only slightly faster.
Nevertheless, it has an advantage as the neighborhood is not generated and the match quality
is never computed.

9.3.3 Merging
Merging is almost as fast as patching. The results are shown in Figure 9.4. The maximum
asymptotic standard error yields 5.623%. As with the patch scenario, the gradient approxi-
mates 1.2, the offset 130 ms. The conflict detection is not listed explicitly, as it does only
affect delete operations (see Section 8.7.1). For update operations, possible conflicts are al-
ready detected by the anchor of the context fingerprint. Interestingly, the neighborhood radius
does not seem to noticeably affect the runtime of the tool. The runtime for a neighborhood
radius of 6 (default) and 30 is almost identical.

120

9.3 Runtime

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

T
im

e
in

 m
s

Size in KByte

Performance of XCC Patch

Default
Default (fitted)

Linear Patching
Linear Patching (fitted)

Figure 9.3: The runtime of the patch tool increases linearly with the document size, too. Linear
patching is only slightly faster.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

T
im

e
in

 m
s

Size in KByte

Performance of XCC Patch (Merge Scenario)

Default
Default (fitted)

Linear Patching
Linear Patching (fitted)

Neighborhood Radius of 30
Neighborhood Radius of 30 (fitted)

Figure 9.4: Merging is as fast as patching. Even a neighborhood radius of 30 does not affect
the runtime noticeably.

121

9 Evaluation

9.3.4 Discussion

Each test run has been performed three times. The runtime of the single runs alternates with
a deviation of nearly 20% in some cases. This leads to some spurious results, where the
less complex linear patching runs slower than merging. This seems to follow from the large
caches in hard drives and CPUs, which offer a significant gain of speed in case of a cache
hit. One could disable the caches to get more comparable results. However, the results would
not reflect the behavior in an usual environment, where the caches are activated. Using the
proposed methodology, the maximum asymptotic standard error yields 5.873%, which is an
acceptable value. Therefore, I decide to use the caches to represent realistic runtime values.

The runtime of the diff algorithm increases linearly, which conforms the claimed complexity
class. In general, an increase of 100 KByte of the document size leads to an increase of 300 ms
in runtime. When assuming the size of the documents to be far higher than the amount of
changes, the complexity class can be approximated with O(A). According to the analysis of
the change patterns in Section 2.5.3, this assumption meets the expected standard case.

Patching and merging are even faster than differencing, as only one document and the delta
have to be parsed. An increase of 100 KByte in document size yields a runtime increase of
120 ms. In general, merging is only slightly slower than linear patching. These results enforce
the suitability of the proposed approach for every-day use. Interestingly, the runtime is not
noticeably affected by the neighborhood radius. Here, I recall the complexity class of the
patch algorithm, which is O(A× δ). The fingerprint radius r and the neighborhood radius ρ

are apparently far smaller than the document size. Therefore, they are neglected in the claimed
complexity class. The evaluation enforces this assumption.

In this evaluation, the runtime is only investigated with respect to the document size. Prior
evaluations by Rönnau [2004] and Lindholm et al. [2006] have shown that the document size
is a major challenge of document differencing. The quantity of changes is the other important
dimension that affects the runtime of the algorithm. I will investigate the behavior of XCC
diff in a comparative evaluation with other differencing tools in Section 10.3.

9.4 Merge Quality

The behavior of the patch algorithm during merging is deterministic, but can be influenced by
different parameters, namely the neighborhood radius, the conflict detection, and the threshold
value. Among those parameters, the threshold value is the most important. It defines to which
degree a non-optimal matching of an edit operation is acceptable.

The main focus of this part of the evaluation is to determine the impact of the threshold
value on the merge quality. The conflict detection is discussed afterwards. Finally, I discuss
some issues of false negatives with respect to the user model of a document, as well as the
neighborhood radius.

122

9.4 Merge Quality

 0

 20

 40

 60

 80

 100

 0.5 0.6 0.7 0.8 0.9 1

P
er

ce
nt

ag
e

Threshold

Merge Quality

Negatives
Positives

False Positives

Figure 9.5: The merge quality mainly depends on the threshold value. A low threshold leads
to false positives, a high threshold yields a high amount of negatives.

9.4.1 Influence of the Threshold Value

Using a low threshold, an edit operation will be applied, even if its syntactic context does not
match completely. A threshold of 0 denotes that the patch algorithm completely disregards the
syntactic context. A threshold of 1 requires all nodes within the context to match. Especially
in cases where changes are clustered, the probability for a non-matching node in the context
of an edit operation becomes significant. Figure 9.5 shows the merge quality depending on
the threshold value. Threshold values lower than 0.5 are not displayed as the merge quality is
almost constant in this range. A low threshold leads to false positives, which are unacceptable.
Increasing the threshold value leads to less matching nodes, but decreases the probability
of false positives. Between a threshold of 0.65 and 0.7, the number of negatives increases
significantly. In parallel, the number of false negatives drops to 0. This is caused by the
properties of the weighing function used in the patch algorithm. A non-matching anchor leads
to a match quality of 0.636. The same match quality results if both adjacent nodes of the
context fingerprints do not match. Both are major indicators for a false positive.

A higher threshold than 0.7 has no advantage in the test scenario. It leads to a high number
of negatives, which are all false negatives. Nevertheless, other scenarios may require a higher
threshold to gain a high merge quality.

123

9 Evaluation

9.4.2 Conflict Detection

Most of the negatives are false negatives. Only 3 of the edit operations must not be applied
(i.e. “true” negatives), as they are conflicting. Therefore, false negatives are not indicated
separately. All of them are already rejected using a threshold of 0.5, without using the ex-
plicit conflict detection. The conflict detection is only needed for delete operations that target
subtrees or tree sequences. As conflicts are well-defined and the conflict detection works
straightforward, it is not evaluated separately.

9.4.3 Discussion

Two reasons exist for false negatives. First, the neighborhood radius may be too small to find
the correct context of an edit operation. Second, a change may be acceptable in the user model,
despite being unacceptable in the document model.

For example, equivalent markup information may be defined using different identifiers in
the XML representation [Rönnau and Borghoff 2009]. The displayed document seems to be
equal within the office application, but in the underlying XML document, all markup informa-
tion differs. This kind of mismatch between the user model and the document model cannot
be handled by my approach, as it would require application-specific rule-sets. In turn, a higher
neighborhood radius can be set using a command-line parameter.

Even if the influence of the neighborhood radius is small on the runtime, the default radius
is rather small. This is done to prevent erroneous matches deriving from the high amount of
repeating nodes throughout the document. This is a known hazard in the line-based domain
[Khanna et al. 2007]. Although this case occurs seldom, I decide to reduce the probability for
erroneous matches by restraining the default neighborhood radius (see Section 8.3.2).

9.5 Conclusions

Speed is a crucial prerequisite for user acceptance. This is especially important as merging is
known to be rather complex and time-consuming [Mens 2002]. In this chapter, I evaluated the
runtime of the tools of the XCC framework. The results are very promising. For document
differencing, no run lasts longer than 1.5 s on a standard laptop, which is a fairly good value.
Patching and merging is even faster. Here, the tool takes below 0.8 s for merging a document.
The runtime of both diff and patch evolve linearly, as the size of the document is far bigger
than the amount of changes. Interestingly, merging a document is nearly as fast as patching.
This is an important achievement that ensures a high user acceptance, as the merging offers a
gain of features without causing a significant trade-off in terms of runtime. All tests have been
performed using a synthetic test scenario to ensure a high accuracy.

A second important aspect of merging is the reliability of the merge result. Here, every-day
documents are used as test environment to ensure that the proposed solution works outside
synthetic conditions. The results are impressive. The context fingerprint appears to be a

124

9.5 Conclusions

reliable source of information to search for the correct path of an edit operation. The main
parameter to control the merge procedure is the threshold value. It defines to which degree
a partial matching is acceptable. The evaluation shows that a threshold value of 0.7 ensures
a high reliability, without rejecting too many edit operations. Using this threshold, no false
positive occurs. This is an important aspect, as an erroneously applied edit operation is highly
undesirable.

The design decisions of all tools within the XCC framework have been made upon the
assumptions on the properties of XML documents and their change patterns, which have been
elaborated in Chapter 2. The evaluation has shown that the design holds well in practice,
offering a fast and reliable framework for XML change control.

125

9 Evaluation

126

Part III

Conclusions

127

10 A Comparative Evaluation of XML
Differencing Tools

Several differencing tools for XML documents exist. They use different algorithms and delta
models which have been presented in Section 3.3. In this chapter, I evaluate XCC Diff com-
pared to these tools which are the best known in terms of their time complexity class. As
no other merge-capable patch algorithm is available, a comparative evaluation cannot be per-
formed for XCC Patch.

I start by briefly presenting the test setup and the competitors. The evaluation itself is
performed using basic tests and two different scenarios, which are presented afterwards. The
evaluation covers the runtime and the memory consumption. Finally, the generated deltas are
analyzed.

10.1 Experimental Setup

Five tools are compared in total, shown in an overview first. The test environment and the test
methodologies are presented afterwards.

10.1.1 Tools

In Section 3.3, I have presented several XML differencing approaches. One of the selection
criteria was the availability of an implementation of the algorithm. These implementations
are taken as competitors for XCC Diff. Table 10.1 gives an overview of their algorithmic
properties, Table 10.2 shows their on-line resources.

Except for Microsoft XML Diff which is implemented using C#, all tools are written in
Java and are platform-independent for that reason. As Microsoft XML Diff only runs on
Windows systems, the evaluation has been performed on that operating system. This is also
the reason for using the Java-based implementation of XyDiff, called jXyDiff. The original
XyDiff implementation has been performed on Linux using C.

Faxma, jXyDiff, and Microsoft XML Diff claim a complexity bound only depending on the
document size. For XCC Diff and diffxml, the amount of changes has an influence on the
time complexity, too. The space complexity is not listed in the overview, as it has not been
published for all approaches. For Microsoft XML Diff it is quadratic, whereas it is linear for
XCC Diff.

129

10 A Comparative Evaluation of XML Differencing Tools

Tool
Tim

e
C

om
plexity

D
elta

M
odel

Insert and
Delete

Move
Supported

Minimum
Edit Script

Invertible

X
C

C
D

iff
O
(|leaves(A

)|×
D

setofeditoperations
subtrees

yes
no

yes
+
|ancestors(A

)|+
D
)

diffxm
l

O
(|leaves(A

)|×
e
+

e 2)
sequence

of
nodes

no
no

no
C

haw
athe

etal.[1996]
editoperations

faxm
a

O
(A
)

(average
case)

insertoperations
and

both
yes

no
no

L
indholm

etal.[2006]
O
(A

2)
(w

orstcase)
references

to
original

version

jX
yD

iff
O
(A
×

log
A
)

sequence
of

subtrees
yes

no
yes

C
obéna

etal.[2002]
editoperations

M
icrosoftX

M
L

D
iff

O
(A

1 ×
A

2 ×
m

in(depth(A
1),leaves(A

1))
sequence

of
both

yes
yes

no
Z

hang
and

Shasha
[1989]

×
m

in(depth(A
2),leaves(A

2)))
editoperations

Table
10.1:X

C
C

D
iff

and
four

other
X

M
L

diff
tools

are
com

pared
in

the
evaluation.

T
hey

differ
in

term
s

of
their

com
plexity

class
and

the
delta

m
odelused.

130

10.1 Experimental Setup

Tool Availability

XCC Diff https://launchpad.net/xcc
diffxml http://diffxml.sourceforge.net
faxma http://code.google.com/p/fc-xmldiff
jXyDiff http://potiron.loria.fr/projects/jxydiff
Microsoft http://msdn.microsoft.com/en-us/xml/bb190622.aspx
XML Diff

Table 10.2: All tools are available on-line.

10.1.2 Test Environment

All test runs have been performed on a machine equipped with an Intel Core 2 Quad Q9650
3.00 GHz processor, 4 GB RAM, running Windows Vista Business SP1 (64 bit) and Sun Java
JDK 1.6.0_10 (32 bit).

Interestingly, the runtime of the Java-based tools increases when using a 64 bit Java Run-
time Environment. Apparently, the XML processor of this Java version is not optimized for
handling XML documents efficiently. I did not investigate this issue further, as the 32 bit
environment does not constrain the capabilities of the tools.

10.1.3 Methodology

The runtime is measured by a Java-based application that starts the corresponding differencing
tool using the shell interface. The system time is stored directly before and after the run of
the tool, with a granularity of nanoseconds. The difference is estimated as runtime of the
tool. Using this methodology with a shell interface, each tool is loaded including its runtime
environment and libraries. Especially as most of the tools are Java-based, this ensures that the
whole JRE is loaded again1. Otherwise, the measured runtime would be significantly lower,
not reflecting the total time a user needs when he invokes the differencing tool the first time.

The memory consumption is measured by a third-party tool that measures the total mem-
ory consumption of an application. On the one hand, this includes the overhead that derives
from loading the whole runtime environment including all libraries. Especially if a similar
application is loaded in parallel, the bare memory footprint of the differencing tool could be
estimated to be smaller. On the other hand, however, this methodology reflects the case that a
user does only starts the differencing tool if needed, without having further XML editing tools
running. I guess this to be more suitable for the average case.

1This methodology somewhat contradicts the evaluation setting in Section 9.1.2. In this case, however, the
runtime of the whole tool must be measured to guarantee a comparative result, as not all tools rely on Java. In
case of Microsoft XML Diff, the .NET framework is loaded upon startup, which affects the overall runtime,
too.

131

10 A Comparative Evaluation of XML Differencing Tools

10.2 Test Scenarios
All tools have to solve different tests. First, basic tests are performed to verify the correct
function of the tools. Afterwards, a test suite based on a synthetic document evolution is
presented. The last test suite uses snapshots of a Web page to reflect a more natural document
evolution.

10.2.1 Basic Tests

Some reasons exist to normalize XML documents before comparing them. As already de-
scribed in Section 2.2.2, two semantically equivalent documents may differ syntactically, as
there exist different possibilities of representing one and the same node.

First, the attributes of a node may be in arbitrary order. The attribute ordering test verifies
whether a re-arrangement of the same attributes is detected as edit operation. Of course,
this should not happen. Second, different input encodings can be used. Although the XML
specification requires all documents to be encoded in Unicode, different Unicode encodings
may reflect the same value. In the Unicode test, a differencing tool should not detect an edit
operation on a different input encoding (UTF-8 and UTF-16) for the same character.

These tests do mostly verify the completeness of the implementation, independent from the
algorithm used. Nevertheless, they are important to estimate the usability of these tools for
every-day work.

10.2.2 Synthetic Document Evolution

The amount of changes has a significant influence on the runtime of a differencing algorithm.
Apparently, a larger delta yields a higher runtime. However, only some of the analyzed algo-
rithms respect the amount of changes within their complexity bounds. To verify the claimed
complexity class, a test suite is needed in which the amount of changes increases constantly
without significantly affecting the size of the document. A fixed document size (i.e. the quan-
tity of nodes) prevents an influence of the size on the runtime. This is especially important, as
the time complexity of all differencing algorithms mainly depends on the document size.

Spreadsheets in ODF have an important property in this context. Each cell within the table
spanned by the first and the right-most outer-most filled cell is represented as node in the XML
representation, no matter, whether that cell contains any value or not [Brauer et al. 2007].
Pohlemann [2009] has created a test suite on a complex ODF spreadsheet of 375 KByte,
consisting of around 5700 nodes. The different versions cover a range from 5 to 100 changes,
in steps of 5 changes. In this context, a change is seen as a change on the user model, i.e.
by means of the office application. Basically, the user model and the document model may
diverge. In this test suite, less complicated changes were performed that do not affect the
document model heavily (see Section 2.5.1 for a discussion on the user model).

In this test scenario, a precise knowledge of the changes performed exist. They were per-
formed manually with the aim to have a linear increase of the change amount. This allows for

132

10.3 Differencing

Attribute Ordering Test Unicode Test

XCC Diff pass pass
diffxml pass pass
faxma pass pass

jXyDiff fail abort
Microsoft XML Diff pass fail

Table 10.3: The basic tests are not solved by all tools. JXyDiff aborts when parsing documents
that are not encoded in UTF-8.

a suitable evaluation of the influence of the change amount on the runtime of the differenc-
ing algorithm. However, this synthetic test suite does not reflect the “natural” evolution of a
document.

10.2.3 Archiving a News Site on the Web

Most Web pages evolve over time. Especially news sites and blogs are updated frequently.
However, they do not evolve in a linear way [Adar et al. 2009]. Re-arrangements of headlines
and advertisements occur constantly, thus leading to move operations (see Section 2.5.2). In
this context, one cannot estimate the scale of the changes between two versions. Nevertheless,
tracking the evolution of a Web page is an important task [Masanès 2006].

In this scenario, I archive the changes on a Web page during a day. 17 snapshots of the
Wired news site2 are taken between 7am and 10pm3. One snapshot consists of around 2400
nodes and 108 KByte. In this test scenario, I cannot state a correct order of the difficulty of
the test runs. Instead, the different snapshots are ordered by the time they have been taken.

10.3 Differencing

All tools have to solve the basic tests first. The runtime of the different approaches is presented
afterwards, followed by the analysis of the memory consumption.

10.3.1 Basic Tests

Most of the tools solve the attribute ordering test flawlessly, as shown in Table 10.3. Only
jXyDiff recognizes a difference between the documents with modified attribute ordering. This
is obviously an implementation error, as the original implementation based on C handles this
test correctly. The same holds for the Unicode test, where jXyDiff aborts the run as it is only

2http://www.wired.com
3The site does not provide significant change of content outside these hours.

133

10 A Comparative Evaluation of XML Differencing Tools

able to handle XML documents encoded using UTF-8. Microsoft XML Diff interprets two
identical documents with different encoding as changed, which is not the expected behavior.

10.3.2 Runtime Comparison

Figure 10.1 shows the runtime of the compared tools. Figure 10.1(a) and Figure 10.1(b) use
different scales on the y-axis to ensure the readability of the results. Whereas XCC Diff,
faxma, and jXyDiff show a comparable behavior throughout both scenarios, diffxml and Mi-
crosoft XML Diff act differently.

As the ODF scenario is performed on a larger document, the runtime is obviously higher
than in the XHTML scenario for all tools. The ODF document has more than twice the amount
of nodes compared to the Web page. Nevertheless, the increasing factor is lower for most
tools. For diffxml, however, the runtime becomes unacceptably high. Each differencing run
takes more than 35,000 ms, which is 40 times the runtime of the XHTML scenario. This is
especially interesting as the time complexity class of O(|leaves(A)|×e+e2) suggests that the
quantity of changes has a higher influence than the document size. Chawathe et al. [1996]
have stated that their algorithm may misbehave in cases where a node value occurs frequently
within a tree level. As shown in Section 2.4.3, this pattern is typical for XML documents. In
Section 10.4, I will discuss this issue in more detail.

Even if being less complex, Microsoft XML Diff shows a strange behavior in the XHTML
scenario. The runtime increases significantly in some test cases. As the documents in this
scenario are not ordered by the complexity of the changes but by their change date, one could
assume that large changes have been performed in the affected documents. In that case, how-
ever, I would expect the competing tools to act likewise, which they do not. Microsoft XML
Diff relies on the algorithm by Zhang and Shasha [1989], where special cases are not known.
As the implementation is closed-source, a further investigation cannot be performed. Using
a black-box approach, I would guess that the search for the minimum edit script is very time
consuming in these cases. It is arguable whether the proposed implementation does meet
the claimed complexity class of O(|T1|× |T2|×min{depth(T1), leaves(T1)}×min{depth(T2),
leaves(T2)}). Here, the amount of changes is not assumed to have a significant influence on the
time complexity. However, the evaluation shows that for both scenarios, the runtime increases
noticeably depending on the amount of changes.

The other differencing tools show a nearly linear development of the runtime, only slightly
depending of the change quantity. Even for XCC Diff, whose complexity class depends on
the edit distance, the influence of the change quantity is only minimal for the tested range.
This can be derived from the fact that the quantity of nodes is far larger than the amount of
changes. Interestingly, jXyDiff is really fast for the first test case, where the original docu-
ment is compared with itself, thus representing an unchanged document. Here, the greedy
bottom-up approach of XyDiff (see Section 3.3.4) offers a fast heuristic to detect unchanged
documents.

134

10.3 Differencing

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100

T
im

e
in

 m
s

Changes in Document

Performance of XML Diff (ODF Scenario)

XCC Diff
diffxml
faxma
jXyDiff

Microsoft XML Diff

(a) ODF Scenario

 0

 1000

 2000

 3000

 4000

 5000

 0 2 4 6 8 10 12 14 16

T
im

e
in

 m
s

Snapshot No.

Performance of XML Diff (XHTML Scenario)

XCC Diff
diffxml
faxma
jXyDiff

Microsoft XML Diff

(b) XHTML Scenario

Figure 10.1: The tools differ significantly in terms of their runtime (note the different
scales). Most interestingly, some tools show a different behavior for the different
scenarios.

135

10 A Comparative Evaluation of XML Differencing Tools

10.3.3 Memory Consumption

As far as it has been published, the tested algorithms have a linear space complexity. Only for
Microsoft XML Diff, a quadratic space complexity depending on the size of the document is
known. Figure 10.2 shows the memory consumption of the tested tools.

The memory consumption of Microsoft XML Diff reflects the runtime shown in the last
section. Once again, the reason for this behavior cannot be further investigated, as the tool is
closed source. All other tools show a nearly constant memory consumption. A slight increase
for a higher amount of changes is acceptable, as the delta to construct has to be represented in
memory, too (which is usually not part of the complexity analysis). Especially diffxml seems
to have a suitable heuristic to detect equal documents. In this case, the memory consumption
is significantly lower than in the other test cases. The memory consumption of all tools is
reasonable, allowing for every-day use with even complex documents.

10.4 Delta Analysis

Most evaluations focus on the mere speed of an algorithm. For the usability of an approach,
the quality of the resulting deltas is an important aspect as well. Here, I will analyze the
quantity of edit operations that are needed to reconstruct a document version. Afterwards, the
distribution of the different operation types is investigated. Finally, the total size of the deltas
will be evaluated.

10.4.1 Edit Operations

The algorithm by Zhang and Shasha [1989], which lays the basis of Microsoft XML Diff, is
the only one which claims to compute a minimum edit script. All other algorithms can only
ensure a best-effort approximation. The algorithm of Chawathe et al. [1996], implemented by
diffxml, claims to create near-optimal results in the general case.

Figure 10.3 shows the quantity of edit operations that are computed to represent the changes
between two document versions. To ensure a better readability, I have used different scales.

Diffxml outreaches all other tools for the ODF scenario and is second worst for the XHTML
scenario. At first sight, this contradicts the claim to create near-optimal results. Looking more
closely, two reasons exist for this behavior. First, the algorithm relies on the conventional
formulation of the tree-to-tree editing problem by Selkow [1977], which has been discussed
in Section 3.2.1. Here, each node change is represented by edit operations on the leaf level.
Apparently, this leads to far more edit operations than for the subtree-oriented delta model,
which is used by the other approaches. Second, the algorithm is known to misbehave if many
equivalent nodes exist on the same level of the tree. The algorithm computes the LCS of the
nodes on each level. However, the LCS is not unambiguous (see Section 3.1.1). As a result,
the matchings on the different tree levels may not correlate. By this, edit operations are created

136

10.4 Delta Analysis

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100

M
em

or
y

F
oo

tp
rin

t i
n

M
B

yt
e

Changes in Document

Memory Usage (ODF Scenario)

XCC Diff
diffxml
faxma
jXyDiff

Microsoft XML Diff

(a) ODF Scenario

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16

M
em

or
y

F
oo

tp
rin

t i
n

M
B

yt
e

Snapshot No.

Memory Usage (XHTML Scenario)

XCC Diff
diffxml
faxma
jXyDiff

Microsoft XML Diff

(b) XHTML Scenario

Figure 10.2: The memory consumption is nearly linear for most tools. Only Microsoft XML
Diff shows significant increase of memory usage for larger deltas.

137

10 A Comparative Evaluation of XML Differencing Tools

to transform one level to match its parent level, although another LCS would have lead to a
near-optimal matching.

Basically, Microsoft XML Diff is the only tool to create minimum edit scripts. Nevertheless,
XCC Diff needs less edit operations to describe the changes between two document versions
throughout all test runs. The reason for this is simple. The delta model of XCC Diff allows
for addressing whole subtrees and tree sequences by one edit operation. The algorithm by
Zhang and Shasha [1989] relies on the delta model by Tai [1979], where only node-based edit
operations are allowed. Basically, this would lead to a far higher number of edit operations
within a delta. On the other hand, Microsoft XML Diff uses a modified delta model, which
has been presented in Section 3.3.2. In this model, edit operations that span a subtree are
glued together into one operation, which makes the delta model similar to mine. This gluing
seems to work well in the ODF scenario, but not in the XHTML scenario. Nevertheless, the
number of edit operations should not be higher than in the deltas generated by diffxml. This
tool also uses a node-based granularity but with non-optimal results. Therefore, Microsoft
XML Diff should create deltas with the same number of edit operations, or even less. The
evaluation shows that the quantity of edit operations is significantly higher in the XHTML
scenario. The amount of edit operations directly correlates to the runtime of the diff tool. As
Microsoft XML Diff is closed-sourced, a further investigation is not possible. Apparently, this
is an implementation error.

Faxma is not part of this evaluation. This is caused by its delta model. The delta created
by faxma consists of a script that contains references to the original document, as well as the
inserted parts (see Section 3.3.5). As deletions are not represented and moves (i.e., references
to other parts of the document) are only hard to distinguish from regular references, I decided
not to investigate this tool in this evaluation, as the result would not be comparable.

10.4.2 Operation Types
The total number of edit operations already shows a significant difference between the tools.
However, the quantity does not reveal how the different algorithm represent the changes be-
tween the document versions.

Table 10.4 shows the distribution of the different operation types within a delta. Here, major
differences between the tools become apparent. In the ODF scenario, XCC Diff uses insert,
delete, and update operations nearly equally. No move is detected. Within the test documents,
no move has been performed on the user model as well. Although this does not guarantee that
no move occurs on the document model, the strong use of the move operation by diffxml and
jXyDiff is conspicuous. I will discuss this issue later. For the XHTML scenario, XCC Diff
uses more update operations, including some moves. This behavior reflects the assumptions
on the evolution of Web documents stated in Section 2.5.2. In general, the pattern of the used
operation types is similar for both scenarios.

Microsoft XML Diff shows a completely different usage pattern for both scenarios. In
the ODF scenario, the update operation is heavily used. This derives from the fact that the
structure of ODF’s lay-outing nodes is highly similar. Additionally, there exist far more delete

138

10.4 Delta Analysis

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100

E
di

t O
pe

ra
tio

ns

Changes in Document

Number of Operations in Delta (ODF Scenario)

XCC Diff
diffxml
jXyDiff

Microsoft XML Diff

(a) ODF Scenario

 0

 500

 1000

 1500

 2000

 0 2 4 6 8 10 12 14 16

E
di

t O
pe

ra
tio

ns

Snapshot No.

Number of Operations in Delta (XHTML Scenario)

XCC Diff
diffxml
jXyDiff

Microsoft XML Diff

(b) XHTML Scenario

Figure 10.3: Only Microsoft XML Diff ensures a minimum edit script. Nevertheless, XCC
Diff creates deltas with less edit operations due to the addressing of subtrees and
tree sequences. Note the different scales.

139

10 A Comparative Evaluation of XML Differencing Tools

insert delete update move

XCC Diff
ODF 34.51% 34.43% 31.06% 0.00%

XHTML 20.45% 31.25% 41.11% 7.19%

diffxml
ODF 2.68% 3.46% 6.49% 87.37%

XHTML 19.52% 20.04% 5.54% 54.90%

jXyDiff
ODF 5.85% 5.92% 18.77% 69.46%

XHTML 26.41% 27.72% 20.88% 24.99%

Microsoft XML Diff
ODF 7.88% 20.68% 66.85% 4.59%

XHTML 38.33% 38.38% 2.36% 20.93%

Table 10.4: The mixture of the operation types in the deltas differs both between the algo-
rithms, as well as between the scenarios.

operations than insert operations. This is particularly interesting, as in most cases the quantity
of insert and delete operations is nearly identical. This is straightforward, as insert and delete
operations are used to represent more complex changes that affect different nodes within a
subtree. In this case, however, the gluing heuristic of Microsoft XML Diff works better for
delete operations than for insert operations. In the XHTML scenario, however, the quantity of
insert and delete operations is nearly identical, with a high usage of the move operation. It is
the test run where the implementation error occurs; the deltas deconstruct the old document
and reconstruct the new nearly completely.

The test result for diffxml reflects the reason for the misbehavior of the algorithm. The high
use of the move operation derives from the fact that diffxml tries to reconstruct the (wrongly
matched) document structure. Nevertheless, the move operation is also heavily used in the
XHTML scenario. This shows that the worst case of the algorithm design meets the average
case in the domain of XML documents.

JXyDiff uses many move operations in the ODF scenario, too. This algorithm is also dis-
turbed by the high amount of equal nodes. Its greedy nature leads to matching nodes in
different subtrees, although not a real move occurred but an update. Additionally, each move
leads to further moves, thus starting a chain reaction. For XHTML, this pattern is not that
frequent. Nevertheless, nearly one quarter of the operations are moves.

10.4.3 Delta Size

One reason for storing the deltas instead of whole document versions is to gain a qualitative
information on the changes performed. The other reason is to save storage space. However,
each delta model adds data to the bare edit operation for addressing and for structuring. Addi-
tionally, the last sections have shown that the amount of edit operations used to represent the
changes between document versions can become large.

140

10.4 Delta Analysis

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

S
iz

e
in

 K
B

yt
e

Changes in Document

Size of Delta (ODF Scenario)

XCC Diff
diffxml
faxma
jXyDiff

Microsoft XML Diff
Document Size

(a) ODF Scenario

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14 16

S
iz

e
in

 K
B

yt
e

Snapshot No.

Size of Delta (XHTML Scenario)

XCC Diff
diffxml
faxma
jXyDiff

Microsoft XML Diff
Document Size

(b) XHTML Scenario

Figure 10.4: Some tools create deltas being larger than the compared documents.

141

10 A Comparative Evaluation of XML Differencing Tools

Figure 10.4 shows the total size of the generated deltas. The size of the original document
is displayed, too. The size of the delta exceeds the size of the document to compare for diff-
xml and jXyDiff already with minor changes. Apparently, these approaches are less suitable
in terms of a storage efficiency. In general, the delta size correlates with the amount of edit
operations that have been analyzed earlier.

Although XCC Diff basically has the largest overhead due to the context fingerprints and
its invertability, the resulting deltas are comparably small. Especially for the ODF scenario,
even large changes lead to deltas that are far smaller than the original document. The XHTML
scenario leads to more comprehensive edit operations, thus requiring more storage space with
respect to the original document size.

The deltas of faxma have not been analyzed in the last sections, as the delta model is not
comparable. The delta size, however, can be compared. The deltas created by faxma are
comparably small. Especially in the XHTML scenario, the deltas are the smallest among all
tested tools. Here, the ability to address large unchanged subtrees efficiently is beneficial.
In the ODF scenario, the subtrees are basically smaller and less deep. Here, faxma loses its
advantage, leading to deltas nearly twice the size of XCC Diff and Microsoft XML Diff.

10.5 Conclusions
Two aspects are important when using a differencing tool. The speed of the algorithm should
allow its frequent use. Additionally, the resulting deltas should be reasonably small, reflecting
the nature of the changes performed.

In this chapter, I have analyzed the performance of XCC Diff in comparison with the best
known tools that represent the state-of-the-art in XML differencing. The evaluation has shown
that XCC Diff is one of the fastest implementations available. Together with faxma, it shows
a nearly constant runtime across a high amount of changes. Even for a 375 KByte office
document, the runtime does not exceed 0.5 seconds. The other tools show a significantly lower
performance, together with a strange behavior in some cases. Although this might derive from
a sub-optimal implementation, it significantly lowers the usability of these tools.

For the resulting deltas, the approaches differ significantly, too. Again, XCC Diff shows
a very good and constant performance. The quantity of edit operations needed to describe
the changes between two document versions is low, which allows for investigating a delta
manually. Here, XCC Diff and jXyDiff are the only tools without freak values. Together with
faxma, the size of the deltas by XCC Diff is significantly lower than for the other approaches.

In conclusion, the implementations of XCC Diff and faxma appear to be the most mature
among the tested tools. XCC Diff appears to be the best general-purpose algorithm for XML
documents. Faxma shows an impressive performance as well. However, its delta model is
more complicated to read by human readers and does not allow for merging documents.

142

11 Conclusions and Future Work

This chapter summarizes the results of this thesis, followed by an overview of the main scien-
tific contribution. Afterwards, I present different applications already using the XCC frame-
work, as well as research directions for future work.

11.1 Summary

In the introduction in Chapter 1, I have presented my motivation for this work. I have described
the ad-hoc collaboration model that can be supported by the framework developed in this
thesis.

In Chapter 2, I have presented some basic notations regarding documents in general and
XML documents in special. As an important aspect, XML documents need to have an inner
node ordering. Although this conforms to the XML specification, some database-related XML
formats intentionally rely on an unordered tree model. Deriving from that definition, most
picture formats are not covered by my approach. In the rest of the chapter, I have given an
analysis of XML documents to gain knowledge on their properties, and the change patterns
occurring in usual editing processes. The results of this analysis have directed the design of
the XCC framework later on.

The comparison of texts and trees is an important and extensively studied domain of com-
puter science. In Chapter 3, I have presented the problem statement as well as the common
solutions for text and tree differencing. Text and trees have different properties, thus requiring
different solutions. XML documents, however, share the tree property from “natural” trees,
as well as the reading direction from texts. Therefore, XML documents require special ap-
proaches to compare two document versions. I have given an overview on the state-of-the-art
in XML differencing algorithms and tools.

Parallel editing of documents is an every-day task in collaborative environments. Changes
performed in parallel have to be merged subsequently to ensure a consistent document. In
Chapter 4, I have presented the common approaches to document merging. All of the existing
approaches have their assets and drawbacks. I have shown that the existing approaches for
XML merging are still not mature, especially for the merging of document states, which is
important in ad-hoc collaboration environments without a central repository.

Document change control covers the differencing, patching, and merging of documents. In
Chapter 5, I have presented the basic idea of my approach, as well as the architecture of the
XCC framework that covers the mentioned aspects of document change control. Important
aspects of the implementation have also been highlighted there.

143

11 Conclusions and Future Work

To ensure a reliable merge-capability, I have decided to rely on the syntactic context as
indicator for the correctness of the applicability of an edit operation. In Chapter 6, I have
presented my delta model that builds the heart of the XCC framework. I have introduced the
so-called context fingerprint that stores a normalized representation of the syntactic context.

One important challenge in document change control is the efficiency of the differencing
algorithm. In Chapter 7, I have presented an efficient differencing algorithm for XML doc-
uments, called XCC Diff. The algorithm computes the changes between document versions
based on the change model defined in the previous chapter. The complexity class of the algo-
rithm is competitive. For similar documents, a near-linear time complexity is achieved. The
space complexity is linear in any case.

Reliable patching is another important challenge. In Chapter 8, I have presented a merge-
capable patch algorithm based on the delta model presented before. Using the context fin-
gerprints, it is able to identify the correct position of an edit operation, thus allowing for a
reliable merge. In case of a non-optimal match, the algorithm performs a best-effort approach
to find the correct position. The user may decide to which degree an ambiguous merge result
is acceptable. Additionally, a conflict detection prevents unintended deletions or updates. The
complexity of the patch algorithm is even better than that of the differencing algorithm.

The XCC framework consists of the delta model, with the differencing and patching al-
gorithm on top. In Chapter 9, I have evaluated the runtime of these algorithms as well as
the quality of the merge. The results have enforced the claimed complexity classes and have
proven the reliability of the proposed merge algorithm.

No other framework has the same broad applicability than XCC. Nevertheless, efficient
XML differencing tools already exist. In Chapter 10, I have performed an analysis of the
runtime and the resulting deltas of the XML differencing algorithms presented in Chapter 3
in comparison to XCC Diff. XCC Diff appears to be one of the best tools available, showing
no failure or spurious result (which also holds for only one of the competitors). The deltas are
small, describing the actual changes accurately.

11.2 Scientific Contribution

To the best of my knowledge, this thesis is the first comprehensive approach to XML document
change control. The scientific contribution of my thesis covers three main aspects.

First, I have analyzed the properties of XML documents and their modification patterns. No
other analysis of the properties of XML documents is known to me. Second, I have defined a
comprehensive delta model. As a main contribution, I have developed a notion of the syntactic
context of an edit operation. Altogether with the corresponding patch algorithm, it is the first
delta model known to me that allows for the reliable merge of XML documents. Third, I have
developed an XML differencing algorithm that is highly efficient in terms of time and space.
Beside its efficiency, it creates deltas that well reflect the actual editing actions performed on
the document. To the best of my knowledge, it is the best algorithm for XML differencing that
relies on a complete delta model.

144

11.3 Applications

11.3 Applications
The XCC framework enables other programs to transparently compare and merge document
versions. In this section, I present different applications of the XCC framework. I start by
presenting a graphical user interface for interactive document merging. Afterwards, an auto-
versioning file-system is presented that is able to automatically store modified document ver-
sions. Both tools have already been implemented. Later on, I present three further applications
of the XCC framework which have not been implemented yet. Finally, I briefly discuss the
applicability of my work on graphic formats.

11.3.1 Graphical Merge Support

XCC Patch allows for controlling the merge process by setting the parameters for the threshold
value, the conflict detection, and the neighborhood radius. These parameters are applied to all
edit operations within a delta. Defining an all-purpose threshold value is nearly impossible.
Setting it high prevents erroneous merges. On the other hand, acceptable edit operations are
rejected due to a low match quality. Especially for ambiguous edit operations, an interactive
decision by the user is favorable over rule-based solutions.

Basing on the XCC framework, Teupel [2009] has developed a graphical editor. It allows
for applying deltas interactively. The basic idea is to show the original document version, as
well as the modified document side-by-side. Applied edit operations are shown directly within
the XML tree, a list shows all edit operations, including the rejected ones. Figure 11.1 shows
a screen-shot of the application. The original document and the updated document are shown
side-by-side. Edit operations are highlighted to intuitively show their implications. In the right
part of the application, a list of all edit operation of the delta is shown. Selecting one of the
operations focuses the document tree on it.

The user can define a threshold for partial matchings, too. All operations with a higher
match quality are accepted by default and displayed in green. Operations with a lower match
quality are indicated in red. Accepted operations can be hided to allows the user to concen-
trate on the ambiguous operations. For each operation, the user can decide whether it should
be applied or not. Additionally, the path of the operation can be changed by dragging it to the
designated path within the tree. Nodes can be edited manually, e.g., for the resolution of se-
mantic conflicts. This is a clear improvement over the conventional patching, as the document
can be edited during the merge.

During the edit process, the original document remains unchanged. By this, a user may
freely edit the document, without having to fear that the editing actions affect the original
document. Any change can be reverted using an “undo” button. document Whenever the
user has edited the document, the merge result does not conform to the delta that has been
originally applied. Naturally, this is the dedicated usage of the application. Nevertheless,
the user may want to store the generated merge result. The editor allows for computing the
delta between the original and the modified version after editing it. By this, the resulting
delta contains all decisions that have been taken by the user, including all manual changes

145

11 Conclusions and Future Work

Figure 11.1: The merge GUI displays the original and the updated version side-by-side. Inser-
tions, deletions, moves, and updates are highlighted in different colors. The right
list gives detailed information on the operations of the delta.

performed. This feature is especially helpful in the context of version control systems, where
only non-conflicting deltas may be committed to the repository. As a second use-case, the user
can distribute the merge result to other users that are working on the same document.

11.3.2 Auto-Versioning File-System

In state-based change control systems, the presence of a new state is usually announced ac-
tively by invoking the differencing tool or by checking in the new version to the repository.
This does not reflect the usual process of editing a document, where the document is loaded,
edited, and saved. Users who are not familiar with the usage of change control systems would
easily forget to announce the new document version. If check-ins occur only seldom, the
deltas become very large and do not reflect the single editing steps, which makes it difficult to
revert changes to an interim version. Additionally, large deltas are difficult to merge. In case
that the most recent local copy has not been checked in and the local machine has a failure, all
changes are lost.

Auto-versioning file-systems try to combine the advantages of file-systems with change
control systems. The basic idea is to embed the change control features within the file-system
structure in a way that each write access invokes the generation of a new document version.
Müller et al. [2010] has presented a general-purpose auto-versioning file-system, which is
able to handle XML documents using the XCC framework. It works on top of existing low-
level file-systems on Linux systems, and handles different files depending on their MIME type
[Freed and Borenstein 1996].

The auto-versioning file-system acts like a conventional one. A file and directory structure
is presented. Files and documents can be created, modified, moved, and deleted as one is
used to. By default, only the current state of the files is shown. Internally, the current version

146

11.3 Applications

is stored, as well as a delta containing the differences to the previous version. In the end,
each version can be reconstructed by subsequently applying these deltas. Basically, the user
has no direct access to these deltas. Instead, a tool provides an interface for querying former
versions. They can be retrieved either by defining a version step (e.g., the previous version),
or by defining a date of validity. Especially for older document versions, the definition of a
validity period is more appropriate than defining a version step.

Legal constraints are an important issue in document management for processes in enter-
prises. Auto-versioning file-systems allow for achieving regulatory compliance of document
repositories [Peterson and Burns 2005]. Additionally, the auto-versioning feature can be com-
bined with an archiving solution. This especially useful for long-term archiving, where XML
documents are qualified for by design [Borghoff et al. 2006]. Additionally, an auto-versioning
file-system prevents the user from accidentally overwriting or deleting documents. The im-
plicit versioning ensures a fine granularity that is also helpful for merging.

11.3.3 Other Applications

The XCC framework can be used for numerous other use cases, too. For example, version
control systems could be enhanced to handle XML documents adequately. In previous work, I
have presented a corresponding API to link XML differencing approaches and version control
systems for the change control of office documents [Rönnau 2004]. Here, not only the basic
XML document, but all XML documents within the complete office document are compared
using an XML diff tool. The resulting delta contains all deltas from the diff runs. Addition-
ally, the embedded bitmaps are compared, too. If they change, they are added to the delta. The
Office Versioning API stores a complete delta and by that ensures a comprehensive change
control for office documents. A prototype has shown the applicability using XyDiff (see Sec-
tion 3.3.4) and the Darcs version control system1 [Rönnau et al. 2005]. This approach is easily
extensible towards the XCC framework that also provides a merge capability.

Most office applications offer a “track changes” feature that allows for storing the evolution
of a document. This is technically implemented by annotating the document, as described in
Section 4.4.3. This feature is popular among end-users, as it offers a simple way of manual
document merging. Especially if a document is edited often or by more than two users, the
change representation becomes hard to read. Additionally, the tracked changes store lots of
meta-data which is probably not intended to be accessible by every participant. Finally, the
change tracking is inefficient in terms of storage space. Teupel [2008] has developed a tool
to map the tracked changes onto the XCC delta model. The tracked changes are extracted
from the office document and converted into an XCC Delta. This way, a better privacy due to
reduced meta-data information, and the ability for a more reliable merge through XCC Patch
is achieved. Rönnau and Borghoff [2009] have shown the flexibility and efficiency of this
approach which combines both the advantages of the change tracking as well as the context-
aware merging of XCC.

1http://darcs.net, presented by Roundy [2005].

147

11 Conclusions and Future Work

In Section 4.3, I have presented the operational transformation approach as state-of-the-art
for collaborative editors. Fraser [2009] has presented a collaborative editor that relies on a
state-based differencing and merging approach. The differencing is performed often, which
results in the deltas being small and thus lowering the probability for ambiguous merges. It has
been shown that the editor is fast enough for on-line collaboration with several users. Using
the XCC framework, a collaborative editor for XML documents could be developed.

Recently, libraries became aware that the Web has to be archived, too [Masanès 2006]. This
is especially difficult, as Web pages evolve constantly over time. Storing the complete versions
of documents is way too inefficient in terms of space. Cobéna [2003] has proposed to use an
XML differencing tool to compare the versions of a web page and to only store the delta.
This approach is efficient in terms of space. Additionally, the use of an XML diff allows for
a qualified description of the Web page evolution. The XCC framework could be easily used
to track the evolution of Web pages, too. This way, a long-term preservation of Web content
could be achieved efficiently.

11.3.4 Applicability on Graphics

In Section 2.1, I have restricted the term document to artifacts with an inner ordering, cor-
responding to a reading direction. This decision was based on the consideration that equally
looking graphics can be represented differently. Following example is based on SVG, an
XML-based vector format. Two non-touching lines can be stored in either order, providing
the same information. Deriving from that, the use of XCC to track changes appears to be less
meaningful. However, Thao and Munson [2010] have shown that common graphics applica-
tions store the elements of an SVG in a persistent order. This means that for two unchanged
elements, their respective order within the SVG does not change in case that the SVG has
been edited by the same application. Basing on this information, XCC can be used to track
the evolution of graphics, which broadens the scope of the XCC framework significantly.

11.4 Future Work

The XCC framework is a mostly self-contained system that enables a full change control
over XML documents. The last section has shown different applications of this approach.
Neverthereless, future research may improve the proposed system. In the following, different
research directions are mentioned briefly.

11.4.1 Validating Merge

In the proposed solution, the correct position of an edit operation is solely identified using its
syntactic context. A possible violation of the document validity is not verified. During the
evaluation, no invalid document occured. However, it is basically possible to create an invalid
document in a merge scenario. This is a kind of worst case in terms of user acceptance, as

148

11.4 Future Work

the merged document cannot be edited by the corresponding application to revise the merge
error. To prevent this case, the existing patch tool offers an option to validate a document after
a merge. In case of an invalid merge, the patch process is not performed.

This approach prevents invalid documents. However, a more fine-grained solution would
be helpful. Here, for each edit operation, the impact on the validity has to be checked. As
a re-validation of the complete document is highly cost-intensive, an incremental validation
would be appropriate. In that approach, only the modified parts are re-validated. Papakon-
stantinou and Vianu [2002] have presented a corresponding re-validation algorithm. However,
for complex grammars, the space complexity becomes a severe issue, as all possible states of
the validating tree automaton have to be held in memory. Barbosa et al. [2006] have presented
an improved re-validation algorithm and have shown its efficiency in complex real-world sce-
narios. Including this approach into XCC Patch would lead to an even better reliability of the
merge, without tampering the complexity too much.

11.4.2 Three-Way Merging
Previously, I have argumented that a merge-capable patching offers the simpliest way of merg-
ing with a broad applicability. One of the drawbacks of three-way merging algorithms is the
need to have the nearest common ancestor version available. In case that this version is given,
however, a three-way merge potentially offers a better merge result, as each changed node can
be compared with respect to the original version.

The proposed differencing algorithm could be extended to support three-way differencing,
too. Here, three documents have to be traversed in parallel instead of two. Khanna et al.
[2007] have analyzed the behavior of the line-based diff3 tool. This could act as blueprint for
a corresponding XCC Diff3. Additionally, the experience gained by Lindholm [2004] during
the design of his three-way differencing algorithm for XML documents should be considered.

11.4.3 Near-Similarity Hashing
For the sake of efficiency, nodes are compared using their value, represented by a hashed
representation of their normalized content. Hash functions have mostly been developed in the
domain of cryptography, where similar nodes lead to completely different hash values. By this,
the hash value does not allow for drawing a deduction on the content of a node. Therefore,
even a slightly changed node cannot be matched as syntactic context of an edit operation.

Minor changes of a node, e.g. a corrected typographic error or an attribute change, could be
respected, indeed. This would allow the patch algorithm for matching an edit operation even
in a slightly modified syntactic context. By this, even more edit operations could be matched
at a higher reliabililty, as the threshold could be set to higher values. Nachbar [1988] has
shown that accepting a certain inaccuracy leads to significantly smaller and understandable
deltas. The use of hash values is a main design decision of my approach. Here, fuzzy hash
functions that reflect the similarity of two nodes could be used. These functions have been
introduced by Stein [2005].

149

11 Conclusions and Future Work

150

Bibliography

Abiteboul, S., Segoufin, L., and Vianu, V. (2006). Representing and querying XML with
incomplete information. ACM Transactions on Database Systems, 31(1):208–254.

Adams, E., Gramlich, W., Muchnick, S. S., and Tirfing, S. (1986). Sunpro: engineering
a practical program development environment. In Proceedings of the 1986 International
Workshop on Advanced Programming Environments, pages 86–96, London, UK. Springer.

Adar, E., Teevan, J., Dumais, S. T., and Elsas, J. L. (2009). The web changes everything:
understanding the dynamics of web content. In WSDM’09: Proceedings of the 2nd ACM
International Conference on Web Search and Data Mining, pages 282–291, New York, NY,
USA. ACM.

Akutsu, T., Fukagawa, D., and Takasu, A. (2008). Improved approximation of the largest
common subtree of two unordered trees of bounded height. Information Processing Letters,
109(2):165–170.

Al-Ekram, R., Adma, A., and Baysal, O. (2005). diffx: an algorithm to detect changes in
multi-version XML documents. In CASCON’05: Proceedings of the 2005 Conference of
the Centre for Advanced Studies on Collaborative Research, pages 1–11. IBM Press.

Allali, J. and Sagot, M.-F. (2004). Novel tree edit operations for RNA secondary structure
comparison. In Jonassen, I. and Kim, J., editors, WABI, volume 3240 of Lecture Notes in
Computer Science, pages 412–425, Berlin/Heidelberg, Germany. Springer.

Amagasa, T., Yoshikawa, M., and Uemura, S. (2000). A data model for temporal XML doc-
uments. In DEXA’00: Proceedings of the 11th International Conference on Database and
Expert Systems Applications, pages 334–344, London, UK. Springer.

Apostolico, A., Atallah, M. J., Larmore, L. L., and McFaddin, S. (1990). Efficient parallel
algorithms for string editing and related problems. SIAM Journal on Computing, 19(5):968–
988.

Barbosa, D., Leighton, G., and Smith, A. (2006). Efficient incremental validation of XML
documents after composite updates. In Amer-Yahia, S., Bellahsene, Z., Hunt, E., Unland,
R., and Yu, J. X., editors, XSym, volume 4156 of Lecture Notes in Computer Science, pages
107–121, Berlin/Heidelberg, Germany. Springer.

151

Bibliography

Barnard, D. T., Clarke, G., and Duncan, N. (1995). Tree-to-tree correction for document trees.
Technical Report 95-372, Queen’s University Kingston, Canada.

Bennett, K. H. and Rajlich, V. T. (2000). Software maintenance and evolution: a roadmap.
In ICSE’00: Proceedings of the Conference on The Future of Software Engineering, pages
73–87, New York, NY, USA. ACM.

Bergroth, L., Hakonen, H., and Raita, T. (2000). A survey of longest common subsequence
algorithms. In SPIRE’00: Proceedings of the 7th International Symposium on String Pro-
cessing Information Retrieval, page 39, Washington, DC, USA. IEEE Computer Society.

Bernard, M., Boyer, L., Habrard, A., and Sebban, M. (2008). Learning probabilistic models
of tree edit distance. Pattern Recognition, 41(8):2611–2629.

Bertino, E., Guerrini, G., Mesiti, M., and Tosetto, L. (2002). Evolving a set of DTDs according
to a dynamic set of XML documents. In EDBT’02: Proceedings of the Worshops XMLDM,
MDDE, and YRWS on XML-Based Data Management and Multimedia Engineering-Revised
Papers, pages 45–66, London, UK. Springer.

Bille, P. (2005). A survey on tree edit distance and related problems. Theoretical Computer
Science, 337(1-3):217–239.

Borghoff, U. M., Rödig, P., Scheffczyk, J., and Schmitz, L. (2006). Long-Term Preservation
of Digital Documents: Principles and Practices. Springer, Secaucus, NJ, USA.

Borghoff, U. M. and Schlichter, J. H. (2000). Computer-Supported Cooperative Work: Intro-
duction to Distributed Applications. Springer, Secaucus, NJ, USA.

Borghoff, U. M. and Teege, G. (1993a). Application of collaborative editing to software-
engineering projects. ACM SIGSOFT, 18:56–64.

Borghoff, U. M. and Teege, G. (1993b). Structure management in the collaborative multimedia
editing system iris. In MMM ’93: Proceedings of the 1st International Conference on Multi-
Media Modeling, pages 159–173, Singapore. Singapore, New Jersey, London, Hong Kong:
World Scientific.

Boyer, J. (2001). Canonical XML version 1.0. RFC 3076.

Boyer, J. M., Dunn, E., Kraft, M., Liu, J. S., Shah, M. R., Su, H. F., and Tiwari, S. (2008).
An office document mashup for document-centric business processes. In DocEng’08: Pro-
ceeding of the 8th ACM symposium on Document engineering, pages 100–101, New York,
NY, USA. ACM.

Brauer, M., Weir, R., and McRae, M. (2007). OpenDocument v1.1 specification.

152

Bibliography

Bray, T., Hollander, D., Layman, A., and Tobin, R. (2006). Namespaces in XML 1.0 (second
edition). World Wide Web Consortium, Recommendation REC-xml-names-20060816.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau, F. (2008). Extensible
markup language (XML) 1.0 (fifth edition). World Wide Web Consortium, Recommenda-
tion REC-xml-20081126.

Buckland, M. K. (1997). What is a “document”? Journal of the American Society for Infor-
mation Science, 48(9):804–809.

Carey, P. (2008). New Perspectives on HTML and XHTML 5th Edition, Comprehensive.
Course Technology Press, Boston, MA, United States.

Chawathe, S., Rajaraman, A., Garcia-Molina, H., and Widom, J. (1995). Change detection in
hierarchically structured information. Technical Report 1995-46, Stanford Infolab.

Chawathe, S. S. (1999). Comparing hierarchical data in external memory. In VLDB ’99:
Proceedings of the 25th International Conference on Very Large Data Bases, pages 90–
101, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Chawathe, S. S., Abiteboul, S., and Widom, J. (1999). Managing historical semistructured
data. Theory and Practice of Object Systems, 5(3):143–162.

Chawathe, S. S. and Garcia-Molina, H. (1997). Meaningful change detection in structured
data. SIGMOD Records, 26(2):26–37.

Chawathe, S. S., Rajaraman, A., Garcia-Molina, H., and Widom, J. (1996). Change detection
in hierarchically structured information. In SIGMOD ’96: Proceedings of the 1996 ACM
SIGMOD International Conference on the Management of Data, pages 493–504, New York,
NY, USA. ACM.

Chen, W. (2001). New algorithm for ordered tree-to-tree correction problem. Journal of
Algorithms, 40(2):135 – 158.

Clark, J. (1999). XSL transformations (XSLT) version 1.0. http://www.w3.org/TR/xslt.

Cobéna, G. (2003). Change management of semi-structured data on the web. PhD thesis,
École Polytechnique, INRIA Rocquencourt.

Cobéna, G., Abiteboul, S., and Marian, A. (2002). Detecting Changes in XML Documents. In
ICDE’02: Proceedings of the 18th International Conference on Data Engineering, pages
41–52. IEEE Computer Society.

Codd, E. F. (1970). A relational model of data for large shared data banks. Commununications
of the ACM, 13(6):377–387.

153

Bibliography

Conradi, R. and Westfechtel, B. (1998). Version models for software configuration manage-
ment. ACM Computing Surveys, 30(2):232–282.

Cormode, G. and Muthukrishnan, S. (2007). The string edit distance matching problem with
moves. ACM Transactions on Algorithms, 3(1):2.

Davis, A. H., Sun, C., and Lu, J. (2002). Generalizing operational transformation to the
standard general markup language. In CSCW’02: Proceedings of the 2002 ACM Conference
on Computer Supported Cooperative Work, pages 58–67, New York, NY, USA. ACM.

Davis, M. and Collins, L. (1990). Unicode. In Proceedings of the 1990 International Confer-
ence on Systems, Man, and Cybernetics, pages 499–504.

Davison, W. (1990). Unified context diff tools. Volume 14, Issue 70 of
comp.sources.misc.

Delisle, N. and Schwartz, M. (1986). Contexts: a partitioning concept for hypertext. In
CSCW’86: Proceedings of the 1986 ACM Conference on Computer Supported Cooperative
Work, pages 147–152, New York, NY, USA. ACM.

DeNardis, L. and Tam, E. (2007). Open documents and democracy.
http://odfalliance.org/resources/Yale_Open_Documents_and_Democracy.pdf.

DeRose, S. and Clark, J. (1999). XML path language (XPath) version 1.0.
http://www.w3.org/TR/1999/REC-xpath-19991116.

Eastlake, D., Reagle, J., Solo, D., Hirsch, F., and Roessler, T. (2008). XML signature syntax
and processing (second edition). http://www.w3.org/TR/xmldsig-core/.

Eisenberg, J. D. (2004). OpenOffice.org XML Essentials - Using OpenOffice.org’s XML Data
Format. Technical report, SUN.

Ellis, C. A. and Gibbs, S. J. (1989). Concurrency control in groupware systems. SIGMOD
Records, 18(2):399–407.

Fetterly, D., Manasse, M., Najork, M., and Wiener, J. (2003). A large-scale study of the
evolution of web pages. In WWW’03: Proceedings of the 12th International Conference on
the World Wide Web, pages 669–678, New York, NY, USA. ACM.

Flower, L. and Hayes, J. R. (1981). A cognitive process theory of writing. College Composi-
tion and Communication, 32(4):365–387.

Fontaine, R. L. (2002). Merging XML files: a new approach providing intelligent merge of
XML data sets. In Proceedings of the XML Europe 2002.

Fraser, N. (2009). Differential synchronization. In DocEng’09: Proceedings of the 9th ACM
Symposium on Document Engineering, pages 13–20, New York, NY, USA. ACM.

154

Bibliography

Freed, N. and Borenstein, N. (1996). Multipurpose Internet Mail Extensions (MIME) Part
Two: Media Types. RFC 2046.

Goldfarb, C. F. (1990). The SGML handbook. Oxford University Press, Inc., New York, NY,
USA.

Gorn, S., Bemer, R. W., and Green, J. (1963). American standard code for information inter-
change. Communications of the ACM, 6(8):422–426.

Gottlob, G., Koch, C., and Pichler, R. (2003). The complexity of XPath query evaluation.
In PODS’03: Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 179–190, New York, NY, USA. ACM Press.

Grandi, F. and Mandreoli, F. (2000). The valid web: An XML/XSL infrastructure for tem-
poral management of web documents. In ADVIS’00: Proceedings of the 1st International
Conference on Advances in Information Systems, pages 294–303, London, UK. Springer.

Grandi, F., Mandreoli, F., and Tiberio, P. (2005). Temporal modelling and management of
normative documents in XML format. Data & Knowledge Engineering, 54(3):327–354.

Gray, J. (1978). Notes on data base operating systems. In Operating Systems, An Advanced
Course, pages 393–481, London, UK. Springer.

Gropengießer, F., Hose, K., and Sattler, K.-U. (2009). An extended transaction model for
cooperative authoring of XML data. Computer Science - Research and Development, 24(1-
2):85–100.

Hedeler, C. and Paton, N. W. (2008). A comparative evaluation of XML difference algorithms
with genomic data. In Ludäscher, B. and Mamoulis, N., editors, SSDBM, pages 258–275,
Berlin/Heidelberg, Germany. Springer.

Hickson, I. and Hyatt, D. (2010). HTML5. http://www.w3.org/TR/html5/.

Hill, W. C., Hollan, J. D., Wroblewski, D., and McCandless, T. (1992). Edit wear and read
wear. In CHI’92: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 3–9, New York, NY, USA. ACM.

Hors, A. L., Hégaret, P. L., Wood, L., Nicol, G., Robie, J., Champion, M., and Byrve, S.
(2004). Document object model (DOM) level 3 core specification. W3C Recommendation.

Horwitz, S., Prins, J., and Reps, T. (1989). Integrating noninterfering versions of programs.
ACM Transactions on Programming Languages and Systems, 11(3):345–387.

Hottinger, D. and Meyer, F. (2005). XML-diff-algorithmen. Semesterarbeit, ETH Zürich.

Hunt, J. W. and McIlroy, M. D. (1976). An algorithm for differential file comparison. Techni-
cal Report CSTR 41, Bell Laboratories, Murray Hill, NJ.

155

Bibliography

Ignat, C.-L. and Norrie, M. C. (2003). Customizable collaborative editor relying on treeopt
algorithm. In ECSCW’03: Proceedings of the 8th European Conference on Computer Sup-
ported Cooperative Work, pages 315–334, Norwell, MA, USA. Kluwer Academic Publish-
ers.

Ignat, C.-L. and Norrie, M. C. (2006). Flexible definition and resolution of conflicts through
multi-level editing. In CollaborateCom’06: Proceedings of the International Conference
on Collaborative Computing: Networking, Applications and Worksharing, pages 1 –10.

Ignat, C.-L. and Norrie, M. C. (2008). Multi-level editing of hierarchical documents. Comput.
Supported Coop. Work, 17(5-6):423–468.

Ignat, C.-L., Papadopoulou, S., Oster, G., and Norrie, M. C. (2008). Providing awareness in
multi-synchronous collaboration without compromising privacy. In CSCW’08: Proceedings
of the 2008 ACM Conference on Computer Supported Cooperative Work, pages 659–668,
New York, NY, USA. ACM.

Iorio, A. D., Schirinzi, M., Vitali, F., and Marchetti, C. (2009). A natural and multi-layered
approach to detect changes in tree-based textual documents. In Filipe, J. and Cordeiro,
J., editors, ICEIS, volume 24 of Lecture Notes in Business Information Processing, pages
90–101, Berlin/Heidelberg, Germany. Springer.

Irons, E. T. and Djorup, F. M. (1972). A CRT editing system. Communications of the ACM,
15(1):16–20.

Ishida, Y., Inenaga, S., Shinohara, A., and Takeda, M. (2005). Fully incremental LCS compu-
tation. In Liskiewicz, M. and Reischuk, R., editors, FCT, volume 3623 of Lecture Notes in
Computer Science, pages 563–574, Berlin/Heidelberg, Germany. Springer.

Jansson, J. and Lingas, A. (2001). A fast algorithm for optimal alignment between similar
ordered trees. In CPM’01: Proceedings of the 12th Annual Symposium on Combinatorial
Pattern Matching, pages 232–240, London, UK. Springer.

Jiang, T., Wang, L., and Zhang, K. (1995). Alignment of trees – an alternative to tree edit.
Theoretical Computer Science, 143(1):137 – 148.

Kangasharju, J. and Lindholm, T. (2005). A sequence-based type-aware interface for XML
processing. In EuroIMSA’05: Proceedings of the Conference on Internet and Multimedia
Systems and Applications, pages 83–88.

Khanna, S., Kunal, K., and Pierce, B. C. (2007). A formal investigation of diff3. In Arvind
and Prasad, editors, Foundations of Software Technology and Theoretical Computer Science
(FSTTCS).

156

Bibliography

Klein, P. N. (1998). Computing the edit-distance between unrooted ordered trees. In ESA
’98: Proceedings of the 6th Annual European Symposium on Algorithms, pages 91–102,
London, UK. Springer.

Ko, H.-K. and Lee, S. (2006). An efficient scheme to completely avoid re-labeling in XML
updates. In WISE’06: Proceedings of the 7th International Conference on Web Information
Systems Engineering, pages 259–264.

Koch, M. (1997). Unterstützung kooperativer Dokumentenbearbeitung in Weitverkehrsnetzen.
PhD thesis, Technische Universität München.

Koch, M. and Koch, J. (2000). Application of frameworks in groupware – the iris group editor
environment. ACM Computing Surveys, page 28.

Krug, S. (2000). Don’t Make Me Think!: A Common Sense Approach to Web Usability. Que
Corp., Indianapolis, IN, USA.

Lai, W. (2009). Relationship-Based Change Propagation: A Case Study. Master’s thesis,
University of Toronto.

Landau, G. M., Myers, E. W., and Schmidt, J. P. (1998). Incremental string comparison. SIAM
Journal on Computing, 27(2):557–582.

Laux, A. and Martin, L. (2000). XUpdate. http://xmldb-org.sourceforge.net/xupdate/xupdate-
wd.html.

Lease, M. (2007). Natural language processing for information retrieval: the time is ripe
(again). In PIKM’07: Proceedings of the ACM 1st Ph.D. workshop in CIKM, pages 1–8,
New York, NY, USA. ACM.

Lee, K.-H., Choy, Y.-C., and Cho, S.-B. (2004). An efficient algorithm to compute differences
between structured documents. IEEE Transactions on Knowledge and Data Engineering,
16(8):965–979.

Levenshtein, V. (1966). Binary Codes Capable of Correcting Deletions, Insertions and Rever-
sals. Soviet Physics Doklady, 10:707–710.

Lindholm, T. (2004). A three-way merge for XML documents. In DocEng’04: Proceedings
of the 4th ACM Symposium on Document Engineering, pages 1–10, New York, NY, USA.
ACM.

Lindholm, T., Kangasharju, J., and Tarkoma, S. (2006). Fast and simple XML tree differenc-
ing by sequence alignment. In DocEng’06: Proceedings of the 6th ACM Symposium on
Document Engineering, pages 75–84, New York, NY, USA. ACM.

157

Bibliography

Lippe, E. and van Oosterom, N. (1992). Operation-based merging. SIGSOFT Software Engi-
neering Notes, 17(5):78–87.

MacKenzie, D., Eggert, P., and Stallmann, R. (2002). Comparing and merging files.
http://www.gnu.org/software/diffutils/manual/.

Marian, A., Abiteboul, S., Cobéna, G., and Mignet, L. (2001). Change-centric management
of versions in an XML warehouse. In Journal on Very Large Databases, pages 581–590.

Martens, W., Neven, F., Schwentick, T., and Bex, G. J. (2006). Expressiveness and complexity
of XML schema. ACM Transactions on Database Systems, 31(3):770–813.

Maruyama, H., Tamura, K., and Uramoto, N. (2000). Digest values for DOM (DOMHASH).
RFC 2803.

Masanès, J. (2006). Web Archiving. Springer, Secaucus, NJ, USA.

Mehdad, Y. (2009). Automatic cost estimation for tree edit distance using particle swarm
optimization. In ACL-IJCNLP’09: Proceedings of the ACL-IJCNLP 2009 Conference Short
Papers, pages 289–292, Morristown, NJ, USA. Association for Computational Linguistics.

Mens, T. (2002). A state-of-the-art survey on software merging. IEEE Transactions on Soft-
ware Engineering, 28(5):449–462.

Meyrowitz, N. and van Dam, A. (1982). Interactive editing systems: Part i. ACM Computing
Surveys, 14(3):321–352.

Miller, W. and Myers, E. W. (1985). A file comparison program. Software: Practice and
Experience, 15(11):1025–1040.

Mitchell, A., Posner, I., and Baecker, R. (1995). Learning to write together using groupware.
In CHI’95: Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, pages 288–295, New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

Molli, P., Skaf-Molli, H., Oster, G., and Jourdain, S. (2002). Sams: synchronous, asyn-
chronous, multi-synchronous environments. In Proceedings of the 7th International Con-
ference on Computer Supported Cooperative Work in Design, pages 80 – 84.

Morgan, H. L. (1970). Spelling correction in systems programs. Communications of the ACM,
13(2):90–94.

Mouat, A. (2002). XML Diff and Patch Utilities. Master’s thesis, Heriot-Watt University,
Edinburgh.

Müller, A., Rönnau, S., and Borghoff, U. M. (2010). A file-type sensitive, auto-versioning file
system. In Proceedings of the 10th ACM symposium on Document engineering, DocEng
’10, pages 271–274, New York, NY, USA. ACM.

158

Bibliography

Murata, M., Lee, D., Mani, M., and Kawaguchi, K. (2005). Taxonomy of XML schema lan-
guages using formal language theory. ACM Transactions on Intermet Technology, 5(4):660–
704.

Myers, B. A. (1998). A brief history of human-computer interaction technology. ACM Inter-
actions, 5(2):44–54.

Myers, E. W. (1986). An O(ND) difference algorithm and its variations. Algorithmica, 1:251–
266.

Nachbar, D. (1988). SPIFF — A program for making controlled approximate comparisons of
files. In USENIX Association, pages 73–84.

Neuwirth, C. M., Chandhok, R., Kaufer, D. S., Erion, P., Morris, J., and Miller, D. (1992).
Flexible diff-ing in a collaborative writing system. In CSCW’92: Proceedings of the 1992
ACM Conference on Computer Supported Cooperative Work, pages 147–154, New York,
NY, USA. ACM Press.

Neuwirth, C. M., Kaufer, D. S., Chandhok, R., and Morris, J. H. (1990). Issues in the design
of computer support for co-authoring and commenting. In CSCW’90: Proceedings of the
1990 ACM Conference on Computer Supported Cooperative Work, pages 183–195, New
York, NY, USA. ACM.

Neven, F. (2002). Automata theory for XML researchers. SIGMOD Records, 31(3):39–46.

Nichols, D. A., Curtis, P., Dixon, M., and Lamping, J. (1995). High-latency, low-bandwidth
windowing in the jupiter collaboration system. In UIST’95: Proceedings of the 8th Annual
ACM Symposium on User Interface and Software Technology, pages 111–120, New York,
NY, USA. ACM.

Nielsen, J. and Pernice, K. (2009). Eyetracking Web Usability. New Riders Press.

Nørvåg, K. (2002). Temporal query operators in XML databases. In SAC’02: Proceedings of
the 2002 ACM Symposium on Applied Computing, pages 402–406, New York, NY, USA.
ACM.

Ntoulas, A., Cho, J., and Olston, C. (2004). What’s new on the web?: the evolution of the
web from a search engine perspective. In WWW’04: Proceedings of the 13th International
Conference on the World Wide Web, pages 1–12, New York, NY, USA. ACM.

Olson, J. S., Olson, G. M., Mack, L. A., and Wellner, P. (1990). Concurrent editing: the
group’s interface. In INTERACT’90, Proceedings of the IFIP TC13 3rd Interantional Con-
ference on Human-Computer Interaction, pages 835–840.

159

Bibliography

Oster, G., Molli, P., Urso, P., and Imine, A. (2006a). Tombstone transformation functions
for ensuring consistency in collaborative editing systems. In Proceedings of the Interna-
tional Conference on Collaborative Computing: Networking, Applications and Workshar-
ing, page 38, Los Alamitos, CA, USA. IEEE Computer Society.

Oster, G., Urso, P., Molli, P., and Imine, A. (2006b). Data consistency for p2p collabora-
tive editing. In CSCW’06: Proceedings of the 20th Anniversary Conference on Computer
Supported Cooperative Work, pages 259–268, New York, NY, USA. ACM.

Paoli, J., Valet-Harper, I., Farquhar, A., and Sebestyen, I. (2006). ECMA-376 Office Open
XML File Formats.

Papadopoulou, S., Ignat, C., Oster, G., and Norrie, M. (2006). Increasing awareness in col-
laborative authoring through edit profiling. In Proceedings of the International Conference
on Collaborative Computing: Networking, Applications and Worksharing, page 35, Los
Alamitos, CA, USA. IEEE Computer Society.

Papakonstantinou, Y. and Vianu, V. (2002). Incremental validation of XML documents. In
ICDT’03: Proceedings of the 9th International Conference on Database Theory, pages 47–
63, London, UK. Springer.

Pauli, C. (2008). Konzeption und Anwendung von XML-Deltas mit Kontextinformationen.
Diplomarbeit, Universität der Bundeswehr, München.

Pearson, P. K. (1990). Fast hashing of variable-length text strings. Commununications of the
ACM, 33(6):677–680.

Pemberton, S. (2002). XHTMLTM 1.0 the extensible hypertext markup language (second
edition). http://www.w3.org/TR/2002/REC-xhtml1-20020801.

Peters, L. (2005). Change detection in XML trees: a survey. In Proceedings of the 3rd Twente
Student Conference on IT, Enschede.

Peterson, Z. and Burns, R. (2005). Ext3cow: A time-shifting file system for regulatory com-
pliance. ACM Transactions on Storage, 1(2):190–212.

Philipp, G. (2008). Implementierung eines Fingerprint-gestützten performanten XML-Patch-
Tools. Studienarbeit, Universität der Bundeswehr, München.

Philipp, G. (2009). Ein effizientes Diff für XML-Dokumente. Diplomarbeit, Universität der
Bundeswehr, München.

Pilato, M. (2004). Version Control With Subversion. O’Reilly & Associates, Inc., Sebastopol,
CA, USA.

160

Bibliography

Pohlemann, M. (2009). Eine automatisierte Testumgebung für XML-Versionierungssysteme.
Studienarbeit, Universität der Bundeswehr, München.

Preguiça, N. M., Shapiro, M., and Matheson, C. (2003). Semantics-based reconciliation for
collaborative and mobile environments. In DOA/CoopIS/ODBASE’03: Proceedings of the
Confederated International Conferences DOA, CoopIS and ODBASE, pages 38–55.

Rabin, M. O. (1981). Fingerprinting by random polynomials. Technical Report TR-CSE-03-
01, Center for Research in Computing Technology, Harvard University.

Rivest, R. (1992). The MD5 Message-Digest Algorithm. RFC 1321.

Rochkind, M. J. (1975). The source code control system. IEEE Transactions on Software
Engineering, 1(4):364–370.

Rönnau, S. (2004). Versionsverwaltung von XML-Dokumenten am Beispiel von OpenOffice.
Diplomarbeit, Universität der Bundeswehr München.

Rönnau, S. and Borghoff, U. M. (2009). Versioning XML-based office documents. Multimedia
Tools and Applications, 43(3):253–274.

Rönnau, S., Pauli, C., and Borghoff, U. M. (2008). Merging changes in XML documents
using reliable context fingerprints. In DocEng’08: Proceeding of the 8th ACM Symposium
on Document Engineering, pages 52–61, New York, NY, USA. ACM.

Rönnau, S., Scheffczyk, J., and Borghoff, U. M. (2005). Towards XML version control of
office documents. In DocEng’05: Proceedings of the 5th ACM Symposium on Document
Engineering, pages 10–19, New York, NY, USA. ACM.

Rosado, L. A., Márquez, A. P., and Gil, J. M. (2007). Managing branch versioning in ver-
sioned/temporal XML documents. In Barbosa, D., Bonifati, A., Bellahsene, Z., Hunt, E.,
and Unland, R., editors, XSym, volume 4704 of Lecture Notes in Computer Science, pages
107–121, Berlin/Heidelberg, Germany. Springer.

Roundy, D. (2005). Darcs: distributed version management in haskell. In Haskell’05: Pro-
ceedings of the 2005 ACM SIGPLAN Workshop on Haskell, pages 1–4, New York, NY,
USA. ACM.

Sankoff, D. (1972). Matching sequences under deletion-insertion constraints. Proceedings of
the National Academy of Sciences of the United States of America, 69(1):4–6.

Scheffczyk, J. (2004). Consistent Document Engineering. PhD thesis, Universität der Bun-
deswehr München.

Schlichter, J., Koch, M., and Bürger, M. (1998). Workspace awareness for distributed teams.
In Coordination Technology for Collaborative Applications, number 1364 in Lecture Notes
in Computer Science (LNCS), pages 199–219, Berlin/Heidelberg, Germany. Springer.

161

Bibliography

Schubert, E., Schaffert, S., and Bry, F. (2005). Structure-preserving difference search for XML
documents. In Proceedings of the Conference on Extreme Markup Languages.

Selkow, S. M. (1977). The tree-to-tree editing problem. Information Processing Letters,
6(6):184–186.

Shapiro, B. A. (1988). An algorithm for comparing multiple RNA secondary structures. Com-
puter Applications in the Biosciences, 4(3):387–393.

Shen, H. and Sun, C. (2002). Flexible merging for asynchronous collaborative systems.
In DOA/CoopIS/ODBASE’02: Proceedings of the Confederated International Conferences
DOA, CoopIS and ODBASE, pages 304–321, London, UK. Springer.

Smith, R. (1988). GNU diff3.

Song, Y., Bhowmick, S. S., and Dewey, C. F. (2007). BioDIFF: An effective fast change
detection algorithm for biological annotations. In Ramamohanarao, K., Krishna, P. R.,
Mohania, M. K., and Nantajeewarawat, E., editors, DASFAA, volume 4443 of Lecture Notes
in Computer Science, pages 275–287, Berlin/Heidelberg, Germany. Springer.

Stein, B. (2005). Fuzzy-fingerprints for text-based information retrieval. In I-KNOW’05:
Proceedings of the 5th International Conference on Knowledge Management, pages 572–
579. Journal of Universal Computer Science.

Strunk Jr., W. and White, E. B. (1979). The Elements of Style. Macmillan, New York, NY, 3rd
ed. edition.

Sun, C. and Sosič, R. (1999). Optimal locking integrated with operational transformation in
distributed real-time group editors. In PODC ’99: Proceedings of the 18th Annual ACM
Symposium on Principles of Distributed Computing, pages 43–52, New York, NY, USA.
ACM.

Tai, K.-C. (1979). The tree-to-tree correction problem. Journal of the ACM, 26(3):422–433.

Tatarinov, I., Viglas, S. D., Beyer, K., Shanmugasundaram, J., Shekita, E., and Zhang, C.
(2002). Storing and querying ordered XML using a relational database system. In SIG-
MOD’02: Proceedings of the 2002 ACM SIGMOD International Conference on Manage-
ment of Data, pages 204–215, New York, NY, USA. ACM.

Teupel, M. (2008). Konzeption und Entwicklung von Konvertern für Fingerprint-basierte
XML-Deltas. Studienarbeit, Universität der Bundeswehr, München.

Teupel, M. (2009). Eine interaktive Merge-GUI für XML-Dokumente. Diplomarbeit, Univer-
sität der Bundeswehr, München.

162

Bibliography

Thao, C. and Munson, E. V. (2010). Using versioned tree data structure, change detection and
node identity for three-way xml merging. In Proceedings of the 10th ACM symposium on
Document engineering, DocEng ’10, pages 77–86, New York, NY, USA. ACM.

The ODF Alliance (2008). ODF Annual Report 2008.

The Unicode Consortium (1991). The Unicode Standard: Worldwide Character Encoding.
Version 1.0. Volumes 1 and 2. Addison-Wesley Professional, Reading, MA, USA.

Tichy, W. F. (1982). Design, implementation, and evaluation of a revision control system. In
ICSE ’82: Proceedings of the 6th International Conference on Software Engineering, pages
58–67, Los Alamitos, CA, USA. IEEE Computer Society Press.

Tichy, W. F. (1984). The string-to-string correction problem with block moves. ACM Trans-
actions on Computer Systems, 2(4):309–321.

Tichy, W. F. (1985). RCS—a system for version control. Software: Practice and Experience,
15(7):637–654.

Toland, T. S. (2000). An information retrieval system to manage program maintenance re-
ports in a data processing shop. In ACM-SE’38: Proceedings of the 38th Annual Southeast
Regional Conference, pages 81–87, New York, NY, USA. ACM.

Touzet, H. (2005). A linear tree edit distance algorithm for similar ordered trees. In CPM’05:
Proceedings of the 16th Annual Symposium on Combinatorial Pattern Matching, pages
334–345, Berlin/Heidelberg, Germany. Springer.

Tridgell, A. (1999). Efficient Algorithms for Sorting and Synchronization. PhD thesis, The
Australian National University.

Valiente, G. (2001). An efficient bottom-up distance between trees. In SPIRE’01: Proceedings
of the 8th International Symposium on String Processing and Information Retrieval, pages
212–219.

Vion-Dury, J.-Y. (2010). Diffing, patching and merging xml documents: toward a generic
calculus of editing deltas. In Proceedings of the 10th ACM symposium on Document engi-
neering, DocEng ’10, pages 191–194, New York, NY, USA. ACM.

Wagner, R. A. and Fischer, M. J. (1974). The string-to-string correction problem. Journal of
the ACM, 21(1):168–173.

Wall, L. (1985). patch version 1.3. posted to mod.sources on May, 24.

Wang, D. and Mah, A. (2009). Google wave operational transformation. http://www.
waveprotocol.org/whitepapers/operational-transform.

163

http://www.waveprotocol.org/whitepapers/operational-transform
http://www.waveprotocol.org/whitepapers/operational-transform

Bibliography

Wang, F. and Zaniolo, C. (2008). Temporal queries and version management in XML-based
document archives. Data & Knowledge Engineering, 65(2):304–324.

Wang, F., Zhou, X., and Zaniolo, C. (2006). Bridging relational database history and the
web: the xml approach. In WIDM’06: Proceedings of the 8th Annual ACM International
Workshop on Web Information and Data Management, pages 3–10, New York, NY, USA.
ACM.

Wang, L. and Zhang, K. (2005). Space efficient algorithms for ordered tree comparison.
In Deng, X. and Du, D.-Z., editors, ISAAC, volume 3827 of Lecture Notes in Computer
Science, pages 380–391, Berlin/Heidelberg, Germany. Springer.

Wang, Y., DeWitt, D., and Cai, J. (2003). X-Diff: A fast change detection algorithm for XML
documents. In ICDE’03: Proceedings of the International Conference on Data Engineer-
ing.

Weir, R. (2009). OpenDocument Format: The standard for office documents. IEEE Internet
Computing, 13:83–87.

Xu, H., Wu, Q., Wang, H., Yang, G., and Jia, Y. (2002). KF-Diff+: Highly efficient change
detection algorithm for XML documents. In DOA/CoopIS/ODBASE’02: Proceedings of the
Confederated International Conferences DOA, CoopIS and ODBASE, pages 1273–1286,
London, UK. Springer.

Zhang, K. (1996a). A constrained edit distance between unordered labeled trees. Algorith-
mica, 15(3):205–222.

Zhang, K. (1996b). Efficient parallel algorithms for tree editing problems. In CPM ’96:
Proceedings of the 7th Annual Symposium on Combinatorial Pattern Matching, pages 361–
372, London, UK. Springer.

Zhang, K. and Shasha, D. (1989). Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal on Computing, 18(6):1245–1262.

Zhang, K., Wang, J. T.-L., and Shasha, D. (1995). On the editing distance between undirected
acyclic graphs and related problems. In CPM’95: Proceedings of the 6th Annual Symposium
on Combinatorial Pattern Matching, pages 395–407.

Zimmermann, T., Kim, S., Zeller, A., and Whitehead, Jr., E. J. (2006). Mining version archives
for co-changed lines. In MSR’06: Proceedings of the 2006 International Workshop on
Mining Software Repositories, pages 72–75, New York, NY, USA. ACM.

164

A Resources for Document
Evaluation

This chapter lists the documents used in the document analysis in Chapter 2, including their
on-line sources.

A.1 Selection Criteria
The document analysis shall provide a deeper insight in common Web and office documents
to allow for the design of a suitable change control architecture. Therefore, the analysed doc-
uments must cover a wide range of real-world scenarios. In my opinion, synthetically created
documents are far less suitable than publicly available documents that are commonly used.
Therefore, I have selected office documents from public repositories and Web documents from
major Web sites.

A.2 Web Documents
The selected Web documents cover four categories:

• Auction sites

• News sites

• Governmental sites

• Blogs

The reason for selecting these categories is motivated as follows. Auction sites are very dense,
as they try to display as much information as possible on the screen to attract a broad audience.
News sites may be far larger, spanning across multiple screen sizes. Here, I also included stock
news sites that are characterized by a high structuring, e.g. by large tables. Governmental sites
are usually highly structured and do not contain advertising. Blogs usually contain more text
and less items. All of these document types are frequently used on the Web.

Most of these documents have originally been HTML documents. I have converted them to
XHTML using the tool tidy1. Table A.1 lists the analyzed documents.

1http://tidy.sourceforge.net

165

A Resources for Document Evaluation

Site URL Type

eBay www.ebay.com auction site
Taobao www.taobao.com auction site
My Hammer www.my-hammer.de auction site
Bridge2B www.bridge2b.com auction site
The New York Times www.nytimes.com news site
The Wall Street Journal online.wsj.com news site
The Economist www.economist.com news site
Wired www.wired.com news site
Heise Verlag www.heise.de news site
MaxBlue www.maxblue.de stock news
OnVista www.onvista.de stock news
The CIA www.cia.gov governmental site
The Pentagon pentagon.afis.osd.mil governmental site
Die Bundesregierung www.bundesregierung.de governmental site
Die Bundeswehr www.bundeswehr.de governmental site
Lenovo Blogs www.lenovoblogs.com corporate blog
The Apple Blog www.theappleblog.com corporate blog
Ich Werde Ein Berliner www.ichwerdeeinberliner.com private blog

Table A.1: 18 Web pages with different type have been analyzed.

A.3 Office Documents
Office documents may have an arbitrary content and structure. Whereas Web documents are
practically limited in content due to the screen size, office document may reach several hun-
dreds of pages. This requires to analyze more documents to get an overview of different ap-
plications. Nevertheless, my evaluation cannot give a comprehensive analysis of all possible
office documents.

As I focus my research on texts and spreadsheets, I have taken several documents from pub-
lic repositories. The text documents are taken from the OpenOffice.org documentation repos-
itory at documentation.openoffice.org. In this repository, two types of documents
are available. Example documents that show the possibilites of OpenOffice (which cover 1-10
pages) and a software documentation. These documents are rather large and contain up to 125
pages. Table A.2 lists the analyzed documents

The analyzed spreadsheets are financial calculations. They range from a simple dept rate
calculation with only several cells up to a comprehensive financial models for business compa-
nies with 13 different sheets. All spreadsheets are are freely available at www.exinfm.com/
free_spreadsheets.html. Table A.3 gives an overview of the analyzed documents.

Office documents may be nested within each other. For example, a table within a text
document would be represented as (short) sub-document which could also stand alone. In

166

A.3 Office Documents

Title Size in KByte Subdocuments

Code optimization in the Word Processor 52.6 0
Creating Large Documents with OpenOffice.org Writer 377.2 0
Curriculum Vitae 38.1 0
German Letter (DIN-Brief) Template 10.4 0
How to Create and Maintain a Table of Contents 113.1 0
How to Create Columns 57.5 0
How-to dynamically link an image in a Base Form 13.6 0
How-to Get to Grips with OpenOffice.org Draw 731.5 46
How to Modify the Context Menu in OfficeBean 63.5 0
How to Work with Sections 151.7 0
How to Work with Templates 113.0 0
OpenOffice API Training Guide 755.2 0
Personal Letter Cover 9.8 0
Personal References 13.0 0
Personal Resume 28.0 0
Sample Text Article 5.7 0

Table A.2: 16 text documents have been analyed.

the analysis, each sub-document is treated as an independent document, as it has an own root
node. By this, not only 67, but 178 documents have been analyzed.

167

A Resources for Document Evaluation

Title Size in KByte Subdocuments

Amortization Table 716.6 0
Automation Justification 633.6 8
Capital Budgeting Template 47.2 0
Car Lease Analysis 70.9 0
Cash Flow Analysis 159.0 0
Cash Flow Business Valuation 123.9 0
Cash Flow Matrix 232.5 0
Cash Flow Matrix 2 120.7 0
Cash Gap Days Analysis 130.9 0
CFROI Valuation Model Audit 552.2 0
Cost Estimating Template 567.4 0
Decision Making & Analysis Framework 598.4 2
Debt Calculation 45.0 0
Economic Value Added (EVA) 452.0 0
Entrepreneur Financial Model 16444.2 0
Equity Analysis 125.3 0
EVA Tree Model 189.8 1
FCFE Stable Growth Model 116.2 1
Financial Analysis & Forecasting 1742.3 34
Financial Projections Model 1870.6 0
Implied Risk Premium Calculator 36.2 0
Inflation and the Real Rate of Interest 58.9 0
IT Risk Assesment Template 206.8 0
Merger & LBO Valuation 279.5 0
Option Trading Workbook 730.1 11
Project Management Toolkit 1808.8 7
Risk Register 377.3 2
Synthetic Rating Estimation 61.8 0
Synergy Valuation Worksheet 84.3 0
Valuation Model Assesment 83.9 0
WACC Calculation 59.6 0
What-If Calculation 178.9 1
What-If Model 893.7 0

Table A.3: 33 Spreadsheets covering a large range of sizes have been analyed.

168

B XML Document Hashing
The XCC framework uses hash values to compare XML nodes and subtrees. This chapter
describes the normalization methods used, altogether with the hashing algorithms.

B.1 Normalization
XML provides the ability to encode one and the same semantic meaning in different syntac-
tic ways. Therefore, two nodes that ought to be compared must be normalized first. The
normalization covers following aspects: namespace resolution, attribute ordering, character
encoding, and white-space normalization. I will briefly describe each of these aspects, includ-
ing the solution used. My approach mostly conforms to the CanonicalXML specification by
Boyer [2001].

B.1.1 Namespace Resolution
XML allows for using elements from different XML grammars within one document. Name-
spaces are used to enable the XML processor to distinguish between these different grammars,
specified by Bray et al. [2006]. Each node has to be assigned to one namespace. References
can be used to avoid syntactic overhead, as shown in the following example:

<office:document-content
xmlns:office="urn:oasis:names:tc:opendocument:xmlns:office:1.0"
xmlns:xforms="http://www.w3.org/2002/xforms">
<office:body>

<xforms:form/>
</office:body>

</office:document-content>

Here, the document contains two namespaces, one for office content (based on ODF) and
one for forms (based on XForms). For both namespaces, a reference (named office and
forms) is defined at the root node. The root itself is part of the ODF grammar, indicated
by the leading office:. The inner node, representing an empty form, is part of XForms.
However, the use of a reference is not mandatory. The following document would be fully
equivalent:

<office:document-content
xmlns:office="urn:oasis:names:tc:opendocument:xmlns:office:1.0">

169

B XML Document Hashing

<office:body>
<http://www.w3.org/2002/xforms:form/>

</office:body>
</office:document-content>

In this example, the inner node has been described using its qualified name, which means
that the reference at the beginning has been resolved. In my approach, each node is hashed
upon its qualified name to avoid ambiguousities.

B.1.2 Attributes

Attributes of an element node may be listed in arbitrary order. For example, the nodes
<elem fst="1" snd="2"/> and <elem snd="2" fst="1"/> are fully equivalent.
In my approach, all attributes are alphabetically ordered before hashing. Additionally, ele-
ments may contain attributes from different namespaces. According to the last section, these
attributes are hashed upon their qualified name, too.

B.1.3 Encoding

XML documents are required to be encoded in Unicode, which is an encoding standard that
aims to support all existing characters on the World [The Unicode Consortium 1991]. How-
ever, different Unicode standards exist. In the Western hemisphere, UTF-8 is the most com-
mon standard which is designed for the efficient encoding of Roman characters. In the Eastern
hemisphere, UTF-16 is more common which also supports Chinese and Japanese characters
efficiently (but is in turn less efficient for the Roman alphabet as its size is far smaller than that
of the Eastern alphabets).

Most characters have a different representation in UTF-8 and UTF-16. If two strings are
compared from different encodings, one of them has to be translated into the other one. In
my approach, all strings are represented in UTF-16, as this encoding is more efficient for a
World-wide use.

B.1.4 White-Space Normalization

In XML, white-space like blanks and newlines are treated as essential information. However,
white space is often used to structure the XML tree for better readability, also called pretty
printing. According to the XML standard, a pretty printed document is not equivalent to
its original representation. Nevertheless, my approach allows for removing any leading and
trailing white-space in text nodes, thus normalizing pretty printed documents. This feature is
not mandatory and disabled by default.

170

B.2 XML Hashing

Node Type Byte Signature

Element 0001
Attribute 0002
Text Node 0003
Processing Instruction 0007

Table B.1: Different node types are identified by adding a leading byte signature.

B.2 XML Hashing

After transferring the nodes into a normalized representation they can be hashed. My approach
supports the hashing of single nodes as well as whole subtrees and tree sequences. First, I
describe how nodes are assembled before hashing, followed by the definition of the recursive
hashing. After that, I present the hashing algorithms used.

B.2.1 Node Assembly

I already defined how single nodes and attributes are normalized. If a node is hashed, the
different parts of it have to be assembled into one byte array to allow the hash algorithm for
computing the hash value.

XML knows different node types. Two nodes with identical name but different node type
differ semantically. This has to be respected by the hash function. Therefore, for each node,
a leading type signature is added. Table B.1 shows the signatures used in my approach. They
conform to the signatures used by Maruyama et al. [2000]. After marking the node types, the
node is assembled into one byte array, starting with the qualified node name and the attributes
in normalized order.

B.2.2 Recursive Hashing

My approach allows for computing hash values over entire subtrees and tree sequences. The
hashing is performed recursively. First, each leaf is hashed. After that, these hash values are
added in their respective order to the parent node, separated by the byte array 00. The com-
plete byte array is hashed again. This way, the whole subtree can be hashed recursively. For
a tree sequence, the hash value is computed over all root elements of the respective subtrees
(which are already recursively hashed).

B.2.3 Hash Algorithms

Basically, any hash algorithm can be used to compute a hash value. The current implementa-
tion of the XCC framework allows for two different algorithms: MD5 and FNV.

171

B XML Document Hashing

MD5 [Rivest 1992] is widely established as fast and reliable hash algorithm with efficient
implementations on most platforms. It is a cryptographic hash function that computes hash
values of 128bit.

Cryptographic hash functions are especially designed for a high orthogonality of similar
values to prevent attacks on the encryption. In my use case, it suffices that changes are de-
tected by the hash algorithm. A high orthogonality is not necessary. Therefore, the current
implementation uses the FNV hash algorithm by default1. This algorithm does not meet cryp-
tographic requirements, but is highly efficient to compute. It resembles the hash algorithm
presented by Pearson [1990] and is used in many scenarios where large data sets have to be
hashed efficiently2. The current implementation relies on 32bit hash values.

B.3 Related Work
Normalization has already been discussed earlier, leading to the definition of CanonicalXML
by [Boyer 2001]. My approach is an extended version of it, as my approach allows for omitting
trailing and leading white-space.

Hashing of XML has been previously discussed, leading to the definitions of DOMHash by
Maruyama et al. [2000] and XML-Signature by Eastlake et al. [2008]. DOMHash assigns a
hash value to each XML element, where the hashes are computed recursively over the subse-
quent tree of that element. Hence, a change in one node affects all nodes on the path up to
the root element. A single node within the tree cannot be hashed, which does not meet my re-
quirements. Furthermore, DOMHash does not allow for the addressing of text nodes directly.
If a text node shall be hashed, its parent node must be addressed, too.

XML-Signature was designed to create a signature for a whole document or single parts
of it. This approach has some major drawbacks for my scenario, too: First, each signature
holds a substantial header. Second, the header must contain a path expression, which defines
the signed part of the document or must contain the part itself. The latter is obviously useless
when using hash values for space saving reasons. The former is not very useful either, because
in my use case, a fingerprint should be matched with its counterpart which has probably moved
in terms of an absolute path.

1Fowler / Noll / Vo (FNV) Hash, http://www.isthe.com/chongo/tech/comp/fnv/index.html
2http://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function

172

C XCC Delta Specification
This chapter defines the file format of the context-oriented deltas used by the XCC framework.
The rules are defined in natural language.

1. The root node is called delta.

2. The delta may contain an arbitrary number of operations that are named insert,
delete, or update.

3. Each operation contains following attributes:

a) path contains the path to the edit operation

b) radius denotes the radius of the fingerprint as natural number.

c) digester refers to the hashing algorithm used. It can turn into fnv or md5.

d) Insert and delete operations may have the additional attribute move that contains
the ID of the move operation.

4. Each operation consists of following elements:

a) The fingerprint contains a text node that consists of the hash values of the
fingerprint in hexadecimal notation, separated by a semicolon.

b) The subtree / tree sequence to delete or the node to update is stored as child of
oldvalue. In case of an insert operation, this element may be omitted.

c) The subtree / tree sequence to insert or the root of the new value of the updated
node is stored as child of newvalue. In case of a delete operation, this element
may be omitted.

Figure C.1 shows an example delta that is computed in the example in Appendix D.
This definition is comprehensive, yet not very formal. One might expect a formal definition,

e.g. in EBNF or XML Schema. However, this is not very useful for the following reason: the
content of the edit operations is not known in advance. This content must be validated against
the grammar of the compared document. Even if this grammar would be known in advance.
these parts could not been validated as they consist only of a fraction of the document. For
insert and delete operations, a corresponding production rule could be found. As update oper-
ations do only store the updated node, its descendants are not part of the delta, which would
in turn lead to a broken validation. For these reasons, even if I would provide a more formal
definition, it could not be used for validation. Therefore, I omit this step.

173

C XCC Delta Specification

delta
insert digester="fnv" path="/2" radius="4"

fingerprint

c387e295;7a514983;662e3aec;bd3e2f21;48ebf6de;d7ac76f0;0e284785;9a31afad;09ec381d
newvalue

p style="bold"

We got two papers accepted
delete digester="fnv" path="/6" radius="4"

fingerprint

662e3aec;1334ff2d;662e3aec;e1388821;c6948277;e1d08bf3;e1d08bf3;e1d08bf3;e1d08bf3
oldvalue

p

DocEng papers are submitted
update digester="fnv" path="/2/0/0" radius="4"

fingerprint

662e3aec;bd3e2f21;d7ac76f0;0e284785;9a31afad;09ec381d;03ee618f;ea603659;c015f5c8
oldvalue

column orientation="left" title="Conference"

newvalue

column orientation="center" title="Conference"
update digester="fnv" path="/2/1/3/0" radius="4"

fingerprint

a9b8034c;746ebc4a;a600cea3;746ebc4a;40894c87;c015f5c8;746ebc4a;47b30b11;746ebc4a
oldvalue

pending
newvalue

accepted
update digester="fnv" path="/2/2/3/0" radius="4" shortened="true"

fingerprint

834f6e47;746ebc4a;226afc6a;746ebc4a;40894c87;c015f5c8;746ebc4a;eb17031c;746ebc4a
oldvalue

pending
newvalue

accepted
update digester="fnv" path="/4/0" radius="4"

fingerprint

d8f56d3b;e98a5cfe;e864cfac;662e3aec;1334ff2d;662e3aec;e1388821;662e3aec;ea2cb0ac
oldvalue

DocEng notification is late.
newvalue

DocEng reviews are there. Revise until July, 8.

Figure C.1: An example delta containing insert, delete, and update operations.

174

D A Running Example

In this chapter, I show the procedure of differencing, patching, and merging on an example
documents. The main goal is to give a deeper understanding of the algorithms used in the
XCC framework.

D.1 Setting

The example document contains a list of research activities and is shown in Figure D.1. This
document A is changed independently into two versions, namely A1 and A2. Both versions
are displayed in Figure D.2. From the user model, all changes are non-interfering. Figure D.3
shows the corresponding XML tree, including all changes performed by A1 and A2. The pre-
sented tree has been highly simplified for exemplifying the essentials of the XCC algorithms;
it does not conform to a common XML document format.

In the following, I will exemplify the computation of the deltas δA→A1 and δA→A2 , as well
as the merging by applying δA→A2 to A1.

Research in 2010

This document describes our research in 2010

Conference Paper Type Title Status

DocEng 2010 Demo Document Archival via Auto-Versioning File-Systems pending
DocEng 2010 Short Paper A File-Type Sensitive, Auto-Versioning File System pending
Springer CSRD Journal XCC: Change Control of XML Documents under revision

Comments

DocEng notification is late
CSRD reviews are there
DocEng papers submitted in time

Figure D.1: The user representation of the example document.

175

D A Running Example

Research in 2010

This document describes our research in 2010
We got two papers accepted

Conference Paper Type Title Status

DocEng 2010 Demo Document Archival via Auto-Versioning File-Systems accepted
DocEng 2010 Short Paper A File-Type Sensitive, Auto-Versioning File System accepted

Springer CSRD Journal XCC: Change Control of XML Documents under revision

Comments

DocEng reviews are there. Revise until July, 8.
CSRD reviews are there

(a) A1 adds a new line at the top, changes the orientation of the first column, changes the status of two papers, and
updates the comments.

Research in 2010

This document describes our research in 2010

Venue Paper Type Title Status

DocEng 2010 Demo Document Archival via Auto-Versioning File-Systems pending
DocEng 2010 Short Paper A File-Type Sensitive, Auto-Versioning File System pending
Springer CSRD Journal XCC: Change Control of XML Documents submitted

Comments

Submitted revised CSRD paper
DocEng notification is late
CSRD reviews are there
DocEng papers submitted in time

(b) A2 changes the title of the first column, changes style and status for one paper, and adds a line to the comments.

Figure D.2: The document is edited independently, leading to two versions, A1 and A2.

D.2 Differencing

The changes between A and A1 comprise the insertion of a subtree, leaf updates, and the
deletion of a subtree.

In the first step, the LCS of all leaves is computed, resulting in the matchlist shown in
Table D.1. The leaves that are only part of A indicate a deletion (see Table D.2). Table D.3
shows the leaves that are only part of A1, indicating an insertion.

After computing the LCS, the parent nodes of all matched node pairs are compared for

176

D.2 Differencing

document

h1

Research in 2010
p

This document describes our research in 2010
table

columns

column orientation="left" title="Conference"
column orientation="left" title="Paper Type"

column orientation="left" title="Title"

column orientation="center" title="Status"
row

column
DocEng 2010

column

Demo
column

Document Archival via Auto-Versioning File-Systems
column

pending
row

column
DocEng 2010

column
Short Paper

column
A File-Type Sensitive, Auto-Versioning File System

column
pending

row

column
Springer CSRD

column

Journal
column

XCC: Change Control of XML Documents
column

under revision
h2

Comments
p

DocEng notification is late
p

CSRD reviews are there
p

DocEng papers submitted in time

A1:
insert paragraph “We got two pa-
pers accepted”, printed in bold
fontface (insert)

A1:
change orientation into “center”
(leaf update)

A2:
change title into “Venue”
(leaf update)

A1:
change text into “accepted”
(leaf updates)

A2:
add style-attribute “italic”
(non-leaf update)

A2:
change text into “submitted”
(leaf update)

A2:
insert paragraph “Submitted re-
vised CSRD paper” (insert)

A1:
change text into “DocEng re-
views are there. Revise until
July, 8.” (leaf update)

A1:
remove paragraph (delete)

Figure D.3: The XML representation of the original document, showing the operations per-
formed in both versions.

177

D A Running Example

Matched Leaves

Research in 2010
This document describes our research in 2010
column orientation="left" title="Paper Type"
column orientation="left" title="Title"
column orientation="center" title="Status"
DocEng 2010
Demo
Document Archival via Auto-Versioning File-Systems
DocEng 2010
Short Paper
A File-Type Sensitive, Auto-Versioning File System
Springer CSRD
Journal
XCC: Change Control of XML Documents
under revision
Comments
CSRD reviews are there

Table D.1: Leaves that exist in both versions.

Leaves only in A

column orientation="left" title="Conference"
submitted
submitted
DocEng notification is late
DocEng papers submitted in time

Table D.2: Leaves that are possibly deleted.

Leaves only in A1

We got two papers accepted
column orientation="center" title="Conference"
accepted
accepted
DocEng reviews are there. Revise until July, 8.

Table D.3: Leaves that are possibly inserted.

178

D.3 Merging

updates or changes in parent-children relationship. Here, no change occurred. All parent
nodes are marked visited, as shown in Figure D.4. This finishes the second step of the diff
algorithm.

In the third step, structure-affecting changes are identified. One of the key issues of this
step is the identification of leaf updates. Basically, leaf updates are detected by comparing
the siblings of the non-matched nodes. In this example, however, only the leaf column
orientation="center" title="Conference" has siblings that could be compared.
The other non-matching leaves are text nodes, which often have no siblings. In that case, the
algorithm compares the parent nodes. If they match, a leaf update is estimated. In the given
example, all parent nodes match, leading to the creation of leaf updates for three leaves.

The first unmatched leaf of A1 (“We got two papers accepted ”), however, has no counterpart
in A. This also holds for its parent node. Therefore, an insert operation rooted at the parent
node is created. The same procedure is performed for the unmatched leaf of A (“DocEng
papers submitted in time”), which is estimated as deletion.

The complete delta δA→A1 using FNV hashes and a fingerprint radius of 4 is shown in
Figure D.5. Here, the hash values of the delete show some important aspects of the delta
model. First, the deletion occurs at the border of the document. Therefore, the fingerprint is
filled with a special null node, which has the hash value e1d08bf3. Second, all fields right of
the anchor (which is the middle field) refer to the null node, although the anchor refers to path
/6, which means that there is one node left in document order (its child node). Here, all the
elements that are addressed by the delete operation have been removed, so that the root of the
subtree to delete appears to be the last node of the document. This has been done to prevent
the fingerprint to refer to the nodes to delete, which would match anyway in a non-conflicting
merge scenario, thus lowering the information value of the fingerprint, especially for larger
subtrees to delete.

The computation of δA→A2 is nearly the same. Although, there is one difference. In this
scenario, a non-leaf update occurs at path /2/3/1, where the attribute style with value italic
is inserted. Figure D.6 shows the complete delta.

D.3 Merging

After computing both deltas, δA→A2 shall be applied to A1 to merge both document versions.
When comparing the paths of the edit operations in both deltas, one could easily determine
a conflict on node /2/0/0. In the following, I will exemplify the behavior of my patch
procedure during merging this update operation.

The patch algorithms identifies path /2/0/0 in δA→A2 and tries to compute the fingerprint
around this node in the document to patch. Due to the insertion of a subtree at the beginning of
A1, the path /2/0/0 is not existing any more. Therefore, the patch algorithm has to compute
the neighborhood around that path. Here, I recall that in the current setting, only nodes on the
same top-down level are respected by the neighborhood.

Basically, the neighborhood is computed in both directions of the document order. In that

179

D A Running Example

document

h1

Research in 2010
p

This document describes our research in 2010
p style="bold"

We got two papers accepted
table

columns

column orientation="center" title="Conference"
column orientation="left" title="Paper Type"

column orientation="left" title="Title"

column orientation="center" title="Status"
row

column
DocEng 2010

column

Demo
column

Document Archival via Auto-Versioning File-Systems
column

accepted
row

column
DocEng 2010

column
Short Paper

column
A File-Type Sensitive, Auto-Versioning File System

column
accepted

row

column
Springer CSRD

column

Journal
column

XCC: Change Control of XML Documents
column

under revision
h2

Comments
p

DocEng reviews are there. Revise until July, 8.
p

CSRD reviews are there

Figure D.4: After the first bottom-up traversal, most nodes are already visited (showing the
tree of A1, visited nodes in gray).

180

D.3 Merging

delta
insert digester="fnv" path="/2" radius="4"

fingerprint

c387e295;7a514983;662e3aec;bd3e2f21;48ebf6de;d7ac76f0;0e284785;9a31afad;09ec381d
newvalue

p style="bold"

We got two papers accepted
delete digester="fnv" path="/6" radius="4"

fingerprint

662e3aec;1334ff2d;662e3aec;e1388821;c6948277;e1d08bf3;e1d08bf3;e1d08bf3;e1d08bf3
oldvalue

p

DocEng papers are submitted
update digester="fnv" path="/2/0/0" radius="4"

fingerprint

662e3aec;bd3e2f21;d7ac76f0;0e284785;9a31afad;09ec381d;03ee618f;ea603659;c015f5c8
oldvalue

column orientation="left" title="Conference"

newvalue

column orientation="center" title="Conference"
update digester="fnv" path="/2/1/3/0" radius="4"

fingerprint

a9b8034c;746ebc4a;a600cea3;746ebc4a;40894c87;c015f5c8;746ebc4a;47b30b11;746ebc4a
oldvalue

pending
newvalue

accepted
update digester="fnv" path="/2/2/3/0" radius="4" shortened="true"

fingerprint

834f6e47;746ebc4a;226afc6a;746ebc4a;40894c87;c015f5c8;746ebc4a;eb17031c;746ebc4a
oldvalue

pending
newvalue

accepted
update digester="fnv" path="/4/0" radius="4"

fingerprint

d8f56d3b;e98a5cfe;e864cfac;662e3aec;1334ff2d;662e3aec;e1388821;662e3aec;ea2cb0ac
oldvalue

DocEng notification is late.
newvalue

DocEng reviews are there. Revise until July, 8.

Figure D.5: The complete delta δA→A1 .

181

D A Running Example

delta
insert digester="fnv" path="/4" radius="4"

fingerprint

746ebc4a;d8f56d3b;e98a5cfe;e864cfac;1f7f4b76;662e3aec;1334ff2d;662e3aec;e1388821
newvalue

p

Submitted revised CSRD paper
update digester="fnv" path="/2/3/1" radius="4"

fingerprint

40894c87;c015f5c8;746ebc4a;eb17031c;746ebc4a;b0c694e7;746ebc4a;387a9b01;746ebc4a
oldvalue

column

newvalue
column style="italic"

update digester="fnv" path="/2/0/0" radius="4"

fingerprint

662e3aec;bd3e2f21;d7ac76f0;0e284785;9a31afad;09ec381d;03ee618f;ea603659;c015f5c8
oldvalue

column orientation="left" title="Conference"

newvalue

column orientation="left" title="Venue"
update digester="fnv" path="/2/3/3/0" radius="4"

fingerprint

b0c694e7;746ebc4a;387a9b01;746ebc4a;d8f56d3b;e98a5cfe;e864cfac;662e3aec;1334ff2d
oldvalue

under revision
newvalue

submitted

Figure D.6: The complete delta δA→A2 .

special case, however, no node with the same depth exists before the node. Therefore, the
neighborhood can only consist of nodes coming after the stored path. In this example, only
one of the nodes of the neighborhood provide a partial matching for the given fingerprint, as
shown in Figure D.7. The patch algorithm expects this path to be the correct one. However,
the anchor node does not match due to the conflict. Therefore, the edit operation is not applied
to that document.

Insert operations cannot rely on their anchor for determining the correct insert position.
Here, only the surrounding nodes stored in the delta can be used. Figure D.8 shows how
the patch procedure deals with the insert operation of δA→A2 . Once again, the path points to
the wrong address, caused by the insertion at the top of the document. Therefore, the patch
procedure creates the neighborhood around path 4. As you can see, the neighborhood covers
nearly the whole document, as only nodes of the same depth are considered as possible insert
path. The best matching is given at /5, which is in fact the correct path. However, it does not
match completely, as the subsequent paragraph has been updated.

After the complete application of δA→A2 to A1, the merged document is shown in Figure D.9.

182

D.3 Merging

document

h1

Research in 2010
p

This document describes our research in 2010
p style="bold"

We got two papers accepted
table

columns

column orientation="center" title="Conference"
column orientation="left" title="Paper Type"

column orientation="left" title="Title"

column orientation="center" title="Status"
row

column
DocEng 2010

column

Demo
column

Document Archival via Auto-Versioning File-Systems
column

accepted
row

column
DocEng 2010

column
Short Paper

column
A File-Type Sensitive, Auto-Versioning File System

column
accepted

row

column
Springer CSRD

column

Journal
column

XCC: Change Control of XML Documents
column

under revision
h2

Comments
p

DocEng reviews are there. Revise until July, 8.
p

CSRD reviews are there

⊗⊗
√
√⊗
√
√
√
√

⊗⊗⊗⊗⊗⊗⊗⊗⊗

⊗⊗⊗⊗⊗⊗⊗⊗⊗

⊗⊗⊗⊗⊗⊗⊗⊗⊗

⊗⊗⊗⊗⊗⊗⊗⊗⊗

Figure D.7: Merging the conflicting change.

183

D A Running Example

document

h1

Research in 2010
p

This document describes our research in 2010
p style="bold"

We got two papers accepted
table

columns

column orientation="center" title="Conference"
column orientation="left" title="Paper Type"

column orientation="left" title="Title"

column orientation="center" title="Status"
row

column
DocEng 2010

column

Demo
column

Document Archival via Auto-Versioning File-Systems
column

accepted
row

column
DocEng 2010

column
Short Paper

column
A File-Type Sensitive, Auto-Versioning File System

column
accepted

row

column
Springer CSRD

column

Journal
column

XCC: Change Control of XML Documents
column

under revision
h2

Comments
p

DocEng reviews are there. Revise until July, 8.
p

CSRD reviews are there

⊗⊗⊗⊗
√⊗⊗⊗

⊗⊗⊗⊗
⊗⊗⊗⊗

⊗⊗⊗⊗
⊗⊗⊗⊗

⊗⊗⊗⊗
√⊗
√⊗

√
√
√
√

√⊗
√
√

⊗⊗⊗⊗
√⊗⊗⊗

⊗⊗⊗⊗
⊗⊗⊗⊗

Figure D.8: Merging the insert operation.

184

D.4 Conclusions

Figure D.10 shows the corresponding user representation of it. As you can see, all changes
except the conflicting one have been applied.

D.4 Conclusions
In this chapter, I have shown a running example of the XCC framework. The computation of
the deltas has been exemplified, as well as the merging afterwards. In this example, one edit
operations conflicts, which is detected by XCC Patch. This conflict could be used manually, or
by overwriting the conflicting nodes. In case of conflicts, however, merging is not symmetric.
In the proposed example, merging A2 with δA→A1 would lead to another merge result w.r.t. the
conflicting node.

185

D A Running Example

document

h1

Research in 2010
p

This document describes our research in 2010
p style="bold"

We got two papers accepted
table

columns

column orientation="left" title="Venue"
column orientation="left" title="Paper Type"

column orientation="left" title="Title"

column orientation="center" title="Status"
row

column
DocEng 2010

column

Demo
column

Document Archival via Auto-Versioning File-Systems
column

accepted
row

column
DocEng 2010

column
Short Paper

column
A File-Type Sensitive, Auto-Versioning File System

column
accepted

row

column
Springer CSRD

column style="italic"

Journal
column

XCC: Change Control of XML Documents
column

submitted
h2

Comments
p

Submitted revised CSRD paper
p

DocEng reviews are there. Revise until July, 8.
p

CSRD reviews are there

Figure D.9: The merged document in XML representation.

186

D.4 Conclusions

Research in 2010

This document describes our research in 2010
We got two papers accepted

Conference Paper Type Title Status

DocEng 2010 Demo Document Archival via Auto-Versioning File-Systems accepted
DocEng 2010 Short Paper A File-Type Sensitive, Auto-Versioning File System accepted

Springer CSRD Journal XCC: Change Control of XML Documents submitted

Comments

Submitted revised CSRD paper
DocEng reviews are there. Revise until July, 8.
CSRD reviews are there

Figure D.10: The merged document in its user model.

187

