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Abstract

We consider an extensive form game with incomplete information which consists of
several steps of a kind of regular structure. Since the determination of Nash equilibria
of this kind of games is straightforward but gets more and more tedious if the number
of steps increases, and since for the purpose of applications to the just mentioned
models only those equilibria are interesting which do not imply a premature end of
the game at one of the intermediate dead ends, an algorithm is considered the intuitive
meaning of which may be described as a learning procedure: If the player, who has
only incomplete knowledge of this adversary’s type, has reached some information set
of the game, he is supposed to know more about the type of the latter one than in
the beginning of the game due to the fact that the latter one behaved in some specific
way. Working out this idea one can devise a kind of backward induction procedure
which, however, contains some recursive elements. It is the purpose of this note to
describe this algorithm and furthermore, to show that it leads to all Nash equilibria
of the game with the property that all information sets are reached during the course
of the game.

In addition, it is shown that this algorithm can also be applied to extensive form
games with imperfect information which have a similar tree structure as those con-
sidered before.
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1 Problem Formulation
We consider an extensive form game with incomplete information which consists of several
steps of a kind of regular structure. An example is given in Figure 1 which ist taken from
Beetz [Bee05] who discusses various types of arms race and escalation models.

Figure 1 about here.

Since the determination of Nash equilibria of this kind of games with the help of the
equilibrium conditions is straightforward but gets more and more tedious if the number of
steps increases, and since for the purpose of applications to the just mentioned models only
those equilibria are interesting which do not imply a premature end of the game at one of
the intermediate dead ends, an algorithm is considered the intuitive meaning of which may
be described as a learning procedure: If the player, who has only incomplete knowledge
of this adversary’s type, has reached some information set of the game, he is supposed to
know more about the type of the latter one than in the beginning of the game due to the
fact that the latter one behaved in some specific way.

Working out this idea one can devise a kind of backward induction procedure which,
however, contains some recursive elements. It is the purpose of this note to describe this
algorithm and furthermore, to show that it leads to all Nash equilibria of the game with
the property that all information sets are reached.

In the following, a simple example is considered which first is analyzed in the standard way.
Thereafter, the algorithm is presented at the hand of this example, and it is shown that
in this way indeed all Nash equilibria under consideration are obtained. It is also shown,
however, that the intuitive idea of learning is not so straightforward as one might expect.
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2 An illustrative example

In the subsequent section it is proven that under appropriate assumptions this algorithm
works as promised.

In the fourth chapter it is shown that this algorithm can also be applied to extensive form
games with imperfect information which have a similar tree structure as those considered
before.

In the concluding section we suppose that our algorithm is equivalent to determining the so-
called Perfect Bayesian Equilibria (PBE) for games with incomplete information, as defined
by Fudenberg and Tirole [FT98] respectively, to determining sequential equilibria as
introduced by Kreps and Wilson [KW82].

2 Presentation of the algorithm with the help of an
illustrative example

Consider a non-cooperative two-person game with incomplete information the extensive
form of which is represented graphically in Figure 2.

Figure 2 about here.

In this game, in the beginning nature chooses type A of the first player with probability γ,
and with probability 1− γ type B. Now, the first player decides either to go left or right.
In the first case the game ends; in the second case the second player, who only knows the
probabilities for the first player being of type A or B, decides either to go left or right.

It should be mentioned here that the game as given by Figure 2 is not exactly of the same
type as that given by Figure 1. In the latter one the second player is represented by two
types, and the first player moves first thus, he can update his knowledge on the adversary´s
type only when he moves a second time. This is the reason for our change of models: For
the purpose of illustration we want to consider as simple a model as possible, i.e., a model
with only one non-trivial information set.

Payoffs for all outcomes of the game considered now are given in Figure 2. It is important
to realize 0 < γ < 1 according to general understanding since in the two extreme cases the
game is in fact a game with complete information.

Following Harsanyi [Har67] we represent the first player by two agents given by type A
and type B. The expected payoffs to the - now - three players in a game with imperfect
information are

H1A
(pA; q) = 1 + pA (2− 5 q) (1)

H1B
(pB; q) = 1 + pB (1− q) (2)

H2(pA, pB; q) = γ pA [−(1− q) + 4 q ] + (1− γ) pB [ 2 (1− q)− 2 q ]

= 2 (1− γ) pB − γ pA + q [ 5 γ pA − 4 (1− γ) pB ] . (3)
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According to these expected payoffs, Nash equilibria (p∗A, p∗B, q∗) of our game are defined
by the following inequalities:

p∗A (2− 5q∗) ≥ pA (2− 5 q∗) ∀pA (4)
p∗B (1− q∗) ≥ pB (1− q∗) ∀pB (5)

q∗ [ 5 γ p∗A − 4 (1− γ) p∗B ] ≥ q [ 5 γ p∗A − 4 (1− γ) p∗B ] ∀q . (6)

In the following we determine all Nash equilibria first with a systematic conventional
method and thereafter with our new algorithm.

2.1 Systematic determination of all Nash equilibria

We determine all Nash equilibria of our game by proceeding in a systematic way:

1. With (4) and (5) the case q∗ = 1 implies p∗A = 0 and p∗B arbitrary. From inequality
(6) we obtain −4 (1− γ) p∗B ≥ q [−4 (1− γ) p∗B ] for all q, which implies p∗B = 0. Note
that this holds for all γ ∈ (0, 1).

2. With (4) and (5) the case q∗ = 2/5 implies p∗A arbitrary and p∗B = 1. From inequality
(6) we obtain 2/5 [ 5 γ p∗A − 4 (1− γ) ] ≥ q [ 5 γ p∗A − 4 (1− γ) ] for all q, which implies
5 γ p∗A − 4 (1− γ) = 0. This is equivalent to

p∗A =
4

5

1− γ

γ
.

For p∗A ≤ 1 it is required γ ≥ 4
9
.

3. With (4) and (5) the case 2
5

< q∗ < 1 implies p∗A = 0 and p∗B = 1. From inequality
(6) we obtain q∗ [−4 (1 − γ) ] ≥ q [−4 (1 − γ) ] for all q, which implies q∗ = 0 and
therefore a contradiction to 2

5
< q∗ < 1.

4. With (4) and (5) the case 0 < q∗ < 2
5

implies p∗A = p∗B = 1. From inequality (6) we
obtain q∗ [ 5 γ−4 (1−γ) ] ≥ q [ 5 γ−4 (1−γ) ] for all q, which implies 5 γ−4 (1−γ) = 0
and therefore γ = 4

9
.

5. With (4) and (5) the case q∗ = 0 implies p∗A = p∗B = 1. From inequality (6) we obtain
0 ≥ q [ 5 γ − 4 (1− γ) ] for all q, which is fulfilled in case of γ ≤ 4

9
.

Let us summarize these results by ordering them according to their dependence on the
probability γ:

(i) γ arbitrary:

p∗A = p∗B = 0, q∗ = 1 with H∗
1A

= H∗
1B

= 1, H∗
2 = 0 , (7)
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(ii) γ < 4
9
:

p∗A = p∗B = 1, q∗ = 0 with H∗
1A

= 3, H∗
1B

= 2, H∗
2 = 2− 3γ , (8)

(iii) γ = 4
9
:

p∗A = p∗B = 1, 0 < q∗ <
2

5
with H∗

1A
= 3− 5 q∗, H∗

1B
= 2− q∗, H∗

2 = 2− 3γ , (9)

(iv) γ > 4
9
:

p∗A =
4

5

1− γ

γ
, p∗B = 1, q∗ =

2

5
with H∗

1A
= 1, H∗

1B
= 8

5
, H∗

2 = 6
5
(1− γ) . (10)

It should be mentioned that equilibrium (i) is payoff-dominated by the other ones.

2.2 The new algorithm

Let us consider now only equilibria with p∗A > 0 and p∗B > 0 and develop our algorithm for
the determination of Nash equilibria as follows:

In the beginning it is known to the second player that the first player is of type A with
probability γ. If the former one has to make his decision, i.e., only in the case that the latter
one decides to go right, he can update his knowledge and work with a revised probability
β for the first player being of type A:

Let us define the events

A: player 1 is of type A,

s11: player 1 chooses s11.

Then we get with the help of the Bayesian formula

β = prob(A|s11) =
prob(s11|A) · prob(A)

prob(s11)
=

p∗A γ

(1− γ) p∗B + γ p∗A
. (11)

Accordingly, 1− β is the revised probability for the first player being of type B. Thus, we
consider now the conditional expected payoff to player 2, i.e., the expected payoff if the
game would start in the information set of the second player and the probability of being
in the left node is β,

H2(q; β) = β [−(1− q) + 4 q ] + (1− β) [ 2 (1− q)− 2 q ] = 2− 3 β + q (9 β − 4) , (12)

which, of course, he wants to maximize as regards to q, as well as the two players A and
B want to maximize their expected payoffs as regards to their strategies.
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With (4),(5) and (12) we get immediately conditions for the optimal strategies of all players
as follows:

q∗ =


1

arbitrary
0

 for β


> 4/9
= 4/9
< 4/9

 (13)

p∗A =


1

arbitrary
0

 for q∗


< 2/5
= 2/5
> 2/5

 (14)

p∗B =

{
1

arbitrary

}
for q∗

{
< 1
= 1

}
. (15)

Now we have to perform consistency checks, keeping in mind the meaning of β as given by
(11).

1. q∗ = 1 implies β > 4/9, p∗A = 0 and p∗B > 0 (p∗B = 0 excluded by assumption). This
is a contradiction to (11).

2. q∗ = 0 implies β < 4/9, p∗A = p∗B = 1 and therefore β = γ < 4/9.

3. q∗ = 2/5 implies β = 4/9, p∗A > 0 (p∗A = 0 excluded by assumption) and p∗B = 1 and
therefore with (11)

4

9
=

γ p∗A
(1− γ) + γ p∗A

⇐⇒ p∗A =
4

5

1− γ

γ
.

Since 0 < p∗A ≤ 1 we obtain 1 > γ ≥ 4/9.

4. 0 < q∗ < 2/5 implies β = 4/9, p∗A = p∗B = 1 and therefore β = γ = 4/9.

5. 2/5 < q∗ < 1 implies β = 4/9, p∗A = 0 and p∗B = 1. This is a contradiction to (11).

Thus, we get the same equilibria as before ((8) to (10)), and the question arises if we can
prove this directly.

In our example this question can be answered easily. According to (3) and (6), we have to
maximize the following expected payoff to the second player

γ p∗A [−(1− q) + 4 q ] + (1− γ) p∗B [ 2 (1− q)− 2 q ]

with respect to q ∈ [0, 1]. However, because of our assumptions p∗A > 0 and p∗B > 0, this is
equivalent to maximizing the following form

1

(1− γ) p∗B + γ p∗A
(γ p∗A [−(1− q) + 4 q ] + (1− γ) p∗B [ 2 (1− q)− 2 q ]) ,
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with respect to q ∈ [0, 1], which is equivalent to determining q∗ such that (12) is maximized.

In the next section we will discuss this issue in a more general way.

Let us close this section with a remark on the updating idea. In our case, we get from (8)
to (10):

γ ≤ 4

9
implies β = γ

γ >
4

9
implies β =

γ · 4
5
· 1−γ

γ

1− γ + γ · 4
5
· 1−γ

γ

=
4

9
.

In the first case in fact there is no updating. The second case, however, is difficult to
understand: Let us assume γ to be close to one. This means that the second player is
nearly sure that the first player is of type A. The updating nevertheless leads to β = 4/9,
i.e., nearly equal probabilities for the first player to be A or B!

Thus, updating does not mean necessarily, that the a-priori probabilities for the first
player’s types starting with γ and 1− γ get closer to 0 and 1 respectively 1 and 0.

3 Theoretical considerations
In this section we show for games like that in Figure 1 that our algorithm leads always
to a Nash equilibrium and that every Nash equilibrium in which the last information set
is reached with positive probability can be obtained with the help of our algorithm. Let
us consider the game in Figure 3 with four stages, which is a special case of the game in
Figure 1.

Figure 3 about here.
Let

H2A
(y1, x2) := (1− y1) f1 + y1 [(1− x2) b2 + x2 f2] (16)

be the conditional expected payoff for the second player if in the course of the game node
n1 is reached and

H2B
(z1, x2) := (1− z1) h1 + z1 [(1− x2) d2 + x2 h2] (17)

be the conditional expected payoff for the second player if in the course of the game node
n2 is reached.

Let us describe our algorithm which consists of four steps for this example in a formal way:

1. We consider the first player in his information set I2 and assume that the probability
to be in the left node of I2 is β2 ∈ [0, 1]. The first player determines x∗2 fulfilling

H
(I2)
1 (β2; x

∗
2) = max

x2∈[0,1]
H

(I2)
1 (β2; x2) (18)
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with

H
(I2)
1 (β2; x2) := β2 [(1− x2) a2 + x2 e2] + (1− β2) [(1− x2) c2 + x2 g2] .

The result of this optimization is x∗2(β2).

2. Now we consider player 2A and 2B. For every β2 ∈ [0, 1] and a x∗2(β2) fulfilling (18)
the player chooses strategies y∗1 and z∗1 maximizing the conditional payoffs defined in
(16) and (17), i.e.,

H2A
(y∗1, x

∗
2(β2)) = maxy1∈[0,1] H2A

(y1, x
∗
2(β2)) and

H2B
(z∗1 , x

∗
2(β2)) = maxz1∈[0,1] H2B

(z1, x
∗
2(β2)) . (19)

The result of this optimization is y∗1(x
∗
2(β2)) and z∗1(x

∗
2(β2)).

3. In the last step we consider the first player in his information set I1 and assume that
the probability to be in the left node of I1 is β1 ∈ [0, 1]. If we use the abbreviations

y∗1 := y∗1(x
∗
2(β2)), z

∗
1 := z∗1(x

∗
2(β2)) and x∗2 := x∗2(β2) (20)

the first player determines x∗1 fulfilling

H
(I1)
1 (β1; x

∗
1, y

∗
1, z

∗
1 , x

∗
2) = max

x1∈[0,1]
H

(I1)
1 (β1; x1, y

∗
1, z

∗
1 , x

∗
2) (21)

with

H
(I1)
1 (β1; x1, y

∗
1, z

∗
1 , x

∗
2) := (22)

β1 [(1− x1) a1 + x1 {(1− y∗1) e1 + y∗1 [(1− x∗2) a2 + x∗2 e2]}]
+(1− β1) [(1− x1) c1 + x1 {(1− z∗1) g1 + z∗1 [(1− x∗2) c2 + x∗2 g2]}] .

The result of this procedure leads for every pair (β1, β2) ∈ [0, 1]× [0, 1] to the set

Opt(β1, β2) := {(x∗1, y∗1, z∗1 , x∗2) : x∗2 = x∗2(β2), y
∗
1 = y∗1(x

∗
2(β2)), z

∗
1 = z∗1(x

∗
2(β2)),

x∗1 = x∗1(β1, y
∗
1(x

∗
2(β2)), z

∗
1(x

∗
2(β2)), x

∗
2(β2))} .

We call an element of the set Opt(β1, β2) consistent iff

(i) x∗1(β1, y
∗
1(x

∗
2(β2)), z

∗
1(x

∗
2(β2)), x

∗
2(β2)) ∈ (0, 1) and y∗1(x

∗
2(β2)) + z∗1(x

∗
2(β2)) > 0,

(ii) β1 = γ and with x∗1 := x∗1(β1, y
∗
1(x

∗
2(β2)), z

∗
1(x

∗
2(β2)), x

∗
2(β2))

β2 =
γ · x∗1 · y∗1

γ · x∗1 · y∗1(x∗2(β2)) + (1− γ) · x∗1 · z∗1(x∗2(β2))

=
γ · y∗1(x∗2(β2))

γ · y∗1(x∗2(β2)) + (1− γ) · z∗1(x∗2(β2))
.
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The first condition implies, that the game always reaches the information set I2 and implies
as well that β2 > 0. The second condition is what we have called the consistency check:
the arbitrary chosen β1 and β2 have to fulfill the Bayesian rule. Therefore the last step of
our algorithm is

4. We perform the just mentioned consistency check (i) and (ii).

Now we prove

Lemma 1. Let us given a pair (β1, β2) ∈ [0, 1] × [0, 1]. Then every consistent element of
Opt(β1, β2) is a Nash equilibrium of the entire game.

Proof. The (unconditional) expected payoff for the second player can be written using
definitions (16) and (17) as

H2(x1, y1, z1, x2) := γ [(1− x1) b1 + x1 H2A
(y1, x2)] + (1− γ) [(1− x1) d1 + x1 H2B

(z1, x2)] .

Let (x∗1, y
∗
1, z

∗
1 , x

∗
2) be a consistent element of Opt(β1, β2). We obtain from (19) using the

abbreviations (20)

H2(x
∗
1, y

∗
1, z

∗
1 , x

∗
2)

= γ [(1− x∗1) b1 + x∗1 H2A
(y∗1, x

∗
2)] + (1− γ) [(1− x∗1) d1 + x∗1 H2B

(z∗1 , x
∗
2)]

≥ γ [(1− x∗1) b1 + x∗1 H2A
(y1, x

∗
2)] + (1− γ) [(1− x∗1) d1 + x∗1 H2B

(z1, x
∗
2)]

= H2(x
∗
1, y1, z1, x

∗
2)

for all y1, z1 ∈ [0, 1], i.e., the Nash condition for the second player is fulfilled. The (uncon-
ditional) expected payoff for the first player is defined by

H1(x1, y1, z1, x2) := γ [(1− x1) a1 + x1 {(1− y1) e1 + y1 [(1− x2) a2 + x2 e2]}] (23)
+(1− γ) [(1− x1) c1 + x1 {(1− z1) g1 + z1 [(1− x2) c2 + x2 g2]}] .

From (ii) we get β1 = γ and with (22) and (21)

H1(x
∗
1, y

∗
1, z

∗
1 , x

∗
2) = H

(I1)
1 (γ; x∗1, y

∗
1, z

∗
1 , x

∗
2) ≥ H

(I1)
1 (γ; x1, y

∗
1, z

∗
1 , x

∗
2) = H1(x1, y

∗
1, z

∗
1 , x

∗
2) (24)

for all x1 ∈ [0, 1]. Let us define

f(γ; x1, y1, z1) := γ [(1− x1) a1 + x1 (1− y1) e1] + (1− γ) [(1− x1) c1 + x1 (1− z1) g1] ,

then we have

H1(x1, y1, z1, x2) = f(γ; x1, y1, z1)

+ γ x1 y1 [(1− x2) a2 + x2 e2] + (1− γ) x1 z1 [(1− x2) c2 + x2 g2] .

We want to prove the inequality

H1(x1, y
∗
1, z

∗
1 , x

∗
2) ≥ H1(x1, y

∗
1, z

∗
1 , x2)
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for all x1, x2 ∈ [0, 1]. First we assume that x1 > 0. With

N := N(x1, y
∗
1, z

∗
1) :=

1

γ x1 y∗1 + (1− γ) x1 z∗1
(> 0)

we obtain with (ii)

N γ x1 y∗1 =
γ x1 y∗1

γ x1 y∗1 + (1− γ) x1 z∗1
= β2

and
N (1− γ) x1 z∗1 =

(1− γ) x1 z∗1
γ x1 y∗1 + (1− γ) x1 z∗1

= 1− β2 .

Using (18) we get

N H1(x1, y
∗
1, z

∗
1 , x

∗
2)

= N f(γ; x1, y
∗
1, z

∗
1)

+ N {γ x1 y∗1 [(1− x∗2) a2 + x∗2 e2] + (1− γ) x1 z∗1 [(1− x∗2) c2 + x∗2 g2]}
= N f(γ; x1, y

∗
1, z

∗
1) + β2 [(1− x∗2) a2 + x∗2 e2] + (1− β2) [(1− x∗2) c2 + x∗2 g2]

= N f(γ; x1, y
∗
1, z

∗
1) + H

(I2)
1 (β2; x

∗
2)

≥ N f(γ; x1, y
∗
1, z

∗
1) + H

(I2)
1 (β2; x2)

= N H1(x1, y
∗
1, z

∗
1 , x2)

for all x2 ∈ [0, 1] and x1 > 0. If x1 = 0 then H1(x1, y
∗
1, z

∗
1 , x

∗
2) = f(γ; x1, y

∗
1, z

∗
1) =

H1(x1, y
∗
1, z

∗
1 , x2) for all x2 ∈ [0, 1]. Finally we obtain with (24)

H1(x
∗
1, y

∗
1, z

∗
1 , x

∗
2) ≥ H1(x1, y

∗
1, z

∗
1 , x

∗
2) ≥ H1(x1, y

∗
1, z

∗
1 , x2)

for all x1, x2 ∈ [0, 1], i.e., the Nash condition for the first player is also fulfilled. This shows
that (x∗1, y

∗
1, z

∗
1 , x

∗
2) is a Nash equilibrium of the entire game. �

Since the application of our algorithm to the game in Figure 3 leads always to a Nash
equilibrium, the question arises, if there are other Nash equilibria in which the informa-
tion set I2 is reached with positive probability and which cannot be determined with our
algorithm. The next Lemma gives the answer.

Lemma 2. Let (x∗1, y
∗
1, z

∗
1 , x

∗
2) be a Nash equilibrium with x∗1 > 0 and y∗1 + z∗1 > 0. Then

(x∗1, y
∗
1, z

∗
1 , x

∗
2) ∈ Opt(β1, β2) with β1 = γ and β2 =

γ y∗1
γ y∗1 + (1− γ) z∗1

. (25)

Proof. Let β2 be as in (25). Since

H1(x
∗
1, y

∗
1, z

∗
1 , x

∗
2) ≥ H1(x

∗
1, y

∗
1, z

∗
1 , x2)

for all x2 ∈ [0, 1], we get with

M :=
1

γ x∗1 y∗1 + (1− γ) x∗1 z∗1
(> 0)
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the inequality

M f(γ; x∗1, y
∗
1, z

∗
1) + H

(I2)
1 (β2; x

∗
2) = M H1(x

∗
1, y

∗
1, z

∗
1 , x

∗
2)

≥ M H1(x
∗
1, y

∗
1, z

∗
1 , x2)

= M f(γ; x∗1, y
∗
1, z

∗
1) + H

(I2)
1 (β2; x2) .

It follows H
(I2)
1 (β2; x

∗
2) ≥ H

(I2)
1 (β2; x2) for all x2 ∈ [0, 1]. This implies that x∗2 fulfills the

condition (18) with β2 from (25). For the second player we obtain from the Nash condition

γ [(1− x∗1) b1 + x∗1 H2A
(y∗1, x

∗
2)] + (1− γ) [(1− x∗1) d1 + x∗1 H2B

(z∗1 , x
∗
2)]

= H2(x
∗
1, y

∗
1, z

∗
1 , x

∗
2)

≥ H2(x
∗
1, y1, z

∗
1 , x

∗
2)

= γ [(1− x∗1) b1 + x∗1 H2A
(y1, x

∗
2)] + (1− γ) [(1− x∗1) d1 + x∗1 H2B

(z∗1 , x
∗
2)]

for all y1 ∈ [0, 1] and

γ [(1− x∗1) b1 + x∗1 H2A
(y∗1, x

∗
2)] + (1− γ) [(1− x∗1) d1 + x∗1 H2B

(z∗1 , x
∗
2)]

= H2(x
∗
1, y

∗
1, z

∗
1 , x

∗
2)

≥ H2(x
∗
1, y

∗
1, z1, x

∗
2)

= γ [(1− x∗1) b1 + x∗1 H2A
(y∗1, x

∗
2)] + (1− γ) [(1− x∗1) d1 + x∗1 H2B

(z1, x
∗
2)]

for all z1 ∈ [0, 1]. From the first inequality we obtain H2A
(y∗1, x

∗
2) ≥ H2A

(y1, x
∗
2) for all

y1 ∈ [0, 1] and from the second inequality H2B
(z∗1 , x

∗
2) ≥ H2B

(z1, x
∗
2) for all z1 ∈ [0, 1]. Both

inequalities are equivalent to the maximization in (19). Since β1 = γ we obtain from (23)
and (22) that x∗1 solves the problem (21). �

The Lemma shows that indeed all Nash equilibria with the property that all information
sets are reached with positive probability can be obtained with our algorithm.

4 Imperfect Information
Even though our algorithm is designed for games with incomplete information, it can also
be applied to games with genuinely imperfect information, i.e., not only to those which are
originally games with incomplete information and have been transformed into those with
imperfect information.

In order to demonstrate this, let us consider the extensive form game with imperfect
information as given in Figure 4.

Figure 4 about here.

It is very close to the game given by Figure 2, the decisive difference being, that we have
only two players, 1 and 2. The first player first decides to choose A or B with probability
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p and 1− p, and thereafter left or right with probabilities 1− pA and pA in case he chooses
A, and with probabilities 1− pB and pB in case he chooses B. The second player decides
in the same way as in the original game.

Again, we determine the Nash equilibria of this game with the conventional systematic
method and thereafter, with the new algorithm.

4.1 Systematic determination of all Nash equilibria

According to Figure 4 the expected payoffs to both players are given by

H1(p, pA, pB; q) = p [ (1− pA) + pA ((1− q) 3 + q (−2)) ]

+(1− p) [ (1− pB) + pB ((1− q) 2 + q ]

= p [ 1 + pA (2− 5 q) ] + (1− p) [ 1 + pB (1− q) ] (26)

and

H2(p, pA, pB; q) = p pA [ (1− q) (−1) + q 4 ] + (1− p) pB [ (1− q) 2 + q (−2) ]

= − p pA + 2 (1− p) pB + q [ 5 p pA − 4 (1− p) pB ] . (27)

The Nash condition for the equilibria (p∗, p∗A, p∗B; q∗) of this game are therefore given by

p∗ p∗A (2− 5 q∗) + (1− p∗) p∗B (1− q∗) ≥ p pA (2− 5 q∗) + (1− p) pB (1− q∗) (28)

for all p, pA, pB, and

q∗ [ 5 p∗ p∗A − 4 (1− p∗) p∗B ] ≥ q [ 5 p∗ p∗A − 4 (1− p∗) p∗B ] (29)

for all q. From (29) we get immediately

q∗ =


1

arbitrary
0

 for 5 p∗ p∗A − 4 (1− p∗) p∗B


> 0
= 0
< 0

 . (30)

In case of (28) we have to consider the cases

2− 5 q∗ > 1− q∗ , 2− 5 q∗ = 1− q∗ and 2− 5 q∗ < 1− q∗

which is equivalent to

q∗ < 1/4 , q∗ = 1/4 and q∗ > 1/4 .

We get from (28)

1. for q∗ < 1/4: p∗ = p∗A = 1 and p∗B arbitrary,

2. for q∗ = 1/4: p∗ p∗A + (1− p∗) p∗B = 1, and
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3. for q∗ > 1/4: p∗ = 0, p∗B = 1 and p∗A arbitrary.

We compare this with (30):

1. For q∗ < 1/4 we get 5 p∗ p∗A − 4 (1− p∗) p∗B = 5, which is a contradiction to (30).

2. For q∗ = 1/4 we get
p∗ p∗A + (1− p∗) p∗B = 1

and from (30) we get
5 p∗ p∗A − 4 (1− p∗) p∗B

which implies

(1− p∗) p∗B =
5

9
and p∗ p∗A =

4

9

and finally, as can be shown by contradiction,

p∗ =
4

9
, p∗A = p∗B = 1 and q∗ =

1

4
. (31)

3. For q∗ > 1/4 we get 5 p∗ p∗A − 4 (1− p∗) p∗B = −4, which is a contradiction to (30).

Thus, there is just one unique equilibrium (31). Also it should be noted that p∗A = p∗B = 0
is not a Nash equilibrium.

4.2 The new algorithm

In the same way as in section 2.2 we argue that player 2 knows, once he has to make a
decision, that he is at the left node of his information set with probability β, where

β =
pA p

(1− p) pB + p pA

(32)

and accordingly with probability 1 − β at the right node. Thus the expected payoff,
conditioned to β, is

H2(β, q) = β [ (1− q) (−1) + q 4 ] + (1− β) [ (1− q) 2 + q (−2) ]

= 2− 3 β + q (9 β − 4) . (33)

In equilibrium, therefore, we have

q∗ =


1

arbitrary
0

 for β


> 4/9
= 4/9
< 4/9

 . (34)

For the first player we get again the first three cases in the previous subsection which lead
us to the following consistency check:
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1. For q∗ < 1/4 we get β∗ = 1 which implies with (34) q∗ = 1, which is a contradiction.

2. For q∗ = 1/4 we get β∗ = p∗ p∗B = 4/9 which implies (1− p∗) p∗B = 5/9.

3. For q∗ > 1/4 we get β∗ = 0 which implies q∗ = 0, which is a contradiction.

Thus, we are led again to the same equilibrium (31), which we obtained before.

It should be noted that in this game the new algorithm works very similar to the conven-
tional method thus, for other and more complicated games it remains to be shown what
the relative advantages, e.g., as regards to computational effort, of both methods are.

5 Conclusions

The considerations in the third section can be generalized to an arbitrary numbers of stages.
In essence the statements of Lemma 1 and Lemma 2 can be formulated appropriately. In
the proof we can use a theorem given in van Damme [vD87].

To work out the proofs of the generalized Lemmata, however, is strenuous, let alone the
notational problems. Before tackling this task, some conceptual problems have to be clar-
ified which will be mentioned now.

In this paper we develop for the class of game theoretical models which is described in the
introduction, an algorithm for the determination of all Nash equilibria with the property
that all information sets are reached during the course of the game. Our algorithm rep-
resents a kind of backward induction with the surprising property, that in the course of
the calculations information sets are cut - which is healed with the help of the consistency
check.

We suppose that this algorithm determines all so-called Perfect Bayesian Equilibria (PBE)
as, e.g., defined by Fudenberg and Tirole [FT98]. We hesitate to assert this, since
other authors use slightly different or only verbal definitions of the PBE, see e.g., Osborne
and Rubinstein [OR94], and furthermore, since there exist so many different equilibrium
refinements also for games in extensive form, that only experts in this highly specialized
field can give a satisfying answer.

We also showed that this algorithm can be applied to extensive form games with imperfect
information in general. It is again a question to specialists in the field whether or not this
algorithm then determines all Sequential Equilibria as defined by Kreps and Wilson
[KW82].
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Figure 1: The structure of the extensive form of an armament model with incomplete
information. The second player is either of type A or of type B. The first player does not
know the type of the second player, and he has information sets with two elements.
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Figure 2: Extensive form of a two-person game with incomplete information. The dashed
line represents the information set of the second player.
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Figure 3: A special case of the game in Figure 1 (We can assume that the second player has
determined optimal strategies y∗2 and z∗2 so that the game can appropriately be reduced.).
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Figure 4: Extensive form of a two-person game with imperfect information.
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