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Abstract

In many material processing and storing plants an inspector performs during some
reference time interval, e.g. one year, a number of inspections because it can not be
excluded that the plant operator acts illegally by violating agreed rules, e.g., diverts
valuable material. The inspections guarantee that any illegal action is detected at the
earliest inspection following the beginning of that illegal action. We assume that the
inspector wants to choose the time points for his inspections such that the time which
elapses between the beginning of the illegal action and its detection is minimized whereas
the operator wants to start his illegal action such that the elapsed time is maximized.
Therefore, this inspection problem is modelled as a zero-sum game with strategies and
payoffs as described.

Depending on the concrete situation the start of the illegal action and the inspections
can take place either at a finite number of time points or at every time point of a reference
time interval. The first case can be modelled as a zero-sum game with finite pure strategy
sets while the latter one leads to a zero-sum game with infinite pure strategy sets and
discontinuous payoff kernel.

The aim of this contribution is to demonstrate the close relation between both games
for the case of one interim inspection.
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1 Introduction

In many material processing and storing plants an inspector performs during some reference
time interval, e.g. one year, a number of inspections because it can not be excluded that
the plant operator acts illegally by violating agreed rules, e.g., diverts valuable material. The
inspections guarantee that any illegal action is detected at the earliest inspection following
the beginning of that illegal action. We assume that the inspector wants to choose the time
points for his inspections such that the time which elapses between the beginning of the illegal
action and its detection is minimized whereas the operator wants to start his illegal action
such that the elapsed time is maximized. Therefore, this inspection problem is modelled as a
zero-sum game with strategies and payoffs as described.

In reliability theory, variants of this game have been studied by Derman (see [Der61]).
An operating unit may fail which creates costs that increase with the time until the failure
is detected. The overall time interval represents the time between normal replacements of
the unit. A pessimistic assumption about the way failures occur leads to a minimax analysis
which is essentially the same as that considered in section 4.

Another application is the inspection of a nuclear or chemical plant subject to verification
in the framework of an international arms control and disarmament treaty (see [ACvS91] or
[IAE]). Nuclear plants are regularly inspected at the end of the year. If nuclear material is
diverted form such a facility for non-peaceful purposes the inspector may wish to discover this
not only at the end of the year but earlier which is the purpose of interim inspections. Since
this application was the motivation for this chapter, in the following we only use the term
illegal action, keeping in mind that in other applications also a failure could be meant.

In section 2 we will formalize the situation for one interim inspection with the help of a
zero-sum game with finite pure strategy sets. This game is solved in section 3 and statements
about the asymptotic behavior of strategies and payoff´s are made. In section 4 we introduce
the corresponding continuous time inspection game and its solution and compare it with that
from section 3.
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2 The model

2 The model

Let N be the number of possible time points for an inspection. The general inspection situation
is depicted in Figure 1.

Figure 1: General inspection situation.

Our model works under the following assumptions:

• The operator decides at which of the possible time points 0, 1, . . . , N he will start his
illegal action.

• The inspector decides at which time point he will perform his inspection. At the be-
ginning and the end of the reference time interval, e.g., one year, a physical inventory
(PIV) is taken which specifies with certainty that plant operations were performed in
compliance with - for instance the Non-Proliferation Treaty (NPT) - obligations. He can
choose the inspection time point freely from the set 1, 2, . . . , N .

• Once an illegal action has been started by the operator, the inspector will detect it
during the next intermediate inspection (if there is still one) or with certainty at the
end of the year, i.e., the illegal action is discovered at the earliest inspection following
the start of the illegal action.

• The players choose their strategies simultaneously at the beginning of the year. Depend-
ing on N the operator’s payoff will be the elapsed time between start and detection of
the illegal action. The payoff to the inspector will be the negative of the payoff to the
operator.

Let ΦOp = {0, 1, . . . , N} and ΦInsp = {1, . . . , N} be the sets of pure strategies of the
operator and the inspector. If i is the time point of the beginning of the illegal action of the
operator and j the time point of the inspection, then we obtain – according to our model
assumptions – for the payoff to the operator

aij := Op(i, j) =


j : i = 0 and j = 1, . . . , N
N − i + 1 : i = 1, . . . , N − 1 and j = 1, . . . , i
j − i : i = 1, . . . , N − 1 and j = i + 1, . . . , N
1 : i = N and j = 1, . . . , N

. (1)

The payoff to the inspector is Insp(i, j) := −Op(i, j), i.e., we are dealing with a zero-sum
game. Matrix A with the entries aij as defined above is called payoff matrix of the game.

Let us conclude our model description with two remarks: First, we assume that if the
times of inspection and start of illegal action coincide, i.e., j = i, the illegal action is not
detected until the next inspection at the end of the reference time interval. Second, we deal
only with the illegal inspection game, i.e., the game where legal behavior of the operator is a
priori excluded. A short remark about legal behavior is made at the end of section 3.
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3 Solution of the discrete time inspection game

The payoff matrix A of our discrete time inspection game is shown in Table 1. The pure
strategies of the operator resp. the inspector are depicted the first column resp. the first row.
The entries in the payoff matrix are the payoff’s to the operator.

1 2 3 · · · n n + 1 · · · N − 1 N

0 1 2 3 · · · n n + 1 · · · N − 1 N

1 N 1 2 · · · n− 1 n · · · N − 2 N − 1
2 N − 1 N − 1 1 · · · n− 2 n− 1 · · · N − 3 N − 2
...

. . .
n N − n + 1 N − n + 1 N − n + 1 · · · N − n + 1 1 · · · N − n− 1 N − n

n + 1 N − n N − n N − n · · · N − n N − n · · · N − n− 2 N − n− 1
...

...
N − 1 2 2 2 · · · 2 2 · · · 2 1

N 1 1 1 · · · 1 1 · · · 1 1

Table 1: The payoff matrix A to the discrete time inspection game for arbitrary N .

We first want to answer the question, if there is a pure strategy combination which leads to
a stable situation of the game, i.e., a pair of strategies from which no player has an incentive
to deviate. The answer is no. Formally we are looking for a pure strategy combination (i∗, j∗)
with the so-called saddle point property

Op(i, j∗) ≤ Op(i∗, j∗) ≤ Op(i∗, j) (2)

for all i = 0, 1, . . . , N and j = 1, . . . , N . The left hand inequality specifies the operator’s
gain of maximizing his payoff, while the right hand inequality specifies the inspector’s gain
of minimizing the elapsed time. Suppose there would be a stable situation (i∗, j∗) in pure
strategies. Then we would obtain with (1)

Op(i∗, j∗) = max
i=0,...,N

Op(i, j∗) ≥ N + 1
2

and

Op(i∗, j∗) = min
j=1,...,N

Op(i∗, j) = 1 ,

i.e., (2) cannot be fulfilled for N ≥ 2. This argumentation shows, that in our game no stable
situation in pure strategies exists. Therefore, we have to introduce – following the general
procedure in non-cooperative game theory – the concept of mixed strategy. A mixed strategy
of a player is a probability distribution over his set of pure strategies, i.e., for the operator

QOp :=

{
(q0, q1, . . . , qN )T ∈ RN+1 : qi ≥ 0 for i = 0, . . . , N and

N∑
i=0

qi = 1

}
and for the inspector

QInsp :=

 (p1, . . . , pN )T ∈ RN : pj ≥ 0 for j = 1, . . . , N and
N∑

j=1

pj = 1

 .
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The i-th resp. the j-th pure strategy of the operator resp. the inspector corresponds to the
(i + 1)-th resp. the j-th unit vector. In order to avoid problems with the enumeration we will
write - although mathematical slightly incorrect - i instead of ei+1 and j instead of ej . If the
players decide to play the mixed strategy combination (q,p), the operator’s expected payoff
defined on the set QOp ×QInsp is given by

Op(q,p) := qT Ap =
N∑

i=0

N∑
j=1

qi pj Op(i, j) . (3)

According to our assumptions the inspector’s expected payoff is Insp(q,p) = −Op(q,p).

Now the idea of the stable situation from the discussion above can be generalized to the
saddle point criterion (see, e.g., [Mye97]):

Definition 1. A mixed strategy combination (q∗,p∗) ∈ QOp×QInsp constitutes a saddle point
in mixed strategies of the zero-sum game with payoff matrix A if and only if

Op(q,p∗) ≤ Op(q∗,p∗) ≤ Op(q∗,p) for all q ∈ QOp and all p ∈ QInsp ,

where Op(q,p) is given by (3). �

It can be shown that (q∗,p∗) is a saddle point of the zero-sum game if only if

Op(i,p∗) ≤ Op(q∗,p∗) ≤ Op(q∗, j) for all i = 0, . . . , N and all j = 1, . . . , N , (4)

see, e.g., [Mye97], i.e., both inequalities have only to be proven for the pure strategies of the
players.

Op(q∗,p∗) is called the value of the game. It can be shown that every zero-sum game with
finite pure strategy sets possesses at least on saddle point in mixed strategies (see [vNM47]
or [Nas51]), but of course - see the argumentation above - not always a saddle point in pure
strategy combinations. If a zero-sum game has the saddle points (q∗,p∗) and (q∗1,p

∗
1), then

(q∗,p∗1) and (q∗1,p
∗) are also saddle points of the game with the property

Op(q∗,p∗) = Op(q∗,p∗1) = Op(q∗1,p
∗) = Op(q∗1,p

∗
1) ,

i.e., all saddle points are interchangeable and lead to the same value. For this reason finding
all saddle points is more a mathematical challenge than necessary for applications.

In the next Lemma we state a recursive relation between Op(q, j +1) and Op(q, j) as well
as Op(i + 1,p) and Op(i,p), which we will use in the proof of Theorem 1.

Lemma 1. Consider the zero-sum game with payoff matrix A given by (1). Then for all
q = (q0, q1, . . . , qN )T ∈ QOp and p = (p1, . . . , pN )T ∈ QInsp the following recursive relations
hold:

Op(q, j + 1) = Op(q, j)− (N − j + 1) · qj +
j∑

i=0

qi for all j ∈ {1, . . . , N − 1} (5)

and

Op(i + 1,p) = Op(i,p) + (N − i) · pi+1 − 1 for all i ∈ {0, . . . , N − 1} . (6)
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Proof. Formula (1) may also be written as

aij =
{

j − i : i = 0, . . . , j − 1
N − i + 1 : i = j, . . . , N

(7)

for all j = 1, . . . , N . With (7) we get for all j ∈ {1, . . . , N} and all q = (q0, q1, . . . , qN )T ∈ QOp

Op(q, j) =
j−1∑
i=0

(j − i) · qi +
N∑

i=j

(N − i + 1) · qi . (8)

Let us fix an index j ∈ {1, . . . , N − 1} and a mixed strategy q ∈ QOp. Then we obtain with
(8)

Op(q, j + 1) =
j∑

i=0

(j + 1− i) · qi +
N∑

i=j+1

(N − i + 1) · qi

=
j∑

i=0

(j − i) · qi +
j∑

i=0

qi +
N∑

i=j

(N − i + 1) · qi − (N − j + 1) · qj

= Op(q, j)− (N − j + 1) · qj +
j∑

i=0

qi ,

i.e., recursive relation (5). For the proof of the second relation we first get from (1) for all
p = (p1, . . . , pN )T ∈ QInsp

Op(i,p) =



N∑
j=1

j · pj i = 0

(N − i + 1) ·
i∑

j=1

pj +
N∑

j=i+1

(j − i) · pj i = 1, . . . , N − 1

1 i = N

. (9)

With (9) we obtain

Op(1,p) = N · p1 +
N∑

j=2

(j − 1) · pj = Op(0,p) + N · p1 − 1 ,

and

Op(N,p) = 1 =
N∑

j=1

pj = 2 ·
N−1∑
j=1

pj + 2 · pN − 1 = Op(N − 1,p) + pN − 1 ,

i.e., equation (6) for i = 0 and i = N − 1. For a fixed index i ∈ {1, . . . , N − 2} we get again
from (9)

Op(i + 1,p) = (N − i) ·
i+1∑
j=1

pj +
N∑

j=i+2

(j − (i + 1)) · pj

= (N − i + 1) ·
i∑

j=1

pj + (N − i) · pi+1 −
i∑

j=1

pj +
N∑

j=i+1

(j − i) · pj −
N∑

j=i+1

pj

= Op(i,p) + (N − i) · pi+1 − 1 ,
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i.e., equation (6) for i ∈ {1, . . . , N − 2}, which completes the proof. �

The solution of our game is presented as Theorem 1.

Theorem 1. Consider the zero-sum game with payoff matrix A given by (1). For N ≥ 2 we
define the cutting edge

n∗ = n∗(N) := min

n : n ∈ {1, . . . , N} with
n∑

j=1

1
N − j + 1

≥ 1

 (10)

and therewith

q∗i = q∗i (N) :=



1
N
· (N − n∗ + 1) : i = 0

(N − n∗ + 1)
(N − i + 1) · (N − i)

: i = 1, . . . , n∗ − 1

0 : i = n∗, . . . , N

(11)

and

p∗j = p∗j (N) :=



1
N − j + 1

: j = 1, . . . , n∗ − 1

1−
n∗−1∑
j=1

1
N − j + 1

: j = n∗

0 : j = n∗ + 1, . . . , N

. (12)

Then (q∗,p∗) with q∗ = (q∗0, q
∗
1, . . . , q

∗
N )T and p∗ = (p∗1, . . . , p

∗
N )T is a saddle point of the

game with the value

Op∗N := Op(q∗,p∗) = (N − n∗ + 1) ·
n∗−1∑
j=1

1
N − j + 1

+ 1 . (13)

Proof. The proof is presented in several steps.

1. From (11) and (12) it can be directly seen that the components of q∗ and p∗ are greater
or equal to 0 and that both vectors are correctly normalized, i.e., q∗ and p∗ are probability
distributions over ΦOp resp. ΦInsp.

2. Saddle point inequalities: For a fixed index j ∈ {1, . . . , n∗ − 1} we have with (11)

j∑
i=0

q∗i = (N − n∗ + 1)

(
1
N

+
j∑

i=1

(
1

N − i
− 1

N − i + 1

))
= (N − n∗ + 1) · 1

N − j

and hence

j∑
i=0

q∗i =


(N − n∗ + 1) · 1

N − j
= (N − j + 1) · q∗j : j = 1, . . . , n∗ − 1

1 : j = n∗, . . . , N
. (14)
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This leads together with recursive relation (5) to

Op(q∗, 1) = Op(q∗, 2) = . . . = Op(q∗, n∗) (15)

and

Op(q∗, N) > Op(q∗, N − 1) > . . . > Op(q∗, n∗ + 1) > Op(q∗, n∗) . (16)

On the other hand we obtain with (6) and (12)

Op(0,p∗) = Op(1,p∗) = . . . = Op(n∗ − 1,p∗) (17)

and

Op(N,p∗) < Op(N − 1,p∗) < . . . < Op(n∗ − 1,p∗) . (18)

Combining (15) and (17) gives us

Op(q∗,p∗) = (q∗)T Ap∗

= Op(q∗, 1) = Op(q∗, 2) = . . . = Op(q∗, n∗)
= Op(0,p∗) = Op(1,p∗) = . . . = Op(n∗ − 1,p∗) . (19)

Now, Formulae (15) - (18) together with (19) implies

Op(i,p∗) ≤ Op(q∗,p∗) ≤ Op(q∗, j) for all i = 0, . . . , N and j = 1, . . . , N .

Making use of (4) we see that (q∗,p∗) is a saddle point of the game.

3. The value of the game: With (1) and (19) we get

Op(q∗,p∗) = Op(n∗ − 1,p∗) = (N − n∗ + 2)
n∗−1∑
j=1

p∗j + p∗n∗ = (N − n∗ + 1)
n∗−1∑
j=1

p∗j + 1 , (20)

i.e., (13) as required. �

The saddle point (q∗,p∗) has an interesting property: We see that the pure strategies
n∗, . . . , N for the operator and n∗+1, . . . , N for the inspector are cut off and are never played
in the saddle point. That means that the operator will never perform an illegal action after
time point n∗ and the inspector will never inspect after time point n∗ + 1. This makes sense
since detection is guaranteed to occur at the end of the reference time interval and the operator
will not wish to wait too long before violating.

In Figure 2 the optimal strategies of both players are depicted for the case of N = 19. For
arbitrary N ≥ 3 we obtain from (11)

q∗0(N) > q∗1(N) and q∗1(N) < q∗2(N) < . . . < q∗n∗−1(N)

and from (12)

p∗1(N) < p∗2(N) < . . . < p∗n∗−1(N) .
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Figure 2: The optimal strategies q∗ and p∗ for N = 19.

In general nothing can be said about the ratio between p∗n∗ and p∗j (j = 1, . . . , n∗− 1): In case
of N = 4 we have n∗(4) = 3 and

p∗1 = 1/4 , p∗2 = 1/3 , p∗3 = 5/12 , p∗4 = 0 , i.e., p∗1 < p∗2 < p∗3 ,

while in case of N = 5 we get n∗(5) = 4 and

p∗1 = 1/5 , p∗2 = 1/4 , p∗3 = 1/3 , p∗4 = 13/60 , p∗5 = 0 , i.e., p∗1 < p∗4 < p∗2 < p∗3 .

Formulae (10) and (13) can hardly be used in order to get ideas about the orders of
magnitude of n∗(N) and Op∗N . Therefore we present in the next Lemma lower and upper
bounds for these quantities.

Lemma 2. Consider the zero-sum game with payoff matrix A given by (1). Then we obtain
for the cutting edge n∗(N)(

1− 1
e

)
N < n∗(N) <

(
1− 1

e

)
(N + 1) + 1 (21)

and for the value of the game Op∗N

(N − n∗ + 1) < Op∗N < (N − n∗ + 2) . (22)

Proof. For an arbitrary number n ∈ {1, . . . , N − 1} we first have∫ n+1

1

1
N − x + 2

dx ≤
n∑

j=1

1
N − j + 1

≤
∫ n+1

1

1
N − x + 1

dx

and therewith

ln
[

N + 1
N − n + 1

]
≤

n∑
j=1

1
N − j + 1

≤ ln
[

N

N − n

]
. (23)

From (10) we obtain the inequalities

n∗∑
j=1

1
N − j + 1

≥ 1 and
n∗−1∑
j=1

1
N − j + 1

< 1 .
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This leads with (23) to

ln
[

N

N − n∗

]
≥ 1 and ln

[
N + 1

N − n∗ + 2

]
< 1 .

Combining both inequalities we get(
1− 1

e

)
N ≤ n∗ <

(
1− 1

e

)
(N + 1) + 1 .

Since n∗(N) is a natural number, the left hand inequality is indeed strict. Now we prove
inequality (22). From (18) we get

Op∗N = Op(n∗ − 1,p∗) > Op(n∗,p∗) = (N − n∗ + 1) ,

whereas with (1) and (20) we obtain

Op∗N = Op(n∗ − 1,p∗) = (N − n∗ + 2) ·
n∗−1∑
j=1

p∗j + p∗n∗ = (N − n∗ + 2) · (1− p∗n∗) + p∗n∗

< (N − n∗ + 2) ,

i.e., (22), as required. �

In order to get an idea of the behavior of the cutting edge n∗(N) and the value of the game
Op∗N , we present in Table 2 these quantities as well as the corresponding normalized quantities

1
N+1 n∗(N) and 1

N+1Op∗N . It can be seen, that the normalized cutting edge 1
N+1 n∗(N) is

neither an increasing nor a decreasing function of N . In the next Lemma we show, that
n∗(N) and Op∗N are increasing functions of N , while 1

N+1 Op∗N is a decreasing function of N .

Lemma 3. Consider the zero-sum game with payoff matrix A given by (1). Then for the
quantities n∗(N), Op∗N and 1

N+1 Op∗N the following inequalities hold:

n∗(N) ≤ n∗(N + 1) ≤ n∗(N) + 1

as well as

Op∗N < Op∗N+1 and
1

N + 1
Op∗N ≥ 1

N + 2
Op∗N+1 .

Proof. The proof is presented in several steps.

1. We first proof the inequality n∗(N) ≤ n∗(N + 1). Definition (10) applied to n∗(N + 1)
leads to

n∗(N+1)∑
j=1

1
(N + 1)− j + 1

≥ 1

and therewith to

n∗(N+1)−1∑
j=1

1
N − j + 1

≥ 1− 1
N + 1

. (24)
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N n∗(N) 1
N+1 n∗(N) Op∗N

1
N+1 Op∗N

2 2 0.666667 1.5 0.5
3 3 0.75 1.83333 0.458333
4 3 0.6 2.16667 0.433333
5 4 0.666667 2.56667 0.427778
6 5 0.714286 2.9 0.414286
7 5 0.625 3.27857 0.409821
8 6 0.666667 3.65357 0.405952
10 7 0.636364 4.38254 0.398413
12 8 0.615385 5.09939 0.392261
13 9 0.642857 5.484 0.391714
14 10 0.666667 5.84114 0.38941
20 13 0.619048 8.03906 0.382812
30 20 0.645161 11.7262 0.378265
40 26 0.634146 15.4047 0.375725
100 64 0.633663 37.4743 0.371032

Table 2: Behavior of the cutting edge n∗(N), the value of the game Op∗N and its normalized
values relative to N + 1 (rounded).

Suppose there would be a natural number N with n∗(N) > n∗(N + 1). Then we obtain with
(10) applied to n∗(N) and n∗(N + 1) and (24)

1 >

n∗(N)−1∑
j=1

1
N − j + 1

=
n∗(N+1)−1∑

j=1

1
N − j + 1

+
n∗(N)−1∑

j=n∗(N+1)

1
N − j + 1

≥ 1− 1
N + 1

+
n∗(N)−1∑

j=n∗(N+1)

1
N − j + 1

,

which implies

1
N + 1

>

n∗(N)−1∑
j=n∗(N+1)

1
N − j + 1

.

This inequality cannot be true, since even for j = n∗(N+1) we have N−n∗(N+1)+1 < N+1.
So we conclude that n∗(N) ≤ n∗(N + 1) for all N ≥ 2. The right hand inequality can be
deduced as follows. Again we obtain with (10)

n∗(N)∑
j=1

1
N − j + 1

≥ 1

and therewith
n∗(N)∑
j=1

1
(N + 1)− j + 1

≥ 1 +
1

N + 1
− 1

N − n∗(N) + 1
. (25)
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Let us suppose again that there exists a natural number N with n∗(N +1) > n∗(N)+1. This
leads with (10) applied to n∗(N + 1) and (25) to

1 >

n∗(N+1)−1∑
j=1

1
(N + 1)− j + 1

=
n∗(N)∑
j=1

1
(N + 1)− j + 1

+
n∗(N+1)−1∑
j=n∗(N)+1

1
(N + 1)− j + 1

≥ 1 +
1

N + 1
− 1

N − n∗(N) + 1
+

n∗(N+1)−1∑
j=n∗(N)+1

1
(N + 1)− j + 1

,

which implies

1
N − n∗(N) + 1

− 1
N + 1

>

n∗(N+1)−1∑
j=n∗(N)+1

1
(N + 1)− j + 1

.

In case of n∗(N)+1 = n∗(N +1)−1 resp. n∗(N)+1 < n∗(N +1)−1 we obtain the inequalities

− 1
N + 1

> 0 resp. − 1
N + 1

>

n∗(N+1)−1∑
j=n∗(N)+2

1
(N + 1)− j + 1

,

which both cannot be fulfilled. So we conclude that n∗(N + 1) ≤ n∗(N) + 1 for all N ≥ 2.

2. Now we proof the inequality Op∗N < Op∗N+1 and distinguish the two cases n∗(N + 1) =
n∗(N) and n∗(N + 1) = n∗(N) + 1. The optimal strategies of the inspector for both cases are
shown in Table 3 and Table 4. In order to simplify the following equations we write instead
of n∗(N) simply n∗.

j 1 2 · · · n∗ − 1 n∗

p∗j (N)
1
N

1
N − 1

· · · 1
N − n∗ + 2

1−
n∗−1∑
j=1

1
N − j + 1

p∗j (N + 1)
1

N + 1
1
N

· · · 1
N − n∗ + 3

1−
n∗−1∑
j=1

1
(N + 1)− j + 1

Table 3: The optimal strategies of the inspector in case of n∗(N + 1) = n∗.

j 1 2 · · · n∗ − 1 n∗ n∗ + 1

p∗j (N)
1
N

1
N − 1

· · · 1
N − n∗ + 2

1−
n∗−1∑
j=1

1
N − j + 1

0

p∗j (N + 1)
1

N + 1
1
N

· · · 1
N − n∗ + 3

1
N − n∗ + 2

1−
n∗∑
j=1

1
(N + 1)− j + 1

Table 4: The optimal strategies of the inspector in case of n∗(N + 1) = n∗ + 1.
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With Table 3 we get in case of n∗(N + 1) = n∗

p∗n∗(N + 1)− p∗n∗(N) =
1

N − n∗ + 2
− 1

N + 1
(26)

and with Table 4 in case of n∗(N + 1) = n∗ + 1

p∗n∗+1(N + 1)− p∗n∗(N) = − 1
N + 1

. (27)

Now we obtain with Table 3 and (26) in case of n∗(N + 1) = n∗

Op∗N+1 −Op∗N =
N+1∑
j=1

j · p∗j (N + 1)−
N∑

j=1

j · p∗j (N)

=
n∗−1∑
j=1

1
(N + 1)− j + 1

− n∗ − 1
N − n∗ + 2

+ n∗ ·
(

1
N − n∗ + 2

− 1
N + 1

)

=
n∗∑
j=1

1
(N + 1)− j + 1︸ ︷︷ ︸

≥ 1 from (10)

− n∗

N + 1︸ ︷︷ ︸
< 1

> 0

and with Table 4 and (27) in case of n∗(N + 1) = n∗ + 1

Op∗N+1 −Op∗N =
n∗∑
j=1

1
(N + 1)− j + 1

− n∗ · p∗n∗(N) + (n∗ + 1) · p∗n∗+1(N + 1)

=
n∗∑
j=1

1
(N + 1)− j + 1︸ ︷︷ ︸

≥ 1
N + 1

− n∗

N + 1
+ p∗n∗+1(N + 1)

≥ p∗n∗+1(N + 1) > 0 .

This completes the proof of the inequality Op∗N < Op∗N+1 for all N ≥ 2.

3. We proof the inequality (N +1) ·Op∗N+1 ≤ (N +2) ·Op∗N for all N ≥ 2 with n∗(N +1) =
n∗(N) = n∗ and start with some preliminary considerations. With Table 3 we obtain

(N + 1) · p∗n∗(N + 1) − (N + 2) · p∗n∗(N)

= (N + 1)−
n∗−1∑
j=1

(N + 1)
(N + 1)− j + 1︸ ︷︷ ︸

= 1 +
n∗−2∑
j=1

(N + 1)
N − j + 1

−(N + 2) +
n∗−1∑
j=1

(N + 2)
N − j + 1

= −2 +
n∗−1∑
j=1

1
N − j + 1

+
N + 1

N − n∗ + 2
. (28)
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Furthermore we see that
n∗−1∑
j=1

j · (N + 1)
(N + 1)− j + 1

−
n∗−1∑
j=1

j · (N + 2)
N − j + 1

= 1 +
n∗−2∑
j=1

(j + 1) · (N + 1)
N − j + 1

−
n∗−1∑
j=1

j · (N + 2)
N − j + 1

= 1 +
n∗−2∑
j=1

(j + 1) · (N + 1)− j · (N + 2)
N − j + 1︸ ︷︷ ︸

= 1

−(n∗ − 1) · (N + 2)
N − n∗ + 2

= n∗ − 1− (n∗ − 1) · (N + 2)
N − n∗ + 2

. (29)

Finally receive with Table 3, (28) and (29)

(N + 1) ·Op∗N+1 − (N + 2) ·Op∗N

=
n∗−1∑
j=1

j · (N + 1)
(N + 1)− j + 1

+ n∗ · (N + 1) · p∗n∗(N + 1)

−
n∗−1∑
j=1

j · (N + 2)
N − j + 1

− n∗ · (N + 2) · p∗n∗(N)

= n∗ − 1− (n∗ − 1) · (N + 2)
N − n∗ + 2

+ n∗ ·

−2 +
n∗−1∑
j=1

1
N − j + 1

+
N + 1

N − n∗ + 2


= −n∗ + n∗ ·

n∗−1∑
j=1

1
N − j + 1︸ ︷︷ ︸

< n∗ from (10)

< 0 ,

as required. It should be noted that in this case (i.e., n∗(N +1) = n∗) even the strict inequality
(N + 1) ·Op∗N+1 < (N + 2) ·Op∗N holds.

4. Now we proof the inequality (N + 1) · Op∗N+1 ≤ (N + 2) · Op∗N for all N ≥ 2 with
n∗(N + 1) = n∗(N) + 1 = n∗+ 1 and start again with some preliminary considerations. With
Table 4 we get

(N + 1) · p∗n∗+1(N + 1) − (N + 2) · p∗n∗(N)

= (N + 1)−
n∗∑
j=1

(N + 1)
(N + 1)− j + 1︸ ︷︷ ︸

= 1 +
n∗−1∑
j=1

(N + 1)
N − j + 1

−(N + 2) +
n∗−1∑
j=1

(N + 2)
N − j + 1

= −2 +
n∗−1∑
j=1

1
N − j + 1

. (30)
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Furthermore we obtain
n∗∑
j=1

j · (N + 1)
(N + 1)− j + 1

−
n∗−1∑
j=1

j · (N + 2)
N − j + 1

= 1 +
n∗−1∑
j=1

(j + 1) · (N + 1)
N − j + 1

−
n∗−1∑
j=1

j · (N + 2)
N − j + 1

= 1 +
n∗−1∑
j=1

(j + 1) · (N + 1)− j · (N + 2)
N − j + 1︸ ︷︷ ︸

= 1
= n∗ . (31)

Finally we get with Table 4, (30) and (31)

(N + 1) ·Op∗N+1 − (N + 2) ·Op∗N

=
n∗∑
j=1

j · (N + 1)
(N + 1)− j + 1

+ (n∗ + 1) · (N + 1) · p∗n∗+1(N + 1)

−
n∗−1∑
j=1

j · (N + 2)
N − j + 1

− n∗ · (N + 2) · p∗n∗(N)

= n∗ + n∗ ·

−2 +
n∗−1∑
j=1

1
N − j + 1

+ (N + 1) · p∗n∗+1(N + 1)

= −n∗ + n∗ ·
n∗−1∑
j=1

1
N − j + 1

+ (N + 1) ·

1−
n∗∑
j=1

1
(N + 1)− j + 1


= (N − n∗ + 1) + n∗ ·

n∗−1∑
j=1

1
N − j + 1

−
n∗∑
j=1

(N + 1)
(N + 1)− j + 1︸ ︷︷ ︸

= 1 +
n∗−1∑
j=1

(N + 1)
N − j + 1

= (N − n∗ + 1) ·

1−
n∗−1∑
j=1

1
N − j + 1

− 1

= (N − n∗ + 1) ·

1−
n∗∑
j=1

1
N − j + 1


︸ ︷︷ ︸

≤ 0 from (10)
≤ 0 ,

which completes the proof. �

Up to now we have been considering the zero-sum game with payoff matrix A. If N
increases, the reference time interval is getting longer and longer. However, from a practical
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point of view the reference time interval is constant. For that reason we start considering the
zero-sum game with the same pure strategy sets ΦOp = {0, 1, . . . , N} and ΦInsp = {1, . . . , N}
but now with the payoff matrix 1

N+1A. This new game has the reference time interval 1 (for
instance one year) and the beginning of the illegal action resp. the interim inspections take
place at time points 0, 1/(N + 1), . . . , N/(N + 1) resp. 1/(N + 1), . . . , N/(N + 1). Since we
have only multiplied the payoff’s with a positive constant, this game possesses the same saddle
point(s) like the original game (see, e.g., [Kar59]). Let ñ(N) resp. ÕpN be the cutting edge
resp. the value of the game for the zero-sum game with payoff matrix 1

N+1A. Then it holds:

ñ(N) =
1

N + 1
n∗(N) and ÕpN =

1
N + 1

Op∗N .

We now want to investigate the asymptotic behavior of the cutting edge ñ(N), the value
of the game ÕpN and the saddle point strategies for the zero-sum game with payoff matrix

1
N+1A. Let s ∈ [0, 1] be given. Then there exists a natural number l(s,N) ∈ {0, . . . , N + 1}
and δ(s,N) ∈ [0, 1/(N + 1)) with s = l(s,N)

N+1 + δ(s,N). We define

Q∗N (s) :=
l(s,N)∑
i=0

q∗i (N) . (32)

The cumulative distribution function Q∗N (s) of q∗ is the probability that in the zero-sum
game with payoff matrix 1

N+1A the start of the illegal action is performed at time point s
or earlier. The cumulative distribution function P ∗N (t) of p∗ can be defined in a similar way:
For a given t ∈ [0, 1] there exists a natural number l(t, N) ∈ {0, . . . , N + 1} and δ(t, N) ∈
[0, 1/(N + 1)) with t = l(t,N)

N+1 + δ(t, N). We define

P ∗N (t) :=


0 for 0 ≤ t <

1
N + 1

l(t,N)∑
j=1

p∗j (N) for
1

N + 1
≤ t ≤ 1

. (33)

P ∗N (t) is the probability that in the zero-sum game with payoff matrix 1
N+1A the inspection

is performed at time point t or earlier.

The next Theorem deals with the asymptotic behavior of these functions, the cutting edge
and the value of the game.

Theorem 2. Consider the zero-sum game with payoff matrix 1
N+1A, where matrix A is given

by (1). Then we obtain for the cutting edge ñ(N) and the value of the game ÕpN the following
asymptotic behavior

lim
N→∞

ñ(N) = lim
N→∞

1
N + 1

n∗(N) = 1− 1
e
≈ 0.632121

and

lim
N→∞

ÕpN = lim
N→∞

1
N + 1

Op∗N =
1
e
≈ 0.367879 .



16 Solution of the discrete time inspection game

Furthermore we get

lim
N→∞

Q∗N (s) = Q∗(s) :=


1
e

1
1− s

s ∈ [0, 1− 1/e)

1 s ∈ [1− 1/e, 1]
(34)

and

lim
N→∞

P ∗N (t) = P ∗(t) =

{
(−1) ln[(1− t)] t ∈ [0, 1− 1/e)

1 t ∈ [1− 1/e, 1]
. (35)

Proof. In this proof we frequently use the so-called Sandwich Theorem. Let (ak)k∈N, (bk)k∈N
and (ck)k∈N be sequences of real numbers such that

ak ≤ bk ≤ ck

at least for all k ≥ k0. If limk→∞ ak = limk→∞ ck =: α, then limk→∞ bk = α.

From (21) we get(
1− 1

e

)
N

N + 1
<

1
N + 1

n∗(N) <

(
1− 1

e

)
+

1
N + 1

and with the Sandwich Theorem

lim
N→∞

1
N + 1

n∗(N) = 1− 1
e

,

as required. From (22) we have

(N − n∗ + 1)
N + 1

<
1

N + 1
Op∗N <

(N − n∗ + 2)
N + 1

.

Using the first statement of this Theorem we have

lim
N→∞

(N − n∗ + 1)
N + 1

= lim
N→∞

(N − n∗ + 2)
N + 1

=
1
e

,

which shows with the Sandwich Theorem the relation

lim
N→∞

1
N + 1

Op∗N =
1
e

.

We first show the asymptotic behavior limN→∞ PN (t) = P ∗(t) for all t ∈ [0, 1]. Let t ∈
[0, 1− 1/e). We define

N1(t) :=
t + 2(

1− 1
e

)
− t

.

Then N1(t) > 0 and we obtain for all N ≥ N1(t)((
1− 1

e

)
− t

)
·N ≥ t + 2
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and therewith (
1− 1

e

)
·N ≥ t · (N + 1) + 2 ≥ (t− δ(t, N)) · (N + 1)︸ ︷︷ ︸

= l(t,N)

+2 .

This leads with (21) to

n∗(N) >

(
1− 1

e

)
·N ≥ l(t, N) + 2 for all N ≥ N1(t) .

This condition ensures that in the following summations we only have to consider p∗j (N) from
the first line of formula (12). Making use of definition (33) we first have for all N and all
t ≥ 1

N+1

l(t,N)∑
j=1

p∗j (N) = P ∗N (t) ≤
l(t,N)+1∑

j=1

p∗j (N) (36)

and therefore for all N ≥ N1(t)

l(t,N)∑
j=1

1
N − j + 1

= P ∗N (t) ≤
l(t,N)+1∑

j=1

1
N − j + 1

and with (23)

ln
[

N + 1
N − l(t, N) + 1

]
≤ P ∗N (t) ≤ ln

[
N

N − l(t, N)− 1

]
,

which is equivalent to

ln
[

1 + 1/N

1− l(t, N)/N + 1/N

]
≤ P ∗N (t) ≤ ln

[
1

1− l(t, N)/N

]
.

Since limN→∞
l(t,N)

N = t we get

lim
N→∞

1 + 1/N

1− l(t, N)/N + 1/N
= lim

N→∞

1
1− l(t, N)/N

=
1

1− t

and therefore with the Sandwich Theorem limN→∞ P ∗N (t) = P ∗(t) = (−1) · ln[ (1 − t) ] for
all t ∈ (0, 1 − 1/e). Since P ∗N (0) = P ∗(0) equation (35) holds also for t = 0. In case of
t ∈ (1− 1/e, 1] we define

N2(t) :=
2

t−
(
1− 1

e

) − 1 .

Then N2(t) > 0 and we have for all N ≥ N2(t)

(N + 1) ·
(

t−
(

1− 1
e

))
≥ 2 ,
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which is equivalent to

(N + 1) ·
(

t− 1
N + 1

)
≥
(

1− 1
e

)
· (N + 1) + 1 .

Since δ(t, N) < 1/(N + 1) we finally obtain with (21)

(N + 1) · (t− δ(t, N))︸ ︷︷ ︸
= l(t,N)

> (N + 1) ·
(

t− 1
N + 1

)
≥
(

1− 1
e

)
· (N + 1) + 1 > n∗(N) ,

i.e., the condition

l(t, N) ≥ n∗(N) + 1 for all N ≥ N2(t) .

Using (33) and (12) we have for all N ≥ N2(t)

1 =
l(t,N)∑
j=1

p∗j (N) = P ∗N (t) ≤
l(t,N)+1∑

j=1

p∗j (N) = 1 .

If t̃ := 1 − 1
e we have for any N the representation t̃ = l(t̃,N)

N+1 + δ(t̃, N) with l(t̃, N) ∈
{0, 1, . . . , N + 1} and δ(t̃, N) ∈ [0, 1/(N + 1)), which leads with (36) to

P ∗N
(
t̃− δ(t̃, N)

)
= P ∗N

(
l(t̃, N)
N + 1

)
= P ∗N (t̃) ≤ P ∗N

(
l(t̃, N) + 1

N + 1

)
= P ∗N

(
t̃ +

1
N + 1

− δ(t̃, N)
)

.

Since limN→∞ δ(t̃, N) = 0 and t̃− δ(t̃, N) < t̃ (because t̃ is an irrational number) we have

lim
N→∞

P ∗N
(
t̃− δ(t̃, N)

)
= lim

N→∞
(−1) · ln[ 1− (t̃− δ(t̃, N)) ] = lim

N→∞
(−1) · ln

[
1
e

+ δ(t̃, N)
]

= ln[e] = 1 .

Since t̃ + 1
N+1 − δ(t̃, N) > t̃ we finally get

1 = lim
N→∞

P ∗N
(
t̃− δ(t̃, N)

)
= P ∗(t̃) ≤ 1 .

Together we conclude limN→∞ P ∗N (t) = P ∗(t) for all t ∈ [0, 1], which has to be proven. We now
show the asymptotic behavior limN→∞ QN (t) = Q∗(s) for all s ∈ [0, 1]. Let s ∈ [0, 1 − 1/e).
With definition (32) we get for all N ≥ N1(s)

l(s,N)∑
i=0

q∗i (N) = Q∗N (s) ≤
l(s,N)+1∑

i=0

q∗i (N)

and with (14)

(N − n∗ + 1) · 1
N − l(s,N)

= Q∗N (s) ≤ (N − n∗ + 1) · 1
N − l(s,N)− 1

.
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Using the first statement of this Theorem and limN→∞
l(s,N)

N = s we get

lim
N→∞

N − n∗ + 1
N

· 1

1− l(s,N)
N

= lim
N→∞

N − n∗ + 1
N

· 1

1− l(s,N)
N − 1

N

=
1
e

1
1− s

.

The Sandwich Theorem implies limN→∞ Q∗N (s) = 1
e ·

1
1−s for all s ∈ [0, 1 − 1/e). In case of

s ∈ (1− 1/e, 1] we obtain for all N ≥ N2(s)

1 =
l(s,N)∑
i=0

q∗i (N) = Q∗N (s) ≤
l(s,N)+1∑

i=0

q∗i (N) = 1 .

In case of s̃ := 1− 1
e we get

Q∗N (s̃− δ(s̃, N)) = Q∗N

(
l(s̃, N)
N + 1

)
= Q∗N (s̃) ≤ Q∗N

(
l(s̃, N) + 1

N + 1

)
= Q∗N

(
s̃ +

1
N + 1

− δ(s̃, N)
)

.

Since limN→∞ δ(s̃, N) = 0 and s̃− δ(s̃, N) < s̃ (because s̃ is an irrational number) we have

lim
N→∞

Q∗N (s̃− δ(s̃, N)) = lim
N→∞

1
e
· 1

1
e + δ(s̃, N)

= 1 .

Since s̃ + 1
N+1 − δ(s̃, N) > s̃ we finally get

1 = lim
N→∞

Q∗N (s̃− δ(s̃, N)) = Q∗(s̃) ≤ 1 .

Together we have limN→∞ Q∗N (s) = Q∗(s) for all s ∈ [0, 1], which finishes the proof. �

Let us remark that if N is sufficiently large only 2/3 of time points are really used for
inspection.

We mentioned in the beginning that we consider in this paper only the illegal game, i.e.,
the game, where legal behavior of the operator is a priori excluded. Including legal behavior
and introducing losses and gains for legal behavior and for performing an illegal action will
lead to a formal condition for legal behavior of the operator. This condition then allows to
determine the size of the sanctions for detected illegal behavior such that the operator is
induced to legal behavior.

4 The continuous time inspection game

In Table 2 we see that the inspector can indeed improve his strategic advantage in the nor-
malized zero-sum game simply by increasing the number of inspection opportunities from say
3 to 7, while still making only one interim visit per year. One might ask, what the expected
detection time would be if, rather than being allowed to inspect every month, he could come
at the end of every week or every day or, completely unannounced, any time he wished. This
leads directly to games with infinitely many pure strategies (see, e.g., [Kar59]).
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Representing the inspection year by the interval [0, 1], the operator starts his illegal action
at time s ∈ [0, 1] and the inspector chooses his interim inspection at time t ∈ [0, 1]. The
operator’s payoff, in analogy to (1), is given by the so-called payoff kernel

Ã(s, t) :=
{

t− s 0 ≤ s < t
1− s t ≤ s < (≤) 1

. (37)

This game can be understood as the continuous version of the zero-sum discrete time
inspection game with the payoff matrix A given by (1). A mixed strategy for the operator
resp. inspector is a probability distribution on [0,1]. Let Q(s) be the probability of diversion
occurring at time s or earlier and let P (t) be the probability of an inspection having taken
place at time t or earlier. Using Lebesque-Stieltjes integrals (see [CvB00]), we define, in
analogy to (3), the expected payoff to the operator by

Op(Q,P ) :=
∫ 1

0

∫ 1

0
Ã(s, t) dQ(s) dP (t) .

A mixed strategy combination (Q∗, P ∗) constitutes a saddle point if and only if

Op(Q,P ∗) ≤ Op(Q∗, P ∗) ≤ Op(Q∗, P ) for all Q and P .

Infinite games with discontinuous payoff kernels, such as this one, may have no saddle
point at all, see, e.g., [Owe68]. Nevertheless it would be surprising if a limiting case of the
discrete time inspection game would have no solution. Fortunately, it can be shown, that for
the game discussed here, at least one saddle point exists. This is formulated in

Theorem 3. The zero-sum game over the unit square with payoff kernel in (37) has the
following solution. The operator chooses his start of the illegal action s according to the
distribution function Q∗(s) given by (34), while the inspector chooses the inspection time t
according to the distribution function P ∗(t) given by (35). The value of the game is 1/e.

Proof: The proof can be found in [AC96] or [AvSZ02]. �

Comparing these results with those from Theorem 2 we get the main result of this contri-
bution: The saddle point strategies of the zero-sum discrete time inspection game with payoff
matrix A can be seen – for large N – as an approximation of the saddle point strategies of
the continuous time inspection game with payoff kernel (37). This is not an obvious result.
If the game in this section had a continuous payoff kernel over [0, 1] × [0, 1] this asymptotic
behavior were obvious. However, the game considered here possesses a discontinuous payoff
kernel. This asymptotic relation is remarkable; it may be guessed but has to be proven.

Although the solution of the continuous time inspection game is more manageable then
the solution of the discrete time inspection game, one has always to solve the discrete time
inspection game, if one has to consider a practical situation with a finite number of time points
for interim inspections: Even if the number of time points for interim inspections gets large,
the distribution functions of the continuous time inspection game can simply not be used as
those of the discrete time inspection game.
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