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Abstract. Queuing systems are an important building block for per-
formance evaluation in various application areas, due to their powerful,
yet simple nature. Although it is often possible to perform an analytical
evaluation of a queuing model, simulation of queuing systems remains an
important technique in the context of performance evaluation. In order
to speed up queuing simulation executions, parallel and distributed sim-
ulation techniques have been devised. Unfortunately, existing methods
are complex in nature, leading to increased development costs. More-
over, most, of these approaches have been developed for tightly coupled
parallel processing machines. Consequently, they are not suited for dis-
tributed execution. This paper investigates an alternative approach based
on the technique of time-parallel simulation with fix-up computations.
The salient features of this novel approach are its simplicity and its suit-
ability for efficient distributed simulation execution.

1 Introduction

Queuing systems are an important tool in the area performance evaluation of
computer and communication systems, especially as the building blocks of queu-
ing networks. Although many queuing systems can be solved analytically, sim-
ulation remains an important tool for the computation of various statistics of
queuing systems.

Parallel and distributed simulation techniques [1] are applied to decrease the
run times of sequential simulation algorithms. This is desirable in cases, where
the efficiency of sequential algorithms is not sufficient due to economical reasons
or real-time constraints. Generally, there are two different approaches to exploit
parallel processing power for a simulation problem: Parallel replicated simulation
performs multiple replications of the same simulation model in parallel, model
parallelization decomposes a simulation task in multiple subtasks for parallel or
distributed simulation. Parallel replicated simulation is easy to implement, but
its applicability is restricted, depending on the strength of the initial transient,
the variability of the simulation, and the available simulation run length [2].
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Furthermore, the execution of a parallel replicated simulation or of a paral-
lelized model is classified by the utilized processing hardware. Parallel simulation
is concerned with the concurrent execution of a simulation model on a tightly
coupled parallel computer (e.g. employing shared memory). In distributed simu-
lation, a model is executed concurrently on a number of independent computing
resources communicating by the use of standard interconnection networks (e.g.
clusters of workstations or grid computing [3]). This distinction is reasonable due
to significant differences in the characteristics of the corresponding hardware.
Distributed systems are characterized by high communication latencies and a
general lack of shared memory. This has a significant impact on the applicability
of various parallel algorithms.

In the field of parallel discrete-event simulation [4], the classical method for
the parallelization of a model is a spatial model decomposition. The state space
of the model is divided into a number of substates to be simulated concurrently
by parallel processes. This requires decomposability of the model state space.
Unfortunately, in many cases a model exhibits only a limited amount of decom-
posability. A single queuing system has a very simple state space, often consisting
only of the number of jobs currently present. Furthermore, even in queuing net-
works with a more complex state space, the amount of parallelism achievable
with spatial model decomposition is limited [5].

An alternative to spatial decomposition is the temporal decomposition of
the simulation task [6]. The simulated time is split into a number of slices and
the responsibility for the calculation of state changes inside each slice is as-
signed to a separate parallel process. This technique of time-parallel simulation
is promising for the simulation of queuing systems, as the achievable degree
of parallelism is not limited by the decomposability of the model state space.
Therefore, all of the approaches for efficient queuing system simulation that have
been developed, use a variant of time-parallel simulation. Greenberg et al. [7,
8] use parallel prefix computations [9,10] to calculate G/G/1 queuing system
dynamics via recurrence relations. Furthermore, they investigate techniques to
apply this approach to several different types of queuing networks, including
acyclic fork-join networks, series of queues with bounded buffers, closed cyclic
networks, and several types of acyclic networks of G/G/1 queues. They also
introduce the method of iterative folding, which can be used to simulate arbi-
trary G/G/1 queuing networks, albeit with varying efficiency. Andradottir et al.
[11,12] introduce a complex algorithm for the simulation of queuing networks
with either loss or communication blocking. The structure of supported queuing
networks is not restricted, but only markovian queues with bounded buffers are
supported. Wang and Abrams [13, 14] modify the approach of Greenberg et al.
for the simulation of bounded G/G/1/K queuing systems. Their approximate al-
gorithm estimates the correct results in two phases: First, the G/G/1 algorithm
of Greenberg et al. is applied. Then, the resulting trajectory of simulation states
is transformed into an approximate G/G/1/K trajectory. Chen [15] presents an
approach for the parallel simulation of G/G/1 queues and certain networks of
these queues, including systems with loss or communication blocking. Instead of
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using recursive equations, longest-path distances in directed graphs are utilized
to compute queuing system statistics.

All of the mentioned approaches for parallel or distributed queuing system
simulation are rather complex and thus difficult to be implemented efficiently
on all types of parallel processing architectures. Furthermore, they have been
designed for parallel simulation (i.e. for an execution on tightly coupled multi-
processor machines), thus not being well suited for distributed simulation (e.g.
using grid computing resources). With the rising significance of distributed pro-
cessing architectures, this happens to be a serious impediment for parallel or
distributed queuing simulation. Therefore, an alternative approach for G/G/1
queuing system simulation based on time-parallel simulation with fix-up compu-
tations [16] is introduced in this paper. The salient features of this method are
its simplicity and its suitability for distributed simulation.

The rest of the paper is structured as follows. Section 2 introduces the method
of time-parallel simulation with fix-up computations. The central part of this
paper is the definition of an efficient state match criterion and the proof of
its correctness in Section 3. Section 4 gives indications on the performance of
the introduced approach by the example of M/M/1 queues. Finally, Section 5
concludes the work.

2 Time-Parallel Simulation

In classical parallel simulation [4], the set of state variables of a simulation model
is decomposed into subsets. Each of these is assigned to a logical process that
manages the corresponding part of the global state. These logical processes are
then executed concurrently on parallel processing nodes. The drawbacks of this
approach are the introduction of an overhead for the synchronization between
logical processes and the limited amount of achievable parallelism, which is re-
stricted by the number of state variables and the decomposability of states in the
model. Time-parallel simulation [6] is a different approach that decomposes the
time axis and performs simulations of resulting time intervals in parallel. After-
wards, the results of all intervals are combined to create the overall simulation
result. This has the potential for massive parallelism, as the maximum number
of logical processes is determined by the number of possible time intervals, which
is only restricted by the granularity of the time representation in the simulation
implementation.

However, without further mechanisms, the final and initial states of adja-
cent time intervals do not necessarily coincide at interval boundaries, possibly
resulting in incorrect state changes. Several different solutions of this problem
have been proposed. Lin and Lazowska [17] introduce the notion of regeneration
points, which are states that keep reoccurring throughout a simulation execution.
If such a state can be identified a priori, a number of simulations can be exe-
cuted concurrently, starting from the regeneration point and continuing until the
regeneration point is reached again. Afterwards, the traces of the parallel simu-
lations are concatenated to a correct trace of the simulation over the whole time
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Fig. 1. Time-parallel simulation with guessed states

period. The drawback of this approach is the difficulty to identify regeneration
points, especially for models with complex states. Among other applications,
this approach was used successfully for the simulation of cascaded statistical
multiplexers [18].

Heidelberger and Stone [16] introduce another solution using fiz-up computa-
tions, which has been used for the simulation of caching in computer systems [16]
and the simulation of CSMA/CD [19], among others. Compared to the approach
utilizing regeneration points, fix-up computations are a more general construct,
as they can be applied to almost any simulation model. Therefore, the rest of the
paper is only concerned with time-parallel simulation using fix-up computations.

Let T' = [0, 7] be the interval of the whole simulation time. T" is decomposed
into the time intervals Ty, ..., Ty, where Ty, = [Tk, Tp+1], with 73 = 0 < 12 <
voo < T < Tma1 = T, such that every point in simulated time is contained in
some interval and the intervals overlap only at boundaries 7o, ..., 7.

Now, simulations of time intervals are executed concurrently by correspond-
ing processes pi,...,Dn in the initial simulation phase. Unfortunately, the cor-
rect states at time interval boundaries s, ..., 7, are unknown prior to the sim-
ulation. Therefore, these states are guessed and used as initial states zo,..., 2z
of the simulation processes. However, if the simulations are executed with these
(possibly incorrect) states, the situation may occur, that the final state Zj of a
simulation execution for time interval T} does not match the initial state zpyq
that has been used for the simulation of the following time interval Ty ,. Figure 1
illustrates these issues.

If it is the case that zx11 # Zj for at least one time interval T}, overall sim-
ulation results might be incorrect. Therefore, a fix-up phase is utilized after the
initial simulation phase to amend these illegal state changes. Fix-up computa-
tions for an interval Tj41 (see Figure 2 for an illustration) are just a continuation
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Fig. 2. Time-parallel simulation with fix-up computations

of the simulation of the preceding interval T, by process py until a time 74, where
the state of the initial simulation performed by process px41 matches the corre-
sponding state calculated during the fix-up computations by process pi. As can
be noted in Figure 2, the correct sequence of states results from a concatenation
of the sequences of states of intervals T) = (7,7} ,] calculated by process py
for all k € {1,...,m}. An interval [7y, 7/] can be interpreted in two ways: as the
fix-up phase of process px_1 and as a warm-up phase of process py.

Figure 2 also shows the case, where state matching does not occur during the
fix-up computations of process ps for interval T3. In that case, process ps con-
tinues fix-up computations beyond 74. State matching is now attempted against
the sequence of states calculated by process ps for interval Ty. The fix-up phase
[13,74] of process py now overlaps with the warm-up phases of p3 as well as
ps, and three different sequences of states have been calculated for the interval
[7’4, Té] .

The amount of fix-up computations depends on the state calculations done
by the corresponding processes. Hence, the length of interval T}, handled by a
process p, is not known a priori and does not necessarily have the same length
as the intervals of the other processes. The computational overhead O of the
parallel simulation can be defined as the lengths of fix-up phases of processes.
It can be measured as the sum of the lengths of fix-up phases and expressed
relative to the length 7 of the whole simulation:



6 Tobias Kiesling and Thomas Krieger

For equidistant process start times 73, i.e. 7 = (k — 1), (1) can be simplified

to
m

1 T 1 m m — 1

O=-3(d-tk-DT)=->r-""=. 2

- Z 75— ( )m - ZTk 9 (2)
k=2 k=2

The worst case for the overhead is that all processes perform fix-up computations

until the end of the simulation time, i.e. for all k € {2,...,m} : 7/, = 7. The

overhead O in this case can be calculated from (2):
~ 1 & m—1 m-—1
0:=- - = 3
Iy 0

As an example, consider a simulation with 7 = 100 and four parallel processes
(m = 4). In the worst case, O = 1.5, i.e. the computational overhead for the
parallel calculation is 1.5 times the length of the overall simulation interval.
The total work done is 2.5 times the work in the sequential case. To determine
the overall efficiency of the parallel algorithm, additional knowledge about the
communication and synchronization overheads is necessary.

During the fix-up phase, fix-up computations are performed until the sim-
ulation state matches the corresponding state that had been calculated in the
initial simulation phase. Therefore, a central aspect of fix-up computations is
the detection of state matching. State matching might occur in both deter-
ministic and stochastic simulation models, but in the latter case it is harder
to anticipate and sometimes leads to obscure results. Fortunately, it is easy to
transform a stochastic simulation model into an equivalent deterministic one by
pre-sampling of random numbers. This leads to a trace-driven simulation, where
the now repeatable simulation executions enable a direct comparison of the sim-
ulation states of initial simulation and corresponding fix-up computation. The
details how this presampling can be performed depend on the specificities of the
simulation model.

3 Parallel Queuing System Simulation

Using the method of time-parallel simulation with fix-up computations for the
simulation of G/G/1 queuing systems is straightforward: Job arrival and ser-
vice times are presampled and stored in an input trace. The trace is split into
a number of subtraces to be simulated concurrently. For each parallel process,
it is supposed that the system is empty just before the first job arrival of the
corresponding subtrace occurs. Simulation is executed as usual until the end
of the subtrace is reached. Now, each process performs fix-up computations by
continuing the simulation with the input subtrace of the following parallel pro-
cess until state matching occurs. Afterwards, the simulation results are collected
from the processes and the overall simulation result is calculated. Two open is-
sues still remain: the detection of state matching and the efficient collection of
results from the parallel processes.
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The rest of this section is concerned with the detection of state matching. In
fact, state matching occurs exactly at the time when a process performing fix-up
computations encounters an empty queue. It is easy to see that after this time,
states will be identical. However, it can be shown that this is also the earliest
time, when the state of the process performing fix-up computations matches the
state calculated by the following process in the initial simulation phase. This
result is stated by Theorem 1, which is derived hereafter.

3.1 Foundations

In the following, the problem of queuing simulation is reduced to the problem
of determining the departure times of a number of jobs with associated arrival
instants and service times. Based on this sequence of departure instants, the
trajectory of the number of jobs in the system over time can be reconstructed
easily [7]. The calculation of the job departure instants of a G/G/1 queue can be
represented by a recursive function that relates a job with its departure time [20].
The basic observation underlying this formulation is, that the departure instant
d(j) of job j is determined by its own service time s(j) and either its arrival
instant a(j) or the departure instant of the previous job d(j — 1) (depending on
which occurs later in time):

d(5) = max(a(j),d(j — 1)) + s(j) - (4)

This recursive formula for the calculation of departure times is easily under-
standable and can be implemented efficiently as a sequential computer program.
In the following, (4) is modified to support the parallel calculation of departure
times, defined later.

Definition 1 (departure function). Let N := {1,...,n} be the set of jobs
to simulate. Let s : N — RT be a positive function of job service times. Let
a: N — RS‘ be a stricly monotonic increasing function of job arrival instants.
The departure function di, : {i —1,...,n} — R{ foru € R and i € N, is
defined as follows:
d;(j);{” o oW g=isl
max(a(j),d:, (5 — 1)) + s(j), otherwise

The parameter i is used to restrict the domain of the function to the set
{i—1,...,n}, starting at job ¢, which is a part of the overall simulation domain.
The function is defined for job ¢ — 1, as well. However, this value is only to
be used as the basic case of the recursion. The parameter i is relevant in the
context of time-parallel simulation of the queuing system, where the simulation
of a parallel process is started with an initial job representing the time interval
boundary. The case ¢ = 1 is used for a sequential calculation of departure times
as well as for the first process in a time-parallel simulation execution. The pa-
rameter u of the departure function is used to indicate an initial delay for the
queuing system. In a sequential queuing system which is typically empty at the
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beginning of the observed time, u = 0. However, if there is an initial load of
the system, the queue starts with at least one existing job. This property can
be captured by introducing an initial delay with u > 0 that must pass until the
first job can be served. This is used in Section 3.2 to represent the performance
of fix-up computations in a time-parallel simulation, where a process starts its
fix-up computation phase with a number of jobs in its queue, which has been
determined during its initial simulation phase. As can easily be seen, d¢, is a
strictly monotonic increasing function for all parameters ¢ and u.

In time-parallel queuing simulation, it is necessary to compare the calcula-
tions of two adjacent processes to decide on the termination of fix-up computa-
tions. The following lemmata provide the foundation for the following formal-
ization of time-parallel queuing simulation.

Lemma 1. LetieNandu,veRg with w > v. Then for allj € {i—1,...,n}
dy,(§) = diy(5) -

Proof. Proof by induction over j with the basic case 7 = 0 trivially met.

Let d',(j — 1) > d!(j — 1) hold.

Case 1(dy(j —1) < a(h)(= dy(j — 1) < a(j))):
() = a(j) + s(j) = dy,(j) = di,(j) = di,(5)

Case 2 (di,(j—1) > a(j) and d (j — 1) < a(j)):
i, (7) = diy (7 — 1) + 5(5) > a(j) + s(j) = d;,(5)

Case?) (dZ(]*l) > a(j) and di (5 — 1) > a(4)): A

di(j) = diy(j = 1) +5(5) > di,(j — 1) + s(5) = di,(j)

D

Lemma 1 indicates that for two simulation executions starting with different
initial delays, the departure times of all jobs of the simulation with the lower
initial delay are always dominated by the departure times of jobs in the other
execution. However, it is still unknown how departure functions with different
parameters ¢ can be compared. The following lemma shows how this can be done.

Case 4 (di,(j — 1) < a(j) and d! (j — 1) > af
Cannot occur due to d’,(j — 1) > d¢ (j

Lemma 2. Leti,i’ € Ny withi < i’ andu € R{. Let u' := di (i’ —1). Then the
following equality holds for all j € {i' —1,...,n}:

dy(5) = di ()
Proof. Proof by induction over j with the base case j = ¢ — 1 met due to
Definition 1. Suppose, that for any j € Ny, d¢,(j) = d’,(j) holds.

Then d,,(j+1) = maz(a(j+1), d}, (/) +5(j+1) = maz(a(j+1), iy (7)) +s(i+1) =
diy (5 +1).

Lemma 2 shows, that a departure function d’, is equivalent to a function df:,
with another parameter i > 4 for all j > ¢’ — 1. This can be achieved by a
simple adjustment of the initial delay u. Hence, if two departure functions with
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differing parameters ¢ and i’ are to be compared, the function with the smaller
parameter can be adjusted properly.

Now, a strong relationship between simulation executions with the same pa-
rameter ¢ has been established and it has been shown how departure functions
with different parameters i and i’ can be compared. The purpose of the next
section is to show how state match detection in time-parallel queuing simulation
can be performed. State matching occurs if the states of adjacent simulations are
identical. In fact, it is shown in Section 3.2, that matching between the states
calculated by two processors pi and piy1 occurs exactly when the queuing sys-
tem gets empty the first time during the fix-up computations of pi. In the case
of calculation of departure times, as presented in Definition 1, the property of
an empty queue is represented by the expression di (j — 1) < a(j), in which case
the service of job j is not influenced at all by the history of the queuing system,
as job j —1 departs from the system before job j arrives. The following lemma is
an important step to the property of match detection discussed above. It gives a
characterization of the state match time for two simulations with differing initial
delays, but the same domain.

Lemma 3. Leti € Ny and u,v € RY withu > v. Then for all j € {i—1,...,n},
the following two statements are equivalent:

() du(l) = d,(5), |
(i) d,G-1)=dy(i =) Vdy(—1) <a().

Proof. Let i € N be an arbitrary natural number. Furthermore, choose an arbi-
trary j € {i — 1,...,n}.
Case 1 (d’(j—l) <a( i) and d (5 — 1) < a(j)):
di.(j) = maz(a(j), di(j — 1)) + 5(j) = alj) + s(j)
= maz(a(j), di(j — 1)) + 5(j) = d\(j)
= (i) always holds.
(ii) trivially holds due to d (5 — 1)
Case 2 (d!(j — 1) > a(j) and d’ (j — 1)
d4(5) = maslal). i — ) +5() = &G ~ 1) +50)
a(j) + 5(7) = maz(a(j), dy(j — 1)) + () = di(j)
= (i) never holds.
(ii) never holds due to d(j — 1) > a(j) > di(j — 1).
Case 3 (d'(j — 1) > a(j) and di (j — 1) > a(j)):
(i) is reduced to d;(j —1)=di(j—1). '
di,(7) = maz(a(j), di(j — 1)) + 5(7) = di,(j — 1) + 5(j)
di (j) = maz(a(),di (j — 1)) + s(7) = diG — 1) + 5(7)
Thus, it holds that d’,(j) = d'(j) & di,(j — 1) =d' (5 — 1),
which settles Case 3.
Case 4 (d'(j — 1) < a(j) and di (j — 1) > a(j)):
Cannot occur due to Lemma 1.

a
¢

.

I IA 'A

a(j
a(]))
d

+
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3.2 Time-Parallel Queuing Simulation

With the foundations defined in the previous section, it is now possible to define
time-parallel queuing system simulation. Let N := {1,...,n} be the set of jobs
to simulate with corresponding arrival instants a : N — RS‘ and service times
s : N — RT. The responsibility for the calculation of departure times of jobs is

assigned to m processes pi, ..., pm, assigning start job ji € {1,...,n} to every
process pr (j1 = 1 < ja < ... < jm < n). Furthermore, each logical process
pr is assigned a simulation interval Ny := {jr — 1,...,n} and an initial delay

ug := a(jg). This value of the initial delay represents an empty queue at the
beginning of the simulation of each simulation interval, as the departure time of
the first job ji is in any case a(jx) + s(ji) and the job is not influenced by any
of the preceding jobs in the system.

The following lemma is given to simplify the proofs of Lemma 5 and Theo-
rem 1.

Lemma 4. Let k,l € {1,...,m} with k < | and z := d} (ji — 1). Then the
following implication holds for all j € {j;,...,n}:

2 <wy = dlf (j) = dll(5) -

Proof. First of all, note that k < [ directly leads to jix < j; due to definition,
which is silently exploited in all of the following proofs. Due to definition, it
holds that w; = a(j;) and @/ (ji — 1) = z. Hence, d/'(j; — 1) < a(j;). Therefore,
dl'(j1) = a(j) + s() = d},(j1). Repeated application of Lemma 3 leads to
d(j) = dj}(j) for all j € {ji,...,n}. An application of Lemma 2 settles the
proof.

The value a(j;) of the initial delay w; of a process p; is reasonable, as it leads
to the domination of d{}l by dju’; for every k < l. This property is shown in the
following lemma and can be exploited later for the determination of the match
detection criterion.

Lemma 5. Let k,l € {1,...,m} with k <l. Then the following inequality holds
for all j € N;: _ _
it (5) = di, (5) -

Proof. Let z := dJ} (ji — 1). There are two cases for the value of z:

Case 1 (z > w):
Then, due to Lemma 1, d?(j) > d{jl (j) for all 7 € N;. With an appli-
cation of Lemma 2, this translates directly to dJk (j) > dJj (j) for all
7 € N;.

Case 2 (z < wy):
Follows directly from Lemma 4.

Every one of the functions d{jjc has a domain that extends up to the last
job n. It is not possible to reduce the domain further, as for any process py,
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fix-up computations might be necessary up to n. However, it is not necessary
for every process py to perform fix-up computations up to job n, but only until
a job arrives after the previous job departed, i.e. until the process has an empty
queue. This is formalized in the following theorem.

Theorem 1. Let k,l € {1,...,m} with k < 1. Then for all j € {ji,...,n}, the
following two statements are equivalent:

(i) () =dL (),
(i) dr(-1)=dl(G—-1)vd}(—1) <a(j).

Proof. Choose an arbitrary j € {j;,...,n}. Let z:= dZ}; (i — 1). There are two
cases for z:
Case 1 (z > w): _ _ ‘ ‘
Due to Lemma 3, d’'(j) = d! (j) is equivalent to (¢ (j — 1) = dJ}, (j —
1))V (d2(j—1) <a(j)). An application of Lemma 2 settles the proof of

this case.
Case 2 (z < wy):

(i) holds due to Lemma 4. If j > j;, (ii) holds due to Lemma 4. Hence, let
j =1 Due to z < wy, d' (5, — 1) < w; = a(j;). Thus, (ii) holds because
of Lemma 2.

Theorem 1 has three implications:

— Once the departure times of a job match between initial simulation and
corresponding fix-up computation, the departure times of all following jobs
match as well.

— If in the fix-up computations, a job i arrives after or at the time when the
previous job departs, the departure times of the job match between initial
simulation and corresponding fix-up computation.

— State matching cannot occur before in the fix-up computations, a job arrives
at or after the time when the previous job departs.

4 Computational Overhead

The previous section introduced an alternative parallel processing scheme for
queuing system models. An important property of that approach is the sim-
ple state match criterion, which allows for an efficient state match detection.
However, as discussed in Section 2, a large part of the overall overhead of a
time-parallel simulation execution is determined by the amount of fix-up com-
putations that have to be performed. These in turn depend on the times of state
match occurences in the time intervals. The aim of this section is to exemplarily
investigate the computational overhead O of the novel queuing system simula-
tion approach. This is done by an examination of the expectation of (the random
variable) O in case of an M/M/1 queue with parameters A and p representing
arrival and service rates and under the restriction A < p.
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4.1 Facts on M/M/1 Queues

In this section we review some formulas concerning M /M /1 queues, which are
needed in the considerations of Section 4.2.

Let N(t) be the random number of customers in an M /M /1 queuing system
at time t. We consider for all « = 1,2, . .. the busy period initiated by i customers
at time ¢ = 0 (cf. [21])

T(i):=inf{t >0: N(t) =0 and N(0)=1i}

and define T'(0) := 0. We obtain for the expectation of T'(¢) in case of A\ < p (see
[22] p. 128, problem 16)

1

ET@G)=——
()= 15

i=0,1,.... (5)

To calculate the computational overhead of the parallel simulation, we need
a further definition. For i = 0,1,2,... and given 7o, ..., Ty, let

Tp(i) :=inf{t > 1, : N(t) =0 and N(m) =1}, k=2,....m

be the busy time initiated by i customers at time 7. Since {N(t) : t € R}
is a continuous time Markov chain (see [21]), it follows that T'(¢) and T(7)
(k=2,...,m) have the same distribution. Therefore we obtain with (5) in case
of A\ < p for the expectation of T} (%)

ETk(i):Tk—i—ET(i):Tk—kﬂ% k=2,...,m. (6)

In case of A < p we know, that for all ¢,5 € {0,1,...}

J
Py(0) = POV = 1N 0) =) —my o= (1-2) (3)
for t — oo (cf. [21]). We now suppose that tg is sufficiently large to allow the
assumption, that the system is encountered in steady state. Referring to this
time point ¢y, we obtain with (6) for the expectation of the busy time T,gs) in
steady state

oo
ET =Y mET(j) =7 + k=2,...,m. (7)
=0

(=)’

4.2 Expectation of the Computational Overhead

In Section 2 we introduced the computational overhead O for the parallel sim-
ulation of general systems. We now want to specialize our considerations by
considering the computational overhead OEVS[)/ M1 of an M/M/1 queue in steady
state.
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Let 7, (k =2,...,m) be given. Then [N (74)|N(0) = 4] is the random number
of customers in the system at time 7, if the system had started with ¢ customers
at time 7 (= 0). Therefore, T([N(74)|N(0) = ¢]) is the random variable repre-
senting the first occurrence of state 0 after time 7, under the condition N(0) = 1.
Using the total law of expectation (see [23]) we obtain with (6) for k=2,...,m

Together with (1), the definition of T'([N(74)|N(0) = i]) leads to
0 S (V) IN©) = 1) - )
wymyn (i) = — 2 N (7 =1i]) — 7k
for all i = 0,1,... and finally with (8) to

BOwin(i) = = Y (BT(Nm)IN) =) - )

Note that E Opz/ar/1(7) does not depend on the time interval boundaries 74 with
the exception of the transition probabilities P;;(%).

If we assume that 7» is sufficiently large to allow for P;;j(m2) ~ m; then
this relation holds also for every 7, (kK = 3,...,m). With (7) we get for the

expectation of the computational overhead in steady state O'° Y / M1

s 1 s
EOY) 1= = (ET,§ ) —Tk)

1 i ( N A )
= - et 5 — Tk
T (=)
m—1 A
T (= A)?
The most important observation regarding the expected overhead is a strong
dependency on the distance between the arrival rate A and the service rate pu.

The expected overhead tends to grow quadratically with a decreasing distance.
Furthermore, increasing A and p while keeping a fixed distance between both
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of the parameters also increases the expected overhead. Finally, as could have
been guessed, the overhead tends to grow linearly in the number m of time
intervals. These observations can be used to evaluate the intended application
of the parallel simulation approach to a given queuing system model.

Note that in order to provide a confidence interval for the overhead, the
calculation of the variance of O is necessary. Unfortunately, this calculation is a
complex task which cannot be easily solved.

5 Conclusions

Queuing networks and their building blocks, the atomic queuing systems are an
important tool in the area of performance evaluation of computer and commu-
nication systems. Although analytic solutions exist for many types of queuing
networks, simulation remains an important tool in this area. Parallel and dis-
tributed simulation methods can be applied to queuing simulation models if
there are time constraints on the execution of the simulations. It is possible
to utilize parallel replicated simulations to execute multiple independent sim-
ulation experiments in parallel. However, depending on the conditions of the
simulation experiments, the parallelization of the sequential model might be
more convenient. Efficient parallelization approaches exist for various types of
queuing networks. Unfortunately, these are complex and difficult to be imple-
mented on parallel and distributed computing systems. Moreover, they rely on
a tight coupling of processing nodes, thus being unsuited for distributed simu-
lation execution. Therefore, this paper introduces a new approach for parallel
G/G/1 queuing system simulation based on time-parallel simulation with fix-up
computations.

In time-parallel queuing system simulation, job arrival instants and service
times are presampled and stored in an input trace. The trace is decomposed
into a number of subtraces to be assigned to parallel processes. Processes start
simulation of the corresponding subtraces, supposing that the system is empty
at simulation start. This produces incorrect simulation results, being corrected
by the use of fix-up computations. The central aspect of the approach is the
detection of state matching, i.e. the time when fix-up computations of a process
can be stopped. It turns out that state matching is easy to detect in G/G/1
queuing systems, as it occurs exactly at the time a process performing fix-up
computations finds the system empty. After all of the processes have finished
fix-up computations, simulation results have to be collected from the parallel
processes.

An analytical evaluation of the computational overhead of the parallel pro-
cessing of an M /M /1 queuing system model reveals the relationship between the
simulation efficiency and the arrival and service rates of the model. The expected
computational overhead due to fix-up computations tends to grow quadratically
with a decreasing difference between the arrival rate A and the service rate pu.
Hence, the utilization of the novel approach is reasonable with a sufficiently large
distance between arrival and service rates.
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In contrast to the other approaches for parallel queuing simulation, time-

parallel queuing system simulation is a simple method, which can be easily im-
plemented and is also suited for distributed simulation execution. Another ad-
vantage is the possibility of an application of approximate simulation techniques,
which have been developed for time-parallel simulation with fix-up computations
24, 25).
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