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.ukAbstra
tExa
t as well as approximate analyti
al solutions for quantitative performan
e mod-els of 
omputer systems are usually obtained by performing a series of arithmeti
al op-erations on the input parameters of the model. However, espe
ially during early phasesof system design and implementation, not all the parameter values are usually knownexa
tly. In related resear
h 
ontributions, intervals have been proposed as a meansto 
apture parameter un
ertainties. Furthermore, methods to adapt existing solutionalgorithms to parameter intervals have been dis
ussed. In this paper we present theadaptation of an existing performan
e model to parameter intervals. The approximatesolution of a queueing network modelling an Enterprise JavaBeans server implemen-tation is adapted to interval arithmeti
 in order to represent the un
ertainty in someof the parameters of the model. A new interval splitting method is applied to obtainreasonable tight performan
e measure intervals. Monotoni
ity properties of intermedi-ate 
omputation results are exploited to a
hieve a more eÆ
ient interval solution. Inaddition, parts of the original solution algorithm are modi�ed to in
rease the eÆ
ien
yof the 
orresponding interval arithmeti
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e modelling, queueing, enterprise JavaBeans,parameter un
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tionBuilding a performan
e model typi
ally involves two di�erent types of abstra
tion: �rstly,the stru
tural properties of a real system (existing or planned) are modelled. The result ofthis stru
tural abstra
tion may for example be a queueing network model or a Petri net.Se
ondly, quantitative behaviour, su
h as e.g. the arrival pro
ess of 
ustomers or routingbehaviour, of 
omponents of the real system has to be 
hara
terised. The result of thisabstra
tion step is usually a set of model parameters. However, often not every aspe
t ofthe real system is known exa
tly when the model is developed. Espe
ially in early phases ofdesign and implementation, un
ertainties may exist. This is true for both, stru
tural as wellas parametri
al model aspe
ts. This work deals with un
ertainties asso
iated with modelparameters.The use of intervals to 
hara
terise parameter un
ertainties in performan
e models has�rst been proposed by Majumdar [Maju 91℄. There are many situations where parameterintervals o

ur naturally: although an exa
t value for a parameter may not be known,the designer may provide a reasonable range of values for that parameter. If parametersare obtained via measurement, 
on�den
e intervals are an important tool to in
rease thereliability of the results. Parameter intervals may also o

ur in a situation where boundinganalysis is used at one level of a hierar
hi
al model produ
ing input parameter intervalson another level. Parameter intervals are also suitable for worst-
ase analysis as well as2



sensitivity studies. Furthermore, the mathemati
al treatment of other approa
hes to modelparameter un
ertainties su
h as e.g. parameter histograms is based on intervals [Luth 98a℄.When parameters of an analyti
al model are 
hara
terised by intervals, performan
emeasure intervals 
an be obtained by adapting existing solution algorithms and formulaefor the 
orresponding model 
hara
terised by single value (SV) parameters. This is done byrepla
ing 
onventional arithmeti
 by so-
alled interval arithmeti
. I.e., basi
 operations andelementary fun
tions for real numbers are repla
ed by 
orresponding arithmeti
 de�ned forintervals. However, the so-
alled dependen
y problem may 
ause extremely wide intervals forthe 
omputed performan
e measures [Neum 90℄. Interval splitting as an approa
h to over-
ome this problem is proposed by Majumdar and Ramadoss [Maju 95℄. Improved intervalsplitting methods applied in this work are proposed in [Luth 00℄. In [Luth 98b℄, L�uthi andHaring use monotoni
ity properties to obtain an eÆ
ient interval solution for the well-knownmean value analysis (MVA) algorithm for 
losed single 
lass queueing network models. Thereare two major advantages of using interval arithmeti
 as opposed to traditional te
hniques forun
ertainty analysis like Monte-Carlo [Rubi 81℄ and Quasi-Monte-Carlo [Nied 78℄ methodsor sensitivity analysis (see for example [Have 95℄ for a 
omparison of these two approa
hesin the 
ontext of Markov reward models): (a) results produ
ed by interval analysis are safeperforman
e bounds, i.e., it is guaranteed that the possible range of performan
e measuresis always en
losed by the obtained interval results; (b) if interval splitting is applied, thea

ura
y of the obtained interval results is automati
ally known to the analyst.So far, resear
h on using intervals as parameters for performan
e models does not in
ludeappli
ation of proposed methods to real models of real systems. In this paper we report expe-rien
es made by adapting an existing analyti
al performan
e model to interval parameters.In a software performan
e model of an Enterprise JavaBeans (EJB) server implementationpresented by Llad�o and Harrison [Llad 00℄, the timing parameters are not known exa
tly.Due to restri
ted a

ess to the real system, a

urate measurements to obtain the servi
erate parameters for various 
omponents of the system 
annot be performed. In order to
apture this type of parameter un
ertainty the timing parameters of the model are repla
edby intervals laid around parameter estimates obtained via expert guess. An approximatemathemati
al solution of the model is adapted to handle these interval parameters. For thatpurpose, the solution algorithm is transformed into interval arithmeti
. Moreover, intervalsplitting is used to obtain suÆ
iently tight performan
e measure intervals. This way, theun
ertainty in model parameters is also re
e
ted in the performan
e results. Additionally,sensitivity analysis of the system under study is supported by the interval version of themodel. This type of analysis is of spe
ial importan
e in the presen
e of un
ertain parame-ters. Results of these studies will be reported in future work. For the adaptation to intervalparameters, some of the original expressions are rewritten su
h that the e�e
t of the depen-den
y problem is redu
ed. Furthermore, monotoni
ity of intermediate results is exploited.With these optimisations, the eÆ
ien
y of the interval splitting algorithm 
an be signi�
antlyimproved.The rest of the paper is organised as follows: in the next se
tion, some mathemati
alba
kground about interval parameters is dis
ussed in more detail. Se
tion 3 presents the3



software performan
e model to be adapted to interval parameters. Te
hniques to obtaina more eÆ
ient interval solution by rewriting the original expressions and by exploitingmonotoni
ity of intermediate results are 
onsidered in Se
tion 4. Se
tion 5 demonstrates thee�e
t of these optimisations along the lines of some experiments. In Se
tion 6, the resultsare summarised and possibilities for future work are dis
ussed.2 Interval Parameters2.1 De�nitions and Introdu
tionA real interval is a set of the formX = [x; x℄ = fx 2 IR j x � x � xg;where x; x 2 IR and x � x. x and x are 
alled endpoints of the interval. In parti
ular, x is
alled lower bound, and x is 
alled upper bound of the interval X = [x; x℄. If S is a nonemptybounded subset of IR, we denote the hull of S by tuS = [inf(S); sup(S)℄. The hull is thetightest interval en
losing S. An interval ve
tor X = (X1; : : : ; Xn) is also referred to as abox. For a real fun
tion f , 
ontinuous on every 
losed box on whi
h it is de�ned, the rangeof a box X is de�ned as:f �(X) = tuff(x) j x 2 Xg = ff(x) j x 2 Xg:Given a performan
e model with interval parameters we are usually interested to �nd therange of asso
iated performan
e measures. Be
ause of the 
ontinuity of f , the range is itselfan interval: f �(X) = [f; f ℄. In general, the 
omputation of the range is a global optimisationproblem with box 
onstraints. I.e., the global minimum f(x) = minx2X f(x) and the globalmaximum f(x) = maxx2X f(x), subje
t to x 2 X have to be found.In the spe
ial 
ase of so-
alled N -monotoni
 fun
tions, the range 
an be 
omputed us-ing only single value evaluations of f with appropriate 
ombinations of parameter intervalendpoints as input parameters. To be more spe
i�
, let f(x1; : : : ; xn) be monotoni
allyin
reasing w.r.t. all parameters xi, i 2 I and monotoni
ally de
reasing w.r.t. all parame-ters xi, i 2 D, where I [ D = f1; : : : ; ng. Then the range of f with interval parametersX1 = [x1; x1℄; : : : ; Xn = [xn; xn℄ 
an be 
omputed as follows:f �(X1; : : : ; Xn) = [f(y1; : : : ; yn); f(z1; : : : ; zn)℄ ;where yi = xi, zi = xi if i 2 I, and yi = xi, zi = xi if i 2 D. In [Luth 98b℄, su
h a situation isdis
ussed in detail for the example of the Mean Value Analysis (MVA) algorithm for 
losedsingle 
lass queueing networks.2.2 Interval Arithmeti
For many performan
e measures, monotoni
ity properties do not hold and general optimi-sation methods are often diÆ
ult to apply and of high 
omputational 
omplexity. However,4



an en
losure F (X) � ff(x)jx 2 Xg for the range 
an be obtained using so-
alled intervalarithmeti
 (for a detailed introdu
tion see for example the book [Neum 90℄): On the set ofintervals, the elementary operations Æ 2 f+;�; �; =; ^g =: 
 are de�ned by setting:X Æ Y = tufx Æ y j x 2 X; y 2 Y g = fx Æ y j x 2 X; y 2 Y g; 8Æ 2 
:Furthermore, the elements ' of a prede�ned set � of elementary 
ontinuous real fun
tionsare extended to interval arguments by de�ning:'(X) = tuf'(x) j x 2 Xg = f'(x) j x 2 Xg;for all intervals X su
h that '(x) is de�ned for all x 2 X.From monotoni
ity properties it follows that the elementary operations Æ 2 f+;�; �; =g
an be 
omputed in terms of the endpoints of the intervals X = [x; x℄; Y = [y; y℄: X + Y =[x+ y; x+ y℄, X � Y = [x� y; x� y℄, X � Y = [min(xy; xy; xy; xy);max(xy; xy; xy; xy)℄, andX=Y = X � [1=y; 1=y℄, if 0 =2 Y . Analogously, (pie
ewise) monotoni
ity of the elementaryfun
tions 
an be exploited to de�ne their evaluations along the lines of 
omputations with theinterval endpoints of the argument. E.g., be
ause of the monotoni
ity of the exponentiationfun
tion we know that for any interval X = [x; x℄, exp(X) = [exp(x); exp(x)℄. Using theinterval extensions of elementary operations and fun
tions, an arithmeti
 expression 
an beevaluated with intervals by substituting the variables by the 
orresponding intervals and stepby step appli
ation of interval arithmeti
.Interval arithmeti
 
an serve as a tool to obtain interval extensions of real fun
tions.However, due to an e�e
t known as dependen
y problem, in general, interval arithmeti
 doesnot provide the exa
t range of a fun
tion. This e�e
t is also known as overestimation. Theroot of the dependen
y problem is the memoryless nature of interval arithmeti
 if a parametero

urs multiple times in an arithmeti
 expression sin
e ea
h o

urren
e of an interval variablein an expression is treated independently [Neum 90℄. For example, the expression X � Xis evaluated to fx1 � x2 j x1; x2 2 Xg = [x � x; x � x℄, instead of fx � x j x 2 Xg = [0; 0℄.Sometimes an expression 
an be reformulated to avoid multiple o

urren
e of parametersor at least to redu
e the number of o

urren
es of an interval parameter. The appli
ationof this te
hnique is demonstrated in Se
tion 4. However, in general multiple o

urren
eof interval parameters 
annot always be avoided. Therefore the dependen
y problem often
auses 
ru
ial overestimation of the a
tual range of an evaluated fun
tion.2.3 Interval SplittingA way to over
ome overestimation due to the dependen
y problem is to split the originalinput parameter intervals into subintervals and evaluate the arithmeti
 expression using thesesubintervals as input parameters. The prin
ipal idea for interval splitting is to subdivide theinput parameter intervals into a number of subintervals, 
ompute interval evaluations of thearithmeti
 expression with the subintervals as input parameters, and �nd the overall resultby 
omputing the minimum of all lower bounds and the maximum of all upper bounds of the5



intermediate results. Analogously, an interval parameter ve
tor (box) is split into subboxes.In [Skel 74℄ it is shown that the results obtained from interval splitting 
onverge to the a
tualrange if the width of the subintervals approa
hes zero. This means that it is guaranteed thatinterval splitting is indeed a te
hnique to obtain suÆ
iently tight interval results.In the brute for
e splitting (BFS) algorithm, in every iteration the input parameter inter-vals are split into two subintervals of equal length. The parameter (sub)intervals 
onsideredin iteration s (i.e. splitting degree s) are 
olle
ted in P s, the set of potential input parameterintervals. In every iteration, the splitting degree s is in
remented and a new set P s of inputparameter intervals to be 
onsidered is initialised. Subsequently, P s is �lled with subintervalsof all intervals X 2 P s�1. Finally, the minimum of all lower bounds and the maximum ofall upper bounds of evaluations of these subintervals is 
omputed. These steps are iterateduntil the di�eren
e between su

essive iterations be
omes smaller than a prede�ned stopping
riterion �.Note that the number of subintervals at splitting degree s is 2s. More general, if nparameters are 
hara
terised by intervals (i.e. we have an n-dimensional input parameterbox), it holds that jP sj = 2sn. The appli
ation of the BFS algorithm for the solution ofinterval-based 
omputer performan
e models is presented in [Maju 95℄.The high 
omplexity of BFS 
an be signi�
antly redu
ed if not every subinterval is
onsidered for further splitting. Given a subinterval X it may eventually be 
on
luded fromthe obtained interval results that neither the lower nor the upper bound of the range isprodu
ed by that subinterval. In that 
ase, X need not be 
onsidered any further in thesear
h for the lower and upper bound of the range; i.e., X need not be split into additionalsubintervals. This idea of sele
tive interval splitting was introdu
ed by Skelboe in the 
ontextof general purpose optimisation of rational interval fun
tions [Skel 74℄. For the experimentspresented in Se
tion 5 we use a modi�ed sele
tive splitting algorithm des
ribed in [Luth 00℄.This algorithm 
ombines interval and 
onventional evaluations to redu
e the number ofsubintervals that have to be 
onsidered.3 Model of an EJB Server ImplementationThe model to be adapted to interval parameters represents an EJB (Enterprise JavaBeans)server implementation, as a 
entral s
heduler of a distributed, three-tier, 
lient-server ar-
hite
ture. This type of ar
hite
ture is typi
al for large, Java-supported, Internet appli
a-tions. The Kensington Enterprise Data Mining system [Ltd℄, [Chat 99℄ is the real appli
a-tion under study, whose appli
ation server (or s
heduler) implements the EJB-1.1 spe
i�
a-tion [Mi
r 99℄.EJB is a new 
omponent ar
hite
ture, 
reated by Sun, for the development and de-ployment of obje
t-oriented, distributed, enterprise-level appli
ations. A bean instan
e (or
omponent) is 
reated and managed at runtime by a 
ontainer, so that a task 
an only a
-
ess a bean instan
e through its 
ontainer. The number of a
tive (bean) instan
es for ea
h
ontainer is limited due to memory and performan
e 
onstraints.6
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Figure 1: Global queueing network for a method exe
ution7
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Figure 2: Short-
ir
uited FES sub-network3.1 Queueing ModelSin
e a method exe
ution is the most 
ommon operation over a bean instan
e, its spe
i�
behaviour is modelled. This 
onsists of a

ess to the 
ontainer server followed by a

ess tothe instan
e server required. Blo
king 
an arise sin
e the exe
ution of a method in a beaninstan
e requires this instan
e to be a
tive. A more detailed des
ription of this exe
ution
an be found in [Llad 00℄.The queueing network model shown in Fig. 1 summarises the method exe
ution be-haviour. The queueing network 
onsists of 1 + C + C �M stations, where 1 
orresponds tothe thread manager station, C is the number of 
ontainers in the system (i.e. the numberof di�erent bean 
lasses) and M is the maximum number of (di�erent) bean instan
es for abean 
lass that 
an be a
tive at the same time.Every node in the model has �rst-
ome-�rst-served (FCFS) queueing dis
ipline. Formathemati
al tra
tability and the desire for an eÆ
ient (approximate) solution, all servi
etimes are assumed to be exponential random variables and routing probabilities are assumedto be 
onstant and equal a
ross ea
h of the C bean 
ontainers. The M bean instan
esatta
hed to ea
h bean 
ontainer are also equally utilised overall, but the spe
i�
 routingprobabilities in ea
h network-state depend on the blo
king properties, whi
h are des
ribedbelow.To simplify this system, the Flow Equivalent Server method (FES) is applied (see [Harr 93℄,for example). The FES method redu
es the number of nodes by aggregating sub-networksinto single, more 
omplex (i.e. queue length dependent) nodes. Applying this method toour system, ea
h FES sub-network 
onsists of M + 1 stations where 1 
orresponds to the
ontainer for a bean 
lass and M is as above. After short-
ir
uiting, this sub-network results8
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Figure 3: Container (sub)Modelin the 
losed one shown in Fig. 2, whi
h is analysed to obtain its throughput for di�erentpopulations N . The throughput fun
tion will determine the servi
e rate fun
tion for an FESnode in the overall network.Blo
king is the 
riti
al non-standard 
hara
teristi
 in this network; a 
lient that has
ompleted servi
e in the 
ontainer station is blo
ked if the required bean instan
e is nota
tive and there is no free instan
e to passivate, i.e., no idle server in the model. Blo
kingtime is the time required for the �rst of the M parallel servers to 
lear its queue in ablo
king-after-servi
e dis
ipline.3.2 The Aggregated Server and Container (sub)ModelThe (sub)model of a subsystem 
omprising a bean 
ontainer and its M instan
e servers (i.e.bean method exe
ution servers) at 
onstant population N is shown in Fig. 3, where these
ond server 
orresponds to the aggregated node for the M parallel servers.When there are j 
lients at the outer (
ontainer) server and k = N � j at the M parallelservers, the servi
e rate fun
tions �1(j) (with blo
king) and �2(k), are estimated as follows:�1(j) = 8<: 1=(m1 + �N�jb(N � j)); if (N � j) �M;1=m1; otherwise; (1)wherem1 is the mean servi
e time for server 1 (the outer server) when there is no blo
king and�N�j is the dynami
 blo
king probability, whi
h is derived in the next subse
tion. b(N � j)is the mean blo
king time when there are j 
ustomers at the outer server (N � j 
ustomersat the parallel servers) and it is estimated by b(k) = k=(M2�) (see [Harr 00℄), where � is theservi
e rate of ea
h of the parallel servers.�2(k) = MXn=1 �knn�; (2)where the parameter �kn is the probability that n out of the M servers are busy, giventhat there are k 
ustomers at the parallel servers altogether; it is also derived in the nextsubse
tion.Clearly the visitation rate is the same for both servers. The steady state queue lengthprobability distribution for this network { p(j) for the state with j tasks at server 1 and9



N � j at server 2 { is then 
al
ulated as a produ
t form in standard fashion in the followingway: p(j) = 1G 1Qjk=1 �1(k)QN�jk=1 �2(k) ; (3)where G is 
al
ulated as G = NXj=1 1Qjk=1 �1(k)QN�jk=1 �2(k) : (4)Throughput T (N) at population N is then given by:T (N) = NXj=1 p(j)�1(j) : (5)3.3 Instan
e-A
tive and Client-Blo
king ProbabilitiesLet zk denote the equilibrium probability that, at an instant when a task 
ompletes servi
eat the 
ontainer server (with rate 1=m1) with k tasks at the M instan
e servers, at least oneof the instan
e servers is idle. Let � denote the probability that the instan
e required by atask 
ompleting servi
e at the 
ontainer server is a
tive, i.e. that the task 
an immediatelyjoin that instan
e's queue (whether or not empty) and so is not blo
ked. Then the dynami
blo
king probability for a task 
ompleting servi
e at the outer (
ontainer) server when thereare k tasks at the parallel servers is:�k = (1� zk)(1� �) m1m1+�kb(k)zk + (1� zk) m1m1+�kb(k) : (6)This quantity is the ratio of the equilibrium probability 
ux from unblo
ked states with ktasks at the parallel servers to a blo
ked state, divided by the total 
ux from unblo
kedstates (see [Kell 79℄, for example). � is approximated by M=I, assuming the next arrivalto the parallel servers requires ea
h of the I instan
es (I is the total number of instan
esavailable to ea
h 
lient) with equal probability. From Eq. (6), �k 
an be expressed as follows:�k = qm21 + 4b(k)zk(1� zk)(1� �)m1 �m12b(k)zk : (7)The parameter zk is estimated by 
onsidering an M -state Markov 
hain �kt for ea
hpopulation size k � M at the parallel servers, where ea
h state 
orresponds to the numberof busy queues in the system.For population size k � M at the parallel servers, let the equilibrium probability that� � �k1 = l (l = 1; : : : ;M) be denoted by �k(l). The following re
ursive fun
tion is derived10



C Containers or bean 
lassesM Parallel serversI Di�erent instan
esN Populationm1 Mean servi
e time for outer server� Servi
e rate for ea
h of the parallel serversj Clients at the outer server�1(j) Servi
e rate for outer server with queue length j�2(k) Servi
e rate for aggregated server with queue length kb(k) Mean blo
king time when there are k 
lients at the parallel servers�(k) Blo
king probability when there are k 
lients at the parallel servers�kn Probability that n out of M parallel servers are busy, when thereare k 
lients at the parallel servers� Probability that the instan
e required by task 
ompleting servi
e atthe outer server is a
tivezk Probability that when a task 
ompletes servi
e at the outer server withk tasks at the parallel servers, at least one of these servers is idlep(j) Steady state probability distribution of queue length at outer serverTable 1: Notation for the model parametersfrom the balan
e equations determined by the M -state Markov 
hain.�k(n) = 8>>><>>>: 1; if n = 1;(I�n+1)(k�1)n(n�1)m1�I �k(n� 1); if 2 � n < M;(I�n+1)(k�1)(m1M2�+(1��)k)M2m21�2In(n�1) �k(n� 1); if n =M: (8)Normalising the �k(n) to give the probabilities�kn = �k(n)PMl=1 �k(l) ; (9)we now estimate zk by 1� �kM and �k follows for M � k < N . The same applies to �2(k),but when there is no blo
king, i.e. when k � M or k � I, �2(k) = kI�k+I�1 .Table 1 summarises the notation used for the di�erent parameters of the model.
11



4 Interval Adaptation of the ModelAs dis
ussed in Se
tion 2, the general strategy to adapt an existing analyti
al model to inter-val parameters is to substitute single value parameters by intervals and perform step by stepinterval arithmeti
al evaluations of all intermediate expressions. In general, the dependen
yproblem arising with multiple o

urren
e of input parameters in the involved 
al
ulations
an be over
ome by interval splitting te
hniques. However, the eÆ
ien
y | and thus thepra
ti
al appli
ability | of splitting te
hniques 
an be signi�
antly improved if the inter-val adaptation is optimised in two respe
ts: (a) wherever possible, monotoni
 behaviour ofintermediate expressions should be exploited to avoid overestimation of intermediate inter-vals, and (b) wherever possible, expressions should be rewritten su
h that the number ofo

urren
es of interval input parameters is redu
ed. In the following subse
tions we showthe appli
ation of these te
hniques to the various 
omputational steps of the model solutiondes
ribed in the previous se
tion. Computations that are not subje
t to the dependen
yproblem are not 
onsidered.4.1 Computation of the Probabilities �knFor the 
omputation of the blo
king probabilities �k and the servi
e rates �2(k) we need theprobabilities �kn that n out of M parallel servers are busy, when there are k 
lients at theparallel servers (M � k � N and 1 � n � M). Furthermore, we also need the probabilityzk = 1� �kM that at least one of the parallel servers is idle when a task 
ompletes servi
e atthe outer server while there are k tasks at the parallel servers.Due to the re
ursion in Eq. (8), m1 and � o

ur multiple times in ea
h of the expressions�k(n). Sin
e with the ex
eption of the 
ase n = M , m1 as well as � appear only in thedenominator, this does not 
ause overestimation of intervals for �k(n). However, in thenormalisation step, the dependen
y problem is in e�e
t, be
ause by having �k(n) in thenumerator and the sum PMl=1 �k(l) in the denominator, m1 and � have both in
reasing aswell as de
reasing in
uen
e on �kn.In the following we rewrite the expressions for �k(n) in a way that allows to 
an
el asmany o

urren
es of m1 and � as possible in the normalisation. In a �rst step, we extra
tthe interval parameters m1 and � from the re
ursion of Eq. (8). This 
an be done by de�ningthe following re
ursive expression �k(n) that does not depend on m1 and �:�k(n) = 8<: 1; if n = 1;(I�n+1)(k�1)n(n�1)I �k(n� 1); if 2 � n �M: (10)Using these �k(n), the �k(n) de�ned in Eq. (8) 
an be rewritten as:�k(n) = 8<: �k(n)(m1�)n�1 ; if 1 � n < M;�k(M)(m1M2�+(1��)k)M2(m1�)M ; if n = M: (11)12



To rewrite the normalisation step, we need the ratios �k(l)=�k(n), 1 � l � M . Be
ausel = M is a spe
ial 
ase in the de�nition of �k(n), 1 � l < M and l = M are treatedseparately: �k(l)�k(n) = �k(l)�k(n)(m1�)n�l; if l < Mand�k(M)�k(n) = �k(M)(m1M2�+ (1� �)k)�k(n)(m1�)M�nm1M2� = �k(M)�k(n) " 1(m1�)M�n + (1� �)kM2(m1�)M�n+1# :Now the re
ipro
als of the probabilities �kn, 1 � n < M 
an be rewritten as follows:��1kn = MXl=1 �k(l)�k(n) = 1 + n�1Xl=1 �k(l)(m1�)n�l�k(n) + M�1Xl=n+1 �k(l)�k(n)(m1�)l�n+�k(M)�k(n) " 1(m1�)M�n + (1� �)kM2(m1�)M�n+1# (12)= 1 + 1�k(n) 24n�1Xl=1 �k(l)(m1�)n�l + MXl=n+1 �k(l)(m1�)l�n + �k(M)(1� �)kM2(m1�)M�n+135 :Note that in this expression for ��1kn , 1 � n < M , the 
omputation is separated ina part where m1 and � 
ontribute with an in
reasing e�e
t and a part where m1 and �
ontribute with a de
reasing e�e
t, respe
tively. Within these parts, the parameters m1 and� are 
an
elled as often as possible. This signi�
antly redu
es the e�e
t of the dependen
yproblem as 
ompared to the original expressions in Eqs. (8) and (9).Again, the 
ase n = M is treated separately:��1kM = MXl=1 �k(l)�k(M) = 1 + 1�k(M) M�1Xl=1 �k(l)(m1�)M�l+1M2(m1�) + (1� �)k (13)= 1 + M2�k(M) [M2 + (1� �)k=(m1�)℄ M�1Xl=1 �k(l)(m1�)M�l:Sin
e in that expression it 
an be seen that m1 and � 
ontribute with an in
reasing e�e
t to��1kM , the probability zk = 1� �kM is monotoni
ally in
reasing w.r.t. the parameters m1 and�. Thus, an interval Zk = [zk; zk℄ 
an be obtained by single value evaluation of zk using theendpoints of m1 and �'s parameter intervals. I.e., zk = zk(m1; �) and zk = zk(m1; �).4.2 Monotoni
ity Properties of �1 and �2In the interval 
omputation of �1(j) and �2(k), we do not take into a

ount the fa
t that�kn (and therefore also zk) are not independent from m1 and �. Along the lines of step by13



step interval arithmeti
, we treat �1(j) and �2(k) as if they were depending on the inputparameters m1, �, and �kn, with M � k � N and 1 � n � M . Thus, we are interested inmonotoni
ity properties of �1(j) and �2(k) w.r.t. these input parameters.From Eq. (2) one 
an see that �2(k) is monotoni
ally in
reasing w.r.t. � as well as w.r.t.�kn. Thus, 
omputation of an interval for �2(k) is straight forward and 
an be done alongthe lines of 
omputations with the endpoints of intervals for � and �kn.Next we 
onsider �1. To redu
e the e�e
t of the dependen
y problem we avoid 
omputa-tion of intermediate intervals for �j and b(j). Instead, we substitute �j and b(j) in Eq. (1).For a shorter notation we 
onsider �1(N � j)�1 = '(j) and show monotoni
ity properties of'(j) w.r.t. m1, �, and zj:'(j) = �1(N � j)�1 = m1 + �jb(j) (14)= m1 + qm21 + 4jM2�zj(1� zj)(1� �)m1 �m12zj :Using the notation Æ = 4jM2�zj(1� zj)(1� �), for the derivative w.r.t. m1 we get:�'(j)�m1 = ��m1 24m1 + qm21 + Æm1 �m12zj 35 = 1 + 12zj 24 2m1 + Æ2qm21 + Æm1 � 135 : (15)Sin
e (2m1+Æ)2 = 4m21+4Æm1+Æ2 is greater than �2qm21 + Æm1�2 = 4m21+4Æm1, it followsthat 2m1+Æ2pm21+Æm1 > 1. Hen
e, �'(j)�m1 > 1: (16)Derivation w.r.t. � yields:�'(j)�� = �j(1� zj)(1� �)m1M2�2qm21 + 4jM2�zj(1� zj)(1� �)m1 < 0: (17)Finally, using the notation r = 4b(j)(1� �), the derivative w.r.t. zj is:�'(j)�zj = rzj(1�2zj)m12pm21+rzj(1�zj)m1 �qm21 + rzj(1� zj)m1 +m12z2j (18)= m1 h�2m1 � rzj + 2qm21 + rzj(1� zj)m1 i4z2jqm21 + rzj(1� zj)m1 < 0;be
ause �2m1 � rzj + 2qm21 + rzj(1� zj)m1 < 0() 4m21 + 4rzjm1 � 4rz2jm1 < 4m21 + 4m1rzj + r2z2j() �4rz2jm1 < r2z2j ; 14



whi
h holds sin
e r; zj; m1 > 0. From Eqs. (16), (17), and (18) it follows that �1(j) ismonotoni
ally de
reasing w.r.t. m1, and monotoni
ally in
reasing w.r.t. � and zN�j. Thus,an interval for �1(j) 
an be obtained by evaluating the single value expressions from Eqs. (1)and (7) using the endpoint 
ombinations: (m1; �; zN�j) = (m1; �; zN�j) and (m1; �; zN�j) =(m1; �; zN�j), respe
tively.4.3 Computation of the Probabilities p(j)To 
ompute the throughput of the submodel (see Eq. (5)), the queue length probabilitiesp(j) are required. If these probabilities are 
omputed as de�ned in Eqs. (3) and (4), asimilar problem as in the 
omputation of the �kn arises due to the normalisation step. Thus,we rewrite the 
omputation of p(j) su
h that as many fa
tors as possible 
an be 
an
elledduring the 
ourse of the 
omputation. Using the notations: t1(k) = Qkl=1 �1(l) and t2(k) =QN�kl=1 �2(l), p(j) and G 
an be rewritten as follows:p(j) = 1G � t1(j)t2(j) (19)and G = NXl=1 1t1(l)t2(l) : (20)Using the relationst1(j)t1(k) = 8>>><>>>: Qjl=k+1 �1(l); if k < j;1; if k = j;Qkl=j+1 1�1(l) ; if k > j; and t2(j)t2(k) = 8>>><>>>: QN�kl=N�j+1 1�2(l) ; if k < j;1; if k = j;QN�jl=N�k+1 �2(l); if k > j;we 
an rewrite the re
ipro
als of the probabilities p(j) as follows:p(j)�1 = NXk=0 t1(j)t2(j)t1(k)t2(k) = j�1Xk=0 Qjl=k+1 �1(l)QN�kl=N�j+1 �2(l) + 1 + NXk=j+1 QN�jl=N�k+1 �2(l)Qkl=j+1 �1(l) : (21)5 Experimental ResultsAs already stated, rewriting expressions to redu
e the e�e
t of the dependen
y problem andusing monotoni
ity properties of intermediate results 
an signi�
antly redu
e the amount ofoverestimation for interval results. In this se
tion, we illustrate the e�e
t of the reformula-tions des
ribed in Se
tion 4 with the example of the rewritten expressions for the probabilities�kn (see Eqs. (8) and (9) for the original expressions and Eqs. (10), (12), and (13) for therewritten expressions). 15



Figure 4: Interval results obtained for the probabilities �kn 
omparing original and rewrittenexpressions. Ea
h diagram shows results for a di�erent value of n (�k1; : : : �k6) for varyingvalues of k = 1; : : : ; 25. 16



In the following experiments we use parameter values taken from evaluations des
ribedin [Llad 00℄: M = 6 bean servers per 
ontainer, I = 20 di�erent bean instan
es, and apopulation of N = 25. The estimates for the servi
e rate of the bean servers � and the meanservi
e time of the outer server m1 are subje
t to un
ertainty. Thus, these parameters are
hara
terised by the intervals �(iv) = 1=4:1� 5% and m(iv)1 = 0:4� 5%. Note that if one ormore parameters are 
hara
terised by an interval, every (intermediate) result depending onthese parameters is itself an interval.Fig. 4 shows the intermediate interval results obtained for the probabilities �kn, k =6; : : : ; 25, n = 1; : : : ; 6. For ea
h �kn, three intervals are depi
ted: 'orig.' denotes the intervalresults obtained using the original expressions without interval splitting, 'rewr.' denotesintervals for �kn obtained using the rewritten expressions without interval splitting, and'range' denotes the range for the �kn intervals obtained with interval splitting to an a

ura
yof � = 10�9 (for 
omparison purposes). Every interval is depi
ted by showing its lower(lb) and upper bounds (ub). It 
an be seen that if the original expressions are used, thedependen
y problem 
auses a signi�
ant overestimation of the �kn intervals for n > 1. If therewritten expressions are used for the interval 
al
ulation of the �kn intervals, they almostpre
isely mat
h the exa
t range of values obtained via interval splitting.Fig. 5 shows the e�e
t of using the original respe
tively rewritten expressions for theintermediate probability intervals �kn when 
omputing intervals for the submodel throughputT (N) (see Eq. (5)). During the 
omputation of the throughput, the other intermediate results(�1(j), �2(k), p(j)) are 
omputed using the adaptations as des
ribed in Se
tion 4. Fig. 5(a)depi
ts throughput intervals for populations N = 1; : : : ; 25. It 
an be seen in this �gure thatusing the original expressions for �kn, the throughput interval is mu
h more overestimatedthan the throughput interval obtained using the rewritten expressions for �kn.Unfortunately, due to the dependen
y problem during the 
omputation of T (N), alsothe throughput intervals obtained by using the rewritten expressions are more than 10 timesas wide as the a
tual range of the throughput (the innermost intervals in Fig. 5(a)). Thus,in both 
ases, interval splitting has to be applied to obtain reasonable tight en
losures ofthe throughput range. However, even though interval splitting may be ne
essary for both,original as well as optimised (w.r.t. interval 
omputation) expressions, the 
omputationale�ort is signi�
antly redu
ed when using the rewritten formulae. Fig. 5(b) depi
ts the 
om-putational 
omplexity required to obtain the range for the throughput with an a

ura
yof � < 10�2. To obtain the range of the throughput, the sele
tive splitting with midpointevaluation (SSME) approa
h is used, whi
h performs both, interval as well as 
onventionalevaluations [Luth 00℄. Thus, for ea
h version (original and rewritten expressions), threegraphs are shown: the number of interval evaluations (iv), the number of single value evalu-ations (sv), and the weighted sum iv + sv=2 (total) | the 
omputational 
omplexity for aninterval evaluation is approximately twi
e as high as for a single value evaluation. Note thatusing the original expressions for the probabilities �kn in
reases the number of evaluationsduring the interval splitting algorithm by a fa
tor of more than 5. Similar observations aremade if the original expressions of the other rewritten formulae are used.This example shows that the adaptation of existing solution te
hniques to interval param-17



(a) (b)Figure 5: Comparison of original and rewritten expressions: (a) throughput interval resultsand (b) 
omputational 
omplexity for interval splitting algorithm.eters has to be done with great 
are. For as many steps as possible, intermediate expressionshave to be optimised for an eÆ
ient interval 
omputation. I.e., wherever possible, mono-toni
ity properties as well as possibilities to 
an
el o

urren
es of interval parameters haveto be exploited.6 Con
lusionsParameters of quantitative performan
e models of 
omputer and tele
ommuni
ation sys-tems are not always known exa
tly. Parameter intervals are a 
onvenient way to 
aptureun
ertainty in model parameters. Existing analyti
al solution algorithms 
an be adaptedto intervals by repla
ing 
onventional arithmeti
al operations and elementary fun
tions by
orresponding interval operations. An unpleasant e�e
t of interval arithmeti
 is the so-
alled dependen
y problem 
ausing overly wide interval results. Interval splitting methodsto over
ome this problem have been proposed in the literature. In this paper we present theappli
ation of su
h methods to the approximate solution of a queueing network modelling anEnterprise JavaBeans server implementation. In this model, servi
e rate parameters are 
har-a
terised as intervals in order to 
apture asso
iated un
ertainty. The original performan
emeasure formulae are optimised for an eÆ
ient interval arithmeti
al solution. A numeri
alexample illustrates the e�e
t of these modi�
ations on the eÆ
ien
y of the interval splittingapproa
h that is used to obtain tight performan
e measure intervals.The example resolution suggest that interval adaptation has to be done with great 
are.Although an interval-based solution algorithm 
an be obtained by simply substituting 
on-ventional by interval operations in the original solution algorithm, the analyst is advised to18



exploit (partial) monotoni
ity properties of the solution algorithm wherever possible. Fur-thermore, expressions should be rewritten to redu
e the number of o

urren
es of intervalparameters as mu
h as possible. If su
h te
hniques are applied in the adaptation, intervalresults 
an be obtained with reasonable additional 
omputational e�ort.In future work the interval version of this model will also be used for sensitivity analysis.For example, it may be interesting to examine how the width of performan
e measure inter-vals depends on the width as well as on the (relative) position of the parameter intervals forthe mean servi
e rates of the 
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