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Abstract

Exact as well as approximate analytical solutions for quantitative performance mod-
els of computer systems are usually obtained by performing a series of arithmetical op-
erations on the input parameters of the model. However, especially during early phases
of system design and implementation, not all the parameter values are usually known
exactly. In related research contributions, intervals have been proposed as a means
to capture parameter uncertainties. Furthermore, methods to adapt existing solution
algorithms to parameter intervals have been discussed. In this paper we present the
adaptation of an existing performance model to parameter intervals. The approximate
solution of a queueing network modelling an Enterprise JavaBeans server implemen-
tation is adapted to interval arithmetic in order to represent the uncertainty in some
of the parameters of the model. A new interval splitting method is applied to obtain
reasonable tight performance measure intervals. Monotonicity properties of intermedi-
ate computation results are exploited to achieve a more efficient interval solution. In
addition, parts of the original solution algorithm are modified to increase the efficiency
of the corresponding interval arithmetical solution.

Keywords: distributed systems, performance modelling, queueing, enterprise JavaBeans,
parameter uncertainties, interval parameters



Contents
1 Introduction 2

2 Interval Parameters 4
2.1 Definitions and Introduction . . . . . . . . . . ... 4
2.2 Interval Arithmetic . . . . . . . . . . ... 4
2.3 Interval Splitting . . . . . . . .. 5t

3 Model of an EJB Server Implementation 6
3.1 Queueing Model . . . . . . .. 8
3.2 The Aggregated Server and Container (sub)Model . . . . . .. .. ... ... 9
3.3 Instance-Active and Client-Blocking Probabilities . . . . . . ... ... ... 10

4 Interval Adaptation of the Model 12
4.1 Computation of the Probabilities &, . . . . . . . . . .. ... ... ... .. 12
4.2 Monotonicity Properties of py and po . . . . . . .00 13
4.3 Computation of the Probabilities p(j) . . . . . . . . . . .. ... ... . ... 15

5 Experimental Results 15

6 Conclusions 18

1 Introduction

Building a performance model typically involves two different types of abstraction: firstly,
the structural properties of a real system (existing or planned) are modelled. The result of
this structural abstraction may for example be a queueing network model or a Petri net.
Secondly, quantitative behaviour, such as e.g. the arrival process of customers or routing
behaviour, of components of the real system has to be characterised. The result of this
abstraction step is usually a set of model parameters. However, often not every aspect of
the real system is known exactly when the model is developed. Especially in early phases of
design and implementation, uncertainties may exist. This is true for both, structural as well
as parametrical model aspects. This work deals with uncertainties associated with model
parameters.

The use of intervals to characterise parameter uncertainties in performance models has
first been proposed by Majumdar [Maju 91]. There are many situations where parameter
intervals occur naturally: although an exact value for a parameter may not be known,
the designer may provide a reasonable range of values for that parameter. If parameters
are obtained via measurement, confidence intervals are an important tool to increase the
reliability of the results. Parameter intervals may also occur in a situation where bounding
analysis is used at one level of a hierarchical model producing input parameter intervals
on another level. Parameter intervals are also suitable for worst-case analysis as well as



sensitivity studies. Furthermore, the mathematical treatment of other approaches to model
parameter uncertainties such as e.g. parameter histograms is based on intervals [Luth 98a].

When parameters of an analytical model are characterised by intervals, performance
measure intervals can be obtained by adapting existing solution algorithms and formulae
for the corresponding model characterised by single value (SV) parameters. This is done by
replacing conventional arithmetic by so-called interval arithmetic. I.e., basic operations and
elementary functions for real numbers are replaced by corresponding arithmetic defined for
intervals. However, the so-called dependency problem may cause extremely wide intervals for
the computed performance measures [Neum 90]. Interval splitting as an approach to over-
come this problem is proposed by Majumdar and Ramadoss [Maju 95]. Improved interval
splitting methods applied in this work are proposed in [Luth 00]. In [Luth 98b], Liithi and
Haring use monotonicity properties to obtain an efficient interval solution for the well-known
mean value analysis (MVA) algorithm for closed single class queueing network models. There
are two major advantages of using interval arithmetic as opposed to traditional techniques for
uncertainty analysis like Monte-Carlo [Rubi 81] and Quasi-Monte-Carlo [Nied 78] methods
or sensitivity analysis (see for example [Have 95] for a comparison of these two approaches
in the context of Markov reward models): (a) results produced by interval analysis are safe
performance bounds, i.e., it is guaranteed that the possible range of performance measures
is always enclosed by the obtained interval results; (b) if interval splitting is applied, the
accuracy of the obtained interval results is automatically known to the analyst.

So far, research on using intervals as parameters for performance models does not include
application of proposed methods to real models of real systems. In this paper we report expe-
riences made by adapting an existing analytical performance model to interval parameters.
In a software performance model of an Enterprise JavaBeans (EJB) server implementation
presented by Lladé and Harrison [Llad 00], the timing parameters are not known exactly.
Due to restricted access to the real system, accurate measurements to obtain the service
rate parameters for various components of the system cannot be performed. In order to
capture this type of parameter uncertainty the timing parameters of the model are replaced
by intervals laid around parameter estimates obtained via expert guess. An approximate
mathematical solution of the model is adapted to handle these interval parameters. For that
purpose, the solution algorithm is transformed into interval arithmetic. Moreover, interval
splitting is used to obtain sufficiently tight performance measure intervals. This way, the
uncertainty in model parameters is also reflected in the performance results. Additionally,
sensitivity analysis of the system under study is supported by the interval version of the
model. This type of analysis is of special importance in the presence of uncertain parame-
ters. Results of these studies will be reported in future work. For the adaptation to interval
parameters, some of the original expressions are rewritten such that the effect of the depen-
dency problem is reduced. Furthermore, monotonicity of intermediate results is exploited.
With these optimisations, the efficiency of the interval splitting algorithm can be significantly
improved.

The rest of the paper is organised as follows: in the next section, some mathematical
background about interval parameters is discussed in more detail. Section 3 presents the



software performance model to be adapted to interval parameters. Techniques to obtain
a more efficient interval solution by rewriting the original expressions and by exploiting
monotonicity of intermediate results are considered in Section 4. Section 5 demonstrates the
effect of these optimisations along the lines of some experiments. In Section 6, the results
are summarised and possibilities for future work are discussed.

2 Interval Parameters

2.1 Definitions and Introduction
A real interval is a set of the form
X=[z7={reR|z<z<T}

where z,7 € IR and z < 7. z and T are called endpoints of the interval. In particular, x is
called lower bound, and T is called upper bound of the interval X = [z, T]. If S is a nonempty
bounded subset of IR, we denote the hull of S by OS = [inf(S),sup(S)]. The hull is the
tightest interval enclosing S. An interval vector X = (Xy,...,X,) is also referred to as a

boz. For a real function f, continuous on every closed box on which it is defined, the range
of a box X is defined as:

f{(X) = 0{f(@) |z € X} = {f(x) |z € X}

Given a performance model with interval parameters we are usually interested to find the
range of associated performance measures. Because of the continuity of f, the range is itself
an interval: f*(X) = [f, f]. In general, the computation of the range is a global optimisation
problem with box constraints. Le., the global minimum f(z) = min,cx f(z) and the global
maximum f(2) = max,cx f(z), subject to z € X have to be found.

In the special case of so-called N-monotonic functions, the range can be computed us-
ing only single value evaluations of f with appropriate combinations of parameter interval
endpoints as input parameters. To be more specific, let f(xi,...,z,) be monotonically
increasing w.r.t. all parameters z;, + € I and monotonically decreasing w.r.t. all parame-
ters z;, ¢ € D, where T UD = {1,...,n}. Then the range of f with interval parameters
X; =[z,,71),..., X, = [2,,Ts] can be computed as follows:

f*(Xla"'aXn) - [f(yla"'ayn)a f(zla"'azn)]a

where y; = x;, 2, = T; ifi € I, and y; = T;, 2; = z; if i € D. In [Luth 98b], such a situation is
discussed in detail for the example of the Mean Value Analysis (MVA) algorithm for closed
single class queueing networks.

2.2 Interval Arithmetic

For many performance measures, monotonicity properties do not hold and general optimi-
sation methods are often difficult to apply and of high computational complexity. However,
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an enclosure F'(X) D {f(x)|x € X} for the range can be obtained using so-called interval
arithmetic (for a detailed introduction see for example the book [Neum 90]): On the set of
intervals, the elementary operations o € {+,—,-,/, "} =: Q are defined by setting:

XoVY=M{roylzeX,yeY}={zoy|lze X,yeY}, VYoe.

Furthermore, the elements ¢ of a predefined set ® of elementary continuous real functions
are extended to interval arguments by defining:

p(X) = Do) |z € X} = {p(x) |z € X},

for all intervals X such that () is defined for all z € X.

From monotonicity properties it follows that the elementary operations o € {+, —, -, /}
can be computed in terms of the endpoints of the intervals X = [z,7],Y = [y,7]: X +YV =
[z+y,T+7Y, X =Y =[z-7,7—y], X Y = [min(zy, 27, Ty, 77), max(zy, 27, Ty, TY)], and
X/Y =X -[1/g,1/y], if 0 ¢ Y. Analogously, (piecewise) monotonicity of the elementary
functions can be exploited to define their evaluations along the lines of computations with the
interval endpoints of the argument. E.g., because of the monotonicity of the exponentiation
function we know that for any interval X = [z,7], exp(X) = [exp(z), exp(Z)]. Using the
interval extensions of elementary operations and functions, an arithmetic expression can be
evaluated with intervals by substituting the variables by the corresponding intervals and step
by step application of interval arithmetic.

Interval arithmetic can serve as a tool to obtain interval extensions of real functions.
However, due to an effect known as dependency problem, in general, interval arithmetic does
not provide the exact range of a function. This effect is also known as owverestimation. The
root of the dependency problem is the memoryless nature of interval arithmetic if a parameter
occurs multiple times in an arithmetic expression since each occurrence of an interval variable
in an expression is treated independently [Neum 90]. For example, the expression X — X
is evaluated to {z1 — x5 | 1,290 € X} = [z — T,T — z], instead of {x — x|z € X} =[0,0].
Sometimes an expression can be reformulated to avoid multiple occurrence of parameters
or at least to reduce the number of occurrences of an interval parameter. The application
of this technique is demonstrated in Section 4. However, in general multiple occurrence
of interval parameters cannot always be avoided. Therefore the dependency problem often
causes crucial overestimation of the actual range of an evaluated function.

2.3 Interval Splitting

A way to overcome overestimation due to the dependency problem is to split the original
input parameter intervals into subintervals and evaluate the arithmetic expression using these
subintervals as input parameters. The principal idea for interval splitting is to subdivide the
input parameter intervals into a number of subintervals, compute interval evaluations of the
arithmetic expression with the subintervals as input parameters, and find the overall result
by computing the minimum of all lower bounds and the maximum of all upper bounds of the



intermediate results. Analogously, an interval parameter vector (box) is split into subboxes.
In [Skel 74] it is shown that the results obtained from interval splitting converge to the actual
range if the width of the subintervals approaches zero. This means that it is guaranteed that
interval splitting is indeed a technique to obtain sufficiently tight interval results.

In the brute force splitting (BFS) algorithm, in every iteration the input parameter inter-
vals are split into two subintervals of equal length. The parameter (sub)intervals considered
in iteration s (i.e. splitting degree s) are collected in P*, the set of potential input parameter
intervals. In every iteration, the splitting degree s is incremented and a new set P*® of input
parameter intervals to be considered is initialised. Subsequently, P? is filled with subintervals
of all intervals X € P*~!. Finally, the minimum of all lower bounds and the maximum of
all upper bounds of evaluations of these subintervals is computed. These steps are iterated
until the difference between successive iterations becomes smaller than a predefined stopping
criterion e.

Note that the number of subintervals at splitting degree s is 2°. More general, if n
parameters are characterised by intervals (i.e. we have an n-dimensional input parameter
box), it holds that |P®| = 2. The application of the BFS algorithm for the solution of
interval-based computer performance models is presented in [Maju 95].

The high complexity of BFS can be significantly reduced if not every subinterval is
considered for further splitting. Given a subinterval X it may eventually be concluded from
the obtained interval results that neither the lower nor the upper bound of the range is
produced by that subinterval. In that case, X need not be considered any further in the
search for the lower and upper bound of the range; i.e., X need not be split into additional
subintervals. This idea of selective interval splitting was introduced by Skelboe in the context
of general purpose optimisation of rational interval functions [Skel 74]. For the experiments
presented in Section 5 we use a modified selective splitting algorithm described in [Luth 00].
This algorithm combines interval and conventional evaluations to reduce the number of
subintervals that have to be considered.

3 Model of an EJB Server Implementation

The model to be adapted to interval parameters represents an EJB (Enterprise JavaBeans)
server implementation, as a central scheduler of a distributed, three-tier, client-server ar-
chitecture. This type of architecture is typical for large, Java-supported, Internet applica-
tions. The Kensington Enterprise Data Mining system [Ltd], [Chat 99] is the real applica-
tion under study, whose application server (or scheduler) implements the EJB-1.1 specifica-
tion [Micr 99].

EJB is a new component architecture, created by Sun, for the development and de-
ployment of object-oriented, distributed, enterprise-level applications. A bean instance (or
component) is created and managed at runtime by a container, so that a task can only ac-
cess a bean instance through its container. The number of active (bean) instances for each
container is limited due to memory and performance constraints.
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Figure 2: Short-circuited FES sub-network

3.1 Queueing Model

Since a method execution is the most common operation over a bean instance, its specific
behaviour is modelled. This consists of access to the container server followed by access to
the instance server required. Blocking can arise since the execution of a method in a bean
instance requires this instance to be active. A more detailed description of this execution
can be found in [Llad 00].

The queueing network model shown in Fig. 1 summarises the method execution be-
haviour. The queueing network consists of 1 + C' + C % M stations, where 1 corresponds to
the thread manager station, C' is the number of containers in the system (i.e. the number
of different bean classes) and M is the maximum number of (different) bean instances for a
bean class that can be active at the same time.

Every node in the model has first-come-first-served (FCFS) queueing discipline. For
mathematical tractability and the desire for an efficient (approximate) solution, all service
times are assumed to be exponential random variables and routing probabilities are assumed
to be constant and equal across each of the C bean containers. The M bean instances
attached to each bean container are also equally utilised overall, but the specific routing
probabilities in each network-state depend on the blocking properties, which are described
below.

To simplify this system, the Flow Equivalent Server method (FES) is applied (see [Harr 93],
for example). The FES method reduces the number of nodes by aggregating sub-networks
into single, more complex (i.e. queue length dependent) nodes. Applying this method to
our system, each FES sub-network consists of M + 1 stations where 1 corresponds to the
container for a bean class and M is as above. After short-circuiting, this sub-network results
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in the closed one shown in Fig. 2, which is analysed to obtain its throughput for different
populations N. The throughput function will determine the service rate function for an FES
node in the overall network.

Blocking is the critical non-standard characteristic in this network; a client that has
completed service in the container station is blocked if the required bean instance is not
active and there is no free instance to passivate, i.e., no idle server in the model. Blocking
time is the time required for the first of the M parallel servers to clear its queue in a
blocking-after-service discipline.

3.2 The Aggregated Server and Container (sub)Model

The (sub)model of a subsystem comprising a bean container and its M instance servers (i.e.
bean method execution servers) at constant population N is shown in Fig. 3, where the
second server corresponds to the aggregated node for the M parallel servers.

When there are j clients at the outer (container) server and k = N — j at the M parallel
servers, the service rate functions py(j) (with blocking) and us(k), are estimated as follows:

(1)

U BN =), (V=) 2 M,
i (g) = .
1/my, otherwise,

where m; is the mean service time for server 1 (the outer server) when there is no blocking and
fn_j is the dynamic blocking probability, which is derived in the next subsection. b(N — j)
is the mean blocking time when there are j customers at the outer server (N — j customers
at the parallel servers) and it is estimated by b(k) = k/(M?p) (see [Harr 00]), where y is the
service rate of each of the parallel servers.

pa(h) = 3 Gt 2)

where the parameter &, is the probability that n out of the M servers are busy, given
that there are k customers at the parallel servers altogether; it is also derived in the next
subsection.

Clearly the visitation rate is the same for both servers. The steady state queue length
probability distribution for this network — p(j) for the state with j tasks at server 1 and



N — j at server 2 —is then calculated as a product form in standard fashion in the following
way:

1 1
Gy (k) T pa(k)

, (3)

p(4)

where G is calculated as

N 1
G=>)

i1 Ty s () T pia (k)
Throughput T'(N) at population N is then given by:

N

T(N) =Y p(G)m(j) - (5)

Jj=1

3.3 Instance-Active and Client-Blocking Probabilities

Let 2z, denote the equilibrium probability that, at an instant when a task completes service
at the container server (with rate 1/m,) with & tasks at the M instance servers, at least one
of the instance servers is idle. Let o denote the probability that the instance required by a
task completing service at the container server is active, i.e. that the task can immediately
join that instance’s queue (whether or not empty) and so is not blocked. Then the dynamic
blocking probability for a task completing service at the outer (container) server when there
are k tasks at the parallel servers is:
1
(1= 2)(1 = &) im ©)
ml :

Br =

This quantity is the ratio of the equilibrium probability flux from unblocked states with k
tasks at the parallel servers to a blocked state, divided by the total flux from unblocked
states (see [Kell 79], for example). « is approximated by M/I, assuming the next arrival
to the parallel servers requires each of the I instances (I is the total number of instances
available to each client) with equal probability. From Eq. (6), 5; can be expressed as follows:

\/m% +4b(k)z (1 — 2) (1 — a)ymy — my
Pi = 2b(k) 2 ' ™)

The parameter z; is estimated by considering an M-state Markov chain =F for each
population size k£ > M at the parallel servers, where each state corresponds to the number
of busy queues in the system.

For population size k > M at the parallel servers, let the equilibrium probability that
Ek =1(l=1,...,M) be denoted by m(I). The following recursive function is derived

—_
—
—
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C Containers or bean classes
M Parallel servers
I Different instances
N Population
my Mean service time for outer server
I Service rate for each of the parallel servers
7 Clients at the outer server
p1(7) | Service rate for outer server with queue length j
p2(k) | Service rate for aggregated server with queue length £
b(k) | Mean blocking time when there are k clients at the parallel servers
B(k) | Blocking probability when there are k clients at the parallel servers
Ekn Probability that n out of M parallel servers are busy, when there
are k clients at the parallel servers
« Probability that the instance required by task completing service at
the outer server is active
2k Probability that when a task completes service at the outer server with
k tasks at the parallel servers, at least one of these servers is idle
p(7) | Steady state probability distribution of queue length at outer server

Table 1: Notation for the model parameters

from the balance equations determined by the M-state Markov chain.

1, ifn=1,

mi(n) = ¢ Lol (n — 1), if2<n<M,

—-n — m 2 —Q 1
(I +13\EIk?mlf);(ﬂllvf\(4anr)(l W re(n — 1), ifn=M.

Normalising the 7, (n) to give the probabilities

ﬂ'k(n)

gkn = Zi\il Wk(l) )

k+I—-1"

Table 1 summarises the notation used for the different parameters of the model.

11

(9)

we now estimate z; by 1 — & and Sy, follows for M < k < N. The same applies to us(k),
but when there is no blocking, i.e. when k < M or k < I, po(k) = 22&



4 Interval Adaptation of the Model

As discussed in Section 2, the general strategy to adapt an existing analytical model to inter-
val parameters is to substitute single value parameters by intervals and perform step by step
interval arithmetical evaluations of all intermediate expressions. In general, the dependency
problem arising with multiple occurrence of input parameters in the involved calculations
can be overcome by interval splitting techniques. However, the efficiency — and thus the
practical applicability — of splitting techniques can be significantly improved if the inter-
val adaptation is optimised in two respects: (a) wherever possible, monotonic behaviour of
intermediate expressions should be exploited to avoid overestimation of intermediate inter-
vals, and (b) wherever possible, expressions should be rewritten such that the number of
occurrences of interval input parameters is reduced. In the following subsections we show
the application of these techniques to the various computational steps of the model solution
described in the previous section. Computations that are not subject to the dependency
problem are not considered.

4.1 Computation of the Probabilities &,

For the computation of the blocking probabilities 5 and the service rates (k) we need the
probabilities &, that n out of M parallel servers are busy, when there are k clients at the
parallel servers (M < k < N and 1 < n < M). Furthermore, we also need the probability
zr = 1 —&gpr that at least one of the parallel servers is idle when a task completes service at
the outer server while there are k tasks at the parallel servers.

Due to the recursion in Eq. (8), m; and g occur multiple times in each of the expressions
mr(n). Since with the exception of the case n = M, m; as well as p appear only in the
denominator, this does not cause overestimation of intervals for m;(n). However, in the
normalisation step, the dependency problem is in effect, because by having 7 (n) in the
numerator and the sum Y, 7(I) in the denominator, m; and p have both increasing as
well as decreasing influence on &,,.

In the following we rewrite the expressions for m,(n) in a way that allows to cancel as
many occurrences of m; and p as possible in the normalisation. In a first step, we extract
the interval parameters m; and p from the recursion of Eq. (8). This can be done by defining
the following recursive expression 7;(n) that does not depend on my and pu:

{1 ifn =1, o0
Te(n) =
g U=l gy (1), @2 <n < M.

Using these 74(n), the m;x(n) defined in Eq. (8) can be rewritten as:

) { (mTkng_l, if1<n<M, )
7Tk n)—= L 5

T (M)(m1 M?p+(1—a)k) : _

k M%(m1Z)M , ifn=M.

12



To rewrite the normalisation step, we need the ratios 7 (l)/m(n), 1 < 1 < M. Because
[ = M is a special case in the definition of mx(n), 1 < [ < M and 1 = M are treated
separately:

() _ o) e
m(n) Tk(n)( W)t <M
and
7 (M) _ (M) (ma M2+ (1 — a)k) _ Tk(M)[ 1 N (1—a)k
m(n) 7 (n) (map) M="ma M2 Te(n) [ (map)M=" o M2 (my p) M

Now the reciprocals of the probabilities &,, 1 < n < M can be rewritten as follows:

5k;=f::k(l)=1+2—7’“ U ——l

=1 k(1) l=nt+1 ! J(myp)tm

7 (M) l( 1 (1—a)k ]

Te(n) | (myp)M-n - M?(my pu)M -+t

+ (12)

= 1+

|-nzlm(l)(mlu n=t 4 Z (1) + Tk(M)(l_a)k] .

Tk(n) IJZI I=n+1 (mllu)l " M2(mlﬂ)Min+1J

Note that in this expression for 5,;11, 1 < n < M, the computation is separated in
a part where m; and p contribute with an increasing effect and a part where m; and p
contribute with a decreasing effect, respectively. Within these parts, the parameters m; and
1 are cancelled as often as possible. This significantly reduces the effect of the dependency
problem as compared to the original expressions in Eqgs. (8) and (9).

Again, the case n = M is treated separately:
le 7 (1) (ma )

M?(myp) + (1 —a)k

M—I+1

Soar = D (13)
]\42 -
SONOr T (1—a>k/(mlu127’“ ()™

= 1+

Since in that expression it can be seen that m; and u contribute with an increasing effect to
5,;]\14, the probability 2, = 1 — &)/ is monotonically increasing w.r.t. the parameters m; and
p. Thus, an interval Z;, = [z, Zx| can be obtained by single value evaluation of z; using the
endpoints of m; and p’s parameter intervals. Le., 2, = 2, (my, p) and Z, = 2, (1, 7).

4.2 Monotonicity Properties of 11 and us

In the interval computation of p(j) and us(k), we do not take into account the fact that
&kn (and therefore also zi) are not independent from m; and u. Along the lines of step by
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step interval arithmetic, we treat p(j) and po(k) as if they were depending on the input
parameters mq, u, and &,, with M < k < N and 1 < n < M. Thus, we are interested in
monotonicity properties of p1(j) and po(k) w.r.t. these input parameters.

From Eq. (2) one can see that py(k) is monotonically increasing w.r.t. 4 as well as w.r.t.
&kn- Thus, computation of an interval for us(k) is straight forward and can be done along
the lines of computations with the endpoints of intervals for p and &,.

Next we consider ;. To reduce the effect of the dependency problem we avoid computa-
tion of intermediate intervals for §; and b(j). Instead, we substitute /; and b(j) in Eq. (1).
For a shorter notation we consider u; (N — 7)™ = ¢(j) and show monotonicity properties of
¢(j) w.r.t. my, p, and z;:

p(j) = m(N=5)7" = mi+Bd()) (14)
o \/m% + A;‘—guzj(l —z))(1 —a)ymy —my
! 22’]' .
4j

z;(1 — 2;)(1 — @), for the derivative w.r.t. m; we get:

Using the notation § = -2

do(j) 0 Jmi 4 omy —my 1 2my + 0
omy omy 2z; 22j | 2\/m2 4 om,

2
Since (2my +6)% = 4m? +40m, + 6?2 is greater than (2\/m% + 5m1) = 4m?+40my, it follows
that QQM > 1. Hence,

A /mf-i—&ml
de())

o > 1. (16)
Derivation w.r.t. p yields:
9eli) - _ i1 )1 Za)m < 0. (17)
Op MQ;LQ\/m% + ]\;—g”Z]‘(l —z;)(1 — a)my

Finally, using the notation r = 4b(j)(1 — ), the derivative w.r.t. z; is:

rzj(1—2z;)m1

_ 2 . ..
09(j) 2 /415 (1—2)m1 A (18)

0z; 2,292

my [—le —rz; + 2\/m% +rzi(1 — zj)m ]

4,2]2-\/m% +rzi(1 — zj)my

because

Y RS T
= 4m% +drzymy — 4rz]2-m1 < 4m% + dmyrz; + 7“2232
2.2

<= —4rz]2m1 < iz
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which holds since r,z;,m; > 0. From Egs. (16), (17), and (18) it follows that p(j) is
monotonically decreasing w.r.t. m;, and monotonically increasing w.r.t. ; and zy_;. Thus,
an interval for u1(j) can be obtained by evaluating the single value expressions from Eqs. (1)
and (7) using the endpoint combinations: (my, i, 25 ;) = (M1, pt, 2y —;) and (my, p, 25 ;) =
(m,, T, Zn—_j), respectively.

4.3 Computation of the Probabilities p(j)

To compute the throughput of the submodel (see Eq. (5)), the queue length probabilities
p(j) are required. If these probabilities are computed as defined in Egs. (3) and (4), a
similar problem as in the computation of the &, arises due to the normalisation step. Thus,
we rewrite the computation of p(j) such that as many factors as possible can be cancelled
during the course of the computation. Using the notations: t;(k) = [Tr_, p1 (1) and t5(k) =
TIY % 2 (1), p(j) and G can be rewritten as follows:

1

G H0B0) 19)

p(j) =
and
G = Zm. (20)

Using the relations

() Mg pa(l), ik < t2(j) Ny TR <
— 1, if k = 7, and = 1, if k=7,

141 (k) k 1 . . tQ(k) N—j . .
Hl:j+1 Ok it k> j, [l=N—k+1 po(l), if k> j,

we can rewrite the reciprocals of the probabilities p(j) as follows:

1 S akly) = Iy (1) ARTN()
POT = 2ok~ AT om0 *EI Toamn Y

5 Experimental Results

As already stated, rewriting expressions to reduce the effect of the dependency problem and
using monotonicity properties of intermediate results can significantly reduce the amount of
overestimation for interval results. In this section, we illustrate the effect of the reformula-
tions described in Section 4 with the example of the rewritten expressions for the probabilities
&kn (see Egs. (8) and (9) for the original expressions and Eqs. (10), (12), and (13) for the
rewritten expressions).
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5,00E-05 - .
0,00E+00 -

5
k k
Exs intervals Exa intervals
0,07 0,25
0,06 D\ 02 q
0,05 \q
0,03 0,1 ’\
0,02 XE,\AE\:\D\
0,01 T
0
k k
Exs intervals E s intervals

k k
—— orig. (Ib) —&— orig. (ub) —o— orig. (Ib) —&— orig. (ub)
—o—rewr. (Ib) —o—rewr. (ub) —o—rewr. (Ib) —o—rewr. (ub)
——range (Ib) ——range (ub) ——range (Ib) ——range (ub)

Figure 4: Interval results obtained for the probabilities &, comparing original and rewritten
expressions. Each diagram shows results for a different value of n (&1, ...&s) for varying
values of £k =1,...,25.
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In the following experiments we use parameter values taken from evaluations described
in [Llad 00]: M = 6 bean servers per container, I = 20 different bean instances, and a
population of N = 25. The estimates for the service rate of the bean servers p and the mean
service time of the outer server m; are subject to uncertainty. Thus, these parameters are
characterised by the intervals () = 1/4.1 4+ 5% and m{™ = 0.4 + 5%. Note that if one or
more parameters are characterised by an interval, every (intermediate) result depending on
these parameters is itself an interval.

Fig. 4 shows the intermediate interval results obtained for the probabilities &,, & =
6,...,25,n=1,...,6. For each &,, three intervals are depicted: 'orig.” denotes the interval
results obtained using the original expressions without interval splitting, 'rewr.” denotes
intervals for &, obtained using the rewritten expressions without interval splitting, and
‘range’ denotes the range for the &, intervals obtained with interval splitting to an accuracy
of € = 1077 (for comparison purposes). Every interval is depicted by showing its lower
(Ib) and upper bounds (ub). It can be seen that if the original expressions are used, the
dependency problem causes a significant overestimation of the &, intervals for n > 1. If the
rewritten expressions are used for the interval calculation of the &, intervals, they almost
precisely match the exact range of values obtained via interval splitting.

Fig. 5 shows the effect of using the original respectively rewritten expressions for the
intermediate probability intervals &, when computing intervals for the submodel throughput
T(N) (see Eq. (5)). During the computation of the throughput, the other intermediate results
(u1(7), p2(k), p(j)) are computed using the adaptations as described in Section 4. Fig. 5(a)
depicts throughput intervals for populations N = 1,...,25. It can be seen in this figure that
using the original expressions for &,, the throughput interval is much more overestimated
than the throughput interval obtained using the rewritten expressions for &,,.

Unfortunately, due to the dependency problem during the computation of T'(N), also
the throughput intervals obtained by using the rewritten expressions are more than 10 times
as wide as the actual range of the throughput (the innermost intervals in Fig. 5(a)). Thus,
in both cases, interval splitting has to be applied to obtain reasonable tight enclosures of
the throughput range. However, even though interval splitting may be necessary for both,
original as well as optimised (w.r.t. interval computation) expressions, the computational
effort is significantly reduced when using the rewritten formulae. Fig. 5(b) depicts the com-
putational complexity required to obtain the range for the throughput with an accuracy
of € < 1072, To obtain the range of the throughput, the selective splitting with midpoint
evaluation (SSME) approach is used, which performs both, interval as well as conventional
evaluations [Luth 00]. Thus, for each version (original and rewritten expressions), three
graphs are shown: the number of interval evaluations (iv), the number of single value evalu-
ations (sv), and the weighted sum iv + sv/2 (total) — the computational complexity for an
interval evaluation is approximately twice as high as for a single value evaluation. Note that
using the original expressions for the probabilities &, increases the number of evaluations
during the interval splitting algorithm by a factor of more than 5. Similar observations are
made if the original expressions of the other rewritten formulae are used.

This example shows that the adaptation of existing solution techniques to interval param-
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4 f 20000
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Number of threads N

—o— orig. (Ib) —&— orig. (ub) — - -
——rewr. (Ib) —— rewr. (ub) —&-orig. (iv) —0—orig. (sv) —#-orig. (total)
——range (Ib) ——range (ub) —o—rewr.(iv) ——rewr.(sv) —e—rewr.(total)

(a) (b)

Figure 5: Comparison of original and rewritten expressions: (a) throughput interval results
and (b) computational complexity for interval splitting algorithm.

eters has to be done with great care. For as many steps as possible, intermediate expressions
have to be optimised for an efficient interval computation. I.e., wherever possible, mono-
tonicity properties as well as possibilities to cancel occurrences of interval parameters have
to be exploited.

6 Conclusions

Parameters of quantitative performance models of computer and telecommunication sys-
tems are not always known exactly. Parameter intervals are a convenient way to capture
uncertainty in model parameters. Existing analytical solution algorithms can be adapted
to intervals by replacing conventional arithmetical operations and elementary functions by
corresponding interval operations. An unpleasant effect of interval arithmetic is the so-
called dependency problem causing overly wide interval results. Interval splitting methods
to overcome this problem have been proposed in the literature. In this paper we present the
application of such methods to the approximate solution of a queueing network modelling an
Enterprise JavaBeans server implementation. In this model, service rate parameters are char-
acterised as intervals in order to capture associated uncertainty. The original performance
measure formulae are optimised for an efficient interval arithmetical solution. A numerical
example illustrates the effect of these modifications on the efficiency of the interval splitting
approach that is used to obtain tight performance measure intervals.

The example resolution suggest that interval adaptation has to be done with great care.
Although an interval-based solution algorithm can be obtained by simply substituting con-
ventional by interval operations in the original solution algorithm, the analyst is advised to
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exploit (partial) monotonicity properties of the solution algorithm wherever possible. Fur-
thermore, expressions should be rewritten to reduce the number of occurrences of interval
parameters as much as possible. If such techniques are applied in the adaptation, interval
results can be obtained with reasonable additional computational effort.

In future work the interval version of this model will also be used for sensitivity analysis.
For example, it may be interesting to examine how the width of performance measure inter-
vals depends on the width as well as on the (relative) position of the parameter intervals for
the mean service rates of the container server and the bean servers.
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