
Fakultät für Informatik
Institut für Technische Informatik

A Specification Language for
Reconfigurable Dependable Systems,

its Formalisation and Analysis Environment

Martin Riedl

Vollständiger Abdruck der von der Fakultät für Informatik der Universität
der Bundeswehr München zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Promotionsausschuss
Vorsitzender: Prof. Dr.-Ing. Andreas Karcher 1

1. Berichterstatter: Prof. Dr.-Ing. Markus Siegle 1

2. Berichterstatter: Prof. Dr.-Ing. Samuel Kounev 2

1. Prüfer: Prof. Dr.-Ing. Mark Minas 1

2. Prüfer: Prof. Dr. rer. nat. Stefan Pickl 1

3. Prüfer: Prof. Klaus Buchenrieder, Ph.D. 1

1 Universität der Bundeswehr München
2 Universität Würzburg

Die Dissertation wurde am 17.3.2014 bei der Universität der Bundeswehr
München eingereicht und durch die Fakultät für Informatik am 14.7.2014

angenommen. Die mündliche Prüfung fand am 15.7.2014 statt.

http://unibw.de/inf
http://www.unibw.de/inf3
mailto:martin.riedl@unibw.de

ii

Abstract

Model-based dependability evaluation is challenging and therefore prone to error, especially
if one uses lower-level formalisms such as Markov Chains, Stochastic Petri Nets or
Stochastic Process Algebra (SPA). For that reason, in an industrial environment mainly
high-level specification formalisms such as AADL, UML or SysML are employed. Those
languages mostly lack formal semantics and capabilities to model stochasticity which is an
intrinsic characteristic of dependable systems.

For the purpose of bridging the gap between high-level formalisms and formal modelling
languages, this thesis formalises the LAnguage for REconfigurable dependable Systems
(LARES) regarding its syntax and semantics. It can serve both as an intermediate lan-
guage and as a stand-alone modelling formalism. LARES provides language elements
for hierarchical modelling. It separates between structure and behaviour. Furthermore, it
introduces scopes which restrict the visibility of definitions and named statements in order
to facilitate structured model descriptions. The semantics of LARES is given by means of
SPA and labelled transition systems (LTS). For this purpose, two transformations have been
realised which can fully automatically map a LARES model to either its SPA equivalent
or directly to an LTS. A number of implementations are described which constitute the
LARES modelling environment: The editor component supports syntax highlighting and
code completion. It also checks context conditions in order to ensure model validity. The
analysis component carries out the transformations of a given model and allows visualising
the constructed instance tree, the composed state space or the calculated dependability
measures. And finally, among other things, the library implements language definitions,
parsers, transformations and bindings to external solvers. Both transformations can be ver-
ified as the resulting SPA model and the LTS have to correspond regarding their behaviour.
In addition, a proof sketch is provided to show the equivalence of both transformation
semantics. Several example models and a real-world model (the active suspension system
of an autonomous RailCab vehicle) are presented which were modelled and analysed in
order to confirm a sufficient expressiveness and to collect metrics of constructed LARES
specifications, arising SPA models and symbolic representations during analysis. These
metrics serve as an indicator to reason about scalability regarding the language constructs
which have been used to capture a model’s combinatorial complexity. The thesis also
compares LARES to several related approaches and concludes with numerous ideas on
possible future extensions and improvements.

iii

iv

Zusammenfassung

Modellbasierte Verlässlichkeitsbewertungen sind anspruchsvoll und daher fehleranfällig,
insbesondere wenn Formalismen niedriger Abstraktionsstufe wie Markovketten, Sto-
chastische Petri-Netze oder Stochastische Prozessalgebren (SPA) genutzt werden. In
der industriellen Anwendung finden daher häufig Spezifikationssprachen mit höherem
Abstraktionsgrad wie AADL, UML oder SysML Verwendung. Diese sind jedoch zumeist
weder formal definiert noch ermöglichen sie die Modellierung zufälliger Ereignisse, ein
intrinsisches Merkmal verlässlicher Systeme.

Die vorliegende Dissertation greift dieses Problem auf. Sie formalisiert die Syntax und
Semantik der LAnguage for REconfigurable dependable Systems (LARES), die sich sowohl
als eigenständige Modellierungssprache als auch als Zwischendarstellung nutzen lässt.
LARES bietet Sprachmittel zur Modellierung von Hierarchien. Hierbei unterscheidet
LARES zwischen Struktur und Verhalten und trägt durch Sichtbarkeitsbereiche (von Defi-
nitionen und referenzierbaren Ausdrücken) zur Strukturierung von Modellbeschreibungen
bei. Die Semantik der Sprache wird mit Hilfe von SPA und beschrifteten Transitionssys-
temen (LTS) definiert. Dazu werden zwei Transformationen realisiert, die ein LARES
Modell automatisch in dessen SPA Darstellung oder direkt in ein LTS überführen. Zudem
erläutert diese Dissertationsschrift alle Implementierungen, die zusammen die LARES
Modellierungsumgebung bilden: Die Editorkomponente hebt die Syntax visuell hervor,
vervollständigt automatisch Ausdrücke und prüft Kontextbedingungen zur Gewährleistung
der Modellvalidität. Die Analysekomponente transformiert die Modelle und visualisiert
den erzeugten Instanzbaum, den Zustandsraum oder die berechneten Verlässlichkeitsmaße.
Die Bibliothekskomponente beinhaltet unter anderem Sprachdefinitionen, Parser, Trans-
formationen und Anbindungen an externe Analysewerkzeuge. Beide Transformationen
können auf ihre Korrektheit geprüft werden, da sich die erzeugten SPA- und LTS-Modelle
hinsichtlich ihres Verhaltens entsprechen müssen. Des Weiteren wird ein Beweis skizziert,
der die Äquivalenz dieser Transformationen zeigt. Mehrere Anwendungsbeispiele, unter
anderem ein aktives Dämpfungssystem eines autonomen RailCab-Fahrzeugs, bestätigen
die ausreichende Ausdrucksmächtigkeit. Sie dienen auch dazu, Metriken über die jeweilige
LARES Spezifikation, die temporäre SPA Darstellung sowie die symbolische Kodie-
rung während der Analyse zu bestimmen. Die Metriken geben Hinweis darauf, wie der
LARES-Ansatz skaliert, abhängig von den genutzten Sprachkonstrukten zur Abbildung
der kombinatorischen Komplexität der Modelle. Die Dissertation vergleicht und grenzt
LARES gegenüber verwandten Ansätzen ab und schließt mit einigen Ideen über zukünftige
Erweiterungs- und Verbesserungsmöglichkeiten.

v

vi

Contents

1 Introduction 1

1.1 Informal Introduction to LARES . 3

1.2 Fault Tolerant Network Example . 10

1.3 Component Monitoring System Example 18

1.4 Contribution . 24

1.5 Organisation of this Thesis . 25

2 LARES - Formal Language Definition 27

2.1 Notation . 27

2.2 Concrete and Abstract Syntax of LARES 30

2.2.1 The LARES Root Element . 31

2.2.2 Behavior Definition . 33

2.2.3 Module Definition . 37

2.2.4 Common Sublanguages and their Adaption to LARES 46

3 Transformation Semantics 57

3.1 Traversing LARES Models . 59

3.2 Scoping Semantics . 61

3.3 Transformation into LARESBASE . 64

3.3.1 Parameter & Instance Tree Expansion 65

3.3.2 Condition Expansion . 76

3.3.3 Guard Expansion . 83

3.4 From LARESBASE to LTS as Target Formalism 90

3.4.1 LARESFLAT: A Hierarchy-Resolved LARESBASE 90

i

CONTENTS

3.4.2 Abstract Representation of a Transition Systems 92

3.4.3 LTS Semantics for LARESFLAT 93

3.5 From LARESBASE to SPA as Target Formalism 104

3.5.1 Syntax and Semantics of the CASPA SPA 104

3.5.2 Compositionality Issues . 107

3.5.3 Intermediate Composition Structure of Process Algebra Terms . . 108

3.5.4 LARESBASE to SPA . 110

3.6 Assuring the Correctness of different Transformation-Semantics 120

3.6.1 Testing Based Approach . 120

3.6.2 General Proof Sketch . 123

4 Structure and Implementation of the LARES Framework 133

4.1 Components of the Eclipse-based LARES IDE 133

4.1.1 Textual Editor Plugin . 134

4.1.2 Graphical Editor Plugin . 137

4.1.3 LARES View Plugin . 138

4.2 The Scala-based Library Implementation 140

4.2.1 LARES-independent Formalisms & Algorithms 143

4.2.2 LARES-related Formalisms & Transformations 145

4.2.3 LARES Model Transformation Validation 155

5 Case Studies and Implications on Scalability 157

5.1 Phased Mission System . 157

5.2 Larger Case-Study:
The RailCab Spring and Tilt Module . 164

5.3 Parametrisable Recursively Layered
Queueing Network . 166

5.4 Case Studies as Benchmarks to Testify the Scalability 171

6 Approaches Related to LARES 179

6.1 Arcade: Architectural Dependability Evaluation 182

6.2 FA: Failure Automaton . 183

6.3 KLAPER: Kernel LAnguage for PErformance and Reliability analysis . . 185

ii

CONTENTS

6.4 MoDeST: Modeling and Description Language for
Stochastic Timed Systems . 187

6.5 SLIM: System-Level Integrated Modeling 188

6.6 AltaRica . 190

6.7 Classification and Distinction . 191

7 Conclusion and Future Work 195

7.1 Language Extensions and Expressiveness 196

7.2 Scalability Considerations . 198

7.3 Modelling and Toolset . 201

7.4 Closing Comment . 203

A Frequently Used Attributed Tuples 205

B Common Substitution and Evaluation Functions 207

C Refined Synchronisation Semantics of PACT 211

D On Combining Generative/Reactive Expressions 213

Bibliography 219

Acronyms 237

iii

GLOSSARY

iv

Chapter 1

Introduction

The correct and timely functioning of increasingly complex systems, e.g. in the communi-
cation, transportation or energy sectors is crucial. Therefore, we aim to understand and to
improve the dependability of these systems. When dealing with fault-tolerant systems, sys-
tem design and reconfiguration are sensitive aspects concerning a system’s non-functional
behaviour such as reliability, availability, survivability and others. To ensure that a cer-
tain requirement concerning these non-functional behaviours is met, several methods and
tools for modelling and quantitative evaluation have been developed. Exhaustive analysis
or rare-event simulations are established methods to be applied, as cases of failures are
‘hopefully’extremely rare by nature [38]. Especially tools which apply exhaustive methods
mostly come from academia. There, the research is mainly focused on expressiveness and
theoretic verifiability of models specified with the help of formal languages, or speeding
up the analysis methods. Indeed, formalisms such as reliability block diagrams (RBD)
or fault trees (FT) are used by engineers to design fault tolerant systems [52], but suffer
from expressiveness (e.g. regarding temporal characteristics and mutual dependencies
between components). State-based formalisms such as stochastic Petri nets (SPN) [112] or
Markov chains (MC) [20, 105] do not pervade common usage. Especially Markov models
put a lot of burden on modellers to consider all reachable combinations of component
states. Compositional languages such as stochastic process algebra (SPA) [45] seem to fill
this gap, but still do not attract sufficiently – probably because it is a non-trivial task to
specify process synchronisation correctly. Thus, despite the compositionality of stochastic
processes, it remains difficult to express component interaction by the available language
means.

As a consequence many modellers do not use these concepts, since it turned out to be a
hurdle and too complicated for non-specialists. This work is subjected to the assumption
that modellers want to stay in their well-known formalisms or else to adopt a language
which is as similar as possible to the formalisms and tools they are used to. Some important

1

1 INTRODUCTION

aspects have been identified which imply a number of crucial requirements for a fault-
tolerant modelling language, which have also been considered by others (cf. [27] etc.).
These include

• language means for mapping the (hierarchical) structure of a system,

• interface definitions as a basis for modularisation,

• simple interaction specifications at each level within the hierarchy,

• the ability to parametrise a model,

• atomic processes to represent stochastic behaviour at least in terms of discrete
probabilities, or better, continuous probability distributions and, most important,

• high expressiveness.

Defining failure combinatorics as simply as with FTs and RBDs, whilst dealing with
non-Boolean and dynamic behaviour has not been achieved by any other approach. The
explanation and the analysis of the considered approaches are detailed in Chapter 6. There,
pros and cons which finally encouraged us to define a language to effectively encounter the
posed requirements will be examined. This language is named LARES — Specification
LAnguage for REconfigurable Systems — and hence emphasising explicitly that a fault-
tolerant-system may also dynamically adapt to specific situations by reconfiguration. Its
name comes from ancient times, when knowledge was still poor and many things remained
obscure and mysterious, for instance the Romans believed in guardian deities to care for
their safety:

“Lares were believed to observe, protect and influence all that happened within
the boundaries of their location or function. [...] Lares are sometimes cate-
gorised as household gods but some had much broader domains. Roadways,
seaways, agriculture, livestock, towns, cities, the state and its military were all
under the protection of their particular Lar or Lares.” [140].

Over time societies established mechanisms and institutions which help protecting individ-
uals as well as society as a whole. We still rely on these achievements. To obtain further
knowledge on how things interact and to comprehend which event causes a certain effect
are important contributions. Modern societies commonly do not believe in the supernatural
as an explanation for the inexplicable. Instead, they rely on scientific results, technology
and systems they build to directly influence their environment, to support and to protect
them. In response to these needs, we developed a framework which implements the LARES
language and provides tools for modelling, editing, annotation, transformation and analysis
of given models. LARES allows defining complex error behaviour, non-Boolean compo-
nents, systems with independent components and systems with intrinsic non-monotonicity.

2

1.1 Informal Introduction to LARES

LARES

MCSPN SPA

AADLSysML ...

Intermediate
Level:

Application
Level:

Target
Level:

Figure 1.1: Hourglass transformation of application level specifications into formal target
level models using LARES as intermediate representation

The aim is to keep maximum expressiveness whilst maintaining usability and modularity.
Modellers (e.g. an engineer) nowadays are commonly trained on object-oriented pro-
gramming (OOP) languages or at least on structural languages. The OOP-style language
definition is assumed to feel familiar to them. Hereby, automated transformations ensure
the elimination of additional sources of error (that could occur when translating manually
to a formal target language). The formalism should serve as both a stand-alone input
language and an intermediate language for a temporary representation when transforming
from an application-level formalism such as AADL (Architecture Analysis & Design
Language [130]), SysML (Systems Modeling Language [109]) and others into a number
of formal target languages such as an SPA or, finally, an MC as depicted in Figure 1.1.

In order to give the reader an overview of LARES, the following sections will provide an
informal definition of the language features and their meaning, illustrated subsequently
by the use of two distinct example models. Eventually the contribution of LARES to the
domain of performance and dependability modelling will be elucidated as well as the
organisation of this thesis.

1.1 Informal Introduction to LARES

In order to become acquainted with LARES as a dependability modelling formalism, this
section provides an overview of the linguistic means of LARES for structuring a model, for
specifying behaviours, interactions and measures. The latter is used in order to calculate
the probabilities associated with certain sets of states of the model. Note that the syntax
sketched in this section is simplified and does not reflect the full syntax in order to suffice
only the bare necessities used to denote the running examples. The full syntax is specified
in Chapter 2.

3

1 INTRODUCTION

Instance Module

(a) is contained in relation

Instance Module

(b) is instance of relation

Module Behavior

(c) inherits from relation

Module Module

(d) inherits from relation

Behavior Module

(e) is defined in relation

Module Module

(f) is defined in relation

Figure 1.2: Structural associations available in LARES in an UML-like notation

Hierarchical Structure: Abstract Definitions

At the root of a LARES specification, a number of definitions can be stated. Those
definitions comprise three kinds of types, i.e. Module definitions, Behavior definitions and
a single System definition. A Behavior defines the sequential behaviour, i.e. an automaton
which has states and transitions. Inside a Module definition the interaction among Behavior
subinstances is described (interaction behaviour). The advantage of splitting sequential
behaviour from interaction behaviour is twofold. On the one hand, modelling complexity
inside the Behavior definition is decreased in such a way that patterns of interactions are
outsourced to superior levels. On the other hand, this distinction can be employed by
a graphical editor in order to support specific diagrams for behaviours, interaction and
structure. A definition simply represents an abstract type. It therefore has no effect on the
overall behaviour of the model as long as it is not instantiated. The scope of a definition
encompasses the location of its definition and its associated subtrees. This is similar to the
visibility of inner classes in OOP paradigms.

In general, Figure 1.2 shows how these language constructs relate to each other:

• An Instance keyword, which is only allowed to be used inside a Module (cf. Figures
1.2(a)), implies the instantiation of the specified Module type (cf. Figure 1.2(b))

• A Module may inherit from a Behavior or a Module (cf. Figures 1.2(c) and 1.2(d))

• Inside each Module definition further Behavior and Module definitions may be given
(cf. Figures 1.2(e) and 1.2(f))

Accordingly, a LARES specification can be structured as illustrated by Figure 1.3 which
defines a Module for a network, some system Behavior and the System instance. Since e.g.
the Module MLink is defined inside the Module definition MNetwork, it is not accessible
from the System definition S.

4

1.1 Informal Introduction to LARES

root

Module MNetwork
Instance l1 of MLink
Instance l2 of MLink

Behavior BehLink Module MLink

Behavior BehS
System S

Instance n1 of MNetwork
Instance n2 of MNetwork

Figure 1.3: Structure of abstract definitions of a LARES example model

Instance S

Instance n1

Instance l1 Instance l2

Instance n2

Instance l1 Instance l2

Figure 1.4: Instance tree arising from the LARES example of Figure 1.3

Hierarchical Structure: Instance Tree

The System definition is of twofold meaning: On the one hand, it is a Module definition,
whereas on the other hand, it represents an implicit root instance.

As indicated by the example of Figure 1.3, each Module definition may contain fur-
ther subinstances, e.g. by stating Instance n1 of MNetwork the Module definition
MNetwork is instantiated with the name n1. Due to the implicit instantiation of the System
definition, a recursive instantiation of all subinstances is triggered. The whole instance tree
of the model is hereby constructed. As a Module definition may inherit from an arbitrary
number of Behavior or Module definitions, its instantiation recursively instantiates the
inherited definitions. The constructed instance tree (cf. Figure 1.4) of the current example
given by Figure 1.3 hence conforms the example’s definition structure. Note that an
instance can also be individually configured by instantiating a parametrised Module.

Instances always have to communicate via parental nodes within the instance tree. Accord-
ing to that, the definition of direct mutual dependencies (interactions) among components
of different subtrees is prevented by language definition. As follows, this has some impli-
cations on the provided statements (which can be used inside a Behavior or a Module) and
their syntax.

5

1 INTRODUCTION

Statements within a Behavior Definition

A Behavior defines a sequential process in terms of an automaton. A Behavior definition
can be inherited by a Module definition, whereas Behavior definitions cannot inherit from
other language elements. The ingredients of Behaviors are the following:

• The State statement explicitly denotes names for a state or a mode. Each name serves
as a Boolean variable which is used by its direct environment to decide whether an
instance of a Behavior is in a certain state or not.

• The Transitions statement specifies events that imply a state-change (i.e. a transition)
from a source state to some target state. An event can be guarded by a label, also
denoted as guard label, or it can be unguarded. Unguarded transitions are internal
and are hence independent from external conditions, whereas guarded transitions can
be referenced via their guard labels and triggered by some environmental conditions.
A guarded transition can only be executed when its source state is the current state.
Transitions may be delayed, by denoting a continuous probability distribution, or
immediate, thus following an implicit discrete distribution defined with the help of
weights.

A statement that defines a name, which can be locally referenced or by its direct environ-
ment, will subsequently be categorised as a named statement. State variables or guard
labels constitute named statements accordingly.

Statements within a Module Definition

Apart from possibly containing further Module or Behavior definitions, a Module definition
may also contain a number of statements:

• An Initial statement is a named statement that specifies an initial configuration of
the associated instance subtree by means of a vector of references to further Initial
statements or State statements. Referring to the example given by Figure 1.3, let
active and inactive be possible Initial configurations of a link. A network which
consists of two links l1 and l2 can e.g. be initialised by referring to one of the
Initial configurations i1 or i2:

Initial i 1 = l 1 . a c t i v e , l 2 . i n a c t i v e
Initial i 2 = l 1 . a c t i v e , l 2 . a c t i v e

• A Condition statement is a named statement whose name represents a Boolean
variable which is assigned to a condition expression, i.e. a Boolean expression over

6

1.1 Informal Introduction to LARES

state variables of subinstances. The atomic elements of the condition expression may
thereby address a state variable either directly via a Behavior instance or indirectly
via further Condition statements (which may be provided locally or by Module
subinstances). Let e.g. a link reveal the Boolean variable up specified by a Condition
statement. The Boolean variable working specifies for a network (of two links l1
and l2) that it works when at least one link is up:

Condition working = l 1 . up | l 2 . up

• A forward statement is a named statement which triggers guarded transitions. Its
name represents a guard label similar to guarded transitions.

If multiple guarded transitions need to be addressed by a forward statement, a
synchronisation behaviour needs to be defined. This is achieved by means of a
reactive expression which may contain operators for synchronisation and references
to guarded transitions. Here, a sync operator requires all addressed guarded tran-
sitions to be able to execute simultaneously. A maxsync operator requires at least
one guarded transition to be able to execute and a choose operator requires exactly
one of the addressed guarded transitions to be able to execute. Apart from trigger-
ing guarded transitions directly, guard labels of other forward statements may be
referenced instead.

In the example below, a repairman rm is added to the network with two links, and
a repair mechanism is defined in terms of a forward statement. The sync operator
allows repairing (via rm.〈repair〉) only as long as the repairman rm is available.
The maxsync operator specifies that the links l1 and l2 will be immediately repaired
(if one link failed, or both at once):

forward 〈 r e p a i r 〉 to sync {
rm . 〈 r e p a i r 〉 , maxsync{ l 1 . 〈 r e p 〉 , l 2 . 〈 r e p 〉 }

}

• A guards statement is similar to a forward statement except that the guard label is
substituted by a condition expression. Only if the condition expression is satisfied,
referenced guard labels can be triggered. The condition expression is therefore also
denoted as generative condition.

Note that the introduced terms must not be confused with the notion of generative/re-
active/stratified models as used in [64] to classify probabilistic processes. In contrast
to LARES, where these terms are used in order to specify which condition yields a
specific reaction, generative/reactive/stratified models represent classes of models
that inter-relate via abstraction and bisimulation.

7

1 INTRODUCTION

As an example, let n denote a network which provides a Condition statement
working. The guards statement is defined within the System definition and triggers
a repair mechanism in n:

! n . working guards n . 〈 r e p a i r 〉

Note that the Condition and the forward statements are necessary, not so much because
of avoiding redundant definitions of condition or reactive expressions, but due to imple-
menting the desired strict visibility policies, as it will be described in the next two parts, in
order to reason on states or to propagate events across hierarchical boundaries.

Visibility of Statements

As it was already indicated, a named statement is only visible for its direct environment.
This means that a named statement can only be accessed locally, where it has been defined,
or from the parental node. Accordingly,

• a condition expression can either refer directly to a state of an inherited Behavior
instance, or to a Condition statement (defined locally or inside a subinstance of a
Module),

• a reactive expression can either refer to guard labels of guarded transitions (inside
inherited Behavior instances) or to forward statements (defined locally or inside a
subinstance of a Module), and

• an Initial statement can either refer directly to a state of an inherited Behavior
instance, or to an Initial statement (defined locally or inside a subinstance of a
Module).

The provided named statements constitute an interface. A named statement of an instance
can be accessed by referring to the instance name and the name of the statement.

Interaction of Component Instances

An interaction between a number of instances takes place in case that a certain condition
is fulfilled and some specified reaction can be performed. Such a condition is specified
by referring to Condition or State statements of the desired instances in order to make a
claim on these states and, accordingly, to imply a reaction inside the addressed instances
by triggering guard labels. For this purpose, a reactive expression is specified which can
either directly refer to guard labels of a Behavior instances, or else via forward statements.
Figure 1.5 depicts how assertions on states of a subtree can be made using Condition

8

1.1 Informal Introduction to LARES

guards

Condition = forward to 〈 〉

〈 〉

information flow reverse point
(i.e. an occurring of a guards stmt.)

instantiated Modules
(intermediate level)

instantiated Behaviors
(leaf level)

Figure 1.5: Component interaction: Information flow

statements throughout the hierarchy, and how an event is generated by a guards statement
in order to trigger a desired reaction, specified by the reactive expression. The underscore

is a wildcard for a condition expression or a reactive expression. As it was previously
explained, a reactive expression may also address more than one instance. Several operators
are provided for this purpose, i.e. maxsync, sync and choose, which determine whether
a specified reaction can take place and, eventually, how the addressed instances behave
in cooperation. All intermediate forward statements pass this event through the instance
tree until a final Behavior instance will be reached.

Explicit Language Elements for Dependability Modelling

Condition statements are similar to fault trees. They can thus be used to define fault
hierarchies throughout the model in order to trigger a certain reaction when used inside a
guards statement. There, language means for dependability modelling such as k-out-of-n
statements can be used by the oo keyword. LARES does not provide explicit language
elements which describe complex concepts such as Failure-on-Demand, Failure-on-Repair
and others. Instead, LARES covers a more general area which also includes performance
aspects. In consequence, a modeller has to define the above dependability concepts by
himself in terms of Behavior definitions which may be inherited by Module definitions or
by specifying interactions among the components of a dependable system.

Specification of Probability Measures for Analysis

Inside a Module definition, the LARES language allows modellers to specify Probability
statements in order to address a specific analysis. Two types of analysis methods are
currently supported: Transient analysis is performed on the overall state space of the

9

1 INTRODUCTION

system in order to determine how the probability mass is distributed over the states after a
given amount of time, whereas steady-state analysis considers an infinite time horizon in
order to determine the stationary probability distribution. A condition expression thereby
specifies the states of interest. Their fraction of the probability mass finally represents the
result of this measurement.

When e.g. the probability of the network of being at work is desired to be evaluated, the
following Probability statements can be specified which trigger a transient analysis (such
that the probability at a certain point in time is evaluated) or a steady-state analysis:

Probability P t = T r a n s i e n t (n . working , 10)
Probability P s = S t e a d y s t a t e (n . working)

It lies in the responsibility of the user whether the obtained probability represents, for
example, the system reliability, the availability, or other kinds of measures of interest such
as survivability. All of them have different definitions which could require users to adapt
the model’s behaviour, the type of analysis or the Probability statements in order to obtain
the measures of interest:

Reliability: The probability of a system to be operational throughout a predefined
interval without system-level repair (i.e. becoming operational again)

Availability: The fraction of time in which the system is up

Survivability: The ability of a system to provide a given level of service after the
occurrence of a severe event

The next two sections will each provide an example model in order to demonstrate how to
apply the language as it was informally introduced in this section and give an informal intu-
ition about its semantics. Both the Fault Tolerant Network and the Component Monitoring
System example will serve as vivid examples which can and will be accessed throughout
this thesis to exemplify the formal representations shown in the following chapters.

1.2 Fault Tolerant Network Example

A variant of the Fault Tolerant Network example is provided here. It has been presented
in its original form in [121]. Imagine a two-processor (p[1] and p[2]) networked system
implementing a critical safety function as shown by Figure 1.6. The safety function will
be unavailable if either one of the processors or the network fails. The network will fail if
all of its links fail. In the provided model the network consists of three links, the first one
is initially in use while the others are running in hot standby (i.e. an alternative connection
can immediately be established by these redundant links in case of a failure). All the links

10

1.2 Fault Tolerant Network Example

p[1] p[2]

l[1]

l[2]

l[3]

Figure 1.6: Fault tolerant network example with 3 redundant links

(l[1], l[2] and l[3]) can fail. If a link fails, the next passive one becomes active. When the
first link fails, a repair unit is notified starting the repair process which repairs all failed
links at once and switches them to their initial configurations.

In Figure 1.7 a notation similar to UML is used to depict a possible structure of the model.
The structure serves as a template to specify the model using LARES. In the following
paragraphs parts of the model will be defined in valid syntax: At first, the repair behaviour
is defined, since this behaviour is associated with the network. Then, the network itself
is defined which includes the Behavior definition of the link, the Module definition of
the link, the network’s subinstantiations and the interactions among them. And finally, a
Condition is defined stating whether the network failed or not.

System

FTN
Instance

n

Instance
p[1..2]

Module
Processor

Behavior
BProcessor

Module
Network(numLinks)

Module
Link

Behavior
BLink

Instance
l[1..numLink]

Behavior
BSys

Behavior
Repair

root specification level

2

numLink

Figure 1.7: FTN: The model structure

The repair behaviour is textually specified as follows and includes a graphical representation
in which dotted lines correspond to guarded transitions with unspecified distributions (that
are implicitly determined by the interacting partners, but can be regarded as discrete for
this example):

11

1 INTRODUCTION

Behavior R e p a i r {
State r I d l e , rBusy , rDone
Transitions from r I d l e i f 〈 n o t i f y 〉 → rBusy
Transitions from rBusy
→ rDone , de lay e x p o n e n t i a l 0 . 5

Transitions from rDone i f 〈 done 〉 → r I d l e
}

rIdle

rBusy

rDone

〈notify〉

〈true〉,0.5

〈done〉

It consists of three states named rIdle, rBusy and rDone. When the repair behaviour
is in rIdle, the signal notify causes the behaviour to start the repair process. After an
exponentially distributed delay rDone is reached. An interaction may be triggered via
done by which the failed links get repaired and the repair unit reach the rIdle mode.

The next step is to define the network:

Module Network (numLink) : R← R e p a i r { . . . }

The number of redundant links that a network should provide is left open by introducing
a parameter numLink for this model. The notation R<-Repair adds a repair behaviour
(referable via the name R) to the Network.

The following paragraphs will provide the content of the body of the Network definition.
As it can be studied from Figure 1.7, two definitions are contained by the body. The
Behavior definition BLink is listed first:

Behavior BLink {
State l s t a n d b y , l a c t i v e , l f a i l e d
Transitions from l s t a n d b y

i f 〈 s w a c t i v e 〉 → l a c t i v e
i f 〈 t r u e 〉 → l f a i l e d , de lay e x p o n e n t i a l 0 . 1

Transitions from l a c t i v e
i f 〈 t r u e 〉 → l f a i l e d , de lay e x p o n e n t i a l 0 . 3
i f 〈 sws tandby 〉 → l s t a n d b y

Transitions from l f a i l e d
i f 〈 s w a c t i v e 〉 → l a c t i v e
i f 〈 sws tandby 〉 → l s t a n d b y

}

A link can fail in both states lstandby and lactive after a certain delay caused by
different exponential failure rates of the transitions to the state lfailed. An expression
of the form if <true> hereby specifies explicitly that a transition is not guarded. The
expression if <true> can alternatively be omitted. Since a link must be able to switch
between its functional modes, it offers guarded transitions for activation to the state
lactive or deactivation to the state lstandby. Furthermore, two guarded transitions are

12

1.2 Fault Tolerant Network Example

provided in the case of being repaired: The link is either repaired and set to its activated
mode or else to its standby mode.

The Module definition Link provides a number of named statements constituting an
interface: Two conditions, i.e. cFailed and cStandby, the forward labels <swactive>
and <swstandby> and two initial operational modes, i.e. iActive and iStandby:

Module Link : BLink {
Condition c F a i l e d = BLink . l f a i l e d
Condition cS tandby = BLink . l s t a n d b y
forward 〈 s w a c t i v e 〉 to BLink . 〈 s w a c t i v e 〉
forward 〈 sws tandby 〉 to BLink . 〈 sws tandby 〉
Initial i A c t i v e = BLink . l a c t i v e
Initial i S t a n d b y = BLink . l s t a n d b y

}

All of these statements relate parts of the interface of the inherited behaviour BLink one-to-
one to the interface of the link’s Module definition. The state lactive of BLink remains
hidden to the environmental components, since it is not explicitly addressed by a condition.
By definition, the initial state of BLink is lstandby (as it is the first occurring state). The
Module definition Link additionally allows addressing lactive as the initial state via
iActive.

Having defined the Module definition Link, the network’s subinstantiations can be spec-
ified. Since the Module definition Network consist of numLink Link instances l[1] to
l[numLink], where l[1] is initialised in active mode in contrast to the others that are
initialised in standby mode. For a number of cases guards statements have to be defined
representing rules to switch the next possible link i to active if link 1 to i-1 have failed.
Note that i is already fixed for that case:

(AND[j in {1 .. i −1}] l [j] . c F a i l e d) & l [i] . cS tandby
guards l [i] . 〈 s w a c t i v e 〉

The Condition statement nfailed allows the environment to assert whether the network
has failed by violating the redundancy structure:

Condition n f a i l e d = AND[i in {1 .. numLink }] l [i] . c F a i l e d

Furthermore, a repair mechanism is specified. A guards statement has to notify the repair
behaviour instance once the first link will have failed. A second one states that if the
repair is performed, the links will have to switch back to their initial state if possible, i.e.
the first one is switched back to active and the remaining ones to standby, expressed by
the maxsync operator. Since l[1] is able to switch to active and the repair unit is also
able to follow via R.done, the sync operator can be used to ensure that the reaction is
synchronous, i.e. all failed links are repaired at once.

13

1 INTRODUCTION

R . rDone guards sync {
R . 〈 done 〉 , l [1] . 〈 s w a c t i v e 〉 ,
maxsync (i in {2 .. numLink }) { l [i] . 〈 sws tandby 〉 }

}

The resulting network module definition is shown in the following listing. Herein the
expand statement is used in order to abbreviate the instantiation of redundant links and the
switching function which handles the link failures:

Module Network (numLink) : R← R e p a i r {
Behavior BLink { . . . }
Module Link : BLink { . . . }

Instance l [1] i n i t i a l l y i A c t i v e of Link
expand (i in {2 .. numLink }) {

Instance l [i] i n i t i a l l y i S t a n d b y of Link
AND[j in {1 .. i −1}] l [j] . c F a i l e d & l [i] . cS tandby guards

l [i] . 〈 s w a c t i v e 〉
}
Condition n f a i l e d = AND[i in {1 .. numLink }] l [i] . c F a i l e d

l [1] . c F a i l e d guards R . 〈 n o t i f y 〉
R . rDone guards sync {

R . 〈 done 〉 , l [1] . 〈 s w a c t i v e 〉 ,
maxsync (i in {2 .. numLink }) { l [i] . 〈 sws tandby 〉 }

}
}

The system behaviour BSys consists of three states, i.e. sstandby, sfailed and shazard.
Depending on the triggered guard labels <systemfail> and <recovered>, the behaviour
can toggle between the states sstandby and sfailed. Furthermore, an (exponentially
delayed) hazard transition is defined which can turn the system to the state hazard in case
the safety function was temporarily unavailable. The listing of BSys is given as follows:

Behavior BSys {
State s s t a n d b y , s f a i l e d , s h a z a r d
Transitions from s s t a n d b y

i f 〈 s y s t e m f a i l 〉 → s f a i l e d
Transitions from s f a i l e d

i f 〈 r e c o v e r e d 〉 → s s t a n d b y
i f 〈 t r u e 〉 → s h a z a r d , de lay e x p o n e n t i a l 2 . 0

}

14

1.2 Fault Tolerant Network Example

The root instance now has to be defined for the fault-tolerant-network. The pivotal element
is the System keyword. As mentioned above, its meaning is twofold: Firstly, it is a module
definition following the same syntactic rules as any other Module definition. Secondly, it
defines the root instance, which is named FTN and inherits the behaviour BSys.

System FTN : BSys { . . . }

The subsequent paragraphs explain the content of its body. Firstly, the processors’ be-
haviour is specified followed by its Module definition. Next, the instantiation is provided
including the interactions.

The processors’ behaviour is very simple since it only comprises a Boolean behaviour,
i.e. comprising two states, where, after an exponential delay, the processor fails from
pstandby to pfailed.

Behavior B P r o c e s s o r {
State p s t a n d b y , p f a i l e d
Transitions from p s t a n d b y

i f 〈 t r u e 〉 → p f a i l e d , de lay e x p o n e n t i a l 0 .005
}

The Module definition Processor inherits the Behavior definition BProcessor. A state is
set as the initial state by denoting an Initial statement and a Condition variable failed
which is offered to its environment:

Module P r o c e s s o r : B P r o c e s s o r {
Condition f a i l e d = B P r o c e s s o r . f a i l e d
Initial good = B P r o c e s s o r . good

}

Note that even such simple Behavior definitions have to be wrapped by a Module. Ac-
cordingly, direct Behavior instantiations (apart from their instantiation by inheritance) are
currently disallowed by language definition.

It remains to define the subinstances of the system instance, i.e. two instances p[1] and
p[2] of processors, wrapped by an expand statement iterating over a range {1..2}, and
the network instance n parametrised by two links.

expand (i in {1 .. 2}) { Instance p [i] of P r o c e s s o r }
Instance n of Network (numLink =2)

An explicit initial state for the inherited behaviour of the system instance is denoted by

Initial s t a n d b y = BSys . s s t a n d b y

Failures occurring inside subinstances have an impact on the system behaviour. The
interaction dependencies can be modelled by Condition statements specifying the cause in

15

1 INTRODUCTION

terms of Boolean expressions on states, and guards-/forward statements specifying how
the event influences the system in terms of a triggered behaviour.

A Condition representing the systems redundancy structure specifies the situation which
will cause a system failure if one of the processors fails or the network fails:

Condition s r s = OR[i in {1 .. 2}] p [i] . p f a i l e d | n . n f a i l e d

The Condition is used inside a guards statement to describe the dependency between the
system behaviour and the causal situation. In this case the Condition leads to a system
failure:

s r s guards BSys . 〈 s y s t e m f a i l 〉

If the causal situation disappears (i.e. by a repair event) the system behaviour will recover:

! s r s guards BSys . 〈 r e c o v e r e d 〉

In the following the complete LARES FTN example model is provided. It abbreviates the
fully exposed Module and Behavior definitions:

Behavior R e p a i r { . . . }
Module Network (numLink) : R← R e p a i r { . . . }
Behavior BSys { . . . }
System FTN : BSys {

Behavior B P r o c e s s o r { . . . }
Module P r o c e s s o r : B P r o c e s s o r { . . . }

expand (i in {1 .. 2}) { Instance p [i] of P r o c e s s o r }
Instance n of Network (numLink =2)
Initial s t a n d b y = BSys . s s t a n d b y

Condition s r s = OR[i in {1 .. 2}] p [i] . p f a i l e d | n . n f a i l e d

s r s guards BSys . 〈 s y s t e m f a i l 〉
! s r s guards BSys . 〈 r e c o v e r e d 〉

}

Finally, the questions of interest have to be specified for the model. The following
probability measures are therefore stated inside the system definition of the FTN example
in order to determine the probability of the system being in a specific state (i.e. standby,
failed or hazard) or the probability of the network having failed:

Probability s t a n d b y = T r a n s i e n t (BSys . s s t a n d b y , 50)
Probability f a i l e d = T r a n s i e n t (BSys . s f a i l e d , 50)
Probability h a z a r d = T r a n s i e n t (BSys . s h a z a r d , 50)
Probability n f a i l e d = T r a n s i e n t (n . n f a i l e d , 50)

16

1.2 Fault Tolerant Network Example

standby failed hazard nfailed

Figure 1.8: FTN: Analysis results of the basic model (hereby, the y-axis represents the fraction
of the probability mass regarding a specified state and the x-axis represents the elapsed time)

standby failed hazard nfailed

Figure 1.9: FTN: Hazards and processor failures disabled (hereby, the fraction of probability
mass in the course of the elapsed time for the specified measure failed exactly overlays the
values obtained for nfailed)

Based on the previously provided example model, the first analysis results are shown by
Figure 1.8. It depicts that the probability of the network being unavailable stabilises due to
the repair behaviour specified within the model. During the time in which the redundancy
structure of the system is not fulfilled, hazards can occur. This leads to an aggregation of
probability mass at the hazard state. The probability of the failed state is only considerably
large before hazardous events deduct probability mass.

Other interesting analysis results can be obtained by varying some model parameter. Figure
1.9 represents the analysis results in case that the model is varied by two aspects: The first
one being the hazard rate set to 0.0, i.e. no hazards can occur, and the second one being
failure rate set to 0.0, i.e. no processor failures can occur.

Transitions from f a i l e d → h a z a r d o u s , de lay e x p o n e n t i a l 0 . 0
Transitions from good → f a i l e d , de lay e x p o n e n t i a l 0 . 0

17

1 INTRODUCTION

standby failed hazard nfailed

Figure 1.10: FTN: Hazards are disabled

One can see that due to the absence of a hazardous situation and the ability of the processors
to fail while the network is repaired, the system availability, i.e. FTN standby, converges.
Note that the FTN failed plot lies precisely on top of the FTN nfailed probability. This
means that for this model parametrisation, the probability of a system being in the failed
state exactly corresponds to the probability of a network being failed.

Figure 1.10 represents the analysis results in case that the basic model is varied by setting
the hazard rate to 0.0, thus meaning no hazards can occur. The figure illustrates that, due to
the absence of a hazardous situation, the system availability, i.e. FTN standby, decreases
due to the processors’ failure rates (at the same time at which the network is in a repaired
state).

1.3 Component Monitoring System Example

In this section, a component monitoring system (MS) is considered which aims at assuring
functional safety of the monitored systems, e.g. as defined by IEC 61508 [87], where
monitoring for random errors during operation and safe incidence handling are claimed.

Let the monitoring system comprise two sensors for each monitored component (cf. Figure
1.11). Assume that a component consists of a light barrier and its power supply. Someone
inside a safety cage cannot be detected and a hazardous situation might consequently not
be prevented, whenever there is a power loss. Each component can be monitored by a
sensor which can be substituted by another dedicated spare sensor in case of a failure. The
redundancy introduced by the dedicated spare sensor for each component increases the
monitoring reliability. In a situation where a redundancy substructure is not fulfilled (e.g.
if both sensors of the parallel structure S1 and S2 as given by Figure 1.11 fail), at least one
of the components is not monitored any more.

18

1.3 Component Monitoring System Example

component monitoring system
redundant sensors redundant sensors

S1

S2

S3

S4

Monitored Component Monitored Component

Figure 1.11: Redundant component monitoring system example

When a single sensor has failed, it may be safely substituted by the spare sensor for
monitoring the other component. A reconfiguration can be performed which deploys the
other spare sensor to monitor the currently unmonitored component. Apart from that,
all sensors are switched to a mode degr with degraded performance in order to lower
the failure rate and therefore extend a sensor’s lifetime. The functioning of the system
can thus be reestablished at the cost of some reconfiguration time. Meanwhile, when the
reconfiguration takes place, the reconfigured sensor could fail as well: If that occurs, the
system will definitely fail. Otherwise, the system can continue working in its second phase
until one of the applied components fails. In Figure 1.12 the structure of the model is
denoted as exemplified hereafter.

System

MS
Instance

rm
Behavior

Configuration
Module

RepairMan

Behavior
Repair

Instance
S1

Instance
S2

Instance
S3

Instance
S4

Module
Sensor

Module
SensorUsageModes

root specification level

Figure 1.12: MS: The model structure

19

1 INTRODUCTION

The Behavior definitions are not given in form of a textual LARES specification. Instead,
they are depicted graphically by Figure 1.13. The main system behaviour is given in Figure
1.13(a). It comprises four states,

1. the initial phase (RS1), where the redundancy structure for the first phase holds,

2. the reconfiguration phase (Reconf), where the system tries to reconfigure if there is
an unused working sensor

3. the second phase (RS2), where the reconfigured sensor is in use, and

4. the failure situation (denoted by Fail),

and a number of guarded and unguarded transitions representing

• the reaction that will be triggered by the guard label <rs1f> if the initial redundancy
structure fails,

• or if the second redundancy structure is not fulfilled any more, the transition com-
prising the guard label <rs2f> will be triggered leading to Fail,

• the reconfiguration which takes a certain amount of time is determined by the rate of
an exponential distribution (1.0−→), or

• the repair or recovering transition <rep>.

The sensor behaviour comprises the modes Intense, Standby, Degr and Fail (cf. Figure
1.13(b)). When a sensor is in its degraded mode Degr the failure rate of the sensor is less
than in the Intense mode, e.g. due to reduced sensor frequency.

The inherent default failure behaviour is described by a number of exponential unguarded
transitions: Failing from Intense by 0.2

−→, from Standby by 0.005
−→ and from Degr by 0.01

−→.
Furthermore, a number of switching and repair actions are defined using the guard labels
<swD>, <swI>, <repD> and <repI>.

Finally, a repair behaviour is defined (cf. Figure 1.13(c)) in which a repair can toggle
between available (Avail) or unavailable (Unavail) over the events defined by 0.6

−→ and
0.5
−→. The guard label <rep> would be triggered if the current state was Avail.

The sensor module inherits from SensorUsageModes by SUM <- SensorUsageModes

defining the abbreviated name SUM which is subsequently used to address the inherited
behaviour:

Module Se ns o r : SUM ← SensorUsageModes { . . . }

20

1.3 Component Monitoring System Example

RS1 Reconf

RS2 Fail

〈rs1f〉

〈rs2f〉

〈rs2f〉

〈rep〉
1.0

〈rep〉

〈rep〉

(a) Behavior Configuration

Intense Standby

Degr Fail

0.2

0.01

0.005

〈repD〉

〈swI〉

〈swD〉 〈repI〉

〈repS〉

〈swI〉

〈repS〉

〈repI〉

〈swD〉

〈repS〉

(b) Behavior SensorUsageModes

Avail Unavail
〈rep〉

0.6

1.0

(c) Behavior Repair

Figure 1.13: MS: The Behavior definitions

In the body of this Module definition two initial configurations I and S are offered to the
environment. The instantiated behaviour SUM is initially set to the Standby mode in case
that S is addressed otherwise SUM starts in the Intense mode:

Initial I = SUM. I n t e n s e
Initial S = SUM. Standby

A number of forward statements make the guard labels of the inherited Behavior accessible
to be triggered by external events:

forward 〈 swI 〉 to SUM. 〈 swI 〉
forward 〈swD〉 to SUM. 〈swD〉
forward 〈 r e p I 〉 to SUM. 〈 r e p I 〉
forward 〈 repS 〉 to SUM. 〈 repS 〉

To provide the opportunity for an environment to reason about the local state, a Condition
serves as an interface aggregating state information, which means for this case, that good
abstracts the set of states Intense, Standby and Degr:

Condition f a i l = SUM. F a i l
Condition good = n o t SUM. F a i l

21

1 INTRODUCTION

MS

S1 S2 S3 S4 C rm

Figure 1.14: MS: The instance tree of the model

A repair unit inheriting the repair behaviour is also assigned to the system. It only provides
a single Initial configuration, i.e. being unavailable. Whenever the internal behaviour is
able to perform <rep>, the environment is able trigger <rep> introduced by the contained
forward statement:

Module RepairMan : R e p a i r {
Initial U = R e p a i r . U n a v a i l
forward 〈 r e p 〉 to R e p a i r . 〈 r e p 〉

}

The final definition to be specified is the root instance MS of the system. It inherits the
Configuration behaviour abbreviated by C:

System MS : C← C o n f i g u r a t i o n { . . . }

Each subinstantiation inside the body of MS specifies a name, an initial configuration and
an addressed type of Module:

Instance S1 i n i t i a l l y I of Se ns o r
Instance S2 i n i t i a l l y S of Se ns o r
Instance S3 i n i t i a l l y I of Se ns o r
Instance S4 i n i t i a l l y S of Se ns o r
Instance rm i n i t i a l l y U of RepairMan

The resulting instance tree of Module instantiation including the inherited system behaviour
instance C is shown in Figure 1.14. In this example, the indicated subtree on top of the
Module instances only comprises a single Behavior instance.

Next, the interaction among the instances is defined by guards statements. If sensor S1
fails, the standby mode of S2 will then be activated, or, similarly, if sensor S3 fails, its
standby mode of S4 will then be activated:

C . RS1 & n o t S1 . good guards S2 . 〈 swI 〉
C . RS1 & n o t S3 . good guards S4 . 〈 swI 〉

If the initial safety structure is no longer fulfilled while being in state RS1, such that not at
least one out of two sensors are working for each of component (hence, the operator oo is
defined), the system will try to reconfigure itself, in such form that the system behaviour

22

1.3 Component Monitoring System Example

C synchronously performs the behaviour triggered by <rs1f> together with the maximal
synchronised behaviour of all the sensors. Those that can switch to its degraded mode by
allowing triggering <swD> will synchronously perform their switching behaviour:

C . RS1 & n o t (
1 oo {S1 . good , S2 . good} & 1 oo {S3 . good , S4 . good}

) guards sync {
C . 〈 r s 1 f 〉 , maxsync{S1 . 〈swD〉 , S2 . 〈swD〉 , S3 . 〈swD〉 , S4 . 〈swD〉 }

}

If the initial redundancy structure has already failed, i.e. not C.RS1 and the reconfigurable
redundancy structure is not satisfied any more by the remaining sensors, where at least two
out of all sensors have to be good, the system behaviour will be triggered by <rs2f>.

n o t C . RS1 & n o t (2 oo {S1 . good , S2 . good , S3 . good , S4 . good }) guards
C . 〈 r s 2 f 〉

Finally, the assigned repair strategy is to take action merely in case that the system has
already reached its failed state. This will be achieved by trying to synchronously transfer
all subinstances of the system back to their initial state, except those that still are in their
initial state (expressed by the maxsync operator of the sensors).

C . F a i l guards sync {
C . 〈 r e p 〉 , rm . 〈 r e p 〉 ,
maxsync{S1 . 〈 r e p I 〉 , S2 . 〈 repS 〉 , S3 . 〈 r e p I 〉 , S4 . 〈 repS 〉 }

}

In order to be able to perform an analysis, a number of measures are introduced in the
system definition body. The states of interest are those defined by the system behaviour.

Probability f a i l = T r a n s i e n t (C . F a i l , 50)
Probability r e c o n f = T r a n s i e n t (C . Reconf , 50)
Probability RS1 = T r a n s i e n t (C . RS1, 50)
Probability RS2 = T r a n s i e n t (C . RS2, 50)

Corresponding to the given measures, transient analysis is performed up to 50 time units
including 15 intermediate calculation steps as shown in Figure 1.15.

Also, complex states defined by a Condition statement can be used within a Probability
statement:

Condition a = C . RS1 | C . RS2
Probability working = T r a n s i e n t (a , 50)

The analysis of the measures is given in Figure 1.15. It shows that the probability of
RS1 decreases very quickly because of the sensors being used in the intense mode at the
beginning. Thereby increasing the probability of being in Reconf. Of course, in the

23

1 INTRODUCTION

RS1 RS2fail reconf working

Figure 1.15: MS: Basic model

way the probability of RS1 decreases, the probability of RS2 increases. The remaining
probability mass congregates in the Fail state. The yellow curve represents the working
probability of being in RS1 and RS2.

In the following section the contribution to the domain of dependability modelling and
analysis will be discussed.

1.4 Contribution

The LARES language definition aims at encouraging users to construct reusable com-
ponents (thereby defining their own dependability concepts in terms of generic LARES
constructs rather than being limited to specialised features that other languages offer).
As a consequence thereof, a modeller is commonly not required to extend the language
semantics himself. In case that requirements for the analysis of a model change (in such
way that also the semantics of LARES have to be extended or that only a restricted subset
of LARES has to be addressed), the language and the whole infrastructure (which sup-
ports the language, the transformation and the analysis) are designed in the perspective of
extensibility to ease future adaptations and extensions.

Many approaches do not disclose language formalisation, in particular the corresponding
semantics. This may be due to some (business) culture or because there is no formalisation
beyond code. The contribution of this work is to create confidence by exhaustively
unveiling the formal language definition in terms of syntactical rules and its abstract
representation. The complete formalisation of the underlying semantics is given in terms of
stochastic process algebra and by means of labelled transition systems. To emphasize the
uniqueness of the language semantics, a formal proof shows a correspondence between the
transition-system-construction rules given by the LTS semantics and the rules that build an
SPA specification which itself is based on semantic rules which map to a transition system.

24

1.5 Organisation of this Thesis

Even a complete formalisation does not prevent developers from making programming
errors, it merely helps to reduce these errors. Hence, diversification by implementing
several transformations based on different rules to produce the same output help identify
these errors. The contribution of the LARES framework is that two transformations
which either apply rules to construct an LTS directly or construct a corresponding SPA
specification, are implemented. An equivalence check of the final transition system reveals
almost all occurring semantic issues and programming errors. This approach helps to
further increase confidence in the LARES approach in general.

1.5 Organisation of this Thesis

So far, the LARES language has been motivated, informally introduced and exemplarily
illustrated. Furthermore, its contribution to the domain of dependability modelling and
analysis has been discussed. The reader has been given a compendium of the important
language features and the way these are used. It is required to convey a formal definition
of the language syntax and its semantics to describe how the defined concepts and transfor-
mations are captured by an implementation in order to feature a larger case-study and to
discuss the relation of LARES and its concomitant implementation to other approaches.
Thus, the topics that will be addressed in this thesis are featured below:

In Chapter 2, a formal definition of the syntax is granted by denoting an abstract represen-
tation of the language elements and the concrete syntax. Chapter 3 refers to the abstract
formal representation of the language. It is structured by foremost starting off with a
transformation into a subset of LARES, and afterwards subsequent transformations will
be defined into some targeted formal languages. Those languages are supported by tools
which enable users to analyse the models and to determine the measures of interest. Two
transformations are provided in this chapter: One addresses SPA and the other transforms
into a labelled transition system (LTS). Since the semantics of the SPA itself is given by
means of LTS, both transformations are defined such that, when applied to a model, their
final result is behaviourally equivalent and thus define equal semantics for LARES. The
chapter is concluded by providing the theoretical basis to validate those transformations
against each other and to check for inconsistencies in the implementation or finding other
flaws. Furthermore, a formal proof is sketched, showing the equivalence between two trans-
formations into different target formalisms. In connection with the theoretical foundations
of the language, the transformation semantics and its validation, Chapter 4 considers the
technical aspects of the implementation. Chapter 5 focuses on case-studies. Especially one
larger case-study will emphasize the applicability of LARES by showing that it scales well
and the learning curve remains moderate. Finally, Chapter 6 compares related languages
and contrasts LARES, while Chapter 7 concludes the work.

25

1 INTRODUCTION

26

Chapter 2

LARES - Formal Language Definition

In the introductory chapter an informal view on LARES was given and illustrated with
the help of two example systems. This chapter provides an exhaustive formalisation of
the language in terms of both an abstract mathematical representation and a concrete
syntax conforming to EBNF (Extended Backus-Naur Form). The chapter begins with a
section introducing the subsequently used notation. Afterwards, each language element
is detailed by formally denoting its set theoretic representation and the associated EBNF
rules representing the concrete syntax. Readers who would preferably like to make use of
the exact language definition or semantics (as given in Chapter 3) are strongly encouraged
to read through this chapter to pick up the subsequently applied definitions and notations.
Frequently used tuple notations are provided for future reference in Appendix A.

2.1 Notation

Standard set theoretic notation [51] is predominantly used in this work, such as union ∪,
intersection ∩, set difference \ and Cartesian product ×. The notation M = {x | ϕ(x)}
is a set builder which denotes a set M containing all those elements x of some specified
domain where a certain statement ϕ(x) is satisfied. In addition to these standard notations,
less common notations are revisited or introduced in this section.

Multisets

Multiple occurrences of elements within a group of objects might be addressed by tuples.
Due to the fixed order, indices have to be used to access a specific object. Dealing with
lots of indices is difficult and many cases are conceivable where no order is required. That
leads to the definition of multisets as introduced in [2, 127, 128]. A multiset behaves in a

27

2 LARES - FORMAL LANGUAGE DEFINITION

way similar to a set and can be defined as a tuple consisting of a basic set of elements and
a cardinality function providing the multiplicity of each element. The notation [a, a, b, c]

is equivalent to [a2, b1, c1], where the multiplicity is given by the superscript. Let M ∈
mset(X) denote a multiset of objects of the set X , m ∈k M then states that M contains
exactly k instances of elements m. A builder notation as it is defined for sets can also
be used to construct a multiset by elements x with cardinality k: M = [xk |ϕ(x, k)].
Operators on multisets are as straightforward as they are for sets, e.g. M ∪N is defined by
the union of the basis sets of M and N and the sum of their cardinalities.

The Sequence, Power Set, Option and Either Types

A tuple x ∈Xn is always of fixed length n. A sequence is introduced as a tuple of arbitrary
(finite) length with elements from M . The set of all finite sequences over M is defined as

Seq(M) = {(a1, ..., am) | m ∈ N, a1, ..., am ∈M} ∪ {()}

It holds that Seq(M) =
⋃
m∈NM

m and M0 = {()}. In this work, the ◦ operator is com-
monly used as a composition operator. The composition of two sequences is defined by
their concatenation. Thus, the concatenation function

◦ : Seq(M)× Seq(M)→ Seq(M)

is defined as (a1, ..., ak) ◦ (b1, ..., bl) = (a1, ..., ak, b0, ..., bl). Obviously Mk ◦M l = Mk+l

holds for k, l ∈ N. The power set is defined in the standard way, as the set of all subsets:

P(X) = {M |M ⊆ X}

An option contains an element (i.e. m = 1) of a set M or is empty (i.e. m = 0)

Opt(M) =
⋃

m∈{0,1}

Mm

Naming Convention and Projection of Attributes

To facilitate the access to the attributes of a tuple, an abbreviating notation is introduced.
Let X =

∏
i∈LAi, where

∏
denotes the crossproduct of the sets Ai and L is a set of

indices. Additionally, let a tuple x ∈ X be represented by (a1, . . . , a|L|). Each projection
πi : X→ Ai () maps to the i-th element of x such that πi(x) = ai. As an example, let A,
B and D be some arbitrary, but not explicitly defined sets which are now used to define
the universal set X = A×P(A)×B× Seq(D). An element x ∈ X is denoted as a tuple

28

2.1 Notation

of attributes (a,SA, b,LD). Each attribute is represented by an associated label where a
denotes an element of A, SA denotes a subset of A, b denotes an element of B and LD
denotes a list/tuple of elements of D. To access these attributes, their names are used
to denote their projection functions, e.g. for the attributed tuple x = (a,SA, b,LD), the
projection

• x.a = π1(x) maps to the 1st element of x,

• x.SA = π2(x) maps to the 2nd element of x,

• x.b = π3(x) maps to the 3rd element of x and

• x.LD = π4(x) maps to the 4th element of x.

The notation as it is used here is related to the tuple calculus as described in [48].

Capturing Recursive Tree Structures

As shown in Section 1.1, LARES is a language that is able to describe hierarchy. Thus,
abstract language elements have to be defined which allow constructing finite recursive
structures. Let E denote a recursive element. The following statement has to hold:

x ∈ E⇔ ∃n ∈ N : x ∈ En

It means that x can only be a valid model corresponding to E once it is contained by a
universal set of structures of depth n (i.e. x ∈ En). The set of hierarchies follows the
abstracted representation:

En = P(
n−1⋃
i=0

Ei) for n ≥ 1, where E0 = {∅}

P may also be substituted by Seq if the substructure requires an order or other mixed
forms. To give an example, an arbitrary tree structure which corresponds to the above
hierarchy is depicted. In contrast to Knuth’s trees [93] which grow downwards, this tree
grows upwards as shown in Figure 2.1. All leaf nodes are valid recursive elements since
they correspond to E0. Each substructure node is a valid element since it is contained by
the universal set of structures of depth n ∈ N.

Exceeding the pure structure, additional elements x ∈ X can be assigned to each node
inside the hierarchy:

En = P(
n−1⋃
i=0

Ei)×X and E0 = {∅} ×X

29

2 LARES - FORMAL LANGUAGE DEFINITION

∈ Ek

∈ Ek−1

...

∈ E1

∈ E0 ∈ E0

∈ E0 ∈ E2

∈ E1

∈ E0 ∈ E0

∈ E0

Figure 2.1: A LARES tree structure

From now on, recursive definitions will always underlie this scheme to ensure a sound set
theoretic formalisation. For the reader’s convenience, the indices are neglected. For this
purpose, let := be used to denote recursive definitions (as they appear due to the recursive
nature of Module definitions, Instance statements, expand statements and several common
sublanguage definitions) in order to implicitly define hierarchic structures. To give an
example, let the universal set of Module definitions be denoted by M. The following
definition may be given to specify the recursive nature of Module definitions. Hereby,

M := P(M)×X is synonymous to

M =
∞⋃
i=0

Mi, where Mn = P(
n−1⋃
i=0

Mi)×X and M0 = {∅} ×X

meaning that, in this case, the set M is defined as the union of all inductively defined tree
structures of arbitrary depth

⋃∞
i=0Mi with an assigned element x ∈ X at each node.

2.2 Concrete and Abstract Syntax of LARES

As it was announced in Chapter 1, an exhaustive formalisation of the LARES language
will now be provided with the help of the notations introduced in the preceding section.
The formal definitions will be twofold. On the one hand, the abstract syntax is specified
using set-theoretic and first-order predicate calculus notation. And on the other hand, the
concrete syntax is given by a sort of EBNF grammar based on the Xtext language [58] as
used for the LARES language implementation of the editor. It is an LL(k) grammar [92]
used by an LL parser in order to perform the recursive descent constructing the leftmost
derivations. To prevent infinite descent, left-recursive rules are disallowed.

30

2.2 Concrete and Abstract Syntax of LARES

2.2.1 The LARES Root Element

A LARES model consists of a System definition together with an arbitrary number of
Module and Behavior definitions. The universal set of LARES models is hence given by

LARES := P(B)×P(M)× I,

where B denotes the universal set of Behavior definitions (cf. Section 2.2.2), M denotes
the universal set of Module definitions and I denotes the universal set of instances (cf.
Section 2.2.3). Accordingly, a tuple (B,M, i1) ∈ LARES denotes a LARES specification.
Hereby, B is the set of Behavior definitions, M is the set of Module definitions and i1 ∈ I

is the system instance which the parser resolved in such a way that a Module definition
ms ∈M is already associated.

The concrete syntax will now be specified. The internal naming of the elements of the
abstract syntax tree (AST), which result from the application of the grammar rules, usually
corresponds to the notation of the abstract representation. For example, let B denote
all Behavior definitions parsed by stating B+=BehaviorDefinition, the corresponding
notation of the abstract representation is hence given by B. Hereby, the operator += adds
each abstract representation obtained by an application of the rule BehaviorDefinition
to B. The multiplicity of a rule’s application is specified by the operators +, * or ?, as
known from regular expressions.

The first rule which parses a LARES specification is deduced from the following, future
demands on LARES. Based on the future requirement to import other LARES specification
files that come without a specific System definition (i.e. serving like an imported model
library), the AST is constructed by using the given rule without distinguishing the System
definition from the other plain Module definitions:

LaresSpec : (B+=BehaviorDefinition | M+=ModuleDefinition)*;

The single System instance as denoted by the abstract formal representation therefore has
to be extracted while parsing and is hence not explicitly captured by the concrete syntax.

Identifier

Each abstract definition can be parametrised: The parameters which are statically defined in
the context of an instantiated definition, can be used (apart from serving as rates or weights)
inside expand statements or other expandable expressions (i.e. all expressions which allow
iterator expressions to be used). A number of resembling statements or expressions (inside
the expandable expressions) can be abbreviated by using index variables. This of course
requires a subsequent evaluation using the dependent parameters in order to obtain the

31

2 LARES - FORMAL LANGUAGE DEFINITION

expanded expressions. For this purpose, indexed identifiers are introduced. They can be
used for named statements (e.g. either by serving as a name for a named statement or by
referring to a named statement). The universal set of all indexed identifiers is defined as

ID := Σ+ × Seq(AE),

where Σ+ represents the set of valid labels and AE denotes the set of integer-valued
arithmetic expressions (defined in Section 2.2.4). An identifier can thus be denoted as a
tuple (l, I) ∈ ID, where l is a label and i ∈ I is an index which appears in form of an
arithmetic expression. The concrete grammar rule for specifying identifiers which may
include index variables is

ID : l = ident (’[’ I+=AE (’,’ I+=AE)* ’]’)?;

The concrete grammar keyword ident does hereby represent the parsing rule for all
standard identifiers, whereas Σ+ denotes the associated abstract representation.

Reference

Let the set of namespaces be given by NS := Seq(ID). The universal set of references to
a named statement is then defined by

Ref := NS× ID,

where the tuple (i, l) ∈ Ref denotes the reference i (addressing an instance via its name-
space) and l (addressing a named statement). The concrete grammar is given as follows:

Ref : : i+=ident ’.’ l=ident

Parameter Expression

The Module and the Behavior definition can be parametrised. The universal set of parame-
ters are defined by

PE := P(P),

where PE denotes all sets of parameters P := Σ+ ×Opt(AE) consisting of a label l and
an element e whose default value may optionally be specified in terms of an arithmetic
expression. The concrete grammar is determined by

PE : P (’,’ P)*;

P : l=ident (e=AE)?;

32

2.2 Concrete and Abstract Syntax of LARES

Definition Reference

The tuple (r, p) ∈ RefD := Σ+ ×PE represents a reference to a definition. Note that for
resolving a reference, the referred definition has to be in scope. Its concrete grammar is
given by

RefD : r=ident (’(’ p=ParamExpr ’)’)?;

2.2.2 Behavior Definition

This section will formalise Behavior definitions, whereas the subsequent section is going
to detail Module definitions. Since both Behavior and Module definitions employ expand
statements, two types of expand statements have to be defined.

Each of them may only contain statements which coincide with those allowed by the
context. For this reason, the formal definition of a Behavior or a Module definition is
split up, separating the body of statements in order to prevent redundancy in the language
definition.

Due to its simplicity, the Behavior definition is denoted at first. A Behavior definition is an
automaton comprising states and transitions. It is obvious that each definition requires a
name. The preceding chapter anticipated that each definition can be parametrised and the
body has to be separated to avoid definition redundancy when it comes to defining expand
statements. As a consequence, the universal set of Behavior definitions B is defined as

B := Σ+ ×PE×Bbody ×Ref.

A Behavior is a tuple (l, p, b, ic) ∈ B, where l denotes an unindexed label, p denotes
the parameter expression, b denotes the body of the Behavior definition and ic is the
initial configuration, which refers by default to the first occurring state of the body. The
concrete syntax does not explicitly require denoting the initial configuration, as the default
configuration is either implicitly defined by the first occurring state or it is derived during
the model instantiation which will be explained later. The corresponding syntax rule is
thus given by

BehaviorDefinition: l=ident ("(" p=ParamExpr ")")? b=BehaviorBody ;

As a next step, the Behavior body is defined. It serves as a container for statements. These
statements define the desired sequential behaviour terms of an automaton (consisting of
states and transitions). A body allows including an arbitrary number of expand statements,

33

2 LARES - FORMAL LANGUAGE DEFINITION

so that each one recursively contains a further Behavior body. The universal set of Behavior
bodies is thus defined as

Bbody := P(S)×mset(T)×P(Bexpand)

A behaviour body b ∈Bbody is denoted as a tuple (S,T,E), where S is the set of states,
T is the multiset of transitions and E is the set of expand statements for a Behavior body.
The sets of elements for S, T and Bexpand will be defined in the subsequent sections. The
corresponding concrete grammar rule applies further rules. These allow a modeller to
specify a number of states within a single expression or to specify several transitions
starting from a single source state at once. For this reason, the sS attribute of the following
rule denotes a set of State statements and msT denotes the multiset of Transitions statements
which in turn is a multiset of outgoing transitions.

BehaviorBody: "{"

(sS+=StateStmt | msT+=TransitionsStmt | E+=ExpandBehaviorStmt)*

"}";

In the following sections all statements allowed inside a Behavior body are formally intro-
duced. Note that the syntax rules StateStmt and TransitionsStmt construct sequences
of states and transitions respectively. The union of all contained elements contained by sS

or msT yields a datatype which corresponds to S or T respectively.

The State Statement

In order to start with the simplest element of the abstract representation, the named
statement State is introduced which is represented by a single identifier. The universal set
of State statements is thus defined as:

S := ID

In contrast, the concrete grammar allows modellers to specify a number of states within a
single State statement by denoting a comma-separated list of names:

StateStmt: "State" S+=State ("," S+=State)*;

State: name = ID;

34

2.2 Concrete and Abstract Syntax of LARES

The Transitions Statement

Following Chapter 1, several kinds of transitions can be defined within a Behavior defi-
nition, i.e. unguarded transitions which were not assigned any guard label and guarded
transitions for whom an explicit guard label was defined. Each transition has a source and
a target statement. A transition statement may also contain information about the timing
distribution of that transition. The set of transitions is given by

T := S×Opt(ID)×Opt(D)× S.

A transition t ∈ T is denoted by the tuple (s, g, d, t), where s refers to a source state, g
may contain a guard label, d ∈ Opt(D) may contain a distribution and t refers to the target
state. Note that D := Ddelayed ∪Dimm. Thus, a distribution (type, value) ∈ D is either
delayed by following a delay time distribution contained by Ddelayed, or immediate, by
abiding to a discrete distribution with an assigned weight as an element of Dimm. Both
Ddelayed and Dimm will be introduced subsequently. The concrete grammar is split into
two separate rules:

TransitionsStmt: "Transitions" "from" s = ID (transitions += Transition)+;

Transition: ("if" (’<’ g=ID ’>’)? "->" t=ID ("," d=Distribution)?;

Hereby, the first rule parses a source state of a number of transitions arising from the
iterative application of the second rule. The second rule constructs transitions which
consist of the parsed source state, a target state, the assigned distribution and an optionally
defined guard label. An if <true> is equivalent to the case in which no guard label
g is defined. If no distribution is explicitly specified, it will depend on the context of
the specification which form the interpretation will ultimately take: The distribution type
predetermined by its interaction partner will then be implicitly chosen. If there is no partner,
the default distribution type will be immediate with weight 1. A specified distribution is
either exponential (assigned with a rate) or else immediate (assigned with a weight). The
syntactical rule is defined by

Distribution: ("delay" Exponential) | Immediate;

If the delay keyword is present, the Exponential rule will be applied. Otherwise,
the Immediate rule will take action. The distribution types are captured by the set
Dtypes = {immediate,exponential}. The set of immediate distributions are defined
as Dimm := {immediate} ×AE, where each element contains a weight attribute. The
corresponding concrete syntactical rule is

Immediate: "weight" w=AE;

35

2 LARES - FORMAL LANGUAGE DEFINITION

Currently, the set of delaying distributions Ddelayed solely encompasses exponential dis-
tributions. It is defined as Ddelayed := Dexp, where Dexp := {exponential} ×AE. The
concrete syntax for a delay expression and the exponential distribution is

Exponential: "exponential" r=AE;

The contained arithmetic expressions for the rate or the weight will later be evaluated to a
value of the domain of positive floating point numbers (denoted by [[AE : R≥0]]).
Remark: In [138] other non-exponential probability distributions (e.g. deterministic

or Weibull distributed firing times), timer variables and rules to modify them
were proposed. The probability and the duration of a timed transition (i.e. a
transition that is attributed with a timer variable) is determined by the current
value of a timer. However, these aspects are currently not part of LARES.

A set of transitions T ⊆ T can be partitioned depending on the existence of a defined guard
label into the set of guarded transitions Tg and the set of unguarded transitions Tu:

Tg := {t ∈ T | t.g 6= {()}} and Tu := T \ Tg

A guarded transition (s, (g), d, t) ∈ Tg or an unguarded transition (s, (), d, t) ∈ Tg can be
further distinguished by the currently available distributions d. Different notations are
provided for these cases:

d = (exponential, λ) d = (immediate,w)

(s, (g), d, t) s
〈g〉,λ−→ t s

〈g〉,w
99K t

(s, (), d, t) s
λ−→ t s

w
99K t

The definition of guarded transitions underlies a restriction: All guarded transitions within
a Behavior definition that provide the same guard label must have an equal distribution
type. Otherwise, a Behavior definition is invalid. This restriction was introduced in order
not to complicate the SPA transformation, as a significantly larger amount of pieces of
local information would be required.

The expand statement inside a Behavior definition

An expand statement enables a modeller to easily replicate statements within a body.
Instead of writing a number of similar or repetitive statements, an abbreviated notation
can be made by applying the expand statement. Figure 2.2 shows an example in which,
instead of explicitly defining three states inside a Behavior’s body, the expand statement is
used to replicate its inner statement by a variable i that iterates over a given set expression

36

2.2 Concrete and Abstract Syntax of LARES

State s [1]
State s [2]
State s [3]

=⇒
expand (i in { 1 . . 3 }) {

State s [i]
}

Figure 2.2: Use of an expand statement

{1..3} called iterator expression. The set of expand statement for a Behavior definition is
defined as

Bexpand := IE×Bbody,

where (ie, b) ∈Bexpand denotes an expand element tuple containing an iterator expression
ie, which is detailed in Section 2.2.4, and a Behavior body b. The corresponding grammar
rule is given by

ExpandBehavior: "expand" ie=IE b=BehaviorBody;

2.2.3 Module Definition

As it was in Chapter 1, a Module definition may inherit from visible Behavior or Module
definitions by the principle of Delegation. For each delegate an alternative name can be
specified. A Module definition resembles a Behavior definition by the fact that it can
be parametrised and allows expand statements to be employed inside its body. Apart
from inheritance, a Module definition differs from the Behavior definition by providing
means for the instantiation of subcomponents and the definition of interactions among the
contained instances.

To illustrate a Module definition, a snippet from the FTN example introduced in Section 1.2
is used. There, a Module Network is defined by a single undefined parameter numLink and
an inherited Behavior definition Repair comprising the alternative name R. The Module
body is not detailed for reasons of brevity:

Module Network (numLink) : R ← R e p a i r { . . . }

In accordance with the preceding example, the formal representation of the set of Module
definitions is

M := Σ+ ×PE×DE×Mbody,

where a tuple (l, p, d, b) ∈M denotes the name l of the module, the parameter expression
p, the delegate expression d and the Module’s body b. The concrete grammar is given by

ModuleDefinition: l=ident ("(" p = DefinitionParameters ")")?

(":" d = Delegates)? b=ModuleBody;

37

2 LARES - FORMAL LANGUAGE DEFINITION

Following the approach to implement inheritance by the principle of Delegation, the set of
delegate expressions is captured by

DE := P(I)

Hereby, each delegate expression may capture a number of references. Each reference to
an abstract definition will later instantiate a Delegate. For a sound specification of multiple
delegates having identical definition types, the ability to set a unique name is required.

In order to encompass all instantiations of Module and Behavior definitions (I := IB ∪ IM),
the set of Behavior instantiations IB and the set of Module instantiations IM are defined:

IB = ID× (RefB ∪B)×Opt(Ref) and IM = ID× (RefM ∪M)×Opt(Ref).

A single instance is denoted by a tuple (l, t, ic) ∈ I, where l is the unique identifier of
the instance to be constructed from a definition reference t, where t.r is the label of
the definition that is parametrised by t.p, and ic may contain an initial configuration.
After resolving the reference type (cf. Section 3.3.1), the reference is substituted by the
parametrised definition such that either t ∈ B or t ∈M holds. The following two rules
define the concrete grammar of delegate expressions:

Delegates: D += Delegate ("," D += Delegate)*;

Delegate: (u=ID "<-")? RefD ("initially" ic=Ref)?;

The name of the referenced definition will implicitly be the unique identifier u if it is not
explicitly differently stated by the model specification. Moreover, a reference to an initial
configuration (e.g. referring to a state or an Initial statement) can be declared optionally.

Remark: It might be a future desire to abbreviate the model description such that all
interface statements (i.e. the named statements, such as State, Condition and
forward statements or defined guard labels) of each delegate instance can be
directly addressed. For this purpose, implicit referable statements which yield
a one-to-one mapping to these interface statements over the current Module
instance have to be introduced. If there is a name clash by inheriting from
two definitions having equally named statements, a mapping is required to
uniquely address the interface statements of the delegates in order to settle
this conflict. This feature is currently not implemented in LARES because
it comes with concerns over the modularity of a model (an interface would
depend on the inner structures and thus the substitution of inner elements
might change the interface).

38

2.2 Concrete and Abstract Syntax of LARES

Finally, the Module body b ∈Mbody is formally defined. It may contain Behavior or
Module definitions, statements for instantiations, for interactions among the instances and
the initial configuration. The universal set of Module bodies is thus given by

Mbody := P(B)×P(M)×
P(IM)×P(C)×mset(G)×P(F)× Seq(IC)×P(Mexpand)×P(Prob).

A body is denoted as (B,M,I,C,G,F, IC,E,P) ∈Mbody, where B is the set of Behavior
andM the set of Module definitions. Both of them will be visible within the subtree defined
by the body, unless they are overwritten by other definitions with equal names. Moreover,
I is the set of Instance statements which determine the Module substructure exceeding the
one constructed by the delegates. C contains the set of Condition statements, the multiset
G contains the guards statements and F represents the set of forward statements by which
the interaction among the instances and delegates can be described. Finally, IC is a list
(allowing the prioritisation) of Initial configurations, E is the set of expand statements
defined at the body layer of the module, and P is the set of Probability statements. The
concrete grammar rule for the module body is provided by:

ModuleBody:

body?="{" (

B+=BehaviorDefinition | M+=ModuleDefinition | I+=InstanceStmt |

C+=ConditionStmt | G+=GuardStmt | F+=ForwardStmt |

IC+=InitialStmt | E+=ExpandModuleStmt | P+=ProbabilityStmt

)* "}";

In the following, the types of statements contained by Module bodies will be formalised.

The Instance Statement

Each module may define a number of subinstantiations, which ultimately implies an
instance tree. In the beginning of Section 2.2.3, the abstract representation of Module in-
stantiations IM is defined, which includes the instantiation of delegates. The first definition
is now straightforwardly used to represent Module instantiations by Instance statements.
In contrast to an instantiation of a delegate, an explicit definition of an instance name is
mandatory. Equally, the parametrisation will have to be specified if that is required by the
Module definition. Furthermore, an initial configuration may explicitly be defined which
directly refers to a State of a Behavior instance or to a specific Initial statement offered by
the Module to be instantiated. Else, in the case of absence of an explicit addressing of an
initial configuration, the implicit default Initial, i.e. the first occurring one, will be taken.
The associated concrete EBNF rule is given by

39

2 LARES - FORMAL LANGUAGE DEFINITION

InstanceStmt:

"Instance" l=ID "of" t=ModuleReference ("initially" ic=Ref)?;

A named statement (such as an Initial, Condition and forward statement) inside the assigned
module definitions of a subinstances can be addressed by providing the instance name and
the name of the statement. The initial configuration specified by the initially keyword
refers to an Initial statement. As the Instance statement already defines the name of the
instance, the reference to the Initial statement is therefore not allowed to bear the name
of the instance. The reference does not explicitly denote the name of the instance, as this
information is implicitly given by the Instance statement.

The Condition Statement

A Condition statement assigns a name to a condition expression which may refer to other
Condition statements (that are either locally defined or by the associated module definition
of a child instance) or to states (which are provided via instantiated delegates). Condition
expressions can be translated such that they only address state variables provided by the
instantiated behaviours at the leaves of the instance tree. They will do so by resolving the
indirections via references to Condition statements as illustrated by Figure 2.3.

As it was previously mentioned, the referred conditions can either be in the local scope or
referenced indirectly over an instance. A state variable can be referred via an instantiated
behaviour. Referring to arbitrary levels inside a subtree is not allowed. Except from
referring to local conditions (belonging to the local layer), it is solely possible to refer to

FTN

Condition srs = p[1].pfailed | p[2].pfailed | n.nfailed

p[1]
...

p[2]
...

n

Condition nfailed = l[1].lfailed & ...

l[1]

Condition lFailed = BLink.lfailed

BLink
...

Figure 2.3: FTN: Indirections to states of Behavior instances via references to Condition
statements (depicted along the instances FTN, n, l[1] and BLink)

40

2.2 Concrete and Abstract Syntax of LARES

states of the Behavior instances belonging to the local delegates or to Condition statements
provided by local subinstances (belonging to the adjacent layer of child instances).

In Section 2.2.4, the universal set of condition expressions CE will be defined. A condition
expression CE is a Boolean expression, extended by specific atomic elements referring
to states or to Condition statements. The universal set of Condition statements can be
captured by

C := ID× CE

A single statement is represented by the tuple (l, c) ∈ C, where l denotes the name of the
condition and c its assigned condition expression. The concrete grammar is given by:

ConditionStmt: "Condition" l=ID "=" c=ConditionExpression;

The guards Statement

Apart from the informal description given in Section 1.1, a guards statement may not only
be composed of a single generative condition expression (enabling the guards statement
to trigger a reaction) and a reactive expression (specifying the reactive behaviour to be
triggered). Instead of a single reactive expression, it may also comprise a number of so
called conditional reactives. A conditional reactive is a reactive expression that will only
take action if a certain restrictive condition is satisfied.

An example guards statement comprising a number of conditional reactives is given to
illustrate this concept:

A. a guards {
sync {A. 〈 b 〉 , B . 〈 b 〉 } i f !A. x & B . x
B . 〈 b 〉 i f !A. y
A. 〈 b 〉

}

The statement has a generative condition A.a and three conditional reactives. This means
that if instance A satisfies some Boolean variable referenced by a, a reaction will be evoked
that was predetermined by the three conditional reactives. These conditional reactives may
constitute a choice between the possible reactions described by each conditional reactive.

!A.x&B.x
true false

!A.y
true sync{A.〈b〉,B.〈b〉}+ B.〈b〉+ A.〈b〉 B.〈b〉+ A.〈b〉
false sync{A.〈b〉,B.〈b〉}+ A.〈b〉 A.〈b〉

Table 2.1: Arising choices between several reactions depending on the given restrictive
conditions

41

2 LARES - FORMAL LANGUAGE DEFINITION

A restrictive condition is specified inside the first two conditional reactive, whereas the
third one is always true. These restrictive conditions hereby induce 22 cases shown in
Table 2.1. They arise due to the combinations of true/false evaluations of the restrictive
conditions. As the third conditional reactive is always satisfied, it does not contribute
to the number of combinations. As a consequence, the reactions induced by the reactive
expression A.〈b〉 are always eligible, whereas it depends on the evaluation of the conditions,
whether the reactions induced by sync{A.〈b〉,B.〈b〉} or B.〈b〉 are competing with A.〈b〉. If
both restricting conditions are fulfilled, each of their assigned reactive expressions will
imply some ways to behave which are in choice to each other and to A.〈b〉. A choice
between a number of reactive expressions is subsequently denoted by the operator +.

The reactive expression may apply different kinds of operators such as maxsync, sync or
choose, where each imposes a special (informally described) semantics:

• maxsync: ”The transitions of those guard label variables that can be satisfied will
react synchronously.“

• sync: ”All addressed guard label variables have to be satisfied such that the associ-
ated transitions react synchronously.“

• choose: ”Exactly one addressed guard label variable is satisfied such that an
associated transition reacts.“

Whenever the actual reactive behaviour differs from the evaluation of the required behaviour
specified by the reactive expression, no reaction will arise.

Note that a reactive expression will be translated to a Boolean expression later on. Hence,
some properties are exemplified below

• As LARES is a descriptive language, all operators are commutative, e.g. sync(a,b,c)
is equivalent to sync(b,a,c).

• Due to the Boolean logic interpretation of sync and maxsync by ∧ and ∨ respectively,
both operators are associative.

• Furthermore, sync and maxsync are distributive over a choice. For illustratory
purposes, let + denote a choice between a and b. The term sync(a+b,c) is then
equivalent to sync(a,c) + sync(b,c).

• The n-ary choose operator cannot be expressed in terms of Boolean logic by a
composition of binary xor operators (as xor is not associative). To overcome this
obstacle, an explicit translation semantics will be defined in an upcoming section of
this work.

42

2.2 Concrete and Abstract Syntax of LARES

Furthermore, other interesting properties (e.g. that choose is not distributive over maxsync)
are not further detailed here. Nevertheless, the choose operator has to be used with care
due to its non-associativity property.

Let RE denote the set of reactive expressions (as defined afterwards in Section 2.2.4). A
guards statement can be formally denoted as a tuple (g,CR,ns), where g ∈ CE denotes the
generative condition and CR ∈ CR is a multiset of conditional reactives, whose universal
set is given by CR := multiset(CE×RE). Using a multiset instead of a usual set is
important since multiple identical conditional reactive may be specified. Hereby, the
namespace attribute ns is only required to later identify the origin of a guards statement.
The universal set of guards statements is thus given by

G := CE× CR×NS

Each conditional reactive cr ∈ CR can be represented by the tuple (c, r), where c denotes
the condition and r denotes the reactive part. The corresponding grammar rule is

GuardStmt: g=CE "guards" (r=RE_atom | ("{" (CR+=CndReact)+ "}"));

Note that this rule allows specifying a single reactive expression or a list of conditional
reactives. A conditional reactive is thus implicitly constructed in which the restrictive
condition c is true and r is set by the specified reactive expression to match the abstract
syntax. The grammar rule for a conditional reactive is given by

CndReact: r=RE_atom ("if" c=CE)?;

The forward Statement

Since the visibility restriction only allows users to refer to the adjacent levels, forward
statements are introduced as a mechanism to forward the reactive triggering events to the
instantiated behaviours. A forward statement defines a forward label which can be used in
the same way as a guard label of a transition and can hence be triggered by a reference
within a reactive expression. A triggering event will be considered if the auxiliary global
condition of the forward statement and at least one restrictive condition of its conditional
reactives are satisfied. Depending on these conditions, different reaction arise. A forward
is similar to a guards statement and therefore the universal set of forward statements is
defined as

F := CE× ID× CR.

A single forward is represented by a tuple (c, l,CR) ∈ F, where c denotes the global
auxiliary generative condition andCR is the set of conditional reactives (see the definitions

43

2 LARES - FORMAL LANGUAGE DEFINITION

FTN

Instance S1 of Sensor

Instance S2 of Sensor

Initial <i1> = S1.I, S2.I, ...

Initial <i2> = S1.S, S2.S, ...

S1

Initial <I> = SUM.Intense

Initial <S> = SUM.Degr

SUM
...

S2

Initial <I> = SUM.Intense

Initial <S> = SUM.Degr

SUM
...

rm

...

Repair
...

C
...

Figure 2.4: Modified MS example: Providing initial configurations

as given for the guards statement). It differs from a guards statement by comprising a
forward label l. The corresponding concrete grammar is defined by the following rule:

ForwardStmt:

(’if’ c=CE)? ’forward’ l=ID (r=RE | ("{" (CR+=CndReact)+ "}"));

);

This rule constructs the abstract syntax tree by implicitly assuming that a conditional
reactive has a true condition in case that only a single reactive expression instead of an
explicit list of conditional reactives is provided.

The Initial Statement

Each Behavior instance needs to be provided with an initial configuration. A Behavior’s
initial configuration may, apart from the locally defined initial state, be configured at
arbitrary level within the model hierarchy. Therefore the Initial statement is introduced to
the language.

This statement gives a modeller the opportunity to specify several Initial statements inside
each Module definition in order to provide a choice between different initial configurations.
An initial configuration either refers to states of Behavior instances or to Initial statements
provided by the child instances. In case of addressing a specific Initial statement of a
Module instantiation, its configuration is recursively propagated into the instance tree. The
overall goal is to ultimately provide an initial state for each instantiated behaviour at the
leaves of the instance tree of the model.

The example illustrated in Figure 2.4 shows the FTN definition which provides two Initial
statements. If i1 is chosen for the instantiation of FTN, the subinstances S1 and S2 will
be configured by the Initial statement I. By that, Intense is set as the initial state for the

44

2.2 Concrete and Abstract Syntax of LARES

associated behaviour instance SUM for both instances. Otherwise, if i2 had been addressed,
the associated behaviours would ultimately have been instantiated with Degr as their initial
state.

The universal set of Initial statements is given by

IC := ID×P(Ref).

An Initial statement can then be represented by the tuple (l, IC) ∈ IC comprising a label
l and a set of references IC referring to either another Initial statement within a module
instance or a State statement within an instantiated behaviour. The concrete grammar is
denoted as follows:

InitialStmt: ("Initial" l = ID)? ("=") IC += Ref ("," IC += Ref)* ;

Note that if no explicit reference to an Initial statement for a Module instance is defined,
the first one specified inside the Module will be default. If no Initial statements are defined,
it will lie in the responsibility of a Module’s subinstances to specify their (default) initial
configuration. Since a Behavior instance always defines a default initial state which may
be overridden by an external configuration, a complete initial configuration of a system is
guaranteed.

The Probability Statements

In essence, a LARES model is specified in order to determine quantitative measures of the
modelled system. As LARES deals with stochasticity, the language provides mechanisms
to denote desired probability measures. Both steady state and transient state probability
measures can be defined:

Prob := ProbS ∪ProbT , where ProbS := ID× CE and ProbT := ID× CE×AE

A steady state probability measure can hence be represented by a tuple (l, c) ∈ ProbS and
a transient probability measure can be represented by a tuple (l, c, t) ∈ ProbT . Hereby, a
measure denotes a name l for the measure and specifies a set of states by a conditional
reactive c. The transient analysis method will be used if a time interval t is given, otherwise
the steady state analysis will be performed. The concrete grammar rule is given by

ProbabilityStmt:

"Probability" name=ID "="

(type="Transient" "(" c=CE "," t=AE ")") |

(type="Steadystate" "(" c=CE ")");

45

2 LARES - FORMAL LANGUAGE DEFINITION

The expand Statement

An expand statement enables modellers to easily generate repetitive statements within a
body. Similar to what has been shown for the body of a Behavior definition, a Module
body also provides an expand statement as a means to avoid writing a number of similar
repetitive statements. The universal set of expand statements inside module bodies is given
by

Mexpand = P(IE)×Mbody,

where (ie, b) ∈Mexpand represents a single expand statement.

The abstract representation of the sets of iterator expressions IE is formally defined in
Section 2.2.4. Each iterator evaluation defines a parameter that is used to generate the
repetitive statements comprising parametrisable identifiers specified in the body of the
Module. The associated grammar rule is given by

ExpandModuleStmt: "expand" iters=IE b=ModuleBodyRestr;

For modularity reasons and due to the fact that Module and Behavior definitions are already
parametrisable, the environmentally defined variables are not required to have an impact
on the definition. For this reason, the concrete grammar rule explicitly allows the body
of an expand statement to contain statements (i.e. Condition, forward, guards, Instance,
Initial, Probability and expand), whereas it disallows the specification of further Module
and Behavior definitions:

ModuleBodyRestr:

body?="{" (

I+=InstanceStmt |

C+=ConditionStmt | G+=GuardStmt | F+=ForwardStmt |

IC+=InitialStmt | E+=ExpandModuleStmt | P+=ProbabilityStmt

)* "}";

2.2.4 Common Sublanguages and their Adaption to LARES

Within the preceding sections, several expressions were used that have not been formalised
yet. All of these can be seen as common sublanguages embedded within LARES. They
can be separated into different groups and will be detailed in the subsequent sections:

• Arithmetic expression: Used in parameter expressions or within set expressions

• Set expression: Used within expand statements or some atomic elements of Boolean
expressions or reactive expressions

46

2.2 Concrete and Abstract Syntax of LARES

• Iterator expression: Used to construct parametrised statements of evaluations to
avoid writing similar lines of code; used by expand statements and by operators
within condition and reactive expressions

• Boolean expression: An abstract Boolean expression from which specialisations can
be derived, e.g. condition and reactive expressions

• Condition expression: A Boolean expression which is specialised by atomic elements
referring to state variables, as used in Condition statements, conditional reactives or
as generative condition within guards statements

• Reactive expression: A Boolean expression which is specialised by atomic ele-
ments to specify the propagation along the paths through the instance tree, thereby
addressing some required behaviour to be executed simultaneously

Arithmetic Expression

Arithmetic expressions are extensively used within LARES. A leaf element might either
refer to a label of a parameter defined inside a definition or be an explicit value within the
domain of integer or floating point numbers. The distinction between integer-typed and
floating-point numbers is omitted for reasons of convenience and subsequently subsumed
by real numbers R. Furthermore, the standard operators are used to perform calculations.
Within this section, the formal definition of the abstract and concrete syntax of arithmetic
expressions as used within LARES is specified.

For this purpose, a number of syntactic categories are defined, i.e. a ∈ AE, n ∈ R and
x ∈ ID. The arithmetic expression language as used in LARES applies a number of
binary operator symbols OP = {+,−,∗, /,%}: + for addition, − for subtraction, ∗ for
multiplication, / for division and % for the modulo operation.

An arithmetic expression a ∈ AE is defined as follows:

a := n |x | (a1 + a2) | (a1 − a2) | (a1 ∗ a2) | (a1/a2) | (a1%a2)|(a) , where a1, a2 ∈ AE

Each expression a ∈ AE may be composed of two arithmetic expressions using one of
the above operators or else some atomic element, i.e. a number n ∈ R or some variable
x ∈ ID which will be replaced by a certain value or arithmetic expression later-on.

When considering the atomic elements A = R ∪ ID, the universal set of arithmetic
expressions AE (parametrised by A) unites all recursive structures defined by

AEAn =
n−1⋃
i=0

AEAi ×OP×
n−1⋃
i=0

AEAi for n ≥ 1, where AEA0 = A

47

2 LARES - FORMAL LANGUAGE DEFINITION

Following the notation defined in Section 2.1, the preceding definitions are used to denote
arithmetic expressions in LARES:

AE := (AE×OP×AE)∪A

For example, a valid abstract representation of an arithmetic expression ((5 + 3) ∗ 2) is
represented by

((5 + 3) ∗ 2) ∈ AEA
2

(5 + 3) ∈ AEA
1

5 ∈ AEA
03 ∈ AEA

0

2 ∈ AEA
0

An arithmetic expression has to be decomposed in order to be evaluated. The attributed
tuple representation for an element a ∈ AEAn , where n > 0, is given by (l, op, r) which is
composed of a left-hand-side operand l, a right-hand-side operand r and an arithmetic
operator op. If a ∈ AEA0 , the element a will be either a number or an identifier.

The concrete syntax of an arithmetic expression is defined as follows. The grammar is split
up into several rules in order to prevent left-recursion:

AE: l=AE2 (ops+=(’+’|’-’) R+=AE2)*;

AE2: l=AE3 (ops+=(’*’|’/’|’%’) R+=AE3)*;

AE3: ’(’ AE ’)’ | AEAtom

AEAtom: ID | Numeral

The order of the above rules defines the precedence. Hereby, parentheses have priority
over e.g. *, and * has priority over +. The EBNF metasyntax allows stating repetitions
within one line by the * operator. Thus, all operator/operand definitions with the same
precedence defined at the same hierarchy level of the arithmetic expression are captured
within ops and R. The corresponding binary tree structure mapping, e.g. for the arithmetic
expression 6− 2 + 3, goes from left to right in contrast to 6− 2 ∗ 3:

((6− 2) + 3)

3(6− 2)

26

6− 2 ∗ 3

2 ∗ 3

32

6

48

2.2 Concrete and Abstract Syntax of LARES

Set Expression

Set expressions are used in the iterator expressions of LARES to specify operations on sets
of elements. A set expression s ∈ SE is defined by

s = SEatom | (s1 + s2) | (s1 \ s2) | (s1 ∗ s2) , where s1, s2 ∈ SE.

Set expressions are defined by a set of atomic elements and inductively by expressions
composed of a binary operator and two sub-expressions. Hereby + denotes the union, ∗
represents the intersection of two sets and \ is the set difference.

Let the universal set of Boolean (infix) operators for set expressions be OP = {+,∗,\}.
The universal set of set expressions is defined by applying the notation provided in Section
2.1 in order to capture the inherent recursive nature of the expression:

SE := SEatom ∪ (SE×OP×SE)

Hereby, SEatom represents the atomic elements of a set expression. In LARES, specific
specialisations of the atomic elements have been defined: A set expression comprises
atomic leaf elements such as arithmetic expressions as well as elements specifying a certain
range.

SEatom := SErange ∪SEset, where SErange = AE×AE and SEset = P(AE)

The concrete syntax of a set expression is as follows. In order to prevent left-recursion, the
grammar is split up into several rules:

SE: l=SE2 (op=("+","*","\" R+=SE2)*;

SE2: ’(’ SE ’)’ | SEAtom

SEAtom: SESet | SERange

SESet: ’{’ elem+=AE (’,’ elem+=AE)* ’}’

SERange: ’{’ start=AE ".." end=AE ’}’

Hereby, the order of rules define the precedence (which allows users to omit explicit
parenthesis, so that they can introduce an order). Union, intersection and set difference
operators of set expressions are of equal order in terms of precedence. Thus, the use of
parentheses is the only safe way to denote a specific order regarding the operations. An
expression such as given by {1..3} ∗ {2..5} \ {2} is evaluated from left to right as shown
in Figure 2.5.

49

2 LARES - FORMAL LANGUAGE DEFINITION

{1..3} ∗ {2..5} \ {2}

{2}{1..3} ∗ {2..5}

{2..5}{1..3}

Figure 2.5: Set Expression Evaluation

Common Iterator Expression

In LARES, iterator expressions are used in expressions that expand their body which is
composed of other expressions. Hereby, an iterator iteratively defines a parameter which
is used for each evaluation of the associated body.

To illustrate the use of iterator expressions, two examples are extracted from the models
presented in Chapter 1:

AND (i in {1 .. numLink }) l [i] . c F a i l e d
expand (i in {1 .. 2 }) { Instance p [i] of P r o c e s s o r }

A more sophisticated expression comprising several iterators within one expression is
denoted by

AND (i in {1 .. 3} , j in { i . . . 3}) l [i , j] . c F a i l e d

A set of tuples arises by the cross-product of the given set expressions by evaluating the
above statements, so that each tuple (i, j) represents a combination of parameter definitions
which are iteratively used to evaluate the body. Regarding the given example, the set of
tuples is given by

(i, j) ∈ {(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)}.

A single iterator expression consists of a set of iterators. To give a formal notation, the
universal set of iterator expressions can be represented by the set IE := P(I). The universal
set of iterators is given by I := {(l, s) ∈ ID×SE}, where each iterator is composed of a
variable identifier l and a set expression s. The concrete syntax is given by

IE: ’(’ I+=Iterator (’,’ I+=Iterator)* ’)’;

Iterator: l=ID "in" s=SE;

50

2.2 Concrete and Abstract Syntax of LARES

Common Abstract Boolean Expression

A Boolean expression is a type of propositional calculus in which atomic elements represent
Boolean variables and a set of logical operators (e.g. &, |, etc) can be used for binary
composition of arising subexpressions. The evaluation of such an expression maps to a
Boolean value, as expected by its name.

In LARES, Boolean expressions are used to make assertions on the state of a (sub)system.
Each of them may serve as a criterion for a subsequent reaction and is thus called generative
condition expression. Depending on the context of their usage, an atomic element either
corresponds to a specific state of an instantiated behaviour or to another proposition
variable defined by another Condition. If a certain state specified by a generative condition
expression is reached, a number of addressed reactions will be simultaneously triggered.
These reactions may also be restricted.

It is another sort of application when a reactive expression for forward or guards statements
is specified: For this purpose, a Boolean expression is specialised by specific atomic
expressions as leaf nodes. These atomic expressions are of recursive nature and provide
specific operators. The abstract representations of forward and guards statements are
defined in order to capture these reactive (Boolean) expressions. The LARES grammar,
by contrast, only allows defining a single atomic reactive expression in the beginning, for
reasons which will be given detailed information on later in this thesis.

A Boolean expression b ∈BEA (parametrised by some atom-type A) is defined as follows:

b := a | (b1|b2) | (b1&b2) | (¬b3) , where b1, b2, b3 ∈BEA

The given abstract syntax denotes atomic elements a ∈ A, binary infix operators (& and |)
and a unary negation operator (¬).

The universal set of Boolean expressions BEA represents the union of all recursive
structures defined by

BEAn =

(
n−1⋃
i=0

BEAi

)
× {|,&} ×

(
n−1⋃
i=0

BEAi

)
∪ {¬}×

n−1⋃
i=0

BEAi , where BEA0 = A

Following the notation defined in Section 2.1, this definitions can equivalently be stated as

BEA := BEA × {|,&} ×BEA ∪ {¬}×BEA ∪ A

A left recursive definition is again not allowed in order to specify the concrete syntax
definition. It is therefore split up in a number of rules that also define the precedence of its
application:

51

2 LARES - FORMAL LANGUAGE DEFINITION

BE: l=BE2 (ors+=BE_or)*;

BE_or: (’|’ | ’OR’ | ’or’) r=BE2;

BE2: l=BE_atom (ands+=BE_and)*;

BE_and: (’&’ | ’AND’ | ’and’) r=BE3;

BE3: (neg?=(’!’ | ’NOT’ | "not"))? (e=BE_atom | "(" e=BE ")")

The hereby defined precedence priority for each operator is given by () > ! > & > |. Note
that BE atom still remains to be defined to the specific purpose depending on the context.

Remark: To distinguish the syntactical rules for condition expressions and reactive
expressions (as defined in the subsequent paragraphs), the rules of the common
Boolean expressions have to be replicated for both expressions such that each
occurrence of BE is substituted by CE for the condition expression or by RE for
the reactive expression.

Condition Expression

A condition expression is a specialisation of a Boolean expression that refers (via its atomic
elements) to either states of Behavior instances or to Condition statements (that are defined
locally or by other instances). A condition reference thus consists of an optional reference
to an instance and a reference identifier to the addressed Condition or State label. To
illustrate which kinds of atomic elements have to be considered for a condition expressions,
two statements of the running examples introduced in Chapter 1 are cited:

Firstly, the MS example specifies a statement which contains a condition expression
notifying the system whether the second redundancy structure is no more fulfilled:

n o t C . RS1 & n o t (2 oo {S1 . good , S2 . good , S3 . good , S4 . good })
guards C . 〈 r s 2 f 〉

Hereby, references to all four sensors, encapsulated by an operator which states that at
least two out of all four sensors have to be in good shape, assert on the question whether
the second phase will also have failed. The reference rs2f triggers a guard/forward label
in case that the answer to that question will be positive.

Secondly, a Condition statement can be found in the FTN example. It consists of an
expression which conjuncts all link states l[i] arising iteratively by the expandable operator
expression:

Condition n f a i l e d = AND(i in {1 .. numLink }) l [i] . c F a i l e d

52

2.2 Concrete and Abstract Syntax of LARES

These two examples require defining a number of atomic elements for a condition expres-
sion:

• If a condition reference (i, c) ∈RefC = Ref refers to a local condition x, the optional
reference i will remain empty, whereas the reference label c will be set to x. If it
refers to a remote forward or to a state inside a behaviour instance, its optional
reference i will also be set to the referred instance identifier. The corresponding
grammar rule is given by:

RefCond: (i=ID ’.’)? c=ID;

• Also n-ary & , | and oo operators can be used, where sets of condition references
are considered. Similar to expand statements in which similar repetitive expressions
can be abbreviated, the iterator expressions can be used to operate on a body, i.e. a
given set of reference operands. Therefore, RefSetC =Opt(IE)×P(RefC) defines
the abstract representations of expandable expressions. Its concrete syntax rule is

RefCondSet:

(ie=IE)? (R+=RefCond | ’{’ R+=RefCond (’,’ R+=RefCond)*’}’);

These atomic (n-ary) operator expressions are denoted as

AopC = {&, |} ×RefSetC︸ ︷︷ ︸
for & and |

∪ N×RefSetC︸ ︷︷ ︸
for oo

.

and their concrete syntax is given as follows

RefCondAnd: ’AND’ R=RefCondSet

RefCondOr: ’OR’ R=RefCondSet

RefCondOO: x=AE ’oo’ R=RefCondSet

This implies that AC = AopC ∪RefC captures atomic elements of condition expressions.
The associated syntactical rule is given as follows:

CE_atom: (RefCond | RefCondOr | RefCondAnd | RefCondOO);

Finally, a condition expression is defined as a specialisation of a Boolean expression
comprising the specific atomic element given by AC :

CE = BEAC

53

2 LARES - FORMAL LANGUAGE DEFINITION

Reactive Expression

A reactive expression is a specialisation of a Boolean expression which (by its atomic
elements) either directly refers to a transition guard label or to a forward label that is either
locally defined or in another instance. For this purpose, guard/forward label references are
defined which consist of an optional reference to an instance and a reference identifier to
the addressed forward or transition guard label. In addition, sophisticated operators can be
defined for atomic reactive expressions, as illustrated by the example of a guards statement
taken from the MS model of Section 1.3:

C . F a i l guards sync {
C . 〈 r e p 〉 , rm . 〈 r e p 〉 , maxsync{S1 . 〈 r e p I 〉 , S2 . 〈 repS 〉 , S3 . 〈 r e p I 〉 , S4

. 〈 repS 〉 }
}

It makes use of the operators sync and maxsync. Therein not contained is the additional
operator choose which might also be used when specifying an atomic reactive expression.
Obviously, the operator expressions can be nested.

As a consequence, several kinds of atomic elements for a reactive expression are defined:

• Hereby a simple guard/forward label reference (i, l, dt) may refer to a local forward
via the attribute l. The optional reference i will then remain empty. In case that
the reference addresses a forward statement of a Module instance or a guard label
of a Behavior instance, its optional reference i will be set to the referred instance
identifier. Additionally, an optional distribution type dt is designated which is later
used to determine the common distribution type between cooperating transitions.
Accordingly, references are defined as follows:

(i, l, dt) ∈ RefR = NS× ID×Opt(Dtypes)

The corresponding grammar rule is given by:

RefR: (i+=ID ’.’)? ’<’l=ID’>’;

• When using operators of the set OP = {sync,maxsync, choose}, atomic (reactive)
operator expressions or simple guard/forward references are required to be recur-
sively embedded. Therefore, the universal set of atomic elements AR for reactive
expressions is given by

AR := RefR ∪A
op
R ,

where the operator expressions are recursively defined following

AopR := OP×Opt(IE)×P(AR)

54

2.2 Concrete and Abstract Syntax of LARES

A tuple (op, i,A) ∈ AopR hereby denotes the operator op, the optional iterator expres-
sion i and the set of atomic operands A.

The corresponding syntax rules are given as follows:

RefRSync: ’sync’ R=RefReactSet;

RefRChoose: ’choose’ R=RefReactSet;

RefRMaxSync: ’maxsync’ R=RefReactSet;

They can be embedded as described by the following rule which also allows mod-
ellers to apply an iterator expression in order to expand the contained body:

RefReactSet:

(ie=IE)? (R+=RE_atom | "{" R+=RE_atom ("," R+=RE_atom)+ "}");

The concrete grammar rule to construct an atomic reactive expression (corresponding to
the abstract representation of AR) is given by

RE_atom: (RefR | RefRSync | RefRChoose | RefRMaxSync);

A reactive expression is hence a specialisation of a Boolean expression that contains the
specific atomic elements given by AR:

RE = BEAR

The parsing rules initially restrict the definition of reactive expressions RE to atomic
elements AR ⊂ RE. An atomic element of a reactive expression may thus refer to either
a guard label or a forward label, or it may represent an embedding of reactive operator
expressions sync, maxsync and choose.

As reactive expressions may be defined in choice, the Boolean operators &, |, ¬ cannot be
applied directly. This allows preserving the algebraic structure (when the transformation
takes place) despite allowing choices. Only after resolving the reactive expressions, as
given in the transformation defined in Section 3.3.3, the reactive operator expressions will
be transformed into their corresponding Boolean expression representation.

forward 〈 x 〉 to {
〈 a 〉
〈 b 〉

}

forward 〈 y 〉 to {
〈 a 〉
〈 b 〉

}

Figure 2.6: Equivalent forward statements <x> and <y>

55

2 LARES - FORMAL LANGUAGE DEFINITION

In order to demonstrate the above-mentioned course of action, a concrete example will be
sketched: The result of resolving sync{<x>,<x>} will be equivalent to sync{<x>,<y>}
if the forwards defining the references <x> and <y> are equivalent with regard to their
content as given in Figure 2.6. When constructing <x>&<x> by parsing sync{<x>,<x>},
a substitution axiom can be applied which reduces <x>&<x> to <x>, whereas for <x>&<y>
no substitution can be applied. Nevertheless, the outcome should be equivalent as the
forward of both is equivalent. This is not the case here, as <x> is substituted with the
choices <a> and , whereas <x>&<y> is substituted with <x>&<x>, <x>&<y>, <y>&<x>
and <y>&<y>. To preserve homomorphism for the reactive expressions used by guards
and forward statements, its operators may not directly be transformed into the Boolean
expression notation as long as its contained elements are not resolved.

56

Chapter 3

Transformation Semantics

The preceding chapter defined the abstract and concrete syntax of LARES. Based on the
abstract syntax, this chapter formally defines transformations which, if applied to a LARES
model, will yield a model of the targeted formalism. The underlying formal execution
semantics of the target formalism is accordingly used to define the execution semantics of
LARES in this chapter. Hereby, Section 3.1 defines abstract functions which denote how
a given LARES model is traversed. Section 3.2 details how the visibility of definitions
is queried and updated. The subsequent three sections deal with the transformations that
construct the desired target models from a LARES model as depicted by Figure 3.1. Section
3.3 deals with in-model transformations by which the model instantiation is performed
and all references are resolved. Their execution yields an expanded LARES model called
LARESBASE.

LARES
hierarchical

model

p[i] n

l[i]

LARESBASE

hierarchical
model

p[2] n

l[3]l[1] l[2]

p[1]

LARESFLAT

flattened
model

p[2] n.l[3]n.l[1] n.l[2]p[1]

SPA
compositional

model
n_l_3n_l_1 n_l_2

|[...]|

p_2p_1 |[...]|

|[...]||[...]|

SPN
planar model

LTS
planar model

Figure 3.1: LARES transformations aim at either hierarchic/compositional or planar models

57

3 TRANSFORMATION SEMANTICS

For this purpose, Subsection 3.3.1 details the resolution of parameters in order to con-
struct the instance tree, followed by Subsection 3.3.2 which formalises the resolution
of generative expressions for State and Condition statements, whereas Subsection 3.3.3
formalises the resolution of reactive expressions referring to forward statements. The
stepwise application of the above transformations yield a LARESBASE model. On the basis
of this model, the LARES approach aims at addressing different solver languages. The
two subsequent sections are dedicated to the transformations into the target formalisms.
These target formalisms can be classified into hierarchical and planar formalisms. If it is
required to preserve the hierarchical structure of a LARES model, LARESBASE needs to be
the starting point. Otherwise, if planar formalisms such as Petri nets or labelled transition
systems (LTS) (which can be seen as Markov chains if transition rates are provided) are
targeted, an intermediate transformation will have to be performed which flattens the
instance tree. To give LARES a sound semantics, two transformations are presented, where
each one maps to a distinct target formalism:

• Section 3.4 specifies a transformation into LARESFLAT, a hierarchy-resolved variant
of LARESBASE, and defines how reachability is performed on a LARESFLAT model
in order to construct the corresponding LTS.

• Section 3.5 specifies the transformation from LARESBASE into the stochastic process
algebra language of the CASPA tool [11].

Each transformation defines a semantics for LARES, expressed by means of the addressed
target formalism. It is required that behaviourally equivalent models are constructed by
both transformations. Since the CASPA SPA semantics is given by means of LTS, a
therewith constructed model should be equivalent to the result obtained by performing the
reachability as described in Section 3.4. For this reason, Section 3.6 details at the end of
this chapter how the definitions of two diverse transformations can be used to validate the
intended LARES semantics. The correctness of the implementation is assured by cross-
checking the equivalence of the resulting state space (which is obtained by the application
of both transformations). This also enables the developer to preserve the implemented
semantics in spite of code alteration. Furthermore, a formal proof is sketched in order to
show the equivalence of both transformation semantics.

Apart from the transformations into the target languages formalised in Section 3.4 and
Section 3.5 also Petri net formalisms (e.g. TimeNet4 [141] and SPNP [42]) have been
addressed. However, both transformations are currently not further pursued and are
therefore not discussed in this work.

58

3.1 Traversing LARES Models

3.1 Traversing LARES Models

A general definition is given firstly on how to traverse a model throughout its tree structure
before formally denoting the transformations that, if applied in sequence, will yield the
corresponding LARESBASE model. As depicted in Figure 3.2(a), the root node S of a
LARES specification contains a System definition i1 as a specific Module instance serving
as a singleton which may contain several definitions of Modules and Behaviors. Each
Module instance statement i refers to its assigned Module definition which in turn may
contain further Module and Behavior definitions and Module instances. This recursive
structure is illustrated by Figure 3.2(b).

S B

M

i1

0..∗

0..∗

1

(a) at root (0) level

i M B

M

I

0..∗

0..∗

0..∗

(b) at h ≥ 1 level

Figure 3.2: Recursive structure of a LARES model

Ensuing from LARES’ recursive structure, an abstract type of traversal function is defined.
It is capable of propagating pieces of information in the direction to its leaves (subse-
quently denoted as forward propagation). It performs certain computations on each level
using the local and the propagated information and aggregates the results of substructure
transformations along the paths in the direction to its root node (backward propagation)

Traversal Function

The LARES abstract traversal function iterates over the instance tree of a LARES model.
It is used to transform the instance tree by successively applying a forward and a backward
function. Several transformations are defined, each one is realised by a traversal function τ
which is parametrised by a forward propagation function ζ and a backward propagation
function β. The parametrised traversal function τζ,β is thus declared as

τζ,β : IM × FW→BW

Hereby IM denotes an instance element of a LARES model, FW represents the type of
information which is propagated towards the leaf nodes of the traversed tree (forward
information) and BW represents the type of information which is computed taking the
processed substructure of an element into account (backward information).

59

3 TRANSFORMATION SEMANTICS

The abstract forward function ζ performs a computation which uses the current Module
instance and the incoming forward information in order to return a tuple consisting of the
(possibly) preprocessed Module instance and forward information:

ζ : IM × FW→ IM × FW

The abstract backward function β depends on IM × FW returned by ζ and the set of
pieces of backward information P(BW) obtained by the recursive transformation τζ,β of
substructure instances. It is responsible for the determination of the backward information
associated with the considered Module instance. Its definition is as follows:

β : IM × FW×P(BW)→BW

Based on the function definitions of ζ and β, a transformations is realised by τζ,β which
is formally defined as a recursive function which traverses a LARES model structure (as
introduced in Section 2.1):

τζ,β : (i, fw) 7→ β(i′, fw′,{τζ,β(ci, fw
′) | ci ∈ i′.t.b.IM}) , where (i′, fw′) := ζ(i, fw)

Hereby, the notation i′.t.b.IM denotes the projection to the set of child instances. For each
child instance ci, a recursive descent is performed taking the obtained forward information
fw′ into account (cf. Figure 3.2(b)).

In order to reduce the given definition of τζ,β to its essentials, the following has to be
executed: At each node, the obtained forward information is used and processed by a
forward function ζ. The determined forward information is used to process all child
instance substructures ci by a recursive application of τζ,β . The calculated results thereof
are used to perform the final transformation of the given instance i.

Figure 3.3 illustrates the recursive transformation for a single Module instance nb, re-
presenting a northbridge of an imaginary mainboard model mb. The mainboard has
furthermore a cpu with two caches c1, c2, a ram and a southbridge sb. Another simple
transformation, which might serve as an entry-level example for the purpose of illustrating
the use of the traversal function, is explained in Section 3.4.1. Hereby, the instance structure
is flattened in contrast to the illustration given in Figure 3.3, which preserves the instance
structure.

Before defining the concrete transformation steps, the scoping semantics is prefixed. Note
that in case a function is not exhaustively defined for handling a given argument (for
instance due to a reference to a non-existing entity), the model is considered invalid.

60

3.2 Scoping Semantics

mb ∈ I3

sb ∈ I0

f
w
m
b

nb ∈ I2

cpu ∈ I1

c1 ∈ I0 c2 ∈ I0

ram ∈ I0

f
w
m
b

7−→
ζ

mb

sb

f
w
m
b

ζ(nb, fwmb)

cpu

c1 c2

f
w
n
b

ram

fw
nb

7−→τ recursive application of
τ on child instances

mb

sb

fw
m
b

ζ(nb, fwmb)

τ(cpu, fwnb)

.

bw
cpu

τ(ram,fwnb)

bw
ra
m

7−→
β

mb

sb

fw
m
b

β(ζ(nb, fw),{bwcpu, bwram})

τ(cpu, fwnb)

.

bw
cpu

τ(ram,fwnb)

bw
ra
m

bw
n
b

Figure 3.3: Illustration of a transformation step of the northbridge instance nb using the
recursive traversal function τ . The function execution splits into a preprocessing step ζ (which
calculates the forward information fwnb), a recursive descent for each child element by τ and
a post-processing step β (which ultimately calculates the backward information bwnb of the
transformation applied to nb).

3.2 Scoping Semantics

Each Module or Behavior definition specified in a LARES model has a scope. This means
that a definition is only locally visible there, where it was defined, or in the substructures
of the definition environment. Whenever there is an instantiation statement, the referred
definition needs to be in scope, i.e. it must be visible at the location of its reference,
otherwise the model is invalid.

61

3 TRANSFORMATION SEMANTICS

s0 : {m1,m2}

m1 : {m1,m2,m1,1,m1,2}

m1,1 : {m1,m2,m1,1,m1,2, ...} m1,2 : {m1,m2,m1,1,m1,2, ...}

m2 : {m1,m2,m2,1}

m2,1 : {m1,m2,m2,1, ...}

Figure 3.4: Scopes of Behavior or Module definitions: Visibility of abstract definitions (e.g.
within m1 the Module definitions {m1,m2,m1,1,m1,2} are in scope and can be instantiated)

A trimmed snippet, taken from the FTN example presented in Section 1.2, is used in order
to illustrate scopes of definitions.

Module Network (numLink) : R← R e p a i r {
Module Link : BLink { . . . }
. . .

}
. . .
System FTN : BSys {

Instance n of Network (numLink =2)
. . .

}

In this snippet, the Network and the FTN definitions are stated in the same node. The
Network definition is therefore visible in both definitions representing the subtrees of their
common definition environment. As a consequence, the Network can be instantiated in the
FTN definition. In contrast, the Link definition which is given inside the Network definition
can only be instantiated within the Network definition and its associated substructures.

This can be represented by a tree of abstract definitions. Each definition is uniquely denoted
by mp, where p encodes the definition’s location in the tree (regarding its path). In order to
abstract from a specific path, the distance from the root node is given by the notation mh

which is implicitly derived from p by stating m|p|. For each node inside the tree, a set of
visible definitions is given to distinguish whether a definition is in scope and can therefore
be used for an instantiation (cf. Figure 3.4).

The question whether a referred definition is in scope is answered by a function inscope
which takes an identifier Σ+ denoting the definition to be instantiated and the set of visible
definitions inside the current node. A function inscopeM for Module and inscopeB for
Behavior definitions are hence needed to be distinguished:

inscopeM : Σ+ ×P(M)→M inscopeB : Σ+ ×P(B)→ B

62

3.2 Scoping Semantics

A LARES model will only be valid if all addressed definitions are in scope. According to
this, the preceding function declarations are defined as

inscopeM : (l,M) 7→m if ∃m ∈M : m.l = l (else invalid model), and
inscopeB : (l,B) 7→ b if ∃b ∈ B : b.l = l (else invalid model).

Inside each substructure further definitions may be specified which have the same name as
another definition that is already in scope. In order to unambiguously resolve a reference
to a definition, the property @m1,m2 ∈M : m1.l = m2.l (where m1 6= m2) and @b1, b2 ∈
B : b1.l = b2.l (where b1 6= b2) has to hold for both M and B respectively. The property
means that whenever new definitions are made and hence become part of the local scope
information, equivalently named definitions have to be removed.

The inscope functions are used in Section 3.3.1 in order to construct the instance tree of
the model: As illustrated in Figure 3.2(a), at the root level (0) of a LARES specification
s0 ∈LARES the sets of available Module and Behavior definitions are given byB0 = s0.B

and M0 := s0.M . The System instance s0.i1 is initially associated with its definition
s0.i1.t ∈ M. All along it is assumed that each definition stated inside a node (which
might be a Module body or the root node of the LARES specification) has a unique
name. Otherwise, the model is not well-defined (i.e. invalid). When processing arbitrary
(sub)instances, the visible set of definitions of the predecessor node has to be merged
with the local definitions with regard to the recursive scheme shown in Figure 3.2(b).
Let the set of visible definitions for Module definitions of the predecessor be Mh−1. An
update function ∆M has to be applied in order to construct the set of visible definition M i

h

following
M i

h = ∆M(Mh−1, ih) for an instance ih at level h.

Let the system instance i1 be given (at root level). The update function ∆M(M0, i1) will
provide the set of visible definitions inside the System definition. The scope of Module
definitions will be successively updated along an instance path. All updated sets of visible
definitions are used to carry out the instantiation process (as detailed in Section 3.3.1)
in order to enable the resolution of references to definitions and therefore, ultimately, to
construct the instance tree.

The update function for the set of visible Module definitions is defined such that infinite
recursive structures are allowed. This will by chance end-up in a non-terminating transfor-
mation if modellers do not pay attention. Each time an identifier of a definition ml ∈Mlocal

is equal to an identifier of a definition m ∈Mh−1, m will be discarded in the constructed
set of visible definitions Mh. The update function ∆M is hence defined as

∆M : (Mh−1, ih) 7→Mlocal ∪ {m ∈Mh−1 | @ml ∈Mlocal : ml.l = m.l}

63

3 TRANSFORMATION SEMANTICS

wheremih = inscopeM(ih.l,Bh−1) andMlocal =mih .b.M . In case it is required to disallow
infinite recursive structures, an alternative definition may be used that restricts the scope of
definitions by removing an instantiated Module definition mih from the scope:

∆alternative
M : (Mh−1, ih) 7→Mlocal ∪ {m ∈Mh−1 \ {mih} | @ml ∈Mlocal : ml.l = m.l}

Correspondingly, an update for the set of visible Behavior definitions Bi
h at instance ih at

level h is performed by
Bi
h = ∆B(Bh−1, ih)

where the update function ∆B is defined in a manner similar to the definition of ∆M . Since
a Behavior definition does not allow any further instantiations, ∆B can be defined as

∆B : (Bh−1, ih) 7→ Blocal ∪ { b ∈ Bh−1 | @bl ∈ Blocal : bl.l = b.l}

where Blocal = inscopeM(ih.l,Bh−1).b.B. The update functions ∆M and ∆B are used
in Section 3.3.1 for determining the sets of visible definitions. This information will be
propagated along the paths of the instance tree towards the leaf nodes.

3.3 Transformation into LARESBASE

The transformation into a LARESBASE model (i.e. an instantiated reference-resolved
representation of a LARES model) is subdivided into three consecutive steps. All steps
could just as well have been defined within a single transformation step. For the sake of
comprehensibility and maintainability they have been subdivided instead. The first step
only considers the Instance and Initial statements. It performs the instantiation of addressed
(visible) Behavior and Module definitions. A different instantiation parametrisation of
Behavior and Module definitions leads to a parameter-dependent instance tree. The first
transformation step is hence denoted as the parameter expansion transformation. For the
subsequent transformation step all condition expressions as used in Condition, forward
and guards statements are resolved. Due to the restriction of being solely allowed to
refer to either local statements or statements specified in the children at adjacent level, a
condition expression will be considered unresolved if it contains unresolved references
referring to other Condition statements (apart from resolved references that refer directly
to states of Behavior instances). The transformation into resolved condition expressions
which then exclusively contain direct references to states of Behavior instances is called
condition expansion. The final transformation step into the LARESBASE representation
resolves reactive expressions. A reactive expression will be denoted unresolved if it
refers to guard labels defined by other forward statements. A reactive expression will be

64

3.3 Transformation into LARESBASE

regarded as being resolved if it only directly refers to guard labels of Behavior instances.
Accordingly, the forward expansion transformation substitutes all guard label references,
such that the model ends up with guards statements that solely contain resolved reactive
expressions.

In the following paragraphs, these transformation steps are explained in detail by providing
their formal semantics and are simultaneously illustrated with the help of running examples.

3.3.1 Parameter & Instance Tree Expansion

This section explains how to construct a specific instance tree of intermediate Module
instance nodes and Behavior instance nodes (as leaves) using the instantiation parameters
of the last recursion step and the addressed initial configuration. Beginning with an
explanatory part, the formal definition of the transformation will be given subsequently.

When starting at the root node of a LARES model, all parameters that are defined for the
system instance have to be identified first. In order to process the System instance definition,
all expressions that depend on parameters have to be evaluated. Since System or Module
definitions may also contain expand statements, the evaluation of the associated iterator
expressions leads to a number of combinations of additional variable definitions (apart
from the parameter variables) obtained by the cross product of their iterator expression
evaluations. The resulting tuples can be regarded as sets of defined parameters which are
used in addition to the existing ones to resolve the statements given inside the expand
statement. As expand statements can be nested, this kind of process is recursive by nature.

The fault tolerant network example is now used as an illustrating example. In its System
definition no parameters are defined. But still, new variables may arise. One example for
such a case can be found in the FTN System definition:

expand (i in {1 .. 2}) { Instance p [i] of P r o c e s s o r }

The snippet contains an iterator expression which includes a set expression that (in this
case) does not depend on parameters. This means that an evaluation φ(i in {1 .. 2}) will
lead to the following set of singlets {(1), (2)}. The contained statement Instance p[i]

of Processor will be expanded such that for each singlet in the evaluation of i, the
statement is modified such that i is replaced by the corresponding value in the singlet.

This process will generate the following statements substituting the original expand state-
ment:

Instance p [1] of P r o c e s s o r
Instance p [2] of P r o c e s s o r

65

3 TRANSFORMATION SEMANTICS

As a further example, a condition expression is shown, where an iterator expression is
applied in order to specify n-ary operations:

Condition s r s = OR[i in {1 .. 2}] p [i] . p f a i l e d | n . n f a i l e d

The above example is accordingly transformed into the following statement:

Condition s r s = ((p [1] . p f a i l e d | p [2] . p f a i l e d) | n . n f a i l e d)

In the System definition, the Instance statement of the network and the Initial statement
will stay untouched as they are not parameter-dependent and therefore do not constitute
new parameters. Since there is nothing more to expand, the scope information will be
updated including the definitions stated locally. When applying the parameter expansion
to the Module body, a recursive descent is performed over the subinstances, which in turn
applies this transformation to all module definitions that are referred by the instantiations.
Subsequently, the network instance with the defined parameter numLink=3 is considered.
Inside the definition of the Network Module, an expand statement which depends on the
parameter numLink can be found:

expand (i in {2 .. numLink }) {
Instance l [i] i n i t i a l l y i S t a n d b y of Link
. . .

}

When the parameter expansion finishes processing the internal representation of the above
snippet, the following statements are obtained:

Instance l [2] i n i t i a l l y i S t a n d b y of Link
Instance l [3] i n i t i a l l y i S t a n d b y of Link
l [1] . c F a i l e d & l [2] . cS tandby guards l [2] . 〈 s w a c t i v e 〉
(l [1] . c F a i l e d & l [2] . c F a i l e d) & l [3] . cS tandby guards

l [3] . 〈 s w a c t i v e 〉

Furthermore, the Condition statement which specifies when the network will have failed is
also processed and transformed into

Condition n f a i l e d = (l [1] . f a i l e d & l [2] . f a i l e d & l [3] . f a i l e d)

The same scheme is performed on all instantiations (which, for the current example, leads
to the instance tree depicted by Figure 3.5).

In the next section, the exact formal semantics of this transformation step will be described
exhaustively. For that purpose, the forward information FW, the forward function ζ, the
backward information BW and the backward function β will be defined.

66

3.3 Transformation into LARESBASE

p[i] n

l[i]

→ p[2] n

l[3]l[1] l[2]

p[1]

Figure 3.5: Constructed Instance Tree (of the FTN example) due to a given Parametrisation

The forward information is composed of the scope information representing visible Behav-
ior and Module definitions as well as the initial configuration for each instance node:

FWpe := P(B)×P(M)×P(Ref)

Hereby, the tuple (B,M,IC) ∈ FWpe denotes the set of visible Behavior definitions B,
the set of visible Module definitions M and the set of references which address Initial
statements. For the purpose of constructing an instance tree, the backward information is
defined such that a Module instance will be obtained:

BWpe := IM

As indicated in Section 3.1, each concrete transformation performs specific computations,
depending on different function definitions of ζ and β which are applied on each node of
the structure traversed by some τ . The parameter expansion function is hence denoted as
τpe using the information provided by FWpe in order to build up the instance tree from a
given instance:

τζpe,βpe︸ ︷︷ ︸
τpe

: IM × FWpe→BW

Again, the FTN example snippet as given in Section 3.2 is used. Let the scope at the
level of the specification node be given as defined in Section 3.2, where B0 := s0.B and
M0 := s0.M . The initial function call to perform the traversal and thereby to construct
the instance tree is τpe(i1, fw1). The root instance i1 represented by the tuple (l, t, ()) is
implicitly derived from the System definition which itself is captured by t and excluded
from the scope information which in turn is forwarded by fw1 in order to ensure that the
System definition can only be instantiated once:

fw1 = (B0,M0,∅)

Subsequently, the functions ζpe and βpe are formally defined in order to denote the semantics
of the parameter expansion transformation which constructs the model’s instance tree.

67

3 TRANSFORMATION SEMANTICS

Forward Propagation

The forward propagation function resolves all expressions that depend on parameters and
updates the scope information in order to perform the instance tree construction.

Let the forward propagation function be defined such that the Module definition of the
given instance is modified in accordance with the current parametrisation and such that
the forward information fw containing visible definitions and the initial configuration are
updated before the recursive descent takes place:

ζpe : (i, fw) 7→ (i′, fw′)

The above is responsible for evaluating and expanding the statements inside the Module
body of i in order to further construct the instance tree. Therefore, a function bpe is declared
which performs evaluation and expansion regarding the given parametrisation:

bModule
pe : Mbody ×PE→Mbody

As shown for the initial step of the traversal, the reference to the Module definition of an
instance i is resolved (which means that the instance henceforth contains the processed
Module definition). The above parametrisation is determined by the defined parameters (i.e.
parameters which have a defined value) within the Instance statement and, with a lesser
priority, by the (default) parameters within the Module definition. In order to perform an
instantiation, all parameters have to be defined in the end. Due to the twofold meaning of a
System definition, being an abstract definition and an instance at once, all parameters have
to be defined in the System’s parameter expression.

For illustratory purposes, a Module definition of a Network defines a default value for the
parameter numLink:

Module Network (numLink =3) { . . . }

It depends on the instantiation whether the default parameter value is overridden or not.
The subsequent snippet firstly instantiates a network comprising two links, whereas the
second instantiation uses the default value, leading to a network of three links:

Instance n 2 l i n k s of Network (numLink =2)
Instance n 3 l i n k s of Network

Generally speaking, the instance i, as a parameter of the forward function, is usually
evaluated according to its parameter definitions. Except for the System instance, all
instances are initially unresolved (which means that their reference to the abstract definition
is not resolved yet). Let the forward parameter fw ∈ FWpe be represented as a tuple
(B,M,IC).

68

3.3 Transformation into LARESBASE

The appropriate definition m is taken from the scope information in order to instantiate i
(if the referred Module definition is not in scope, the model will be considered invalid),
otherwise, if the processed instance is the System instance, the definition of the instance is
already captured by i.t, which is handled here as a special case:

m =

{
inscopeM(i,M) if i.t ∈ Ref

i.t else.

The default parameters of the Module definitionm and the evaluated parameters determined
inside the Instance statement i are used to derive the actual parametrisation of the arising
instance. A function is therefore declared which merges these two parameter expressions

pmerge : PE×PE→ PE

such that the parameters of the first argument have priority over those of the second
argument. Its definition is hence given by

pmerge : (Pprior, Pavail) 7→
{p ∈ Pprior | ∃e ∈ Pavail : e.l = p.l} ∪
{p ∈ Pavail | @e ∈ Pprior : e.l = p.l}

All parameters of Pprior (specified inside an Instance statement) whose names correspond
to parameters defined in the Module definition Pavail become part of the actual parameter
set. Furthermore, those parameters of the Module definition which are not defined by
the instantiation are also included. Finally, the evaluation of the parameters is performed
(following a topological order of the dependencies among the parameters).

Let φPE : PE→ PE declare an evaluation function. The actual parametrisation P can
hence be determined:

P = φPE(pmerge(i.t.p,m.p))

The property ∀p ∈ P : π2(p) 6= () which requires all parameters of a Module definition
to be defined has to be fulfilled by P , otherwise the model is invalid. As a result, the
body can be resolved following b = bModule

pe (m.b,P). In order to derive the actual set of
visible Module and Behavior definitions, the updated scopes M ′ = ∆M(fw.M, i) and
B′ = ∆B(fw.B, i) are determined. Furthermore, the set of delegates are partitioned into a
set of Behavior instantiations and a set of Module instantiations:

dB = {d ∈m.d | ∃b ∈ B′ : b.l = d.t.l } and dM = d \ dB

69

3 TRANSFORMATION SEMANTICS

The body b of the Module instance is then transformed into b′ such that the delegates which
instantiate a Module definition are treated as additional Instances, i.e. b′.I = b.I ∪ dM .

Moreover, the initial configurations IC extracted from the forward information of the
predecessor are used to determine the addressed configuration ac ∈ IC : ac.i = i.l for
the currently processed instance. A number of different cases for the definition of init
(i.e. the instantiations of the substructures) are captured. Firstly and having priority, the
case in which an Initial statement of the current instance is referenced exactly once by the
environmental Initial configuration is considered. Secondly, the case in which initially

is used for instantiation by the environment is taken. The first Initial statement will be
considered default if no external reference is given. Elsewise, neither will a reference
be given nor can a default be chosen. For all other cases the whole model is considered
invalid:

init =



ic.IC if |{ac}| = 1 and ∃ic ∈ b′.IC : ic.l = ac.l

ic.IC if |{ac}| = ∅ and ∃ic ∈ b′.IC : ic.l = i.ic.l

π1(b
′.IC).IC if {ac} = ∅ and b′.IC 6= ∅

∅ if {ac} = ∅ and b′.IC = ∅
∅ else invalid model

The initialisation references init are subsequently used to resolve and instantiate the
Behavior definitions originating from the delegate expression:

dinstB = { (instBehavior(d, inscopeB(d,B′), P, init.IC) | d ∈ dB },

For this purpose, the instantiation function instBehavior : (d,m,P, IC) 7→ (d.l, b, ic) is
used. Hereby d.l denotes the label of the delegate, b is a Behavior body, and ic represents
the initial configuration. On the analogy of a Module instantiation, also for a Behavior
instantiation the set of parameters P = φPE(pmerge(d.t.p, b.p)) is determined in order to
resolve the Behavior body b= bBehaviorpe (b.b,P) (the function bBehaviorpe body will be defined
later). Additionally, the initial configuration ic ∈ IC : ic.i = d.l is calculated in order to
ultimately construct the Behavior instance (d.l, b, ic) ∈ IB.

As a next step, the modified instance can be recomposed from its name, the resolved
Module definition (comprising henceforth the determined parameters, the instantiated
Behavior delegates and the resolved body) and an empty tuple (as the initial configuration
already is part of the contained Behavior instances):

i′ = (i.l, (m.l,P, dinstB , b′)︸ ︷︷ ︸
resolved Module definition

, ())

70

3.3 Transformation into LARESBASE

The modified forward information fw′ is ultimately given by fw′ = (B′,M ′, init). Accord-
ingly, the forward function can finally return the above results, i.e. ζpe : (i, fw) 7→ (i′, fw′).

The Module body transformation function bpe has to process each statement contained
inside a Module’s body. Let v/φ denote a symbol for the substitution of variables by
the values of the referred parameters and the subsequent evaluation of the dependent
expressions. A number of functions are declared, each one being responsible for a set of
specifically typed elements:

• v/φInstance : P(IM)×PE→ P(IM)

• v/φCondition : P(C)×PE→ P(C)

• v/φguards : P(G)×PE→ P(G)

• v/φforward : P(F)×PE→ P(F)

• v/φInitial : P(IC)×PE→ P(IC)

• v/φProbability : P(Prob)×PE→ P(Prob)

Apart from the above declarations, an additional function is declared which transforms the
expand statements inside a Module’s body:

v/φ
Module
expand : P(Mexpand)×PE→ P(Mbody)

The function bpe which modifies and recomposes a Module body can now be defined using
the preceding functions declarations:

bpe : (b,P) 7→



∅
∅

v/φInstance(b.I,P)∪XI

v/φCondition(b.C,P)∪XC

v/φguards(b.G,P)∪XG

v/φforward(b.F,P)∪XF

v/φInitial(b.IC,P)∪XIC

∅
v/φProbability(b.P,P)∪XP



where for each � ∈ {I,C,G,F, IC,P},
X� :=

⋃{
b̂.� | b̂ ∈ v/φexpandModule(b.E,P)

}

(3.1)
Hereby, each subset of the partition, obtained by the transformation of all expand state-
ments, contains only statements of a specific type. These statements are included in the
new body, whereas the original expand statements are omitted.

The subsequent paragraphs define all parameter substitution and evaluation functions
which are applied within the function definition (3.1). For this purpose, several function
declarations are used dealing with the parameter substitution and evaluation of common
sublanguage expressions:

71

3 TRANSFORMATION SEMANTICS

• Set Expression Resolution:
v/φSE : SE×PE→ SE

• Condition Expression Resolution:
v/φCE : CE×PE→ CE

• Reactive Expression Resolution:
v/φRE : RE×PE→ RE

• Identifier Resolution:
v/φID : ID×PE→ ID

• Reference Resolution:
v/φRef : Ref×PE→ Ref

• Arithmetic Expression Resolution:
v/φAE : AE×PE→ AE

• Set Expression Evaluation:
φSE : SE→ P(R)

• Parameter Expression Evaluation:
φPE : PE→ PE

Their definitions are deferred to the Appendix B for purposes of readability.

The instance substitution function v/φInstance processes a given set of Instance state-
ments, where each Instance subexpression, consisting of a label, a type reference and an
initial configuration, is substituted by the parameter values corresponding to the contained
variables:

v/φInstance(I,P) 7→ { (v/φID(i.l, P), v/φRef(i.t,P), v/φRef(i.ic,P))︸ ︷︷ ︸
î∈I

| i ∈ I}

The conditions substitution function v/φCondition processes a given set of Condition
statements, in order to substitute all variables of the contained subexpressions of each
statement by their corresponding parameter values:

v/φCondition(C,P) 7→ { (v/φID(c.l,P), v/φCE(c.e,P))︸ ︷︷ ︸
ĉ∈C

| c ∈ C}

The guards substitution function v/φguards processes a given set of guards statement in
order to obtain a set of substituted guards. The contained variables inside the elements of the
guards’ generative expression or conditional reactives are substituted by the corresponding
parameter values:

v/φguards(G,P) 7→ { (v/φCE(g.g,P), ĈR, ())︸ ︷︷ ︸
ĝ∈G

| g ∈ G} , where

ĈR := { (v/φCE(c,P), v/φRE(r,P)) | (c, r) ∈ g.CR}

The forwards substitution function v/φforward processes a given set of forward state-
ments in order to obtain a set of substituted forwards. Hereby, each occurrence of a

72

3.3 Transformation into LARESBASE

variable inside the label, the generative expression or the associated conditional reactives
are substituted by the corresponding parameter value:

v/φforward(F,P) 7→ { (v/φCE(f.c,P), v/φID(f.l,P), ĈR)︸ ︷︷ ︸
f̂∈F

| f ∈ F} , where

ĈR := { (v/φCE(c,P), v/φRE(r,P)) | (c, r) ∈ f.CR}

The initial substitution function v/φInitial(IC,P) is applied to the given Initial state-
ments of the instantiated Module definition in order to substitute each occurrence of a
variable by the value of the corresponding parameter:

v/φInitial(IC,P) 7→ { (v/φID(ic.l),{ v/φRef(r) | r ∈ ic.IC})︸ ︷︷ ︸
îc∈IC

| ic ∈ IC}

The expand substitution function v/φexpandModule processes a set of expand statements, where
the contained iterator expression is substituted and evaluated such that recursively all
statements in the assigned body are resolved by the parameters obtained (hereby I., II., and
III. distinguish three steps which will be detailed subsequently):

v/φexpandModule(E,P) 7→ { bpe(e.b, p+merge(P̂ , P))︸ ︷︷ ︸
III.

| P̂ ∈
II.︷ ︸︸ ︷

φIE(v/φIE(e.ie,P)︸ ︷︷ ︸
I.

) ∧ e ∈ E }

While pmerge allows only parameters which are also available in Pavail, p+merge includes all
parameters from Pprior instead:

p+merge : (Pprior, Pavail) 7→ Pprior ∪ {p ∈ Pavail | @e ∈ Pprior : e.l
∧
= p.l}

I. Firstly, the function v/φIE processes all iterators of an iterator expression such that
each occurrence of a variable corresponding to a parameter inside the iterator expression is
substituted. To illustrate this, an example will be given:

expand (i in {2 .. numLink }) { . . . } v/φIE⇒ expand (i in {2 .. 3}) { . . . }

Given an iterator expression (l, s) ∈ I, the function v/φSE : SE ×PE → SE is used
which substitutes the variables of the set expression matching the given parameters. The
substitution function for an iterator expression can then be declared by v/φIE : IE→ IE

and defined as

v/φIE : (I,P) 7→ { (v/φID(l, P), v/φSE(s,P)) | (l, s) ∈ IE}

73

3 TRANSFORMATION SEMANTICS

expand (j in {1 .. i } , i in {1 .. numLink }) { . . . }

Figure 3.6: Example: Dependency among two iterators

II. Secondly, an evaluation φIE performed over all iterators of a single expand statements
leads to a cross product. Each contained tuple constitutes a parameter set P̂ which is
further used by the recursive expansion process bpe.

Note that specifications can occur which denote iterator expressions by which iterators
depend on the evaluation of other iterators (as shown in Figure 3.6). For the purpose of
handling these specifications, the evaluation has to be performed by abiding by a topological
order based on the interdependencies of the iterators. In case of cyclic dependencies the
whole model is considered invalid.

Let a function ts : IE→ Seq(I) be defined which determines a topological order among
dependent iterators. A recursive definition of an evaluation function is subsequently
given which constructs the cross-product by taking the interdependent parameters (arising
stepwise during the evaluation) into account. The evaluation function of an iterator
expression therefore sorts the iterators with regard to their dependencies and subsequently
applies the step-wise cross product construction function φts:IE : Seq(I)×PE→ P(PE):

φIE : ie 7→ φts:IE(ts(ie),∅)

As explained before, processing the iterators in a topological order of their interdependen-
cies enables an iterator’s evaluation in the absence of cyclic dependencies, so as to add a
result of an intermediate processing step and reuse it in all subsequent steps in order to
ultimately construct the cross product of evaluations:

φts:IE : (I,P) 7→

{
{()} if I = ()⋃
v∈φSE(v/φSE(s,P))){p} × φts:IE(πtail(I), P ∪ {p}) else,

where (l, s) := πhead(I) and p := (l, v)

An examplary application of the iterator expression evaluation is shown in Figure 3.7.

III. The step-wisely constructed parameters P̂ are merged with the parameters P brought
in by the environment. The expand statement evaluation function can now process all
contained statements and further embedded expand structures by applying bpe on the body
of the expand statement (as shown in the example given in Figure 3.8).

74

3.3 Transformation into LARESBASE

expand (j in {1 .. i } , i in {1 .. 2}) {
. . .

}

φIE⇒

expand ({
(i =1, j =1) ,
(i =2, j =1) ,
(i =2, j =2)

}) {
. . .

}

Figure 3.7: Example: Evaluation of dependent iterators

expand ({
(i =1, j =1) ,
(i =2, j =1) ,
(i =2, j =2)

}) { Condition c [i , j] = . . . }

bpe⇒
Condition c [1 , 1] = . . .
Condition c [2 , 1] = . . .
Condition c [2 , 2] = . . .

Figure 3.8: Example: Iterative body expansion by evaluations arising from iterators

The Probability measure transformation function v/φProbability processes a given set
of Probability statements in order to substitute all variables of the contained subexpressions
of each statement by their corresponding parameter values:

v/φProbability(Pr,P) 7→⋃
pr∈Pr

{
(v/φID(pr.l,P), v/φCE(pr.c,P)) if pr ∈ ProbS
(v/φID(pr.l,P), v/φCE(pr.c,P), v/φAE(pr.t,P)) if pr ∈ ProbT

The Behavior body transformation function bBehaviorpe has to process each statement
contained by a Behavior body. For this purpose, several functions are declared. Each one
of these performs parameter substitution and evaluation for a specific type of element:

• v/φState : P(S)×PE 7→ P(S) • v/φTransitions : P(T)×PE 7→ P(T)

Apart from these ones, an additional function is declared which transforms the expand
statements inside a Behavior’s body:

v/φ
Behavior
expand : P(Bexpand)×PE 7→ P(Bbody)

75

3 TRANSFORMATION SEMANTICS

Using the above declarations, the transformation bpe of a Behavior can be defined as
follows:

bpe : (b,P) 7→

 v/φState(b.S,P)∪XS

v/φTransitions(b.T,P)∪XT

∅

 where for each � ∈ {S,T},
X� :=

⋃{
b̂.� | b̂ ∈ v/φexpandBehavior(b.E,P)

}
As all declarations which are applied by the transformation of a Behavior body can be
defined in analogy to those used for the transformation of a Module body, these definitions
are omitted in this work.

Backward Aggregation

The backward aggregation function composes the Module instantiations of the currently
processed instance. Therefore, the recursive application of the parameter expansion on
each child instance of i returns the processed subinstance structures contained in BW . All
of these structures are inserted into the body b = m.b of i’s Module definition m = i.t.
This leads to a modified body b′ which is used to construct the parameter resolved instance
i′. By using the preceding notation, the backward propagation function is declared as
βpe : I× FWpe ×P(BWpe)→BWpe and defined as

βpe : (i, fw,BW) 7→ (i′),

where the new body b′ := (∅,∅,BW, b.C, b.G, b.F,∅,∅, b.P) is used to reconstruct the Mod-
ule definition m′ := (m.l,∅,m.d, b′) in order to finally obtain the instance i′ := (i.l,m′, ())

3.3.2 Condition Expansion

The second transformation step processes all condition expressions appearing in Condi-
tion, forward and guards statements. Each condition expression may contain unresolved
references to Condition statements specified locally or within Module subinstances. By
resolving these references, a condition expression is expanded such that it only contains
direct references to states within Behavior instances in order to be finally resolved. The
whole recursive transformation is hence called condition expansion. As set out in the
previous section, this section starts with an illustrative part and subsequently proceeds with
the formal definition of the transformation.

Once the parameter expansion has constructed an instance tree of the model, as illustrated
in Figure 3.9, all condition expressions need to be resolved recursively. Starting at the
leaves of the Module instance tree, all condition expressions found are rebuilt such that

76

3.3 Transformation into LARESBASE

FTN
Condition srs = p[1].pfailed | p[2].pfailed | n.nfailed

srs guards BSys.<systemfail>

p[1]

BProcessor

p[2]

BProcessor

n
Condition nfailed = (l[1].lfailed & l[2].lfailed & l[3].lfailed)

l[1]
Condition lFailed = BLink.lfailed

BLink

l[2]

BLink

l[3]

BLink

BSys

Figure 3.9: FTN: The instance tree and Condition statements along a single path

there is no further dependency to other Condition statements. Since a leaf Module instance
does not have further Module subinstances, they may only directly refer to state variables
of their Behavior subinstances or to Condition statements specified locally.

The process of resolving dependencies is sensitive to the order of resolvable conditions,
similar to the parameter dependencies arising through an iterator expression specification.
As a consequence, the resolution process has to follow a topological order (in a manner
similar to the way it was defined previously) which is based on dependencies to Condition
statements. If a topological order can be determined, all dependencies (i.e. the referred
Condition statements) for each unresolved condition expression will be resolved by the
result of one of the preceding steps of the resolution process. This finally allows resolving
the yet unresolved condition expression. The whole specification is invalid in case that no
topological order for the local dependencies of a condition expression can be determined.
The transformation which resolves the condition expressions of an instance is defined
which obtains all resolved Condition statements of the Module subinstances by a preceding
recursive descent. These are used to resolve the remote references (i.e. references that
refer to statements of child instances) inside a condition expression by a substitution of the
expressions inside the addressed Condition statements. Moreover, the local dependencies
among the Condition statements have to be resolved in accordance with the thereby arising
topological order to finally construct the resolved condition expressions of the given
instance.

77

3 TRANSFORMATION SEMANTICS

In Figure 3.9 the FTN example is stressed in order to illustrate the condition expansion
by partially depicting the parameter resolved instance tree together with statements that
include condition expressions along a single path. E.g. the network instance n includes a
number of statements containing condition expressions:

(l [1] . l f a i l e d & l [2] . l s t a n d b y) guards l [2] . 〈 s w a c t i v e 〉

((l [1] . l f a i l e d & l [2] . l f a i l e d) & l [3] . l s t a n d b y)
guards l [3] . 〈 s w a c t i v e 〉

Condition n f a i l e d = (l [1] . l f a i l e d & l [2] . l f a i l e d & l [3] . f a i l e d)

The first two condition expressions are part of a guards statement, whereas the third one
belongs to a Condition statement. All contained condition expressions refer to Condition
statements inside the associated Module definitions of the link subinstances l[1], l[2]
and l[3].

The condition expansion is responsible for resolving each condition expression at an
arbitrary level: From the point of view of a Module instance, all Condition statements
inside the subinstances have already been resolved by a preceding recursive step. Thus, all
local condition expressions can be modified such that references to Condition statements
of subinstances are substituted by the corresponding resolved condition expressions. As
a result, the substituted condition expressions only refer to state variables of Behavior
instances and are hence resolved:

(l [1] . BLink . l f a i l e d & l [2] . BLink . l s t a n d b y) guards l [2] . 〈 s w a c t i v e 〉

((l [1] . BLink . l f a i l e d & l [2] . BLink . l f a i l e d) & l [3] . BLink .
l s t a n d b y)

guards l [3] . 〈 s w a c t i v e 〉

Condition n f a i l e d =
(l [1] . BLink . l f a i l e d & l [2] . BLink . l f a i l e d & l [3] . BLink . l f a i l e d)

Being the last of steps in the recursive process, the statements of the system instance
FTN containing condition expressions are transformed. This results in a guards statement
containing only a resolved condition expression which itself represents the redundancy
structure of the system:

((p [1] . B P r o c e s s o r . p f a i l e d | p [2] . B P r o c e s s o r . p f a i l e d) |
(n . l [1] . BLink . l f a i l e d &

n . l [2] . BLink . l f a i l e d &
n . l [3] . BLink . l f a i l e d)) guards BSys . 〈 s y s t e m f a i l 〉 .

78

3.3 Transformation into LARESBASE

Note that the FTN example does not comprise local dependencies between Condition
statements, therefore no topological order has to be considered.

In the subsequent part, the introduced principle is completely formalised, including the
local dependencies that were omitted in the example for the sake of simplicity: As it was
described earlier, no information has to be forwarded in order to perform the condition
expansion. For this reason, the forward information may only contain the empty set, i.e.
FWce = {∅}. In a way similar to the previous section, the information relayed backwards
is always a Module instance and hence formally defined as BWce = I.

Now, the traversal function τce is declared carrying out the condition expansion:

τce : IM × FWce→BWce

The forward propagation ζce and the backward propagation βce remain to be defined.

Forward Propagation

As the expansion of condition expressions only depends on conditions (that can be found
locally or inside substructures), the forward function ζce is defined as the identity function:

ζce : (i, fw) 7→ (i, fw)

Backward Aggregation

Condition expressions inside a given instance i are resolved by using the backward in-
formation BW ∈ BWce obtained by a recursive descent of the condition expansion
transformation of its subinstances. The arising instance i′ containing solely resolved condi-
tion expressions is used as the information which is relayed backwards. The corresponding
backward function is therefore defined as

βce : (i, fw,BW) 7→ (i′).

The reconstructed instance i′ only contains condition expressions that were resolved by the
addressed resolved Condition statements inside the processed subinstances. Therefore, the
Module definition m = i.t of the original instance i is processed. Hereby, the condition
expressions inside the body b = m.b are resolved by a function bce which employs the
processed subinstances obtained via the backward information BW :

i′ := (i.l, (m.l,∅,m.d, bce(b,BW))︸ ︷︷ ︸
∈M

, ()), where m := i.t

79

3 TRANSFORMATION SEMANTICS

Let c/φConditionremote : P(C)× P(I)→ P(C) substitute the addressed remote Condition state-
ments of the subinstances which have already been resolved by the preceding recursive
condition expansion step. Moreover, let ts : P(C)→ Seq(C) be a function that estab-
lishes a topological order between the given (local) Condition statements based on their
interdependencies. A further (recursive) function is declared which resolves these in-
terdependencies by performing the condition expression substitution. Its first argument
represents the (locally yet) unresolved Condition statements, whereas the second argument
captures the (already) resolved (local) Condition statements:

c/φConditionlocal : Seq(C)×P(C))→ P(C)

In order to determine the resolved Condition statements Cres from the given set of local
Condition statements b.C, the above functions can now be used:

Cres = c/φConditionlocal ((ts ◦ c/φConditionremote)(b.C,BW),∅)

Hereby, the Condition statements inside the subinstances are substituted first. Then, by
topological sorting, an order is established which allows substituting the addressed local
Condition statements.

In addition, let c/φguards : P(G)× P(C)× P(IM)→ P(G) resolve the local guards state-
ments, let c/φforward : P(G)×P(C)×P(IM)→ P(G) resolve the local guards statements
and let c/φProbability : P(Prob)×P(C)×P(IM)→ P(Prob) resolve the local Probability
statements. All these functions consider the resolved local Condition statements and the
resolved remote Condition statements inside the processed set of subinstances.

With the above being given, the body substitution function bce : Mbody × P(I)→Mbody

can then be defined as

bce : (b, I) 7→



∅
∅
I

Cres
c/φguards(b.G,Cres, I)
c/φforward(b.F,Cres, I)

b.ic

∅
c/φProbability(b.P,Cres, I)



80

3.3 Transformation into LARESBASE

In the subsequent part of this section, the above declared functions are formally defined.
The function resolves the remote dependencies c/φConditionremote is defined as

c/φConditionremote : (C, I) 7→ { (l, c/φr(c, I)) | (l, c) ∈ C}

Hereby, the function c/φr : CE×P(I)→ CE (defined later in this section) is responsible
for the resolution of a single condition expression inside a Condition statement by the
resolved Condition statements of its subinstances.

The LARES syntax allows denoting local references such that Condition statements might
induce cyclic dependencies. These are determined by a topological sorting algorithm, i.e if
no topological order exists, the whole model is invalid. Otherwise, the resulting topological
order will ensure that the dependencies can be resolved (such that the referred Condition
statements are always processed before being addressed by a dependent statement). As
indicated, the set of (already) resolved local Conditions has to be updated in each step. To
illustrate the above, let the following statements be given inside an example model and let
the addressed remote references, such as B.c), already be resolved:

Condition a = b & B . c
Condition b = C . c | D. c

As Condition a is dependent on Condition b, the order of their resolution process is
crucial. The correct sequence will be established by performing the resolution process in
the topological order (i.e. the Condition statements that are locally independent will be
processed initially):

Condition b = C . c | D. c
Condition a = b & B . c

Accordingly, the Condition statement b has no local dependencies and can subsequently
be used as a locally resolved statement which can be further used in order to resolve the
yet unresolved local Condition statements.

The local substitution is recursively defined as

c/φConditionlocal : (C,Cres) 7→

{
Cres if C = ()
c/φConditionlocal (Ctail,{c′head} ∪Cres) else,

The argument C can be split into the first Condition statement chead and the remaining
ones Ctail, i.e. (chead) ◦ Ctail = C. The Condition statement chead is processed using a
function c/φl : CE×P(C)→ CE which substitutes the addressed (resolved) local Conditions
within an unresolved Condition expression. The locally resolved Condition statement is
determined by c′head = (chead.l, c/φl(chead.c,Cres)) and is included in the second argument
of the next recursive call.

81

3 TRANSFORMATION SEMANTICS

Note that c/φl is a substitution function of condition expressions which will be defined
soon.

Let c/φ(ce,C, I) 7→ c/φl(c/φr(ce, I),C) define the Condition substitution function. The
substitution function for guards statements is then defined as

c/φguards : G,C, I 7→ { (c/φ(g.g,C, I), ĈR) | g ∈ G}, where

ĈR := { (c/φ(c,C, I), r) | (c, r) ∈ g.CR}

Furthermore, the substitution function for forward statements is similarly defined by

c/φforward : F,C, I 7→ { (c/φ(f.c,C, I), f.l, ĈR) | f ∈ F}, where

ĈR := { (c/φ(e,C, I), re) | (e, re) ∈ f.CE}

Finally, two substitution functions c/φl and c/φr are defined considering local and remote
resolved Condition statements, respectively:

c/φl : (c,Cl) 7→


(c/φl(l, I), op, c/φl(r, I)) if (l, op, r) = c

(¬, c/φl(c′, I)) if (¬, c′) = c

cl.c if ((), l) = c and ∃cl ∈ Cl : cl.l
∧
= l

c else

c/φr : (c, I) 7→



(c/φr(l, I), op, c/φr(r, I)) if (l, op, r) = c

(¬, c/φr(c′, I)) if (¬, c′) = c

nsCE(i.l, cr.c) if (r, l) = c and ∃i ∈ I : i.l
∧
= r and

∃cr ∈ i.t.b.C : cr.l
∧
= l

c else

Note that for reasons of brevity, a detailed formalisation for prefixing the subinstance
identifier to each atomic element of a substituted remote condition expression (i.e. the
adaptation to the namespace by the function nsCE : ID× CE→ CE) is omitted. Further-
more, the above case differentiations are abbreviated such that, e.g. (l, op, r) denotes a
tuple pattern representing the case c ∈ CE×OP× CE or (r, l) in case c ∈ Ref.

Finally, the substitution function for Probability statements is defined

c/φProbability : P,C, I 7→
⋃
pr∈Pr

{
(pr.l, c/φ(pr.c,C, I)) if pr ∈ ProbS
(pr.l, c/φ(pr.c,C, I), pr.t) if pr ∈ ProbT

82

3.3 Transformation into LARESBASE

3.3.3 Guard Expansion

This section provides the transformation semantics for resolving reactive expressions used
in forward and guards statements. It describes how the combinatorics arising from multiple
conditional reactives and addressed conditional forward statements is handled.

In order to illustrate the following transformation definitions, the MS example is revisited
and adapted. Figure 3.10 represents the MS model before applying this transformation.
As it can be seen, forward statements are addressed at intermediate levels. In a manner
likewise to the preceding section, indirections over intermediate levels will be eliminated
to end up with resolved guards statements, solely composed of elements which directly
refer to statements of Behavior instances. This third transformation step ultimately outputs
a LARESBASE model.

For this purpose, the traversal function τge is defined to perform the guard expansion
transformation. It resolves reactive expressions and thereby expands forward statements in
order to finally construct resolved expanded guards statements:

τge : IM × FWge→BWge

As in the preceding sections, a forward function ζge and a backward function βge have to
be defined. Alike the condition expansion transformation, no information is required to be
forwarded such that the empty set ∅ is the only propagated value:

FWge := {∅}

MS
C.Fail guards sync{rm.<r>,
maxsync{S1.<r>, S2.<r>}
}

S1
forward <r> to {
<norep> if bad

<rep>

}

SUM

S2
forward <r> to {
<norep> if bad

<rep>

}

SUM

rm
forward <r> to <idle>

Repair

C

Figure 3.10: Modified MS example: Expansion of reactive expressions

83

3 TRANSFORMATION SEMANTICS

Since expanded forward and guards statements are contained by reconstructed subinstances,
the backward information encompasses no further information apart from the subinstances:

BWge := IM

Forward Propagation

According to the above mentioned fact that the expansion of forward and guards statements
only depends on the results of the resolved forward statements of the subinstances, no
information is required to be propagated in the direction towards the leaves. The forward
function ζge is thus, as it was in the preceding section, defined as the identity function:

ζge : (i, fw) 7→ (i,∅)

Backward Aggregation

A given instance i is resolved by using the backward information BW ∈BWge obtained
by the preceding recursive step of the guards expansion transformation performed on the
subinstances. Accordingly, the corresponding backward function is given by

βge : (i, fw,BW) 7→ (i′)

The instance i′ which contains only resolved guards statements can be constructed by
using the function bge : Mbody × P(IM)→Mbody on i’s body. Let l = i.t.l be the name
of i’s Module definition, d = i.t.d be the set of delegates and b = i.t.b be the body. The
subinstance i′ is recomposed (with the modified body whose local and remote references
to forward statements were resolved) in accordance with

i′ := (i.l, (l,∅, d, bge(b,BW))︸ ︷︷ ︸
∈M

, ())

Similar to Condition statements, forward statements may also have local interdependencies
which will only be resolved if the processing follows a topological order. Hence again,
a function ts : P(F)→ Seq(F) is declared for the purpose of determining an order in
accordance with local interdependencies among forward statements. A stepwise substitu-
tion function f/φforward can then be used which requires three arguments: A sequence of

84

3.3 Transformation into LARESBASE

unresolved local forwards, a set of already resolved local forwards and a set of processed
subinstances:

f/φforward : Seq(F)︸ ︷︷ ︸
unresolved
forwards

×P(F)︸ ︷︷ ︸
resolved

local
forwards

× P(I)︸︷︷︸
processed

subinstances

→ P(F)︸ ︷︷ ︸
resolved
forwards

Eventually, the resolved forward statements Fres can be determined by initially applying
ts to obtain a sound sequence:

Fres = f/φforward(ts(b.F),∅,BW)

The resolved forward statements are subsequently used to compose a body for substitution.
Therefore, let

f/φguards : P(G)︸︷︷︸
unresolved

guards

×P(F)︸ ︷︷ ︸
resolved

local
forwards

× P(IM)︸ ︷︷ ︸
processed

subinstances

→ P(G)︸︷︷︸
resolved
guards

be a function declaration that resolves guards statements by using given local and remote
(resolved) forward statements. The body transformation function bge is then defined as

bge : (b, I) 7→
(
∅,∅, I,∅, f/φguards(b.G,Fres,BW), Fres, b.ic,∅, b.P

)︸ ︷︷ ︸
the modified body (where the referred forward statements have been substituted)

It remains to define the previously declared functions f/φforward and f/φguards. Firstly, the
substitution function f/φforward of the forward statements is recursively defined such that
forward statements are taken from a given sequence F and resolved as long as F 6= (). The
resolved forward statements are collected and used for subsequent resolution steps:

f/φforward : (F,Fres, I) 7→

{
Fres if F = ()
f/φforward(Ftail,{f ′head} ∪ Fres, I) else,

where

• F = (fhead) ◦Ftail splits the sequence F into a head element fhead and the remaining
sequence Ftail. The topological order of F ensures that the forward statement fhead
is independent from the remaining elements contained in Ftail.

• f ′head = (fhead.c, fhead.l,CR) constructs a resolved forward which is composed of
the original condition, the original label and a multiset CR to capture possibly
identical resolved conditional reactives. CR is processed by the function

f/φcr : CR×P(F)× IM→ P(CR)

85

3 TRANSFORMATION SEMANTICS

which performs the substitution of a single conditional reactive by taking the set
of resolved local forwards statements Fres and those contained in the processed
subinstances into account:

CR =
⋃

[f/φcr(cr,Fres, I)k | cr ∈k fhead.CR]

As described above, the substitution function f/φcr is responsible for the substitution of
a single conditional reactive element cr. Based on multiple choices among the referred
local and remote guards/forward labels, combination of substitutions lead to a number of
conditional reactive, contained by CR′. The function is hence defined by

f/φcr : (cr,Rres, I) 7→ CR′

Let RF include all referable (local and remote resolved) forward statements and their
references:

RF :=


∈Ref×F︷ ︸︸ ︷

(((), f.l), f) | f ∈ Fres

︸ ︷︷ ︸
resolved local forwards

∪


∈Ref×F︷ ︸︸ ︷

(((i.l), f.l), f) | i ∈ I ∧ f ∈ i.F

︸ ︷︷ ︸
resolved remote forwards

In addition to that, let a conditional reactive cr be denoted as a tuple which consists of a
condition expression ce and a reactive expression re, i.e. cr = (ce, re), and let the function
dep : Ref×RE→ B be given which determines whether a reference r is used by the given
reactive expression. The set of actually referred forward statements can be determined by

RF ′ = {(r, f) ∈ RF | dep(r, re)}

The global condition f.c and the restrictive conditions rc of an addressed forward statement
f inside RF ′ are then merged and simplified in order to obtain a set of multisets of referred
conditional reactives RCR addressed via a reference r:

RCR =
{[

(r, simplify(f.c∧ rc), re)k
∣∣ (rc, re) ∈k f.CR

]
| (r, f) ∈ RF ′

}
As a consequence of the fact that conditional reactives inside a single forward statement
are competing (i.e. a choice can be made among them), all possible combination of choices
need to be constructed by the cross-product over all of these sets:

RCRC =
∏

rcr∈RCR

rcr

86

3.3 Transformation into LARESBASE

MS
C.Fail guards {
(S1.<norep> | S2.<norep>) & rm.<idle> if S1.bad & S2.bad

S1.<norep> & rm.<idle> if S1.bad & !S2.bad

S2.<norep> & rm.<idle> if S2.bad & !S1.bad

rm.<idle> if !S2.bad & !S1.bad

...

}

S1

SUM

S2

SUM

rm

Repair

C

Figure 3.11: Modified MS example: Expanded guard statement

Let rcrc ∈ RCRC be a combination of referred conditional reactives. The set of reactive
expressions of unconditional reactives (i.e. arising from those conditional expressions that
do not comprise a condition expression) is given by

RU = {(r, ce, re) ∈ rcrc | ce = true}

whereas the set of genuine conditional reactives is given by the complement

RC = {(r, ce, re) ∈ rcrc | ce 6= true}

For the example given in Figure 3.10, the combinations arising from choices of referred
conditional reactives are shown as follows:[

S1.〈r〉,bad, 〈norep〉
S1.〈r〉,true, 〈rep〉

]
×

[
S2.〈r〉,bad, 〈norep〉
S2.〈r〉,true, 〈rep〉

]
×
[
rm.〈r〉,true, 〈idle〉

]
For illustratory reasons, let rcrc be one of these combinations used to derive RU and RC :

(S1.〈r〉,bad, 〈norep〉),
(S2.〈r〉,bad, 〈norep〉),
(rm.〈r〉,true, 〈idle〉)

⇒ RU = {(rm.〈r〉,true, 〈idle〉)}
RC = {(S1.〈r〉,bad, 〈norep〉), (S2.〈r〉,bad, 〈norep〉)}

This single combination will finally result in the outcome, shown in Figure 3.11, which
covers the distinct cases of the genuine conditional reactives. Following the described
scheme, the set of substituted and expanded conditional reactives CR′ can hence be
derived by considering all combinations of choices and all subsets of conditional reactive
expressions (coming from the genuine conditional reactives).

87

3 TRANSFORMATION SEMANTICS

Apart from these combinations, all guarded transitions inside all Behavior instances have
to be taken into account (as atomic reactions). Hereby, the first element of a contained
tuple represents the reference (i.e. the addressed Behavior instance and the guard label).
The second element is true, primarily because this label is always offered and secondly
because it has to conform with RU and RC . The third element represents the atomic
resolved guard label reference which includes the addressed distribution type:

RB = { ((d.l, t.l)︸ ︷︷ ︸
∈Ref

, true, (d.l, t.l, π1(t.d))︸ ︷︷ ︸
atomic resolved

guard label reference

) | d ∈ i.t.d︸ ︷︷ ︸
Behavior
instances

∧ t ∈ d.t.b.T : t.l 6= ()︸ ︷︷ ︸
guarded

transitions

}

The prerequisite for a valid model is that for each guard label offered by a Behavior
definition, the providing guarded transitions are required to have the same distribution type.
This ensures that RB has only one entry for a single reference (b.l, t.l).

Each conditional reactive is composed of a condition ce′ and a reactive expression re. The
latter is substituted by a function f/φRE (which will be defined shortly after):

CR′ =
⋃

rcrc∈RCRC

 ⋃
R′C∈P(RC)

(
ce′, f/φRE(re,R′C ∪RU ∪RB)

)
︸ ︷︷ ︸

the distinct cases arising from the genuine conditional reactives︸ ︷︷ ︸
the combinations arising from choices

The function nsRE : ID×RE→RE is subsequently used for prefixing the given identifier
to all atomic elements of the expression. Its detailed definition is omitted for reasons of
brevity. This allows defining the function f/φRE which resolves the references of a reactive
expression r by their addressed local and remote forward statements R:

f/φRE : (r,R) 7→



f/φRE(o1,R)∧ . . .∧ f/φRE(on,R) if r = sync{o1, ...on}

f/φRE(o1,R)∨ . . .∨ f/φRE(on,R) if r = maxsync{o1, ...on}

f/φRE(o1,R)∧¬ . . .∧¬f/φRE(on,R)∨
¬f/φRE(o1,R)∧ f/φRE(o2,R)∧¬ . . .∨
. . .∨
¬ . . .∧¬f/φRE(on−1,R)∧ f/φRE(on,R) if r = choose{o1, ...on}

nsRE(r.i.l, re) if (r, ce, re) ∈ R

r else.

88

3.3 Transformation into LARESBASE

In order to construct the condition ce′, let Call := {π2(rc) | rc ∈ RC} be the set of all
conditions inside a choice-combination rcrc and let Csub := {π2(rc)| rc ∈ R′C} be the
subset of conditions determined by the elements of R′C of the power-set over RC . By doing
so, the new conditional expression is finally constructed by the given choice-combination:

ce′ = ce∧

(∧
x∈Csub

x

)
∧

 ∧
x∈Call\Csub

¬x


While performing the expansion over the tree structure of the model, starting at the leaf
instances, all associated guards and forward statements will be resolved. When reaching
the root node of the instance tree, all guards statements are considered resolved. This
means that they directly refer to guard labels of instantiated behaviours.

For the running example, the outcome is straightforward due to the absence of conditional
forwards (i.e. the Boolean expression is implicitly true). The two guards statements of the
network instance are resolved by the forwards associated with the link instances, resulting
in

(l [1] . BLink . l f a i l e d & l [2] . BLink . l o k)
guards l [2] . BLink . 〈 s w a c t i v e 〉

((l [1] . BLink . l f a i l e d & l [2] . BLink . l f a i l e d) & l [3] . BLink . l o k)
guards l [3] . BLink . 〈 s w a c t i v e 〉

On the contrary, the following guards statement, which is stated inside the System defini-
tion, remains untouched as BSys.<systemfail> is already resolved. Consequently, the
whole guards statement is considered resolved:

((p [1] . B P r o c e s s o r . p f a i l e d | p [2] . B P r o c e s s o r . p f a i l e d) |
(n . l [1] . BLink . l f a i l e d &

n . l [2] . BLink . l f a i l e d &
n . l [3] . BLink . l f a i l e d)) guards BSys . 〈 s y s t e m f a i l 〉

Lastly, it remains to define the function f/φguards. It applies the function f/φcr in order to
substitute the references by the addressed resolved conditional reactives:

f/φguards : (G,Fres, I) 7→
⋃

[({g.g} × f/φcr(cr,Fres, I)× {()}︸ ︷︷ ︸
resolved guards statements

)m·n| g ∈m G ∧ cr ∈n g.CR]

As a final remark, neither the Condition statements nor the forward statements are of any
further avail and can be removed from the model, as their information is now represented
inside the resolved guards statements. The process of their removal (with the purpose of
obtaining a LARESBASE model in the end) is not mentioned in this work, as it is considered
trivial.

89

3 TRANSFORMATION SEMANTICS

3.4 From LARESBASE to LTS as Target Formalism

This section specifies how a LARESBASE model is transformed into a transition system.
Within the following three subsections, a hierarchy resolved variant of LARESBASE called
LARESFLAT will be defined (cf. Section 3.4.1), furthermore the formal representation of
an arbitrary behaviour (like a Markov Chain) will be formalised (cf. Section 3.4.2) and
subsequently be used as the target formalism of a transformation from LARESFLAT (cf.
Section 3.4.3).

3.4.1 LARESFLAT: A Hierarchy-Resolved LARESBASE

A LARESFLAT model is obtained from a LARESBASE model by resolving its hierarchy.
As a result, a LARESFLAT model solely contains the system instance which comprises all
aggregated Behavior instances and guards statements.

The formal definition restricts the general LARES representation to the following form:

LARESFLAT := {(B,M, (l,

∈M︷ ︸︸ ︷
(l, de, b, ()), ic)︸ ︷︷ ︸

∈I

) ∈ LARES | B = ∅ ∧M = ∅ ∧ ic = ()}

FTN
p[1].BProcessor.pfailed | p[2].BProcessor.pfailed |

(n.l[1].BLink.lfailed & n.l[2].BLink.lfailed & n.l[3].BLink.lfailed)

guards BSys.<systemfail>

...

p[1].BProcessor
...

p[2].BProcessor
...

n.l[1].BLink
...

n.l[2].BLink
...

n.l[3].BLink
...

BSys
...

Figure 3.12: LARESFLAT model for the FTN example

The root instance will only contain the set of delegations de (which in turn consists of
Behavior instances) and the set of all resolved guards statements. No other statements or
definitions will remain. The LARESFLAT representation of the FTN example is partially
depicted by Figure 3.12. The associated transformation from LARESBASE to LARESFLAT

is straight forward: Successively, the instance names have to be prefixed inside for each
Behavior instance and inside each element of a guards statement. Subsequently, the
Behavior instances and the guards statements are added to the parent of the current instance,
while the current instance can then be deleted. By doing so, the hierarchy is successively
resolved, starting at the leaves, continuing until the root instance is reached and ending

90

3.4 From LARESBASE to LTS as Target Formalism

up in the above LARESFLAT representation. Finally, the labels of the elements implicitly
capture the structure of the model, whereas the explicit hierarchical structure is eliminated.
Due to its simplicity and transferability, only specific parts of the transformation are
formalised in this work. The traversal function τhr performs the hierarchy resolution
transformation of Module instance by successively concatenating the current instance
identifier in order to construct a namespace for each element. This derives a LARESFLAT

representation which only consists of a (hierarchy resolved) System instance:

τhr : IM × FWhr →BWhr

As no forward information is required to resolve the hierarchy, the forward information
only encompasses the empty set.

FWhr := {∅}

Equivalently to the preceding transformations, a Module instance is relayed backwards.
Therefore, the backward information is defined by

BWhr := IM

Forward Propagation

As the hierarchy resolution process only depends on the results of hierarchy resolved
substructures, the forward function ζhr is defined as the identity function:

ζhr : (i, fw) 7→ (i,∅)

Backward Aggregation

The backward function βhr resolves a given instance i using the (hierarchy resolved)
instances BW ∈BWhr which have been relayed backwards by the preceding recursive
step of the transformation. It is defined by

βhr : (i, fw,BW) 7→ (i′).

Subsequently, two function will be used in order retrieve the Behavior instances DEsub and
the guards statementsGsub from the subinstances. Hereby, the function h/φDE : IM→ P(IB)

modifies the delegates of a given subinstance such that the name of the subinstance is
prefixed to the identifiers of its delegates. This function is applied to all child instances

91

3 TRANSFORMATION SEMANTICS

in order to reduce one hierarchy level in the subtree. The function h/φG : I→mset(G) by
contrast modifies all guards statements of the subinstances and aggregates them.

DEsub =
⋃

isub∈BW

h/φDE(isub) Gsub =
⋃

isub∈Isub

h/φG(isub)

The resulting hierarchy resolved Module instance i′ is composed as follows:

i′ := (i.l, (i.t.l,∅, i.t.d∪DEsub, b′)︸ ︷︷ ︸
i’s modified Module definition

, i.ic),

where b′ = (∅,∅,∅,∅, i.t.b.G∪Gsub,∅,∅,∅, i.t.b.P)︸ ︷︷ ︸
i’s modified Module body

The hierarchy resolution function h/φDE (which collects and modifies all Behavior dele-
gates) and the hierarchy resolution function h/φG (which collects and modifies all guards
statements) are defined by

h/φDE : i 7→ { h/φd(i.l, d) | d ∈ i.t.d} and h/φG : i 7→ [h/φg(i.l, g)k | g ∈k i.t.b.G}

The function for building the namespace of a single Behavior delegate is defined by

h/φd : (l, d) 7→ (l ◦ d.l, d.t, d.ic)

Establishing the namespace for a guards statement turns out to be more complicated as
each contained expression has to be modified:

h/φg : (l, g) 7→
(
nsCE(l, g.c),

{
(nsCE(l, c), nsRE(l, r) | (c, r) ∈ g.CR

}
, (l) ◦ g.ns)

)
3.4.2 Abstract Representation of a Transition Systems

A transition system represents some discrete behaviour in terms of states and transitions.
Let the universal set of transitions be defined by T := S× E× S. Hereby, S denotes the
universal set of enumerable states and E represents the universal set of extensions (which
may e.g. include a label and a distribution). A transition is thus composed of a source
state, some kind of extension attribute and a target state. An extended transition system is
given by the tuple (T, s0) ∈ TRA which contains a multiset of transitions T ⊂ mset(T)

and the initial state s0 ∈ S. T is defined as a multiset in order to capture choices between
transitions that lead to the same target state (apart from providing the same transition
annotations, such as a label or a given distribution).

92

3.4 From LARESBASE to LTS as Target Formalism

The transition system is called an extended stochastic labelled transition system (ESLTS),
when the type of transition definition incorporates a label l and a delay that is either
zero (immediate) with weight w or exponential (Markovian) with rate r (as given by
E := Σ+ × (Dexp ∪Dimm)), where the sets of possible distributions are defined by

Dexp := { r→ |r ∈ R} and Dimm := { w
99K |w ∈ R}

Accordingly, TM := {(ss, (l,
r→), st) ∈ T} denotes the set of labelled Markovian transitions

and TI := {(ss, (l,
w
99K), st) ∈ T} denotes the set of labelled weighted immediate transitions,

where TM∪̇TI = T.

In order to relate a source state and its outgoing transitions, the function δ : S→mset(T)

is declared (its definition will be omitted here).

3.4.3 LTS Semantics for LARESFLAT

A sound formal execution semantics is essential in order to perform simulation or reacha-
bility analysis of a LARES model. In this section, the execution semantics for LARES is
given by defining a transformation into a transition system.

Let f ∈ LARESFLAT be a LARESFLAT model which contains the system instance i1,
obtained by i1 = f.i1. The set Bf = i1.t.d then comprises all Behavior instances and
Gf = i1.t.b.G contains all resolved guards statements. Let n = |Bf | be the number of
Behavior instances. The Behavior instances can be written as a tuple

(b1, b2, . . . , bn), where bi ∈ Bf .

In order to clarify the above: Each instantiated Behavior has a specific namespace originat-
ing from the hierarchy resolution process. Here and subsequently, the index of each entry
in the above tuple of Behavior instance encodes the namespace of a Behavior instance.

Each Behavior instance contains a set of states Si which can be obtained for all instances
via the projection .t.S on each element of (b1, . . . , bn):

(S1, S2, . . . , Sn) = (b1.t.S, b2.t.S, . . . , bn.t.S)

The potential state space S arising thereof is given by the cross product of the sets of states
of all Behavior instances:

S = S1 × S2 × . . .× Sn.

93

3 TRANSFORMATION SEMANTICS

A composed state s ∈ S is subsequently denoted as a tuple of states:

(s1, s2, . . . , sn) = s, where si ∈ Si

For each system, an initial composed state s1 ∈ S needs to be given that is determined by
the initial configuration of all instantiated Behaviors:

s1 = (b1.t.ic.l, b2.t.ic.l, . . . , bn.t.ic.l)

The set of states of a Behavior instance bi can be obtained by applying the projection
function .t.b.T . This is done for each element of the tuple of Behavior instances in order
to obtain a tuple of sets of transitions:

(T1, T2, . . . , Tn) = (b1.t.b.T, b2.t.b.T, . . . , bn.t.b.T)

Let the function succ be declared which calculates the successor s′ of a composed state
tuple s. Let a set of jointly acting transitions T , where each transition is performed by
a distinct Behavior instance, be given and let a function ξ : P(T)× S→ S be declared.
This function determines which of the component states of s have to be switched to their
successor states via matching transitions:

succ : (T, s) 7→ (ξ(T, s1), . . . , ξ(T, sn)) , where s = (s1, . . . , sn).

In accordance with the above, the function ξ calculates the successor of a component
source state si and a given set of transitions T . Hereby, either the target state t.t in case of
a matching transition t ∈ T or otherwise the source state si will become the succeeding
component state:

ξ : (T, si) 7→

{
t.t if ∃t ∈ T : t.s

∧
= si

si else.

In order to subsequently determine the composed successor state, an abbreviation notation
is used which is defined by 〈T, s〉 = succ(T, s).

The Execution Semantics of Unguarded Behaviour

The execution semantics is described by Structural Operational Semantics (SOS) rules
which were introduced in [113]. As stated in [1], this representation has an intuitive appeal
and is widely used as a flexible framework to give operational semantics to programming

94

3.4 From LARESBASE to LTS as Target Formalism

C1
5

<
activate>

<
re

pa
ir
>

A F

iR

C2
5

<
activate>

<
re

pa
ir
>

A F

iR

<repair>

3

R

I B

AC1

AC2

 IR

composed initial state

Figure 3.13: Example: Composed initial state

and specification languages. Each rule defines a number of antecedent conditions and
some side-conditions that imply a certain consequence:

〈antecedent〉∗
〈consequence〉

〈side condition〉

If a Behavior instance bi can perform an unguarded Markovian transition si
λ→ s′i ∈ Ti

from state si ∈ Si into s′i ∈ Si, the component state si of the composed state s will also
change to s′i. The SOS rule for an unguarded Markovian transition is hence given by

si
λ→ s′i

s
λ→ s′

s′ = 〈{si
λ→ s′i}, s〉 (3.2)

A similar rule captures the case of being able to performing an unguarded immediate
transition si

w
99K s′i ∈ Ti:

si
w
99K s′i

s
w
99K s′

s′ = 〈{si
w
99K s′i}, s〉 (3.3)

In Figure 3.13, an example system composed of the Behavior instances C1, C2 and R

is shown including the derived composed initial state. As depicted in Figure 3.14, the
first SOS rule (3.2) was applied to the composed initial state in order to determine the
succeeding composed states. Due to the absence of unguarded immediate transitions in the
given example, rule (3.3) was not applied.

The Execution Semantics of Guarded Behaviour

The execution of guarded transitions depends on guards statements which specify interac-
tion among the instances. To illustrate the complex interaction mechanism, the example
introduced in Figure 3.13 is consulted again. The model is yet incomplete in the sense that
there are no guards statements given. As it was mentioned beforehand, these statements

95

3 TRANSFORMATION SEMANTICS

AC1

AC2

 IR

co
m

p
o
se

d
 i
n
it

ia
l
st

a
te

5

5

FC1

AC2

 IR

AC1

FC2

 IR

?

?

Figure 3.14: Example: Semantics for unguarded transitions

<a>

<c>

<a>

<a>

sync{〈a〉, 〈b〉, 〈c〉} ∅ ∅ ∅

maxsync{〈a〉, 〈b〉, 〈c〉} ∅

choose{〈a〉, 〈b〉, 〈c〉} ∅ ∅ ∅

Figure 3.15: Exemplified illustration of the reactive operator semantics

specify how instantiated Behaviors interact. Let the following guards statement be added
to the example model:

(g1) FC1 ∧ IR guards {
if true 〈repair〉C1 ∨ 〈repair〉R
}

The generative part requires component C1 to be in the failed state F and the repairman
R is required to be in the idle state I . If the generative part is fulfilled, an event will be
generated that may influence C1 and R depending on whether the reactive expression
is satisfied (which means that the addressed behaviours reveal the required behaviour).
According to the given example, either C1 or R should be able to perform a 〈repair〉
behaviour or both at once. Since the ∨-operator originates from a maxsync within the
reactive expression, the semantics can be established from studying the synopsis given in
Figure 3.15 which depicts the synchronisation semantics for the specific operators of a
reactive expression.

As shown in Figure 3.14, the composed state (FC1,AC2, IR) which satisfies the generative
expression of the guards statement (g1) is reached:

(FC1,AC2, IR) � FC1 ∧ IR

96

3.4 From LARESBASE to LTS as Target Formalism

The reactive part has to be considered next. In the preceding transformation, the reactive
expression was translated to its logical expression equivalent 〈repair〉C1 ∨ 〈repair〉R, by
replacing the maxsync operator by a logical disjunction of its arguments, which is achieved
by using the infix operator ∨. The incurred logical expression is transformed into a product
term which, to be more precise, is a minterm representation (i.e. a product term in which
each variable appears once) in order to comply with the state space (which is a result of
the SPA transformation approach described in Section 3.5) in a later step:

(〈repair〉C1 ∧ 〈repair〉R) ∨ (〈repair〉C1 ∧ 〈repair〉R) ∨ (〈repair〉C1 ∧ 〈repair〉R)

A behaviour represented by a guarded transition which is labelled 〈repair〉, will be revealed
by both instantiated behaviours C1 if the failed state F is current and R if the idle state
I is current. Accordingly, one of the above product terms is satisfied by the considered
composed state:

(FC1,AC2, IR) � 〈repair〉C1 ∧ 〈repair〉R

For all guard label references inside the maxsync operator, a corresponding behaviour can
be found in state (FC1,AC2, IR). This matches the second row and the first column of
Figure 3.15. For this reason, the addressed transitions will perform synchronously. The
example model is completed by including two further guards statements:

(g2) FC2 ∧ IR guards {
if true 〈repair〉C2 ∨ 〈repair〉R
}

(g3) IR guards {
if true 〈activate〉C1 ∨ 〈activate〉C2

}

The successive application of the initially given rules and the scheme on how to deal with
guards statements until a fixed point is reached will exhaustively construct the state space
(cf. Figure 3.16).

There may also be choices between different behaviours within a component and between
multiple conditional reactives of a single guards statement, which is not covered by the
above illustrations. These aspects are captured in the next section in which the general
execution semantics for the interaction behaviour will be defined.

General Execution Semantics of Interaction Behaviour

Each guards statement in the multiset of guards statements Gf may be composed of one or
more conditional reactives. For each conditional reactive, a multiset of tuples is constructed
within which each tuple contains a condition expression (built from the conjunction of the

97

3 TRANSFORMATION SEMANTICS

AC1

AC2

 IR

co
m

p
o
se

d
 i
n
it

ia
l
st

a
te

5

5

FC1

AC2

 IR

AC1

FC2

 IR

iRC1

AC2

BR

(g1)
iRC1

FC2

BR

(g2)

AC1

iRC2

BR

3

3

iRC1

AC2

 IR

AC1

iRC2

 IR

5

5

FC1

iRC2

BR

(g3)

(g3)

3

3
FC1

iRC2

 IR

iRC1

FC2

 IR

(g3)

(g3)

iRC1

iRC2

BR

(g2)

(g1)

(g3)

iRC1

iRC2

BR

3

Figure 3.16: Example: Evolved state space

generative expression of a guards statement and the condition expression of a conditional
reactive) and a reactive expression (contained by the conditional reactive):

CR′ = [(grd.g ∧ c︸ ︷︷ ︸
=:g′

, r, grd.ns)x∗y | grd ∈x Gf ∧ (c, r) ∈y grd.CR]

Let pt : BE→ P(BE×N) be a function which determines and enumerates the product
terms. Furthermore, let ptminterm : BE→ P(BE×N) be a function which determines
and enumerates the minterms of a Boolean expression. For a more detailed description of
these functions see Appendix D. Additionally, let an enumeration function

enum : mset(CE×RE×NS)→ P(CE×RE×NS×N)

be given which enumerates all objects inside the multiset argument.

CR′ can now be converted to a set CRpt of encoded product term combinations:

CRpt = { (ptg, ptr,

enc∈Uid︷ ︸︸ ︷
(ens, egrd, eg, er)) |

(ptg, eg) ∈ pt(c) ∧ (ptr, er) ∈ ptminterm(r) ∧ (c, r, ens, egrd) ∈ enum(CR′)

}

The subsequent section will use the encoded product term combinations in order to derive
the jointly acting transitions by taking choices among them into account.

98

3.4 From LARESBASE to LTS as Target Formalism

Dealing with Competing Guarded Transitions

Let the set {A.〈a1〉,A.〈a2〉,B.〈b〉} represent a reactive minterm which is considered once
state (SA, SB, SC) will be reached. This is illustrated by Figure 3.17. Note that a guard
label 〈c〉 of instance C is used by two (competing) transitions. Furthermore, the instance A
has two (competing) transitions which both reveal distinct labels 〈a1〉 and 〈a2〉. In general,
an arbitrary number of competing transitions might be triggered by a minterm which refers
to guard labels that belong to a single instance.

The semantics which determines how to deal with such a situation is not obvious. Several
kinds of semantics could be defined:

1. A minterm will only be satisfied if it solely refers to a single label within a Behavior
instance.

2. A minterm will only be satisfied if the addressed guard labels are enabled in terms
of available guarded transitions. In case of satisfaction, all addressed competing
transitions of a single Behavior instance are in choice.

3. A minterm will only be satisfied if all involved local transitions lead to the same
state, such that they can be performed synchronously.

All above presented semantics provide advantages and disadvantages:

• When considering the ∧ operator within the logical expression as a synchroni-
sation of available behaviours, the example as given by the reactive minterm
{A.〈a1〉,A.〈a2〉,B.〈b〉} will never be satisfied if one takes 1. as underlying se-
mantics. Even though two labels are addressed hereby, it might also be the case that
e.g. C.〈c〉 is addressed. This does not prevent from addressing competing transi-
tions. It would require adding further restrictions. Anyway, it is counterintuitive
to synchronise transitions of a single component which reveal themselves to be in
choice. Apart from that, it is as well not a valid option to apply this to all possible
cases.

SA

SB

SC

SB
′

SA
′

SA
′′

SC
′

SC
′′

〈a1〉

〈a2〉

〈b〉

〈c〉

〈c〉

Figure 3.17: Available guarded transitions within current state

99

3 TRANSFORMATION SEMANTICS

• When considering 2., the minterm will be satisfied for A.〈a1〉,A.〈a2〉 if the avail-
ability of the referred guard labels is considered. This means that the ∧ operator is
not equivalent to a synchronisation because of the operator’s nature.

• Definition 3. assumes that the ∧ operator serves as a synchronisation and reasons
about the availability of the referred label. The problem which will occur if this
scheme is applied as the underlying semantics is that a local synchronisation between
outgoing transitions has to be enforced. As described above, this only works for
transitions that lead to the very same state. In most cases there will be no common
state. This is why these cases have to be forbidden for the purpose of achieving an
unambiguous target state.

For the implementation, the semantics given by 2. was chosen. This will be formalised in
the following. A product term is hereby considered a set of literals, e.g. l1 ∧ l2 ∧ . . .⇔
{l1, l2, ...} for reasons of simplification. This allows using the member operator ∈. Let
a tuple represent an encoded combination of product terms (ptg, ptr, enc) ∈>0 CRpt.
Furthermore, let the composed state s and an index set IB = {1, . . . , n} be defined (where
n corresponds to the number of Behavior instances). The generative part ptg of the tuple
will be satisfied by s if

s � ptg ⇐⇒ ∀v ∈ ptg

{
@i ∈ IB : v

∧
= si if v negated

∃i ∈ IB : v
∧
= si else.

Note that ∧= means that the reference contained by the literal is compared to the addressed
statement.

In order to determine whether the reactive part is satisfied, the outgoing guarded transitions
for the current state si of the Behavior instances bi have to be considered. For obtaining the
set of outgoing (guarded) transitions of a given state si of a Behavior instance (component)
bi, the following function definition is given:

⇒: (bi, si) 7→ [tk | t ∈k (bi.T ∩ TG) ∧ t.s ∧= si]

For each component i ≤ n, the sets of outgoing transitions can then be determined for a
given state si:

(⇒ (b1, s1)︸ ︷︷ ︸
T s
1

, . . . ,⇒ (bn, sn)︸ ︷︷ ︸
T s
n

100

3.4 From LARESBASE to LTS as Target Formalism

The reactive part will be satisfied if no guarded transition can be found whose label
corresponds to a negated literal v (when considering all negated literals v of a given
reactive minterm) and if a guarded transition can be found for all unnegated literals:

s � ptr ⇐⇒ ∀v ∈ ptr

{
@i ∈ IB : ∃t ∈ T si : t

∧
= v if v negated

∃i ∈ IB : ∃t ∈ T si : t
∧
= v else,

For the purpose of determining the set of enabled transitions for each minterm (i.e. transi-
tions that are available in the current composed state and referred to by the minterm literals
of ptr), a function is defined which considers only those transitions that are addressed by
unnegated Boolean variables:

⇒
√

: T 7→ [tk | t ∈k T : ∃ unnegated v ∈ ptr : t.l
∧
= v]

Whenever ⇒
√

is applied to a set of outgoing transitions of a component state, the set
of enabled transitions for a single component is determined. It represents a local choice
between possible behaviours of an instantiated Behavior with regard to a minterm ptr.
Accordingly, all choices are determined by the sets of enabled transitions T

√

i for the
current state s � ptg ∧ s � ptr:

(⇒
√

(T si)︸ ︷︷ ︸
T
√

1

, . . . ,⇒
√

(T sn))︸ ︷︷ ︸
T
√
n

)

Due to the chosen semantics 2., a number of combinations of jointly acting transitions
arise among the addressed instances:

Tcombinations =
∏

i∈IB : |T
√

i |>0

T
√

i (3.4)

Referring to the example given for Figure 3.17, the multisets of enabled transitions in the
depicted composed state are given by[

[t
〈a1〉
A , t

〈a2〉
A], [t

〈b〉
B], []

]
The choice in the first multiset leads to the combinatorics, determined by (3.4). The
following competing tuples of jointly acting transitions are obtained which constitute a
choice in the composed state space:

(SA→ (SA)′, SB → (SB)′)

(SA→ (SA)′′, SB → (SB)′)

101

3 TRANSFORMATION SEMANTICS

The above can be generalised:

• The source states of a composed transition Tc ∈ Tcombinations are used to construct
the successor s′ by instantaneously switching the corresponding component state
si of the current composed state s to the target states s′i. This is addressed by the
notation s′ = 〈Tc, s〉 introduced on page 94.

• LARES provides two kinds of transition types, i.e. delayed (an exponential distri-
bution) and weighted immediate transitions. It is by definition forbidden to derive
composed distributions from heterogeneously typed distributions. A model will be
considered invalid if a synchronisation between different types of distributions is
defined. Let (ti)i∈IB ′ = Tc. A property can be formulated which ensures that all
transitions ti comprise the same distribution type:∣∣∣ ⋃

ti∈Tc

π1(ti.d)
∣∣∣ ≤ 1

A guarded transition may also be specified without an explicit distribution given. Its
distribution is then determined by the distribution type of the jointly acting transitions.
If their distribution type is Markovian, the (neutral) rate 1 will be assumed or else if
the distribution type is immediate, the (neutral) weight 1 will be assumed. If none of
the addressed transitions provides a defined distribution, the immediate distribution
with weight 1 will be taken as default for all the transitions. Based on the currently
supported distribution types, the distribution of a composed transition is determined
by either the weight wc or the rate rc:

wc =
∏
t∈Tc

π2(t.d) rc =
∏
t∈Tc

π2(t.d) (3.5)

Accordingly, composed transitions with an immediate distribution type or with an expo-
nential distribution type are denoted by s

wc � s′ or s rc−→ s′ respectively.

Completion of the LTS Semantic by SOS Rules for the Interaction Behaviour

The ideas described above can be used to define additional SOS rules which complement
the rules that consider the unguarded behaviour. For both types of rules some common
aspects can be stated beforehand:

• The Side-conditions ensure that all guards statements g ∈ Gf are considered and
transformed into tuples of generative/reactive product terms as introduced before-
hand. Furthermore, the combinations of choices arising by virtue of multiple guard
labels addressed within a single Behavior instance are constructed. For each choice
a label and the unified distribution is determined.

102

3.4 From LARESBASE to LTS as Target Formalism

• The Antecedents are fulfilled in case that a tuple of product terms (ptg, ptr) ∈ CRpt

is satisfied by the current composed state s (i.e. considering the generative part
s � ptg and the reactive part s � ptr).

• As a Consequence, a composed state s leads to a composed state s′ by each com-
posed (labelled) transition which comprises the determined common distribution.

For each encoded tuple of generative/reactive product terms (ptg, ptr, enc) ∈ CRpt which
is satisfied (cf. the antecedents of an SOS rules) as well as for each Tc a transition emerges:

• The following rule applies in case that a set of jointly acting transitions Tc yields an
immediate distribution type:

s � ptg ∧ s � ptr

s
enc,wc
99K s′

(ptg ,ptr,enc)∈CRpt

s′=〈Tc,s〉 (3.6)

• The following rule applies in case that a set of jointly acting transitions Tc yields an
exponential distribution type:

s � ptg ∧ s � ptr

s
enc,rc−→ s′

(ptg ,ptr,enc)∈CRpt

s′=〈Tc,s〉 (3.7)

Performing Reachability Analysis

Let s1 be the composed initial state. The application of all SOS rules 3.2, 3.3, 3.6 and 3.7
on s1 and recursively on all reachable composed successor states s′i explores the overall
set of reachable composed states. Once a fixed point is achieved (i.e., no further successive
composed states can be reached that haven’t been processed yet), the exploration ends. All
transitions constructed by the rules are collected in the multiset T (such that s r→ s′ ∈i T
or s

w
99K s′ ∈j T) which represents the reachability graph. The resulting transitions system

is denoted by the tuple (T, s1). The resulting state space may contain different states
which have both immediate and Markovian outgoing transitions. It is thus denoted as an
ESLTS (Extended Stochastic Labelled Transition System). It is assumed that an immediate
transition will always take place before a Markovian transition is able to perform, which is
called the maximum progress assumption. Accordingly, all Markovian transitions within
the set of outgoing transitions of a composed state which enables at least one immediate
transition can be safely removed. In many cases an exhaustive analysis is required to
be performed by tools that solely support SLTS. For this purpose, all vanishing states
(whose sojourn time is 0 due to an outgoing immediate transition) have to be eliminated as
described in [11].

103

3 TRANSFORMATION SEMANTICS

3.5 From LARESBASE to Stochastic Process Algebra as
Target Formalism

The process algebra that is used as a target formalism is the CASPA SPA. It will be intro-
duced in the first part of this section. Besides, an intermediate formalism is presented which
encapsulates sequential SPA processes and information stating how a process interacts
with its environment (PACT – Process Algebra Composition Tuples). Complementary, its
associated composition semantics is provided in order to calculate the set of synchronising
action labels and to perform the composition according to the tree structure of the model.
The final part of this section details the transformation from LARESBASE to PACT. It speci-
fies how each instantiated Behavior is mapped to a sequential SPA process and determines
how it interacts with its environment. The desired CASPA SPA specification ultimately
results from folding the hierarchically structured PACT model.

3.5.1 Syntax and Semantics of the CASPA SPA

In order to specify the SPA semantics for the LARES language, the formal definition of
the CASPA SPA (consisting of the syntactical notation and the semantics) is revisited.
The most recent state of the process algebra tool CASPA is described in [11] and [123].
Previous publications that relate to CASPA can be found in [94, 119, 124, 125].

The set L of valid CASPA SPA expressions is defined by the following language ele-
ments. Let Act = ActM ∪̇ActI be the set of action names and Pro the set of process
names. The action τ ∈ ActI hereby denotes an internal, invisible activity. Furthermore,
let AM ⊆ ActM ×Λ be the set of Markovian actions (where Λ = R≥0 is the set of rates),
AI ⊆ ActI ×W be the set of immediate actions (where W = R≥0 represents the set of
weights) and σ ∈ L be the stop process. Let P,Q ∈ L denote two SPA processes, let
a ∈ Act represents an action label and let X ∈ Pro be a process name. A new process
definition can be specified by X := P (hereby := assigns a process P to a given name
X). A Markovian action prefix is denoted as (a, r);P (where r ∈ Λ), an immediate ac-
tion prefix is denoted as (∗a,w∗);P (where w ∈W), a choice is denoted as P +Q and
P |[S]|Q is a parallel composition, where S ⊆ Act \ {τ} represents the set of labels of
synchronising actions. Hereby, actions are only allowed to be synchronised in case they are
of the same type (i.e. being either immediate or Markovian). The hide operator is denoted
as hideH inP , within which H ⊆ ActI \ {τ} consists of labels referring to actions which
have to be hidden.

In the following, several SOS rules are given in order to formalise the semantics (of the
action prefix, the choice operator, the parallel composition operator and hiding) for the

104

3.5 From LARESBASE to SPA as Target Formalism

CASPA SPA by means of labelled transition systems, i.e. in terms of immediate and
Markovian transitions:

• Semantic rules for an action prefix:

(a,w);P
a,w
99K P (a,λ);P

a,λ→ P

• Semantic rules for the choice operator:

P
a,w
99K P ′

P +Q
a,w
99K P ′

Q
a,w
99K Q′

P +Q
a,w
99K Q′

P
a,λ→ P ′

P +Q
a,λ→ P ′

Q
a,λ→ Q′

P +Q
a,λ→ Q′

• Parallel composition semantics

– for the case that an action a is not in the synchronisation set:

P
a,λ→ P ′

P |[S]|Q a,λ→ P ′|[S]|Q
a /∈ S P

a,w
99K P ′

P |[S]|Q
a,w
99K P ′|[S]|Q

a /∈ S

Q
a,µ→ Q′

P |[S]|Q a,µ→ P |[S]|Q′
a /∈ S Q

a,v
99K Q′

P |[S]|Q
a,v
99K P |[S]|Q′

a /∈ S

– for the case that an action a is in the synchronisation set:

P
a,λ→ P ′ Q

a,µ→ Q′

P |[S]|Q a,λ·µ→ P ′|[S]|Q′
a ∈ S P

a,w
99K P ′ Q

a,v
99K Q′

P |[S]|Q
a,w·v
99K P ′|[S]|Q′

a ∈ S (3.8)

• The hide operator ensures that a certain action set is hidden (from an external point
of view it is considered an internal action τ). An internal action cannot be observed
and thus not be used for synchronisation with other processes. In the course of
extending the CASPA language by immediate actions, hiding of Markovian actions
has been disabled, such that only the following rules apply:

P
a,w
99K P ′

hide H in P
τ,w
99K hide H in P ′

a ∈ H P
a,w
99K P ′

hide H in P
a,w
99K hide H in P ′

a 6∈ H

105

3 TRANSFORMATION SEMANTICS

As it is described in [11], the arising transition system of a process algebra model is directly
encoded by symbolic data structures and is subsequently converted to a purely Markovian
model. However, the concrete syntax of CASPA comprises additional features which have
not been discussed there:

• Parameters: A process definition can be parametrised, such that several parameters,
each with a specific range of values in the domain of natural numbers, can be
declared.

• Guards: Each subprocess defined within a parametrised process definition is guarded
by constraints on the parameters, such that a subprocess is only able to perform
when its guarding constraints are satisfied. An asterisk within a guard represents a
wildcard which means that the associated subprocess is always able to act.

The following example specifies a simple parametrised queueing process P (with only a
single parameter x representing the queue length):

P(x [2]) :=

[x<2] (inkr,1); P(x+1)

[x=2] (*full,1*); P(x)

[x>0] (dekr,1); P(x-1)

[x=0] (*empty,1*); P(x)

[*] (doSth,1); P(x)

An equivalent unparametrised specification can be defined by

P0:= (*empty,1*);P0 + (inkr,1); P1 + (doSth,1); P0

P1:= (inkr,1); P2 + (dekr,1); P0 + (doSth,1); P1

P2:= (dekr,1); P1 + (*full,1*); P2 + (doSth,1); P2

Generally speaking, the cross-product over the parameter domains spans the potential state
space of the sequential process. A choice between several guarded subprocesses arises
when they can act alternatively (which is the case when their guarding constraints are
satisfied due to the current parameter configuration). The introduction of parameters can
thus be seen as an abbreviation notation in order to not enforce modellers to encode each
explicit state in a sequential process by an individual process name. The EBNF grammar
rules for the definition of the CASPA syntax including the above-mentioned parametrised
processes are detailed in [123]. A classification of CASPA models is thereby established
(to deal with compositionality issues as discussed in the beginning of the next section)
with the purpose of giving a sufficient criterion for a model to be considered nice.

106

3.5 From LARESBASE to SPA as Target Formalism

3.5.2 Compositionality Issues

The CASPA SPA (and hence the LARES approach defined thereupon) may be considered
non-compositional in a strong sense. When specifying a process with a weight ratio
of 1 : 1 between two actions a and b in a choice, this ratio is naturally expected to be
preserved in the final composed transition system by the probabilities 1

2
for each transition

(cf. [119]). Due to its composition with another process whose action label b is included in
the synchronisation set, this ratio property might no longer be preserved. As determined
by the SOS rule (3.8) for synchronised compositions, the resulting weight is calculated by
the product of the weights from both processes, leading to a probability ratio of 1 : 2 in the
final composed transition system, as depicted by Figure 3.18. This fact requires a modeller
to pay attention when additional components are composed as this may commonly not
preserve the ratio between the weights/rates in terms of the resulting probabilities due to
synchronisation.

(∗a,1∗)

(∗b,1∗)

|[b]| (∗b,2∗) ⇒
a,1

b,2

Figure 3.18: The ratio between two immediate actions is not preserved due to composition

The CASPA SPA as well as other formalisms which incorporate immediate transitions face
another problem which derives from a fully interleaved parallel composition of a process
with and another one without timeless traps. Whenever a timeless trap is reached by one
process, the other process is not able to perform regarding the composed system (as shown
in Figure 3.19). The reason is that time stops for the composed process, even though the
composition defines no synchronisation and therefore should not cause any interference
among the two processes with respect to the composed system. From a compositionality
point of view this is counterintuitive because, in spite of one process entering a timeless
trap, the other process should still be able to act. A solution for this compositionality issue
may be based on stochastically discontinuous Markov processes as described in [7].

c||
a

b

⇒
a

c

c

b

Figure 3.19: A process w/o timeless traps (on the very left) incurs a timeless trap

107

3 TRANSFORMATION SEMANTICS

3.5.3 Intermediate Composition Structure of Process Algebra Terms

Since the CASPA SPA is a formalism that allows composing processes, it serves well to
capture the hierarchy of a LARES model in terms of a composition structure. Each Module
instance relates to a composition term, whereas a Behavior instance finally relates to a
leaf node. The latter is expressed as a sequential SPA process which includes the required
actions which originate from the guards statements of a LARES model in order to evaluate
the assertion on states and perform the subsequent reaction.

This section introduces an intermediate representation to capture the generated sequential
SPA processes, their interactions and the composition structure. It originally came into
being in the course of development for transforming ZuverSicht models into an SPA [120].

The PACT (process algebra composition tuple) representation applies to other higher-level
formalisms such as LARES as well. It encompasses, as its name suggests, several tuple
definitions:

PACT := PAT ∪PACN

Hereby, the set PAT (of process algebra tuples where each one represents a sequential pro-
cess) and the set PACN (where each tuple represents a composition of several concurrent
processes) are defined subsequently.

Let S denote the set of pieces of synchronisation information by which a process interacts
with its environment. A tuple (x,S,D) ∈ PAT captures the (sequential) SPA process
instantiation x ∈ Pro which originates from a translated Behavior instance, the synchroni-
sation information S ∈ S and the process definitions D ∈ P(L) which are associated with
the instantiated process, hence

PAT := Pro× S×P(L)

Instead of directly composing the above described tuples, the hierarchy is preserved by
additional structures which are introduced to encompass the multiple subinstances of an
instance. For this purpose, a (named) structure is defined to capture n-ary compositions of
PACT elements

PACN := Pro×P(PACT)

where (x,C) ∈ PACN provides an SPA process instantiation x ∈ Pro subsuming a number
of PACT elements C which are composed in a subsequent step.

While the CASPA SPA solely provides a binary composition operator, a PACN structure
represents an n-ary composition of processes which has to be translated to a binary

108

3.5 From LARESBASE to SPA as Target Formalism

composed process term t. For this purpose, a representation is defined which temporarily
captures these binary structures:

(t, S,D) ∈ PAC, where PAC := L× S×P(L)

Accordingly, it holds that PAT ⊂ PAC. PAT structures are distinguished as they represent
atomic leaf elements of a process instance structure. However, as they are a subset of PAC,
the subsequently defined rules for PAC apply. The given (generic) structures can now be
used to define the composition semantics thereof.

Roughly speaking, the PACT semantics allows synchronising among a set of actions given
as part of the synchronisation information of two PACT structures. This results in a PAT

structure that composes these two PACT structures and merges their synchronisation
information.

The transformation from LARESBASE to SPA does not make use of the full capabilities
defined for the PACT representation. The reason is, as initially mentioned, that PACT
has not originally been devoted to LARES. Instead, each arising action from the guarded
transitions inside the Behavior instances is treated with equal rights. According to that,
the sets of actions which can synchronise grow along the instance paths towards the
root instance, unless they are hidden. This depends on some specific implementation
mechanism (which is not detailed here).

In order to illustrate the part of the PACT semantics which is applied for LARES, let
the synchronisation information be a set of action labels (which synchronise with the
environment of a single process) such that S := P(Act). The semantic rule to compose
two PAC structures (and implicitly, by their successive application, to compose a number
of processes recursively) is given by:

(p,Sp,Dp) (q,Sq,Dq)(
(p|[Sp ∩ Sq]|q)︸ ︷︷ ︸

∈L

, Sp ∪ Sq︸ ︷︷ ︸
∈S

,Dp ∪Dq︸ ︷︷ ︸
∈P(L)

) (3.9)

In case a PACN structure (x,C) is processed, the following SOS rule can be applied to
compose the associated PACT structures C. The application of this rule yields a new
process definition x := tC which is a binary composition of all subprocesses obtained by
the transformation of C (which in turn recursively depends on the application of the rules
(3.9) and (3.10) and whose name x can be used for instantiation):

(x,C)(
x,SC ,DC ∪ { x := tC︸ ︷︷ ︸

process definition

}
) (3.10)

109

3 TRANSFORMATION SEMANTICS

When considering a LARES System instance which has been transformed into a PACT

structure, x finally represents the instance name of the System and DC ∪{x := tC} consists
of all process definitions which encompass the full SPA specification of the model.

A more detailed explanation on the synchronisation aspects of the PACT structures can be
consulted in Appendix C.

3.5.4 LARESBASE to SPA

In this section, the transformation from LARESBASE into SPA is detailed. As an introduc-
tory example let P , Q and T denote SPA processes.

A condition P ∧Q will imply a reaction in a system (composed of these processes) in case
that a composed state may simultaneously behave like P and Q. In order to do so, a label
l is introduced which identifies the above conjunctive expression. Furthermore, the first
process needs to be able to perform an action with label l when it behaves like P , just
like the other process when it behaves like Q. If both processes are composed in parallel
including the action label as part of the synchronisation set S, an action will only take
place in the composed state space if both processes can synchronously perform the action
l. In this way, the rule (3.8) is applied to assert the above condition).

The following SOS rule considers T as a tester process T
l
99K T ′ which is composed with

the other two processes. The process T hereby testifies condition P ∧Q to be satisfied by
reaching T ′:

P
l
99K P Q

l
99K Q T

l
99K T ′

P |[S]|Q|[S]|T l
99K P |[S]|Q|[S]|T ′

l ∈ S

To recall, a guards statement of a LARESBASE model depends on the state of its related
instance tree (i.e. the condition expression) and triggers certain guard labels within the
Behavior instances (by its reactive expression). Both condition and reactive expressions
are Boolean expressions, similar to the condition given in the preceding example. The
action l which relates to the given conjunctive expression is used inside the composition
operator to realise the conjunction operator. Performing the action l in the composed state
space is equivalent to the evaluation of the condition.

In general, action labels can be used to mimic conjunctive clauses (such as product terms).
When a Boolean expression is translated to its sum of products, i.e. a disjunction of
conjunctive clauses, each product term can be assigned with an individual label.

110

3.5 From LARESBASE to SPA as Target Formalism

The following enumeration sketches the idea how such labels can be encoded for guards
statements (which encompass arbitrary generative and reactive expressions):

1. Simply speaking, each guards statement describes interactions of process instances
that have to be mapped within an SPA specification. This is achieved by synchroni-
sation of action labels. For this purpose, each guards statement contributes a unique
identifier to an action label (e.g. containing the namespace and the enumeration of
the guards statement inside the module definition Seq(ID)×N).

2. The generative part of a guards statement is a Boolean expression which asserts on
the current state of a number of instances. As above, it can be realised by parallel
composition with defined synchronisation sets in order to mimic each product term
of the DNF arising from the generative expression (cf. Appendix D). This also means
that each product term has to contribute to an action label (e.g. by its enumeration).

3. The reactive part can be handled similarly to the generative part. Instead of asserting
about the current states, it asserts about the currently possible (guarded) behaviour.
If the reactive part did not imply a behavioural change, a timeless-trap would arise in
the composed model in case of a synchronisation among immediate transitions. This
is avoided by requiring at least one reference to a guard label to imply a behavioural
change. In order to ensure that the intended semantics in terms of arising rates or
weights in the composed state space is achieved, the combinations have to be built
from the canonical DNF (also denoted as minterms) as reactive product terms (in
contrast to the generative part, in which the simplified sum of product suffices). The
reason for this is illustrated in the Appendix D.

Accordingly, an action label encoding which originates from a guards statement is de-
termined by the namespace, the enumeration of a guards statement, the enumeration of
a product term arising from the generative expression and the enumeration of a reactive
product term arising from the reactive expression:

UID = NS×N×N×N

Each literal inside a product term may address several Behavior instances. For the purpose
of translating a LARES behaviour instance to an equivalent sequential SPA process (which
incorporates the labels for the interaction among instances arising from guards statements),
each transformation of a Behavior instance has to be supplied with the relevant literals
of the product terms, their encodings and their distribution types. For each product term
combination (consisting of product terms which originate from both the generative and the
reactive part), the literals are augmented by the determined distribution type, the encoding

111

3 TRANSFORMATION SEMANTICS

and whether they come from a product term combination that only addresses a single
behaviour instance. The latter is needed to subsequently exclude the arising action labels
from the synchronisation information and therefore from the synchronisation set in order
not to hinder the action from acting when being composed with other processes.

An augmented literal is composed of an encoding enc, a negated or unnegated literal v
which refers to a Behavior instance (which reveals the specified guard label), a distribution
type dt and an interaction flag f stating whether the literal’s product term combination
addresses multiple Behavior instances:

(enc, v, dt, f) ∈ AL

The universal set of augmented literals is hence defined by

AL = UID × ({¬, 6 ¬} ×RefR)×Dtypes ×B

Augmented literals are generated while traversing the model instances. For this purpose,
the following traversal function is defined:

τspa : IM × FWspa→BWspa

As sketched beforehand, the augmented literals arising from the product term combinations
have to be supplied to the transformation of the Behavior instances. For this purpose, the
forward information is defined as follows:

FWspa = Seq(ID)×P(AL)×P(AL)

A piece of forward information (ns,Lg,Lr) ∈ FWspa is used to propagate the set of
augmented literals Lg which contains the generative augmented literals and Lr which
contains the reactive augmented literals towards the Behavior instances. Furthermore, the
namespace ns is constructed whilst being propagated along the instance tree. The name-
space will be used later to label the SPA process elements. The result of the transformation
is a PACT structure:

BWspa = PACT

Forward Propagation

As previously mentioned, the transformation has to be supplied with the (augmented)
literals coming from constructions of generative and reactive product terms. For each
guards statement of a Module instance node, the generative and the reactive parts are

112

3.5 From LARESBASE to SPA as Target Formalism

transformed into their product term representations. Their combinations (i.e. the cross-
product of the two sets of product terms) are uniquely encoded. For each product term
combination, all literals are augmented by the mentioned attributes and are added to the
forward information obtained from the environment. Subsequently, each augmented literal
is forwarded towards the leaf node representing its addressed Behavior instance.

For the purpose of giving a formal description, the forward propagation function is defined
such that its parameters (which encompass the instance i and the forward information fw)
are mapped to a tuple whose forward information attribute fw′ includes the information
derived from fw and the current instance i:

ζspa : (i, fw) 7→ (i, fw′)

The following paragraphs describe how the forward information fw is updated to fw′.

Augmented Literal Filtering. Only those literals are initially selected from the forward
information fw that match the name of the processed instance i. For this purpose, the
current namespace of the processed instance is determined by the obtained namespace
fw.ns and the name i.l of the processed instance:

ns = fw.ns ◦ i.l

All augmented literals l ∈ fw.Lg and l ∈ fw.Lr are subsequently compared whether their
addressed namespace starts with the current namespace. For this purpose, the following
notation is defined:

(x1, . . . , xm)︸ ︷︷ ︸
addressed namespace

starts with (y1, . . . , yn)︸ ︷︷ ︸
current namespace

⇐⇒ n ≤m ∧ ∀i≤n xi = yi

The addressed namespace lns of an augmented literal l is derived by the concatenation
lns := π1(l.enc) ◦ π2(l.v).i of the originating namespace and the addressed Behavior
instance. As a result, all augmented literals which are relevant for the current subtree can
be filtered:

L′g = [lk | l ∈k fw.Lg : lns starts with ns] L′r = [lk | l ∈k fw.Lr : lns starts with ns]

Figure 3.20 is a simplified depiction illustrating the propagation of augmented literals. It
shows an instance tree which consists of the instances m0, m1, m2, b0 and so forth, and a
set of augmented literals originating from a guards statement of the root instance m0. Each
tuple is hereby rendered incomplete and only consists of a literal of a distinct product term

113

3 TRANSFORMATION SEMANTICS

m0
(enc,m1.b0.s1)

(enc,m2.rm.Unavail)

(enc,m2.rm.<rep>)

(enc,b2.<y>)

m1
...
(enc,b0.s1)

b0
...
(enc, s1)

m2
...
(enc, rm.Unavail)

(enc, rm.<rep>)

b1
...

rm
...
(enc, Unavail)

(enc, <rep>)

b2
...
(enc, <y>)

Figure 3.20: Filtering and propagation of augmented literals (rendered incomplete) into their
matching subtrees using the successively adapted namespace of the literals’ references

combination and the associated encoding enc. Each literal addresses a specific Behavior
instance, traceable in the leaves of the subtrees. The namespace addressed by a literal
which can be composed by enc and the addressed instance is compared to the namespace
along the path to the Behavior instance in order to filter the relevant literals for a specific
subtree and propagate them into it.

Augmented Literal Construction. As also described in the LTS transformation (cf.
Section 3.4), each guards statement in the multiset of guards statements G (which is
obtained from the body of the instance i, such that G = i.t.b.G) is composed of at least
one conditional reactive. Correspondingly, for each conditional reactive a set of tuples
is constructed. Each tuple contains a condition expression (built from the conjunction
of the generative condition of the guards statement and the restrictive condition of the
conditional reactive), a reactive expression (contained by the conditional reactive) and the
namespace of a guards statement:

CR′ = [(grd.g ∧ c, r, ns))x·y | grd ∈x G∧ (c, r) ∈y grd.CR]

Let an enumeration function enum : mset(CE×RE×NS)→ P(CE×RE×NS×N)

be declared which enumerates all objects inside the multiset argument. Moreover, let the
universal set of generative product terms be represented by Mg := P({¬, 6 ¬} ×RefC) and
the set of reactive product terms be described by Mr := P({¬, 6 ¬} ×RefR).

The common distribution type is determined by using a function φdt : Mr → Dtypes. The
set of distribution types of all considered literals in the reactive term mostly comprises a
single distribution type dt. It may also be the case that none of the addressed guard labels
define a distribution type. Therefore, the immediate distribution type is taken as default.

114

3.5 From LARESBASE to SPA as Target Formalism

In case the set comprises two or more distribution types, the model is invalid as the CASPA
semantics does not support an operator for merging heterogeneously typed distributions.

φdt : ptr 7→

{
immediate if DT = ∅
dt if DT = {dt}

, where DT := {π2(v).dt︸ ︷︷ ︸
∈Dtypes

| v ∈ ptr }

The set of product term combinations can be constructed and enumerated by using the
functions pt : CE→ P(Mg×N) and ptminterm : RE→ P(Mr×N) (whose definitions are
outsourced to the Appendix D). As a result, the complete encoding can and the common
distribution type can be derived for each combination:

CRpt = { (ptg, ptr,

∈Uid︷ ︸︸ ︷
(ens, egrd, eg, er), φdt(ptr)) |

(ptg, eg) ∈ pt(c) ∧ (ptr, er) ∈ ptminterm(r) ∧ (c, r, ens, egrd) ∈ enum(CR′)

}

Subsequently, the sets Lg and Lr are constructed consisting of augmented generative and
reactive literals respectively. Both a generative literal and a reactive literal may trigger
some behaviour without being synchronised with behaviours of other processes. It hence
depends on the whole product term combination whether the Boolean interaction flag f is
set to true or false. The flag is obtained by a function φdep : Mg ×Mr → {true, false}
which determines whether all literals address a single Behavior instance:

Lr = { (enc, lr, dt, f) | lr ∈ ptr ∧ (ptg, ptr, enc, dt) ∈ CRpt}
Lg = { (enc, lg, dt, f) | lg ∈ ptg ∧ (ptg, ptr, enc, dt) ∈ CRpt}

where f = φdep(ptg, ptr)

Finally, the updated forward information fw′ is composed of the new namespace and the
sets of generative and reactive augmented literals (such that the new literals which have
emerged due to the processing of the current instance are added to those coming from fw):

fw′ = (ns,L′g ∪Lg,L′r ∪Lr)

Backward Aggregation

It now remains to define how all augmented literals which reach a specific Behavior
instance are used to construct the actions within a local behaviour for interaction among
the instances. For this purpose, the backward function is defined such that the Behavior
instances of a given instance i are transformed into PAT structures taking the forward

115

3 TRANSFORMATION SEMANTICS

information fw ∈ FWspa into account in order to be finally transformed into a PACT

instance i′:
βspa : (i, fw,BW) 7→ i′︸︷︷︸

∈PACT

The set of Behavior instances IB is obtained from the delegates inside the Module definition
belonging to instance i (such that IB = i.t.d). The transformation function tB of a Behavior
instance has to be supplied with augmented literals inside the forward information fw. It
is hence declared by tB : IB × FWspa→ PAT. As a result, the sequential SPA processes
and their synchronisation information are obtained in terms of PAT elements:

IPAT
B := { tB(iB, fw) | iB ∈ IB }

Let tB : (iB, fw) 7→ i′B define the transformation of a Behavior instance iB to its PAT

structure equivalent and let fw = (ns,Lg,Lr) represent the forward information. The
sequential SPA process and its interaction information are therewith derived and composed
by means of a PAT structure.

Let Lencg and Lencr be two sets of augmented (generative/reactive) literals which have the
same encoding enc and which correspond to a specific Behavior instance iB, such that the
namespace nsB := fw.ns ◦ iB.l of the Behavior instance matches a literal’s namespace:

Lencg = { lg ∈ Lg | lg.enc = enc ∧ nsB = lg.ns ◦ π2(lg.v).i}
Lencr = { lr ∈ Lr | lr.enc = enc ∧ nsB = lr.ns ◦ π2(lr.v)︸ ︷︷ ︸

∈RefR

.i}

The set of generative augmented tuples Lencg and the set of reactive augmented tuples Lencr

can be partitioned using the criterion whether the contained literal is negated or unnegated:

L 6¬g = {l ∈ Lencg |π1(l.v) =6 ¬} L¬g = {l ∈ Lencg |π1(l.v) = ¬}
L 6¬r = {l ∈ Lencr |π1(l.v) =6 ¬} L¬r = {l ∈ Lencr |π1(l.v) = ¬}

Based on the above classes, several cases for the transformation of a Behavior instance
have to be distinguished. The following part formalises the construction of actions (for
a single encoding enc) which are used to carry out the interactions among sequential
processes.

Let the set of states of the processed Behavior instance be S := iB.t.b.S. The states in
the set S are filtered with regard to Lr (i.e. the reactive product term part of a specific
combination that addresses the single Behavior instance iB). The set of reactive augmented
literals Lr will be satisfied by a state s ∈ S if for all non-negated literals there exists a

116

3.5 From LARESBASE to SPA as Target Formalism

guarded transition t which starts in s such that its guard label is referred to by the literal’s
variable, and if there is no guarded transition which corresponds to a negated literal:

s �Lr :⇐⇒
(
∀l ∈L 6¬r ∃t∈ δg(s) : π2(l.v).r= t.l

)
∧
(
∀l ∈L¬r @t∈ δg(s) : π2(l.v).r= t.l

)
The generative literals can be used in order to provide a similar notation to assert whether
a state s satisfies Lg (representing the generative condition part of a product term combi-
nation). This will be the case if all non-negated literals refer to the current state s and all
negated literals do not refer to s:

s � Lg :⇐⇒
(
∀l ∈ L 6¬g : s = π2(l.v).r

)
∧
(
∀l ∈ L¬g : s 6= π2(l.v).r

)
If a state satisfies the non-empty local part Lg ∪Lr of an original product term combination
as the fraction of literals which reach and therefore address the currently processed Behav-
ior instance (i.e. s � Lg ∧ s � Lr), it depends on the common distribution type whether the
constructed transition will be immediately or exponentially typed. Let dt : AL→Dtypes de-
clare a function which extracts the common distribution type of the local part of augmented
literals which belong to a given product term combination. The common distribution type
of a product term combination will always equal the distribution type of an addressed
guarded transition if a distribution type is defined for the guarded transition t (such that
t.d 6= ()). For this purpose, only the rate or weight value has to be determined from a given
transition using a function dv : T→ R which is defined as

dv : t 7→

{
π2(t.d) if t.d 6= ()

1.0 if t.d = ()

The following rule can be assigned whenever a state s satisfies the non-empty local part
of a product term combination among others by the virtue of unnegated reactive literals
(indicated by the non-empty set L 6¬r):

s � Lg ∧ s � Lr
s
l.enc
 d t.t + . . . + s

l.enc
 d t.t︸ ︷︷ ︸

k times

∃l∈L6¬r ∃t∈kδg(s) : t.l=π2(l.v).r
d=(dt(Lg∪Lr),dv(t))

(3.11)

Hereby, each addressed guarded transition t will yield an action prefix (denoted as) of
a follow-up behaviour which is determined by the projection of the target state t.t of the
transition. The multiplicity k of each guarded transition is considered by a choice among
the arising terms. Each action prefix is composed of a label enc and a distribution d. The
distribution d is determined by the common distribution type of the related product term
combination (using the function dt) and by a value which represents a weight (in case of

117

3 TRANSFORMATION SEMANTICS

an immediate distribution type) or a rate (in case of an exponential distribution type) which
will be 1.0 as default if no explicit distribution has been defined for t.

When state s satisfies the non-empty local part of a product term combination solely by
the virtue of the negated literals (indicated by L 6¬r = ∅ ∧ Lg ∪L¬r 6= ∅), the following rule
applies, where the distribution d is given for this case by the common distribution type and
the default value 1.0:

s � Lg ∧ s � Lr
s
l.enc
 d s

L6¬r =∅ ∧ Lg∪L¬r 6=∅
d=(dt(Lg∪Lr),1.0)

(3.12)

Let U iB
ID be the set of all encodings enc which occur during the processing of a Behavior

instance iB. Let all transitions which are generated for a specific encoding enc due to the
application of the above rules on all states s ∈ S be aggregated within a multiset T enc. The
union of all these multisets is given by T iB:

T iB =
⋃

enc∈U iB
ID

T enc

Let T iBu = { δu(s) | s ∈ S} unify the unguarded transitions of iB. Hereby, δu extracts all
outgoing unguarded transitions for each state and transforms them into the form s

s◦t
 d t

within which a transition is labelled by the concatenation of its source and target state label.
As a result of this, the sequential SPA process of the Behavior instance can be derived.
Therefore, the process name has to be constructed (which is built upon the namespace
ns and the behaviour label ib.l). A function ns2spa : NS→ Pro (whose definition is not
formally detailed) is used to map a LARES namespace to a valid CASPA SPA process
name Pname = ns2spa(ns ◦ ib.l). Let the function nc : S→ N be declared which maps
each state s0, . . . , sn−1 in the set of Behavior states S to its subscript value i (0 ≤ i < n).
Furthermore, a process parameter state spanned by the above enumeration is declared.
The function Γ for transforming a transition into an action prefix can then be defined:

Γ : s
l
 d s

′ 7→

{
[state=nc(s)]-> (*l,w*);Pname(nc(s

′)) if d = (immediate,w)

[state=nc(s)]-> (l,r);Pname(nc(s
′)) if d = (exponential, r)

The guarded behaviour T iB and the unguarded behaviour T iBu can be used to derive
the overall sequential process. For this purpose, let all transitions be represented as
[t1, t2, . . .] = T iB ∪ T iBu . The sequential process for iB can then be derived by taking the
process name, the process parameter definition and the process body into account. The
latter is constructed by the concatenation of all guarded processes which originate from all
transitions [t1, t2, . . .]: Pname (state [|n|])︸ ︷︷ ︸

parameter definition

:= Γ(t1) ◦ Γ(t2) ◦ . . .︸ ︷︷ ︸
guarded processes

.

118

3.5 From LARESBASE to SPA as Target Formalism

Forward Information fw

((m0,m2)︸ ︷︷ ︸
ns

(namespace)

, {(enc,Avail), . . .}︸ ︷︷ ︸
Lg

(generative augm. literals)

,{(enc,< rep >), . . .}︸ ︷︷ ︸
Lr

(reactive augm. literals)

,)

Behavior instance i

Avail Unavail

rm (Repairman)

〈rep〉

0.6

1.0

Head of
SPA Process

int m0 m2 rm Avail = 0;
int m0 m2 rm Unavail = 1;
m0 m2 rm(state [1]) :=

◦

Unguarded Behaviour

[state =m0 m2 rm Avail] −>
(AvailUnavail , 0.6); m0 m2 rm(m0 m2 rm Unavail)

[state =m0 m2 rm Unavail] −>
(UnavailAvail , 1.0); m0 m2 rm(m0 m2 rm Avail)

◦

Guarded Behaviour

[state =m0 m2 rm Avail] −>
(∗enc, 1.0∗); m0 m2 rm(m0 m2 rm Unavail)

...

Figure 3.21: Translation of a Behavior instance into an SPA Process

In Figure 3.21 the Behavior instance translation is depicted. It shows the arguments i and
fw of the backwards method which are defined for this example by a repair behaviour rm,
taken from Figure 1.13(c), and by some forward information which relates to Figure 3.20.
It illustrates which parts are used in order to construct the sequential SPA process thereof.

Let p denote a constructed process definition. The PAT structure i′B = (Pname(init), s,{p})
is then composed from the process name Pname, the initial state init which is derived from
iB.t.ic.l, the process definition p and the synchronisation information s encompassing all
encodings enc which have been processed and whose corresponding augmented literals
were not interacting with other components indicated by the interaction flag f (which is
false the case that solely iB is involved in a generative/reactive product term combination).

All translated Behavior instances IPAT
B and all translated subinstances inside BW are sub-

sequently composed in terms of a PACN structure which represents the PACT translation
of a Module instance i including all translations of its substructures. For that purpose,
the instance namespace ns is used as its name and all translated PACT substructures are
unified:

i′ = (ns2spa(ns), IPAT
B ∪BW)

119

3 TRANSFORMATION SEMANTICS

3.6 Assuring the Correctness of different Transformation-
Semantics

It is difficult to show that the defined semantics and the implemented transformation are
consistent with respect to the resulting behaviour. This requires checking that for all
possible LARES input models the implementations of both the LTS transformation and the
SPA transformation yield behaviourally equivalent models.

Two resulting labelled transition systems will be considered behaviourally equivalent if
there is a bisimulation relation between them, which follows a desired bisimulation notion
(see also [126]). Strong bisimulation and weak bisimulation can be distinguished (the latter
extends strong bisimulation by a special treatment of the unobservable action τ). LARES
models are, as described in the previous transformation sections, mapped to extended
stochastic labelled transition systems, which allow Markovian and immediate transitions.
More importantly, immediate transitions can be eliminated in a post-processing step, which
makes a detailed definition of weak bisimulation unnecessary. Due to this reason, Section
3.6.1 describes how strong bisimulation is applied to check whether two systems (described
using the LARES language) show an equivalent behaviour. This approach is based on
testing and was initially implemented in order to find errors in the semantics and the
transformation implementation by employing the diversification of code using redundant
transformations (as both transformations are required to transform from the same input
model into behaviourally equivalent output models). Although formally verifying the
transformation implementation is beyond the scope of this work, Section 3.6.2 attempts to
sketch a proof on the equivalence of the presented formal transformation semantics.

3.6.1 Testing Based Approach

The testing based approach uses a test-set of models on which the transformations are
performed. The standard state-based algorithm introduced in [84] is applied to prove
functional and Markovian equivalence between resulting transition systems. In order to
stay consistent with the remaining work, the function checkEquivalence checking the
bisimulation equivalence of a number of transition systems as given in Algorithm 1 is
based on the abstract representation TRA for labelled transition systems.

Let C := P(S) denote the universal set of classes where each class consists of a distinct set
of states. For a class c ∈ C and an index set I ⊂ N, let pcI = {ci | i ∈ I} be a partition of c.
Hence, for the non-empty sets ci ⊆ c it holds that

⋃
i∈I ci = c and ∀ci, cj ∈ pcI : ci ∩ cj = ∅

if ci 6= cj . S := Σ∗ × C is the universal set of splitters, where each splitter comprises a
transition label and a class.

120

3.6 Assuring the Correctness of different Transformation-Semantics

Let R denote the universal set of relations between a source state and its outgoing tran-
sitions. The algorithm requires two arguments. These are a function for the equivalence
notion en and a set of transition systems TS. The algorithm works on the union set S of
distinct states of the given transition systems (cf. lines 1-4), in order to eventually build the
initial partition S (cf. line 5), and constructs a set of splitters for each label of a Markovian
transition by building the cross product of the set of labels and the initial partition (cf.
lines 6 - 7). Let R ∈ R (cf. line 8) be a relation, where sR[s→ s′, s→ s′′, ...]. As long as
there are splitters available (cf. line 9), meaning that no fixed point has yet been reached,
a splitter is taken from the set of splitters (cf. line 10) in order to refine the partition (cf.
lines 11-18). The way how a partition is established is externalised by a function split. It
is performed on each class c in the partition using the given splitter spl (cf. line 12). In
the following (cf. lines 13-16), the obtained set of subclasses C ′ are added to the partition,
whereas the original class c is removed. Furthermore, for each class in C ′ also new splitters
are derived and added to the set of splitters, whereas the splitter related to the original
class is removed. Irrespective of a further partition refinement, the current splitter spl has
to be removed (cf. line 17). Once the fixed point is reached (i.e. no further splitters are
available), the outmost loop will end. The transition systems are bisimulation equivalent
(cf. line 20) in case that the equivalence formula evaluates that all initial states of the given
transition systems are still contained by a single class of the refined final partition.

To refine a partition, each class c of the partition is subdivided corresponding to a criterion
which will be evaluated for each contained state in c. Let U be a set of elements, which
serve as the criterion for the construction of equivalence classes within the algorithm. A
function en can be declared which defines the notion of equivalence. For this purpose,
each state is classified by taking its outgoing transitions and a given splitter into account:

en : mset(T)×
S:=︷ ︸︸ ︷

Σ∗︸︷︷︸
splitter
label

× C︸︷︷︸
splitter
class

)→ U

Different types of equivalence notions are given by defining the function en:

• Strong bisimulation (considering only the transition label, cf. [84]): A class c will
be split into the partitions c> and c⊥, depending on the transitions emanating from
the states s ∈ c comprising the label a with destination into Csplit

en a−→ : (T,a,Csplit) 7→

either {a} or ∅︷ ︸︸ ︷{
l | s l,λ−→ s′ ∈k T ∧ s′ ∈ Csplit ∧ l = a

}
6= ∅︸ ︷︷ ︸

∈B

121

3 TRANSFORMATION SEMANTICS

Algorithm 1 checkEquivalence : (en, TS)

1: T :=
⋃̇
ts∈TS ts.T

2: Ssource := {s | s→ t ∈ T}
3: Starget := {t | s→ t ∈ T}
4: S := Ssource ∪ Starget
5: Partition := {S}
6: L := {l | s l,v→ t ∈ T}
7: Splitters = L× Partition
8: R := { (s,{t ∈ T | s = t.s}) | s ∈ Ssource }
9: while Splitters 6= ∅ do

10: take spl ∈ Splitters
11: for all c ∈ Partition do
12: C ′ := spliten(R,c, spl)
13: if C ′ 6= ∅ then
14: Partition := (Partition∪C ′) \ {c}
15: Splitters := (Splitters∪ (L×C ′)) \ (L× {c})
16: end if
17: Splitters := Splitters \ {spl}
18: end for
19: end while
20: return ∃c ∈ Partition : ∀ts∈TS ts.s0 ∈ c

• Markovian bisimulation (taking only the cumulative rate into account): A class
c will be split into k subclasses cr1, cr2, ..., crk, depending on the cumulative rates
calculated from E (i.e. the multiset of all transitions emanating from a state s ∈ c
with destination into Csplit)

en r−→ : (T,a,Csplit) 7→
∑
λ∈nE

λ · n︸ ︷︷ ︸
∈R

, where E :=
⋃

s′∈Csplit

[
λk
∣∣∣ s

l,λ−→ s′ ∈k T
]

• Markovian strong bisimulation (considering both the transition label and their cu-
mulative rate, cf. [84]): A class c will be split into k subclasses cr1, cr2, ..., crk,
depending on a certain label a and the cumulative rates calculated from E (i.e. the
multiset of all transitions with label a emanating from a state s ∈ c with destination
into Csplit)

en a,v−→ : (T,a,Csplit) 7→
∑
λ∈nE

λ · n︸ ︷︷ ︸
∈R

, where E :=
⋃

s′∈Csplit

[
λk | s l,λ−→ s′ ∈k T ∧ l = a

]

122

3.6 Assuring the Correctness of different Transformation-Semantics

Within Algorithm 1 the function split, parametrised by the bisimulation notion en, is called
to perform the partitioning of c into the equivalence subclasses C ′:

spliten : R× C×S→ P(C)

By constructing each sub-partition and by grouping each element in the partition, spliten is
defined in such a way that all states s ∈ c are grouped corresponding to the result of the
equivalence criterion function

spliten : (R,c, (l,C)) 7→ c/en
=

,

where for s, t ∈ c the relation en
= is defined by

s
en
= t ⇐⇒ en(R(s), l,C)) = en(R(t), l,C))

Numerous test models have been developed in order to cover as many aspects of the
language as possible. Beside standard meaningful test cases, further models have been
constructed in order to capture also special cases of the language and the applied transfor-
mations. In doing so, a lot of semantic issues and programming errors have been fixed.
Moreover, the set of test cases has grown over time and is continuously reused for checking
the correctness of the transformation semantics and the transformation code.

3.6.2 General Proof Sketch

Checking bisimulation equivalence between the results of both transformations for a set of
test models is not exhaustive and is thus not sufficient as a general proof which ensures
that the transformations implement equivalent semantics by means of labelled transition
systems. Taking the SOS-semantics for the CASPA stochastic process algebra into account,
a proof has to generally show that the SPA transformation constructs models which are
behaviourally equivalent to those obtained by the application of the LTS transformation
rules of the LARESFLAT representation. The necessary steps are also illustrated by example
(starting on p. 125).

Due to the complexity of the language this proof cannot detail each aspect of the trans-
formation. However, starting from LARESBASE to apply the process algebra semantics
and from LARESFLAT to apply the LTS rules should be sufficient, as the flattening of a
LARESBASE model can be considered trivial.

The aim is to show the existence of a bisimulation relation ∼ between the results of the
SPA transformation (1) including the SOS rules for the process algebra (2) and the LTS
transformation (3) as depicted in Figure 3.22. An even stronger assumption (and thus

123

3 TRANSFORMATION SEMANTICS

sufficient for the required bisimulation equivalence proof) is to show that there is a bijective
mapping between the states and between the transitions of two transition system Š and
Ŝ. Hereby, the number of transitions (with a specific labelling) š l→ š′ ∈ Š × E× Š has
to coincide with the number of transitions (of equivalent labelling) ŝ l→ ŝ′ ∈ Ŝ × E× Ŝ,
where ŝ ∼ š and ŝ′ ∼ š′ (i.e. an isomorphism ∼= of labelled multigraphs).

LARESBASE

LARESFLAT

SPA

LTS LTS

trivial
(1)

(2)
(3)

(4) ∼=

Figure 3.22: Organisation of the proof sketch

Following the outline of Figure 3.22 the proof includes the following transformation steps:

(1) The SPA transformation rules are used to construct the sequential processes: Action
prefixes arise due to unguarded transitions, or due to guarded transitions triggered
by some reactive expression of a guards statement or due to self-loops to query
a specific state required by a condition expression of a guards statement. The
disjunctive generative/reactive product term representation is used, as satisfiability of
a single generative/reactive product term can be mimicked by a set of synchronised
actions (where each action can be performed when a Behavior’s process satisfies its
part of the product term). Satisfiability of a complete Boolean expression will thus
be given if one of these sets of actions can be performed jointly. This also holds for
the combination of generative and reactive product terms. All action prefixes which
arise from the same product term combination are thus uniquely encoded. Each
constructed process offers these action labels to its environment for synchronisation.
A binary composition tree is built which captures the structure of a LARES model.
Whenever two processes offer an action label, it is included in the synchronisation
set.

(2) If a single process can perform an action prefix, this action may also occur in the
LTS independent of a composition with other processes. Whenever two action
prefixes of two distinct processes have the same action label (which is part of the
synchronisation set of the processes’ composition), a precondition is satisfied which
allows an SOS rule to be applied in order to derive the corresponding LTS due to

124

3.6 Assuring the Correctness of different Transformation-Semantics

the action’s synchronised execution. An inductive application of the rule allows
composing all processes which can perform equally labelled actions (associated
with a single product term). The composition of all process terms corresponds to a
composed state of the overall state space. Whenever equally labelled actions can
be performed jointly, the composed term transitions into its successor term which
represents the successor state.

(3) The LTS rules directly operate on a composed state (which is initially given by the
initial state of the Behavior instances). Whenever a generative/reactive combination
is satisfied, a successor state can be derived via a joint transition which brings all
component states into their successor states (there might be different combinations
due to choices within each Behavior instance).

The proof can be derived from the above transformation rules:

(4) It has to be shown that the composition and simplification of the rules of the transfor-
mation steps (1) and (2) always yield a transition system where each state represents
a composed process term š which can bijectively be mapped (see p. 131) to a state ŝ
of the transition system which arises by taking the transformation path along step (3).
Furthermore, it has to be ensured that the number of each (specifically attributed)
transition starting in a state š and aiming at a composed successor term š′ coincides
with the number of (equivalently attributed) transitions to the related successor states
ŝ and ŝ′. In this case, the resulting state spaces are isomorphic.

Having outlined the idea of the proof, an example is drawn, before formalising the proof
sketch, in order to illustrate the required steps and to raise the notion of behavioural
equivalence by means of the property of isomorphism.

Illustration of the Proof Sketch by an Example

Figure 3.23 depicts a substructure of an instance tree which contains a guards statement
inside some Module instance p. Additionally, the literal propagation (as performed during
an SPA transformation) is illustrated at each edge of the instance tree (by boxes containing
the propagated literals). Only a single product term combination arises thereof (since both
the generative and a reactive expression are conjunctive terms), which leads to a number of
augmented literals (i.e. tuples comprising a negated or an unnegated literal and the unique
encoding enc determined for the combination). These augmented literals are propagated
towards the addressed subinstances. Once the addressed Behavior instance is reached, this
information will be used to construct the sequential SPA process by including the action
prefixes as described by rules (3.11) and (3.12).

125

3 TRANSFORMATION SEMANTICS

p

B4.x∧¬p2.B3.c guards sync{p1.B0.〈a〉,p1.B1.〈a〉}

p1

B0 B1

p2

B2 B3

B4

...
(enc, 〈a〉)

...
(enc, 〈a〉) ...

...
(¬c, enc)

...
(¬B3.c, enc)

...
(B4.x, enc)

...
(B0.〈a〉, enc), (B1.〈a〉, enc)

Figure 3.23: Encoded literal distribution for the SPA translation of Behavior instances

p := p p1|[...,enc]|p p2|[...,enc]|p B4

p p1 := p p1 B0|[...,enc]|p p1 B1

p p1 B0 p p1 B1

p p2 := p p2 B2|[...]|p p2 B3

p p2 B2 p p2 B3

p B4

...
enc

...
enc

...
enc

...

...
enc

...
enc

...
enc

Figure 3.24: Process composition regarding the encoded action prefixes

The generated SPA processes are then binarily composed regarding the given instance
structure, as shown by Figure 3.24. All leaf nodes depict the processes translated from
the Behavior instances. The labels of their action prefixes serve as unique encodings
of generative/reactive product term combinations. When a process is involved in an
interaction (i.e. it is addressed by a generative/reactive product term encoded by enc),
the action label enc is offered to the environment. Whenever it is composed with another
process which reveals the same encoding, the label is included in the synchronisation set
of the composition node. Since process p corresponds to the Module instance that defines
the guards statement from which all literals encoded with enc originate, enc is provided
by each involved process within the composition substructure of p.

Since a product term splits into literals which may be negated or unnegated, each addressed
Behavior instance will translate to an SPA process containing action prefixes which are
labelled by the arising product term encoding. The composition operators among the

126

3.6 Assuring the Correctness of different Transformation-Semantics

s

s′

s′′

〈a〉,1

〈a〉,2

0.6

1.0

(a) Behavior definition of B0

p p1 B0(state[2]) :=
[state = s] (∗enc,1∗);p p1 B0(s′) + (∗enc,2∗);p p1 B0(s′′)
[state = s′] ...
[state = s′′] ...

(b) Translated sequential SPA process for B0

Figure 3.25: Example of a Behavior instance translation into a sequential SPA process

processes hereby serve as conjunction operators stating that a product term is satisfied in
case that all processes can perform an action prefix of a specific encoding.

If a process with multiple action prefixes (of a single encoding) of a choice is composed
with another process that also offers this label by multiple action prefixes, the composed
process will comprise the product of these actions sets. Let an example be given, where the
instance B0 arises from the Behavior definition depicted by Figure 3.25(a). Moreover, the
instance B1 arises from a differently parametrised variant of this Behavior definition, such
that s 〈a〉,3 s′ and s 〈a〉,5 s′′. Therefore, each instance can reach s′ or s′′ by triggering 〈a〉
via some product term (encoded by enc). When both translated sequential SPA processes
(e.g. Figure 3.25(b)) are composed, the resulting state space, as depicted by Figure 3.26,
finally reveals 4 transitions which are part of a choice.

When considering the LTS semantics, a composed state (si, sj) can be derived which
corresponds to the composed process of the left-hand-side of Figure 3.26:

(∗enc,1∗);p p1 B0(s′) + (∗enc,2∗);p p1 B0(s′′)︸ ︷︷ ︸
si

|[enc]| (∗enc,3∗);p p1 B1(s′) + (∗enc,5∗);p p1 B1(s′′)︸ ︷︷ ︸
sj

The sets of jointly acting transitions are determined by the possible transitions of each
addressed Behavior instance. For this reason, a number of transitions can be derived such
that a one-to-one correspondence can be found with regard to the transitions obtained by
the SPA semantics.

In order to generalise this, it is necessary to show that the state space implied by the
semantic rules for the SPA translation of LARES by taking the CASPA LTS semantics
into account is equivalent to the state space directly obtained by applying the LARES LTS
rules. This can be done by pointing out the correspondence between these rules.

127

3 TRANSFORMATION SEMANTICS

(∗enc,1∗);p p1 B0(s′) + (∗enc,2∗);p p1 B0(s′′)
|[enc]|

(∗enc,3∗);p p1 B1(s′) + (∗enc,5∗);p p1 B1(s′′)

p p1 B0(s′)
|[enc]|

p p1 B1(s′)

p p1 B0(s′)
|[enc]|

p p1 B1(s′′)

p p1 B0(s′′)
|[enc]|

p p1 B1(s′)

p p1 B0(s′′)
|[enc]|

p p1 B1(s′′)

enc,1 · 3

enc,1 · 5

enc,2 · 3

enc,2 · 5

Figure 3.26: Resulting state space due to SPA composition of B0 and B1

Formalising the Proof Sketch

The formal representation of the LARES SPA and LTS semantics in terms of SOS rules
is given in the sections 3.4.3 and 3.5.4 respectively. If a state of an SPA process satisfies
one of the given SPA transformation rules, at least one action prefix will be offered to
which other processes can synchronise. According to this, let a product term combination
(ptg, ptr) be given which originates from a guards statement. Following Section 3.5.4, the
product term is encoded by enc and transformed into the sets Lg and Lr of augmented
literals. Each augmented literal is then forwarded towards its addressed Behavior instance,
as illustrated by Figure 3.23 where e.g. {(enc,B0.〈a〉), (enc,B1.〈a〉)} represents the set
of reactive literals which have reached p1.

Let Bi and Bj be two distinct Behavior instances (such that i 6= j). The set of augmented
literals which reach Bi are denoted by Lg|i and Lr|i, whereas the set of augmented literals
for Bj are denoted by Lg|j and Lr|j . When referring to the SOS rules which denote the
SPA semantics of a LARESBASE model, the term local satisfiability is used with regard to
the question whether a state si of a Behavior Bi satisfies Lg|i and Lr|i. If the interaction
flag f inside the local augmented literals (originating from a single local product term,
e.g. for (Lg|i,Lr|i)), is false (which is the trivial case), no real interaction with other
components will take place, as enc will not be part of the synchronisation information of
the Behavior’s PAT representation. Otherwise, a real interaction which involves several
Behaviors will take place. Accordingly, enc will be part of the synchronisation information
of the Behavior’s PAT representation. The remainder of this section only deals with real
interactions (i.e. the non-trivial case, where the interaction flag is true).

128

3.6 Assuring the Correctness of different Transformation-Semantics

The PACT approach unifies the synchronisation information along the composition struc-
ture (cf. Section 3.5.3). The actions of two processes to be synchronised are determined by
the set of labels given by the intersection of the process synchronisation information (see
Figure 3.24 for illustration). For this reason, it holds that a process sx which reveals some
specific behaviour (e.g. it is able to perform an action labelled by enc) will still behave like
sx with regard to the behaviour enc (which is still part of the synchronisation information)
even though the process is composed with another process. Let sy, sz be further processes
which reveal some desired action enc. Irrespective of the given composition structure, the
associativity property holds when considering the behaviour encoded by enc:

(sx|[enc]|sy)|[enc]|sz = sx|[enc]|(sy|[enc]|sz) = sx|[enc]|sy|[enc]|sz

Whenever a state si, which can also be seen as a process term, of a Behavior instance
Bi satisfies the augmented literals of a specific encoding enc, an action prefix enc

 di ; s
′
i

is constructed for that process. In case that this action prefix can be performed together
with another process sj , which also reveals an enabled action prefix of that encoding,
the following rule applies and eventually derives a composed transition from this pair of
enabled action prefixes:

rules (3.12) or (3.11)︷ ︸︸ ︷
si � Lg|i ∧ si � Lr|i

enc
 di ; s

′
i
enc,di s′i

si =
enc
 di ; s

′
i

rules (3.12) or (3.11)︷ ︸︸ ︷
sj � Lg|j ∧ sj � Lr|j

enc
 dj ; s

′
j
enc,dj s′j

sj =
enc
 dj ; s

′
j

enc
 di ; s

′
i |[enc]|

enc
 dj ; s

′
j︸ ︷︷ ︸

si |[enc]| sj

enc,φ(di,dj) s′i |[enc]| s′j
j 6= i

(3.13)

Accordingly, the composed process s{i,j} = si |[enc]| sj satisfies the augmented literals of
Lg|{i,j} and Lr|{i,j} regarding enc. For s′{i,j} = s′i |[enc]| s′j the above rule can be abstracted
to

s{i,j} � Lg|{i,j} ∧ s{i,j} � Lr|{i,j}
s{i,j}

enc,φ(di,dj) s′{i,j}

si =
enc
 di ; s

′
i ∧ sj =

enc
 dj ; s

′
j

It is important to note that the multiplicity of transitions of a choice in the composed state
space depends on the number of occurrences of addressed guarded transitions in a choice of
a single Behavior instance. Since an application of the rule (3.11) treats a guarded transition
(addressed by an unnegated reactive literal) as an action prefix, the occurrence of multiple
enabled guarded transitions is hence captured by a choice of multiple action-prefixed
processes.

According to that, an example will be given. Let the SOS rule (3.11) apply to process si
which reveals two guarded transitions (labelled l′i and l′′i that are addressed by unnegated

129

3 TRANSFORMATION SEMANTICS

reactive minterm literals). Within process sj only one guarded transition is addressed,
which leads to a single enabled action. As a result, two transitions (similar to the ones
depicted in Figure 3.26) will arise as a choice in the resulting state space:

rule 3.11︷ ︸︸ ︷
si � Lg|i ∧ si � Lr|i si

s′i
s′′i

〈l′i〉, d′i

〈l′′i 〉, d′′i

enc
 d′i

; s′i +
enc
 d′′i

; s′′i
s′i
s′′i

enc, d′i

enc, d′′i

rule 3.11︷ ︸︸ ︷
sj � Lg|j ∧ sj � Lr|j sj s′j

〈lj〉, dj

enc
 dj ; s

′
j
enc,dj s′j

(
enc
 d′i

; s′i +
enc
 d′′i

; s′′i

)
|[enc]| enc

 dj ; s
′
j

s′i|[enc]|s′j

s′′i |[enc]|s′j

enc,φ(d′i, dj)

enc,φ(d′′i , dj)

(3.14)

By each composition, where multiple action prefixes are in a choice, the number of
composed transitions increases following the cross-product of the arising combinations of
potentially cooperating actions.

By an inductive application of rule (3.13), a product term combination can be successively
satisfied regarding the composed state space. This will be the case, if the associated
synchronised action can be performed at the current state, composed by the current states
of the addressed Behavior instances. Let A denote all addressed processes of Behavior
instances. The inductive application of rule (3.13) leads to a rule that considers only a
single superior process s as an abstraction from the composition structure encompassing
all addressed instances sa (where a ∈ A), such that s = {sa | a ∈ A}.

The process s hereby satisfies a complete product term combination by being able to
perform the synchronised action s enc,dA s′. The composed distribution is determined by
a function φ : D×D→ D defined as φ : (d1, d2) 7→ d1.value · d2.value which multiplies
the values of two equally typed distributions d1, d2, such that either two rates or two
weights are multiplied. As both rates and weights are real valued numbers, the associativity
property holds for φ:

φ(φ(di, dj), dk) = φ(di, φ(dj, dk)) = φ(di, dj, dk)

130

3.6 Assuring the Correctness of different Transformation-Semantics

The composed distribution dA can consequently be calculated by dA = φ({da}a∈A) and
the generalised rule can be derived as follows:

∀a∈A

rules (3.12) or (3.11)︷ ︸︸ ︷
sa � Lg|a ∧ sa � Lr|a

enc
 da ; s′a

enc,da s′a
sa =

enc
 da ; s′a

s enc,dA s′
s={sa | a∈A} ∧ s′={s′a | a∈A} ∧

dA=φ({da}a∈A) (3.15)

Rule 3.15 can be simplified such that the composed process s satisfies all augmented
literals Lg = Lg|{a∈A} and Lr = Lr|{a∈A} of a product term combination:

s � Lg ∧ s � Lr
s enc,dA s′

∀a∈A sa=
enc
 da ;s

′
a ∧

s={sa | a∈A} ∧ s′={s′a | a∈A} ∧ dA=φ({da}a∈A)
(3.16)

When abstracting from the side-conditions, the following holds

rule (3.16) ∧
=

s � Lg ∧ s � Lr
s enc,dA s′

Lg
∧
=ptg

Lr
∧
=ptr←→ s � ptg ∧ s � ptr

s enc,dA s′
∧
= rules (3.6) and (3.7)

When taking the rules’ side-conditions into account, the number of composed transitions
due to the applications of the SPA rules derives from the cross-product of the number
of addressed guarded transitions (by unnegated reactive literals), as illustrated by the
substitution of rules in (3.14). Equivalently, the LTS semantics defines a number of
composed transitions Tc ∈ Tcombinations (which are in a choice), derived from the cross-
product of the addressed transitions within each sequential process of a Behavior instance
(cf. Eq. (3.4)). For this reason, the number of jointly acting transitions is, as defined
used by the LTS rules, equivalent to the number of composed transitions originating from
the combinatorics of all possible SPA rule applications. Furthermore, the calculation of
composed distribution (by the application of the SPA rules) matches exactly the calculation
of rates or weights for the LTS rule as given by Eq. (3.5).

The reachability analysis eventually yields a bijective relation between all composed
processes (originating from the SPA semantics) and the composed states (originating from
the LTS semantics). Following the above arguments, also among the transitions (which
are constructed due to the composition rules of the SPA semantics or the LTS rules) a
one-to-one correspondence can be found (such that pairs of transitions can be built which
have equivalent attributes, regarding their source/target state, distribution type and label).
Accordingly, the application of the SPA rules and the application of the LTS rules yield
an isomorphic transition system which is behaviourally equivalent and hence ultimately a
special case of bisimulation.

131

3 TRANSFORMATION SEMANTICS

132

Chapter 4

Structure and Implementation of the
LARES Framework

The current LARES framework consists of a number of implementations which constitute
the integrated development environment (IDE) for LARES as described in Section 4.1. It
also incorporates a library developed to provide the language definitions and algorithms to
deal with models of fault-tolerant systems (denoted as fault-tolerant system environment
ftse, further detailed in Section 4.2). Beside the library components related specifically to
LARES, parts which can be used independently of LARES are available such as different
meta-models (which serve as input languages to certain solvers), extensible sublanguages
(which can be embedded into arbitrary language definitions) or generic algorithms (e.g.
for calculation of bisimulation equivalence between two models).

Figure 4.1 shows how the Eclipse-based IDE components and the library parts are linked.
Furthermore, references to the sections which define the theoretical aspects corresponding
to the items inside the figure are provided. Note that the transformation from LARESFLAT

into SPN as well as the transformation into the MDP formalism is not part of this work
(regarding the MDP transformation cf. [69, 70] instead).

4.1 Components of the Eclipse-based LARES IDE

The LARES IDE comprises several individual Eclipse plugins [66, 67], which become
apparent in the screenshot shown in Figure 4.2, i.e.

• the implementation of a textual Editor Plugin with syntax highlighting, code com-
pletion and validation features for syntax and context conditions (for serving as a
comfortable modelling environment which is detailed in Section 4.1.1) and

133

4 STRUCTURE AND IMPLEMENTATION OF THE LARES FRAMEWORK

LARES Model ResourceLARES Editor
based on Xtext

LARES View

Eclipse Environment

LARES Library
LARESBASE

LARES
(cf. Chapter 2)

PACT
Process Algebra Composition Structure
(cf. Section 3.5.3)

LARESFLAT
(cf. Section 3.4.1)

TRATRACASPA
TimeNet4

SPNP MatLab

SPA MDPSPN

Performance/Dependability Measures Optimal Policies

conforms

1) instantiation (cf. Section 3.3.1)
2) condition resolution (cf. Section 3.3.2)
3) forward resolution (cf. Section 3.3.3)

seq. process
generation
(cf. Sec. 3.5)

resolve
hierarchy
(cf. Sec. 3.4)

Reward & Decision
Extensions
(cf. [69, 70])

reachability &
elimination
(cf. Section 3.4.3)

resolve
hierarchy

∼
(cf. Section 3.6)

applies

Figure 4.1: Overview of the LARES IDE implementation

• the LARES View Plugin which has been developed to carry out the analysis of
measures, to define experiments and to manage them (as detailed in Section 4.1.3).

For example, in the Editor Plugin (cf. left-hand-side of Figure 4.2) a context menu can be
opened which offers the visible guard labels in order to ease specifying a forward statement.
Furthermore, the LARES View Plugin (on the right-hand-side) is responsible for visualising
the instance tree of a model, providing a choice among the specified measures in order
to select and to perform the desired type of analysis, or showing the results directly by a
2D plot. In addition, Section 4.1.2 describes a graphical editor which is currently under
development and will serve in the near future as a complement to the textual editor. There
are ideas to integrate the graphical editor into the textual one in order to enable consistency
preserving hybrid editing.

4.1.1 Textual Editor Plugin

As the grammar in Chapter 2 is defined in terms of syntactical rules following the Xtext
notation, an editor plugin can be directly derived, as described in [58]. Each rule, written
in the Xtext formalism, consists of a name and may state several terminal rules (such as
identifiers or numbers) or non-terminal rules (referring to other rules).

134

4.1 Components of the Eclipse-based LARES IDE

Figure 4.2: Screenshot of the LARES IDE showing the LARES Editor and the View Plugin

For illustration purposes, two grammar rules which partially define the syntax of a Transi-
tions statement are consulted:
TransitionsStmt:

"Transitions" "from" s = ID (transitions += Transition)+;

Transition:

("if" ’<’ g = ID ’>’)? ’->’ t = ID (’,’ d = Distribution)?;

The application of the rule TransitionsStmt requires an occurrence of “Transitions
from” in order to parse an identifier corresponding to the name of a source state which
is stored in the attribute s of the resulting model object for a Transitions statement.
Several transitions are parsed by the referred rule Transition and stored in the attribute
transitions of the Transitions statement model object. The Transition rule allows a
guard label to be defined by first parsing an “if” followed by an identifier that is indicated
in brackets and stored within the guard label attribute denoted as g. An optional element
is specified by ‘?’. The string “->” indicates that a target state follows which is then
stored in attribute ‘t’. Furthermore, a distribution can optionally be specified, which is not
further detailed. The rules shown above define the concrete syntax, but they also define the
abstract model in terms of an Ecore meta-model [57].

135

4 STRUCTURE AND IMPLEMENTATION OF THE LARES FRAMEWORK

Alternatively, if one desires a looser relationship between the concrete syntax and its
abstract representation, it is also possible to first define a meta-model whose elements are
instantiated by the application of Xtext rules and thus result in an overall model conforming
to the given meta-model.

Figure 4.3: Syntax highlighting and code completion of the LARES Editor

A LARES Editor component which is generated by using only rules of the previously
illustrated type provides a number of features by default such as code completion, syntax
highlighting (cf. Figure 4.3) and indication of syntax error positions. Moreover, an
outline view depicts the structure of the constructed internal model representation. In
addition to extending the standard features such that they behave in a smarter way, the
LARES Editor Plugin has been enriched by sophisticated modelling template support
and validation features in order to make it even more user-friendly [66, 71]. Therefore,
the scoping functionality to restrict cross-referable objects has been refined such that it
now considers the hierarchic nature of LARES and implements its visibility constraints.
For this purpose, the grammar rules also have been adapted by using cross-references.
The standard hyperlinking feature then allows navigating through the textual model along
the referred objects. As LARES models may also be parametrisable, finding a referred
object is a non-trivial task. Therefore, the standard linking feature is specialised such that
the indices of the references are pattern matched against those of the referred object to
provide either the correct link or a provisional link to the supposed matched object. If
no pattern can be applied, the model will be invalid. Apart from the syntax validator,
which checks whether a textual model conforms to the grammar specification of LARES,
additional semantics-related validation capabilities can be performed, e.g. as already
mentioned by the provisioning of cross-references. Moreover, other semantic issues can
be detected with regard to uniqueness of identifiers in scope (for all named statements or
definitions), the domain of variables in the context of an expression (e.g. a weight or a
rate have to be positive), or cyclic dependencies in variable definitions (e.g. of the iterator
variables in an expand statement). All of these features are performed on-the-fly when
modelling and are therefore required to be fast. In consequence, the linking feature does
not resolve the whole system parametrisation by evaluating index variables, accepting

136

4.1 Components of the Eclipse-based LARES IDE

the downside of not detecting all invalid references. However, this can be done offline.
Therefore, the model is transformed (using the EPL pattern matching language in Eclipse
Epsilon [55]) in order to obtain a parameter-resolved representation, where all variables
are evaluated and thus allow a proper validation thereon (i.e. cross-reference checks,
variable domains, etc.). It needs to be mentioned that dead code segments in a model
(i.e. abstract definitions that have not been addressed by any instantiation) cannot be
considered properly for validation as variables might remain undefined. Furthermore,
the code completion feature has been refined from the standard implementation in order
to context-specifically reduce the number of possible suggestions, predefined templates
further improve the time-efficiency and convenience of the modelling process while a
formatter performs pretty printing of the specified code following the common conventions
for programming.

4.1.2 Graphical Editor Plugin

In [61] an attempt was made to develop a graphical editor plugin for the LARES language
using the Eclipse Framework GMF which became part of the Graphical Modeling Project
[73]. In contrast to the expertise gained by the development of a GMF-based editor for
the process algebra for CASPA [10, 11], it turned out that the model-driven approach
of GMF requires huge effort when used for hierarchical languages as it needs a lot of
on-the-fly information that can only be provided by hand-crafted implementations. This,
in consequence, takes the idea of a model driven approach ad absurdum. Furthermore, the
GMF framework lacks support to conveniently adapt to changes and to remain extensible
in a simple, straightforward manner. Due to limitations of resources in time, the work
started in [61] could not be completed.

Even so, the desire to implement a graphical editor for the LARES language was undaunted,
despite the fact that the mentioned model-based approach could not be used stringently.
As an alternative approach, the Graphiti Framework [56] developed by SAP, which is
also hosted as a project of the Eclipse Foundation, has shown to serve as a good starting
point for a graphical editor by providing a plain Java interface and support for the Eclipse
Modelling Framework (EMF) [57]. In addition, when opening a LARES model that has
been specified textually beforehand, the ability of Graphiti to use existing layout algorithms
allows a satisfiable initial arrangement to be generated. The current state of development is
described in [66]. The graphical editor implementation hereby applies the Graphiti classes
which have been extended in order to realise the graphical notation and tooling. From
the LARES standard meta-model, the corresponding Java classes have been generated
to be used for model instantiation. Standard features such as delete, resize and wizards
for constructing diagrams including the tooling could directly be applied, reducing the

137

4 STRUCTURE AND IMPLEMENTATION OF THE LARES FRAMEWORK

amount of development time. The implementation to consistently manage resources within
a consistent central resource set, to store hierarchic LARES models (where the layout
information is separated from the content of a model) and to drill-down (construct/open
new diagrams from the inside of another diagram via double-click) is challenging. All this
is still ongoing work.

4.1.3 LARES View Plugin

While the objective of the editor plugins described in Section 4.1.1 and 4.1.2 is to specify
a model which conforms to the LARES syntax and allows the semantics to be partially
validated, a further plugin is responsible to support the experimentations by carrying out
the analysis process, organising parametrisations and results. The plugin was developed as
a View Plugin component for the Eclipse environment. It defines and implements a simple
and intuitive user interface which allows

• performing the analysis and managing the experiments as well as

• visualising the experimental results (by 2D plots, graphs and others)

When a LARES model becomes active within the current editor page or in case a modifica-
tion is applied, the LARES View Plugin will react on these events to process the editor’s
content. If the content turns out to be a valid LARES model, the instance tree will be
constructed following the transformation described in Section 3.3.1. Instantaneously a
DOT graph [9] is generated from the instance tree and visualised on a SWT Composite
[133] inside the plugin’s GUI (by applying the ZEST library [72] which incorporates a
graph layout engine).

If the LARES model contains Probability statements, the LARES View Plugin will extract
and list these statements in the corresponding SWT Composite of the GUI. All transient
measures are grouped (corresponding to the specified points in time) in order to calculate
each group of measures within a single run by executing the CASPA analysis backend.
All steady state measures are also pooled within one group. When selecting a group
of transient measures, a dialogue box asks the user to specify a number of intermediate
time points (between 0 and the point in time corresponding to the group of measures) to
be calculated. These are used in order to determine the temporal course of a group of
measures at a certain level of granularity. The whole transformation workflow is then
executed to generate the SPA specification which is subsequently completed by the selected
and translated measures and redirected into the CASPA solver. The calculated results are
collected in a list of items on the plugin GUI. A copy&paste feature has been implemented
therefore in order to facilitate the transfer of the results to other external tools.

138

4.1 Components of the Eclipse-based LARES IDE

Prints and visualises the instance graph in DOT notation

Prints and visualises the reachability graph in terms of the DOT notation

Determines the k-shortest paths into a deadlock

Prints the model in terms of stochastic process algebra

Opens the experiments management dialog

Instance graph and path to deadlock visualisation

Listing of the available (grouped) measures within the current model

Enumeration of the calculated measure probabilities of a certain timepoint

The 2D plot visualisation of the calculated measure probabilities

Analysis and error messages

Figure 4.4: Explanation of the LARES View Plugin GUI

Furthermore, a 2D plot of the measures is drawn directly using the JFree chart library [89].
If a positive number of intermediate time points has been specified, a parallel execution
of the CASPA instances will be performed according to the number of logical cores of
the CPU. In addition, the DOT representations for instance graphs and transition systems
can be visualised and serialised directly from the GUI. Similarly, the 2D plot of the
temporal course of the measures can be serialised in terms of the SVG standard [137]
and the generated SPA specification can be stored as a simple text file. It is planned to
integrate a database which allows managing the experiments performed on the models
and their different versions and parametrisations. Figure 4.4 explains the placement and
responsibility of each GUI element. Different dialogues which can be opened to perform
an analysis or to store the 2D plot are not detailed as they are self-explaining due to their
simplicity.

Internally, the LARES View Plugin is a mixed Scala/Java project which applies the Akka
actor concept [135] in order to ensure smooth usability of the plugin and the whole Eclipse
environment under the load of an analysis. A further benefit of using actors is that they
communicate by message passing. This leads to a decoupling of the internal components.
Other views can be easily implemented to add further functionality.

139

4 STRUCTURE AND IMPLEMENTATION OF THE LARES FRAMEWORK

4.2 The Scala-based Library Implementation

Scala [110] has been employed for the whole transformation implementation. Extensive
use of some of its functional and OO concepts has been made. An abstract syntax tree
definition which corresponds to the formal definitions made in 2.2 has been built using
algebraic data types (in terms of Scala case classes). Furthermore, a concrete syntax has
been implemented using Scala parser combinators. The abstract syntax tree is created,
i.e. a model is loaded, by applying the root parser to a LARES specification. Next, the
transformation has to be performed. Classically the visitor pattern is applied to ensure
separation between the abstract syntax tree implementation and the transformation code. As
the tree consists of algebraic data types, Scala pattern matching is used for decomposition
instead of traversing the tree applying the visitor pattern in order to retain this separation.
All described transformations have been implemented based on the case class structures
which represent the source or the target formalism. Eventually, a simple model-to-text
transformation is carried out on the target model. This transformation yields an SPA model
which can be directly forwarded to the CASPA solver.

The relevant aspects of the LARES library subdivides into the following sub-projects:

ftse-base LARES-independent embeddable extensible language rep-
resentations, parsers, serialisers and algorithms (e.g. for
arithmetic, logical and set theoretic expressions, the asso-
ciated evaluation algorithms, bisimulation algorithms, and
abstract representations for CASPA SPA, TimeNet Petri nets,
LTS, etc)

ftse-lares LARES abstract representation, LARESFLAT representation
and the embedded language extensions, parsers, serialis-
ers, transformation algorithms from LARES to LARESBASE,
from LARESBASE to CASPA SPA, or from LARESFLAT to
TimeNet or, by performing a reachability algorithm, to an
LTS

ftse-lares-extensions LARES related extensions such as rewards or non-
deterministic decisions, extended parsers, serialisers and
transformations

ftse-lares-models A set of LARES models which are used to unit-test parsers
and transformations, or which serve as case-studies

ftse-lares-check Unit-tests for parsers, transformations etc.

140

4.2 The Scala-based Library Implementation

algorithms formalisms

timenet tra spa arith set logical trace lares

tools transformations

tra additional deprecated lares laresflat pn spa

ftse

simulation check models

flat reward de

pn laresflat

de reward

Figure 4.5: Package structure of the LARES library

All sub-projects incorporate and contribute to a given package structure as shown in
Figure 4.5. The main ftse package is subdivided into the packages algorithms (gen-
eral algorithms, e.g. for topological sorting or cross-product generation of elements),
formalisms (to specify languages for common expressions, e.g. arithmetic expressions),
tools (providing mainly classes and methods to wrap the interaction with the external
command line tools), transformations (to bridge from an input model to a target model),
simulation (contains the reachability algorithm), check (provides the unit-tests to check
whether parsers work correctly or transformations produce meaningful results) and models

(containing the models specified in terms of LARES or CASPA SPA).

When languages and their associated processing algorithms are intended to be extensible, it
is crucial to avoid monolithic implementations. According to that, a general programming
pattern in the Scala language, the stackable trait pattern, is introduced which is extensively
used to achieve the required decoupling among the standard language and its extensions.
Starting with Section 4.2.1, aspects of the library are detailed which define an abstract
interface of a transformation and ease the chaining of different transformation steps (in
order to compose the transformation workflows as described in Section 4.2.2).

Scala Stackable Trait Pattern

In order to allow building decoupled extensions of a basic transformation the so-called
Scala Stackable Trait Pattern is used (cf. Section 12.5 in [110]). In Scala the concept of a
trait is introduced to define object types which allow declaring method signatures and, in
contrast to Java interfaces, implementing them.

For the sake of building an extensible transformation, a base object type is initially defined
by means of the concept trait which has two type parameters S and T representing the
source and the target model type respectively, and an abstract interface method transform

which takes a source model m of type S into a model of type T:

trait AbstrTransformer[S,T] { def transform(m:S) : T }

141

4 STRUCTURE AND IMPLEMENTATION OF THE LARES FRAMEWORK

In order to illustrate the use of the stackable trait pattern by example, a transform method
implementation for LARES to LARESBASE is provided within a class definition. This defi-
nition serves as the core which inherits from the above basic trait AbstrTransformer:

class TrafoBase extends AbstrTransformer[LARES,LARESbase] {

def transform(m:LARES) : LARESbase = ... // root method implementation

}

The above core class can subsequently be extended by stackables. Such extensions
can be made by defining additional traits which inherit from the above type object
AbstrTransformer. The extended transform method is implemented such that the
super.transform method of the superior trait or class definition is finally called in order
to continue with the basic transformation or other extended transformations:

trait TrafoExt1 extends AbstrTransformer[LARES,LARESbase] {

abstract override def transform(m : LARES) : LARESbase = {

...; super.transform(...)

}

}

trait TrafoExt2 extends AbstrTransformer[LARES,LARESbase] {

abstract override def transform(m : LARES) : LARESbase = {

...; super.transform(...)

}

}

As shown subsequently, a (singleton) object L2LbaseStd representing the standard trans-
formation can be instantiated from the core class TrafoBase, whereas all kinds of ex-
tensions can be stacked to e.g. construct an extended transformation object L2LbaseExt
(which incorporates both extensions):

object L2LbaseStd extends TrafoBase

object L2LbaseExt extends TrafoBase with TrafoExt1 with TrafoExt2

Both objects (inside the preceding code-snipped) realise different transformations when
performing the transform method. In general, the order of how traits are stacked and
how the compiler performs linearisation (i.e. the rightmost trait is performed first) has an
effect on the calculated result. However, as long as each implementation of the transform
method (i.e. the root method or each extension method) does only process a distinct set of
language elements, the transformation is independent of the order of stacking. Since the
standard LARES language is intended to be extended by introducing new statements within
the Module and Behavior definition bodies, the concept of processing distinct language
elements by each stackable trait is applied to define the decoupled extensions to a number

142

4.2 The Scala-based Library Implementation

of model transformations. It is also used for embedded languages such as arithmetic
expressions, where also transformations such as evaluations can be extended.

The following sections show how languages are extended, how they can be embedded into
other languages, and how the corresponding algorithms can be extended (in a way that
they remain decoupled using the stackable trait pattern) and composed easily.

4.2.1 LARES-independent Formalisms & Algorithms

As mentioned, the ftse-base sub-project implements a number of basic formalisms (such
as logical expressions, set theoretic expressions and arithmetic expressions). The technical
principles used for the implementation are the same for all of these formalisms. The
arithmetic expression implementation has been chosen as a representative for all of them.
Firstly, it is explained how to define its abstract representation and how this representation
can be extended without losing type information in order to distinguish several kinds of
arithmetic expressions. Secondly, it is shown how to define algorithms which process these
structures and their extensions without losing compositionality of the algorithms.

Transformation Interface

Similarly to the example shown to illustrate the use of the stackable trait pattern, each
transformation definition has to inherit the trait AbstrTransformer[S,T] which can be
found in package ftse.transformations of sub-project ftse-base. The type parame-
ter S denotes an abstract source type of a model, while T denotes a target type. Also here,
an abstract function transform(m:S):T has to be specifically implemented.

Abstract Representation

In order to implement the abstract representation of arithmetic expressions, a trait with type
parameter T is defined by trait AE[T]. Its type parameter is used to denote a specific
type of arithmetic expression comprising a specialised structure. In its basic form an
abstract representation of an arithmetic expression is defined as follows:

abstract class AE_Atom[T] extends AE[T]

abstract class AE_UnaryOp[T](t : AE[T]) extends AE[T]

abstract class AE_BinaryOp[T](l : AE[T], r : AE[T]) extends AE[T]

It consists of an abstract atomic element AE Atom[T] and two basic kinds of abstract
operators, i.e. unary and binary operators. An example of concrete representatives of the
basic operators are defined as follows:

143

4 STRUCTURE AND IMPLEMENTATION OF THE LARES FRAMEWORK

case class AE_Plus[T](l:AE[T], r:AE[T]) extends AE_BinaryOp[T](l,r)

case class AE_Min[T](l:AE[T], r:AE[T]) extends AE_BinaryOp[T](l,r)

case class AE_Mult[T](l:AE[T], r:AE[T]) extends AE_BinaryOp[T](l,r)

case class AE_Neg[T](t:AE[T]) extends AE_UnaryOp[T](t)

In order to give an example of how to define extensions based on the basic representation
of AE[T], the traits AE ExtOp[T] and AE ExtVal[T] can be derived to denote the type of the
extended expression (note that this is a constructed example):

trait AE_ExtOp[T] extends AE[T]

trait AE_ExtVal[T] extends AE[T]

Additional operators or atomic elements (e.g. AE Div[T] or AE Value[T]) may be specified
for the extensions:

case class AE_Div[T](l:AE[T],r:AE[T]) extends

AE_BinaryOp[T](l,r) with AE_ExtOp[T]

case class AE_Value[T](i:Int) extends AE_Atom[T] with AE_ExtVal[T]

Arbitrary arithmetic expressions with different capabilities can be composed following the
above procedure. A specific parameter type for T can be defined for distinction, e.g. trait
AEext extends AE ExtOp[AEext] with AE ExtVal[AEext]. Arithmetic expressions
of different types (comprising different capabilities such as atomic elements or operators)
can thus be constructed and distinguished in a type-safe way by the given parameter type,
i.e. AEext for this example:

AE_Plus[AEext](AE_Value[AEext](1), AE_Value[AEext](2))

Decoupled Algorithms

Since a specification, and in this case the arithmetic expression as a representative, is
required to be transformed or analysed, a traversal method needs to be implemented. An
extension of such a language constitutes a new type of language (such as AE[AEext]).
It is hence also desirable that the algorithms are decoupled and extensible. Again, the
stackable trait pattern is used. Let a basic traversal class AE Transform be defined with
type parameters T which parametrises the type of arithmetic expressions and R for the
type of the result. All elements inside an expression are traversed using the recursive
traverse method implementation which applies pattern matching on each element in
order to match to a specific language type (i.e. a case class) and to be hence able to
apply the modify method and to perform the recursive descent. The modify method of an
arithmetic expression for the basic language is herewith per default defined as the identity

144

4.2 The Scala-based Library Implementation

function, as no atomic elements (which are firstly introduced as specific extensions) are
considered:

class AE_Transform[T,R] {

def modify(ae : AE[T]) : R = ae

def traverse(ae : AE[T]) : R = ae match {

case AE_Plus(l,r) => modify(AE_Plus(traverse(l), traverse(r)))

...

case sthelse => modify(sthelse)

}

}

A stackable trait which enables the basic traversal algorithm in order to evaluate the basic
elements of an arithmetic expression AE[T] is defined:

trait AE_Eval[T] {

abstract override def modify(ae : AE[T]) : Int = ae match {

case AE_Plus(x : Int, y: Int) => x + y

...

case sthelse => super.modify(sthelse)

}

}

Let an arithmetic expression be extended by an atomic elements AE Value, a further trait
can be defined which performs the evaluation of the atomic element AE Valued:

trait AE_EvalValued[T] {

abstract override def modify(ae : AE[T]) : Int = ae match {

case AE_Value(x : Int) => x

case sthelse => super.modify(sthelse)

}

}

Let the extended arithmetic expression be characterised by denoting the type variable T

as AEV , an evaluator can be easily instantiated by extending the traversal class by the
standard evaluation and the extended evaluation:

new AE_Transform[AEV,Int] extends AE_Eval[AEV] with AE_EvalValued[AEV]

4.2.2 LARES-related Formalisms & Transformations

Following the formal definition of the traversal function in Section 3.1, in sub-project
ftse-lares an abstract traversal trait is defined which is responsible to traverse a LARES

145

4 STRUCTURE AND IMPLEMENTATION OF THE LARES FRAMEWORK

model along its instances. Thereby, FW and BW define abstract type parameters which
represent data structures that are used to forward information towards the leaves or to relay
information towards the root node during the traversal of the instance tree:

trait LaresTraverser[BW,FW]

Two important abstract methods are declared. At the one hand, the forwards method
to propagate information from an arbitrary intermediate node towards their leaves is
declared:

def forwards(i : Instance, fw : FW) : (Instance,FW)

It contains the parameter i for the visited instance and the forward information parameter
fw of type FW obtained from the parent instance. The visited instance i and the forward
information are processed and returned.

On the other hand, the backwards method is declared. It also has an instance parameter
i and a forward information parameter fw. It further includes an additional structure bw
which represents the backward information calculated from the processed child instances:

def backwards(ri : Instance, fw : FW, bw : Iterable[BW]) : BW

The backwards method is responsible to process the visited instance i by taking the
backward information bw and the forward information fw into account.

Finally, the recursive traverse method is defined. It is initially applied to the root instance
of a LARES specification and uses the forward information fw to determine the subsequent
forward information fwres. Then all subinstances are recursively processed in order to
calculate the backward information which consists of the processed subinstances. Finally,
the backwards method is called to process the currently visited instance and to calculate
the backward information therewith:

def traverse(i : Instance, fw : FW) : BW = {

val fwres = forwards(i,fw)

backwards(

fwres._1, fwres._2,

fwres._1.body.instances.map(child => {

traverse(child,fwres._2)

})

)

}

Note that 1 and 2 denote projections of the first and the second element of a tuple
respectively.

146

4.2 The Scala-based Library Implementation

The abstract traversal trait LaresTraverser has to be mixed in the traits which implement
the different transformations as detailed in the subsequent sections. For each specific trans-
formation, the forward and backward data structure types as well as the implementation of
the methods according the transformations semantics are sketched.

Parameter Evaluation and Instance Tree Construction

Concerning the parameter transformation, the backward and forward data structures are
defined within a parameter expansion structure object PES:

object PES {

type BW = Instance

type FW = (

Map[Identifier,Identifier],

HashMap[Identifier,LBehavior],

HashMap[Identifier,ModuleDefinition]

)

}

The transformation to evaluate parameters and to thereby resolve expand statements for
the purpose of constructing the instance tree is implemented by the class Instantiation
which, as mentioned in the previous section, inherits from the trait LaresTraverser
parametrised by the types defined inside of PES. Furthermore, the transformation interface
AbstrTransformer is inherited:

class Instantiation extends

LaresTraverser[PES.BW,PES.FW] with

AbstrTransformer[LARES_Element, LARES_Element] with ...

Inheriting from AbstrTransformer and LaresTraverser requires implementing the
transform, forwards and backwards method.

If transform matches the root element of a LARES specification (SpecLares), the
forward information which contains the scope of visible definitions (when regarding this
transformation) will be defined by the therein available Behavior and Module definitions.
When the traverse method is executed, it returns the backward information with the
processed System instance which is subsequently embedded in the LARES specification
element and returned by the transform method:

def transform(e : LARES_Element) : LARES_Element = e match {

case s : SpecLares => {

val B = HashMap((for (b<-s.behaviors) yield b.identifier->b).toSeq :_*)

val M = HashMap((for (m<-s.modules) yield m.identifier->m).toSeq :_*)

147

4 STRUCTURE AND IMPLEMENTATION OF THE LARES FRAMEWORK

val fw = (HashMap[Identifier,Identifier](), B, M)

SpecLares(List(),List(),traverse(s.system,fw))

}

}

• The forwards method has to be overwritten in order to implement the evaluation of
parameters and the resolution of the thereby dependent statements:

override def forwards (i:Instance, fw:FW) = { ... }

Its implementation is not further detailed, as it follows the formal semantics from
Section 3.3.1. It is only sketched by different steps:

1. Firstly, the Module definitions in scope are extracted from the forward infor-
mation to determine the definition corresponding to the current instantiation.

2. Subsequently, the parameters for the instantiation (which are either defined
by the instantiation or by the default values of the Module definition) are
determined.

3. Then, the Module definition’s body is resolved such that all contained state-
ments (including expand statements) are resolved using the evaluated parame-
ters.

4. Subsequently, the local Behavior and Module definitions become part of the
scope and will hence be included in the forward information.

5. Moreover, the set of delegates is subdivided regarding the criterion whether a
delegate addresses a Behavior or Module definition. Those which address a
Module definition can be handled as Instances and hence be appended to the
instances of the resolved body.

6. Furthermore, the addressed Initial statements have to be determined by forward
information in order to obtain the initial configuration of a Module instance.
The first Initial specified will be taken, if no corresponding reference could be
determined from the forward information. The resolved Behavior instances are
constructed by the evaluated parameters and the initial configuration.

7. Finally, the resolved Module instance is constructed (from the identifier, the
evaluated parameters, the Behavior instances and the new Module body) and
returned together with the forward information.

• The backwards method replaces subinstances with their processed version obtained
by the backward information bw:

override def backwards (i:Instance, fw:FW, bw:Iterable[BW]) = { ... }

148

4.2 The Scala-based Library Implementation

Apart from the standard language elements of LARES, auxiliary statements can be de-
fined for further extensions. In order to take this into account, the stackable trait pattern
is employed again to decouple the different extensions from the standard transforma-
tion. Therefore, a trait AbstractLaresParameterResolver has been defined in order to
resolve the auxiliary statements:

trait AbstractLaresParameterResolver {

def resolveAuxStatements(

auxStmts : List[ModuleStatement],

evaluations : HashMap[Identifier,Either[Int,Double]]

) : List[ModuleStatement]

}

The method resolveAuxStatements is responsible to evaluate the variables of all auxil-
iary statements considering the given evaluations. The specific implementations for the
base class and all stacked traits for further extensions are not detailed here, as they follow
the formal transformation semantics described in Section 3.3.1 or can be looked-up in the
implemented code.

Condition Statement Transformation

In order to resolve the references to intermediate Condition statements, the addressed
condition expressions have to replace the references. The transformation of Condition
statements simply requires relaying the resolved conditions backwards. For this purpose,
the data structure object CES has been defined to provide the desired BW type (of a processed
instance which contains only resolved Condition statements):

object CES { type BW = Instance; type FW = Null }

Similarly to the description given in the previous section, the condition expansion transfor-
mation is implemented by the following class definition:

class ConditionRes extends

AbstrTransformer[LARES_Element,LARES_Element] with

LaresTraverser[CES.BW,CES.FW] with ...

Similarly to the previous transformation, the forwards and the backwards methods have
to be implemented. As no information is required to be forwarded in the direction to the
leaves, the implementation of the forwards method is straightforward and simply passes
along the instance as it is.

In order to resolve all statements which contain condition expressions such as Condition,
forward and guards statements, the local Condition statements have to first be resolved

149

4 STRUCTURE AND IMPLEMENTATION OF THE LARES FRAMEWORK

in the order of their interdependencies. As a result, all local references inside a condition
expression can be resolved, because all referenced local Condition statements can be
resolved due to the given order. All non-local references can be resolved anyway by using
the resolved Conditions of each child Module instance obtained via the instances inside
the backward information or from State statements addressed via Behavior instances.

The resolution process substitutes the references by the addressed (visible) condition
expressions. It thereby implicitly implements the scope of a Condition statement or a
State statement, such that a named statement is in general either visible locally (within the
defining instance) or from the direct environment (i.e. the child instances). After resolving
all local Conditions, the forward and the guards statement can be resolved by additionally
taking the resolved local Condition statements into account.

Condition expressions may also be contained in auxiliary statements other than Condition,
forward and guards statements. For this case, the stackable trait pattern is applied in
order to decouple the resolution process of the language elements which contain condition
expressions. Each (stacked) trait which inherits from AbstrConditionExpansion must
have a specific implementation of the method resolveAuxConditionStatements to
resolve the auxiliary statements by the referred condition expressions:

trait AbstrConditionExpansion {

def resolveAuxConditionStatements(

aux : List[ModuleStatement],

resRemote : Iterable[(Identifier,Condition)], // non-local condition

resLocal : Seq[Condition] // local condition

) : List[ModuleStatement]

}

Based on resolved statements, backwards returns the backward information containing
the processed instance and therein the resolved local Conditions.

forward Statement Transformation

The forwards transformation is similar to the resolution of condition expressions. Again
no information is required to be forwarded towards the leaf nodes. Instead of resolved
condition expressions, resolved forwards statements are relayed backwards wrapped
inside the processed instances:

object FES { type BW = Instance; type FW = Null }

Consequently, the transformation class inherits the same traits, i.e. from AbstrTransformer

and LaresTraverser. The latter is parametrised with the initially defined data structure
types FW and BW:

150

4.2 The Scala-based Library Implementation

class ForwardRes extends

AbstrTransformer[LARES_Element, LARES_Element] with

LaresTraverser[FES.BW,FES.FW] with ...

• The forwards method simply passes the instance along, as no further information
has to be propagated towards the leaf nodes

override def forwards(i:Instance, fw:FW) = (i,null)

• In contrast, the backwards method is responsible to resolve the given instance i

and the forward information fw (which might be addressed by the parent Module
instance):

override def backwards(i:Instance, fw:FW, bw:Iterable[BW]) = { ... }

In order to determine the set of visible forward statements which may be addressed via
their guard labels by some local reactive expression, the backward information is used to
extract the forward statements of the contained child instances and the guarded transitions
of the instantiated Behaviors (which can be regarded as resolved forwards).

Note that the type of a resolved reference to a guard label (beside the standard reference
information) is complemented by a distribution type. It is applied when a guards statement
is resolved in order to be able to check whether the synchronous reaction arising thereof
is composed of transitions which have the same distribution type. This check is not
performed in the forward statement transformation, as this is not calculated on the reactive
expression, but for each product term which arises thereof individually when applying the
transformation to derive the SPA or the LTS.

Subsequently, all local forward statements are processed (i.e. such that the referenced
forwards can be substituted) following the topological order of their interdependencies.
Due to the conditions assigned to reactive expressions and the combinatorics arising from
choices in general, new choices can arise for a forward label as described in Section 3.3.3
and implemented according to that.

A consecutive application of all transformations introduced up to this step will construct
the LARESBASE representation of the model. According to the subsequent transformations,
different target models are generated which can be addressed by corresponding solvers.

SPA Transformation

This section focuses on the CASPA stochastic process algebra solver as the addressed
tool. The meta-model of the CASPA SPA is again defined by case classes. Hereby each

151

4 STRUCTURE AND IMPLEMENTATION OF THE LARES FRAMEWORK

language element is derived from SPA Element. As a consequence, a transformation
trait can be defined which is parametrised by LARES Element as source model type and
SPA Element as target model type:

class LaresSPATransformer extends

AbstrTransformer[LARES_Element,SPA_Element] with

LaresTraverser[GEN_SPA_TYPES.BW,GEN_SPA_TYPES.FW] with

The above used type parameters for the forward and the backward information are defined
inside GEN SPA TYPES:

object GEN_SPA_TYPES {

type FW = (Namespace,List[GenerativeLiteral],List[ReactiveLiteral])

type BW = PACT_Element

}

The forward structure is a tuple consisting of the namespace of the Module instance which
forwards the information, a list of propagated generative literals and a list of reactive literals.
The above traversal class contains the implementation which finally transforms Behavior
instances into sequential processes by taking all obtained generative and reactive literals
into account, i.e. a process algebra tuple PAT which includes the sequential SPA process
and synchronisation information which relates to the labels generated due to generative and
reactive literals of product term combinations. A PAT element is derived from an abstract
class PACT and hence represents a leaf element of a PACT structure, whereas the process
algebra composition PACN element is derived from PACT as well, but is generated for each
Module instance. In order to construct these structures, the forwards and the backwards
method have to be implemented:

• The forwards method determines which generative/reactive literals have to be
constructed and additionally forwarded for a given instance. Note that each literal is
augmented with additional information such as a namespace, an encoding, a Boolean
interaction flag (which states whether only a single instance is addressed, i.e. leading
to an action whose label may not become part of the synchronisation set) and a
common distribution type. The helper function filters the relevant literals for the
given instance. It modifies all conditional reactives by combining their generative
expressions with the condition of corresponding guards statement and collects
them. They are encoded by a unique number. Each of the resolved conditional
reactives is checked whether a common distribution can be calculated. Then for
both the generative and the reactive part, Binary Decision Diagrams (BDD) will
be constructed in order to determine the generative product terms and the reactive
product terms, respectively, if the generative expression is satisfiable (i.e. the root

152

4.2 The Scala-based Library Implementation

node of the BDD is not the Boolean false terminal). Product terms which would
require a single instantiated Behavior to be in two different states at the same time are
not satisfiable and are therefore removed. The sets of product terms are subsequently
enumerated and combined such that augmented literals can be built.

• The backwards method performs the SPA transformation. For that purpose, it
groups the obtained generative and reactive literals by behaviour instance identifiers,
and calls the transformation method for all behaviour instances with their matching
literal group as argument. The transformation implementation of a Behavior instance
follows exactly the formal semantics denoted in 3.5.4. The constructed sequential
processes are complemented by the synchronisation information (i.e. the process
algebra tuple (PAT) structures) and then composed by constructing the process
algebra composition tuples (PACT) structures.

Following the composition semantics of 3.5.3, the SPA specification can be generated
in a subsequent transformation step and pretty printed in order to obtain the textual SPA
specification which can finally be fed into the CASPA solver.

LARESFLAT Transformation

If the target model is planar, the hierarchy will not be preserved by any means. Conse-
quently, a further transformation is defined which is responsible for resolving the hierarchy
of a LARES model. For this reason, the LARESFLAT Expansion Structures (LFES) defines
the forward information (which carries the current namespace and the guards statements
augmented by information for unique identification) and the backward information (which
consists of LARESFLAT automata, guards and measure statements):

object LFES {

type FW = (Namespace,List[(Namespace,Int,LGuard)])

type BW = (List[LFA],List[LGuard],List[Measure])

}

In contrast to the SPA transformation, the LARESBASE specification is now transformed
into a flattened model denoted as LARESFLAT. The data type of the LARESFLAT formalism
is named LFIA which describes a system of interacting automata. Accordingly, the
transformation class is given as follows:

class L2LFGen extends

AbstrTransformer[LARES_Element,LFIA] with

LaresTraverser[LFES.BW,LFES.FW] with ...

153

4 STRUCTURE AND IMPLEMENTATION OF THE LARES FRAMEWORK

Again, the transformation inherits from the traversal trait which requires implementing the
forwards and backwards methods:

• The forwards method first updates the namespace (by considering the processed
Module instance) and then adapts the namespace of each local guards statement.
The adapted local guards and the guards statements from the forward information
are unified in order to construct the forward information for the currently processed
module instance.

• The backwards method collects the information relayed backwards from the child
instances (e.g. the constructed automata, the adapted guards statements and meas-
ures). Firstly, each local Behavior instance of the currently processed Module
instance is translated such that it is also complemented by the current namespace.
The LARESFLAT model (LFA) is built straightforwardly by including the states, the
guarded as well as unguarded transitions of a Behavior instance, and the instance
identifier which is complemented by the given namespace. Secondly, the local
guards are processed (as well as the measures). The guards statements and the LFA
instances are then aggregated and returned as part of the backward information of
the currently processed Module instance.

LARESFLAT to Labelled Transition System

A reachability algorithm on LARESFLAT implements the LTS semantics as given in
3.4.3. The base class of the transformation inherits from AbstrTransformer which
is parametrised by the types LFIA as input model type and TRA as output model type:

class LF2TS extends

AbstrTransformer[LFIA,TRA] with ...

The transform method implements a (breadth/depth first) search to exploit the reachable
state space. Firstly, the initial states of all LFA instances serve as a composed initial state
for the fixed point algorithm which is performed as long as further states can be explored.
As described in Section 3.4.3, guards statements are used to determine whether the current
composed state satisfies a generative condition, and the set of currently available guarded
transitions is used to decide whether a reactive part is satisfied. Accordingly, a number of
synchronous composed transitions into reachable composed target states can be determined.
All transitions which have been traversed while exploring the state space are stored in the
reachability graph which is also known as the transition system (TRA).

154

4.2 The Scala-based Library Implementation

Composition of Transformations

Since every transformation is derived from AbstrTransformer and implements the trans-
form method, complex multi-step transformations can be composed in Scala:

def lares2lbase =

((new Instantiation with InstantiationReward) transform) _ andThen

((new ConditionRes with ConditionResReward) transform) _ andThen

((new ForwardRes) transform) _

The above composition has two dimensions of extensibility: On the one hand, additional
consecutive steps can be appended (e.g. to address further solvers). On the other hand,
also a transformation can be extended using the stackable trait principle in order to deal
with language extensions. Due to the chosen approach, additional transformation steps can
be defined independently and enriched with further stackable traits.

The transformation of the new statements StateReward and TransitionReward as part
of the reward extension of the LARES language serves as example. As a second example,
the extension by non-deterministic actions may be quoted. These language extensions
can be found in the ftse-lares-extensions sub-project (not shown in Figure 4.5)
following the theoretical work of [69, 70] and its implementation described in [101]. For
both extensions, the additional concepts added to the LARES language and the semantics
to perform the transformations to their specific target languages are not subject of this
thesis and thus also their implementation is not detailed here.

4.2.3 LARES Model Transformation Validation

The sub-project ftse-lares-check is responsible for maintaining validity of the trans-
formation semantics during ongoing development (improving code, extending languages
and transformations, etc.). There, the specs2-framework has been used [134]. A number
of tests can be performed in order to check whether the parsers work correctly with a set
of given test-models. Moreover, bisimulation equivalence of two kinds of transformations
can be performed. This means that two TRA objects are compared for bisimilarity by

1. transforming LARES models to a CASPA stochastic process algebra (such that the
reachability execution performed by the CASPA tool yields the first TRA object),
and by

2. performing reachability analysis on a LARESFLAT representation (which yields the
other TRA object).

155

4 STRUCTURE AND IMPLEMENTATION OF THE LARES FRAMEWORK

Figure 4.6: Unit testing the LARES transformation implementations (screenshot)

Figure 4.6 shows an iteration through all test models which are used to check the different
parsers and transformations. It is important that LARES test models are designed such that
the test-coverage is as large as possible. Therefore, aspects related to the combinatorics
originating from the product terms and the choices between the generated transitions are
captured by different models which implement variants of forward and guards statements.

156

Chapter 5

Case Studies and Implications on
Scalability

In order to demonstrate the applicability of the LARES approach, some models have been
developed to show that

• the required dependability aspects can be modelled,

• modellers can access the language easily,

• the model transformation scales with respect to the input model and

• the whole analysis process is carried out smoothly using the provided LARES toolset.

Therefore, Section 5.1 picks up the Phased Mission System (PMS) case-study discussed
in [68] to do the still pending analysis. In Section 5.2, a larger real-world case study
to determine the dependability of the spring and tilt module of a rail vehicle is recalled
(RailCab). Section 5.3 by contrast defines a new parametrisable, recursively layered
queueing network. Finally, Section 5.4 determines metrics for the LARES modelling
language by considering the above models including the Fault Tolerant Network and the
Component Monitoring System model of Section 1.2 and 1.3 respectively. The resulting
SPA model of the transformation and the MTBDDs (constructed by the CASPA tool) are
taken into account to evaluate scalability aspects of the LARES approach.

5.1 Modelling and Analysis of a Phased Mission System

The Phased-Mission-System (PMS) model originally presented in [30] was manually
transformed into the CASPA SPA [124]. Furthermore, it was used as a basis to show the
expressiveness of the LARES language by formulating a more complex version thereof

157

5 CASE STUDIES AND IMPLICATIONS ON SCALABILITY

[68]. The PMS LARES model is now taken up again in order to catch up on the analysis.
In this work, the LARES toolchain is utilised to apply the described transformations which
automatically construct SPA models from high-level LARES specifications and to evaluate
measures of interest along with the CASPA tool.

a

b
s[1]

s[2]

s[3]

s[4]

s[5]
source target

(a) Structure

Failure

Mission
Acc

Phase1 Phase2

(b) Tangible system behaviour

Figure 5.1: PMS (compiled from [123, p. 123])

The PMS system consists of two components a and b, five switches s[i] and conductors
which interconnect the components and the switches. The goal of the system is to realise a
connection between the source and the target node as shown in Figure 5.1(a). The figure
can be regarded as an RBD in which the system will be considered to be working if at least
one connection between source and target is realised. Two consecutive phases which are
prone to failure have to be performed before the system’s mission is fulfilled (cf. Figure
5.1(b)). The initial phase is realised by switching positions which establish a redundant
parallel operation of both components a and b. Once the first phase is finished, the system
reconfigures itself to a serial structure requiring both components to operate. Within both
phases, the system may fail depending on the operational availability of the components
and the positions of the switches to realise a connection.

In order to specify the above description of the system, the system Behavior definition
consists of two states which represent the consecutive phases which end up in either a
state representing the accomplishment of both phases or a failure. Note that the state of
reconfiguration Reconf does not appear in Figure 5.1(b) since it is vanishing and gets
eliminated. The duration of each phase is determined by an exponential distribution
with rate tau1 or tau2 given as parameters. The system’s failure in both phases might
be externally triggered by providing the guarded transitions labelled with Fail P1 or
Fail P2.

Behavior B Phases (t a u 1 , t a u 2) {
State Phase1 , Reconf , Phase2 , F a i l u r e , Miss ion Acc
Transitions from Phase1

i f 〈 F a i l P 1 〉 → F a i l u r e
→ Reconf , de lay e x p o n e n t i a l t a u 1

Transitions from Reconf

158

5.1 Phased Mission System

i f 〈 sw i t ch 〉 → Phase2
Transitions from Phase2

i f 〈 F a i l P 2 〉 → F a i l u r e
→ Miss ion Acc , de lay e x p o n e n t i a l t a u 2

}

The system itself consists of a number of switches that are arranged such that a connection
can be realised between the source and the target node. The Behavior definition of a switch
comprises the states with the self-evident identifiers Open and Closed including the error
states stuck-at-open (SA Open) and stuck-at-closed (SA Closed). Two guarded transitions
for the states to intentionally close a switch int close (leading to either Closed or to
SA Open) or to intentionally open a switch int open (leading to either Open or SA Closed)
are defined. The transition which is eventually taken depends on the ratio given by the
weights gamma and 1− gamma. In addition, a switch may unintentionally open with regard
to an exponential distribution such that the erroneous state SA Open is reached.

Behavior B Switch (gamma, MTTF) {
State Closed , Open, SA Open, SA Closed
Transitions from Open

i f 〈 i n t c l o s e 〉 → Closed , weight 1 − gamma
i f 〈 i n t c l o s e 〉 → SA Open, weight gamma

Transitions from Closed
i f 〈 i n t o p e n 〉 → Open, weight 1 − gamma
i f 〈 i n t o p e n 〉 → SA Closed , weight gamma

→ SA Open, de lay e x p o n e n t i a l 1 . 0 /MTTF
}

A component may also fail. A Boolean failure Behavior definition therefore describes an
exponential distribution of a time delay specified by the parameter MTTF until the current
state Active changes to Failed:

Behavior B NonRepa i rab le (MTTF) {
State A c t i v e , F a i l e d
Transitions from A c t i v e
→ F a i l e d , de lay e x p o n e n t i a l 1 . 0 /MTTF

}

The System definition captures the interaction behaviour between all defined subinstances
(i.e. switches and components) and the inherited system behaviour. It specifies the
measures of interest and it may provide further Module (as in this case) or Behavior
definitions:

System PMS : B Phases (t a u 1 = 1 . 0 / 1 0 0 , t a u 2 = 1 . 0 / 5 0) {
/∗ ∗ Module−Type D e f i n i t i o n s ∗ ∗ /

159

5 CASE STUDIES AND IMPLICATIONS ON SCALABILITY

Module M Component : B NonRepa i r ab le (MTTF=10000) { . . . }
Module M Switch : B Swi tch (gamma=0.05 , MTTF=10000) { . . . }

/∗ ∗ Submodule−I n s t a n c e s ∗ ∗ / . . .
/∗ ∗ I n t e r a c t i o n Behav iour ∗ ∗ / . . .
/∗ ∗ Measures ∗ ∗ / . . .

}

The Module M Component definition inherits from B NonRepairable setting the param-
eter MTTF to 10000 hours. It provides the Initial statement Active and reveals its failed
state via the Condition statement Failed to the environment.

Module M Component : B NonRepa i r ab le (MTTF=10000) {
Initial A c t i v e = B NonRepa i r ab le . A c t i v e
Condition F a i l e d = B NonRepa i rab le . F a i l e d

}

The Module definition M Switch inherits from B Switch and sets the parameters for
gamma and MTTF. Two Initial statements are provided. These allow setting a switch to be
closed or opened initially. Two Conditions additionally state whether a switch is closed or
stuck-at-closed. Two forward statements are defined which both deliver the int open and
< int close > event to the internal behaviour in order to intentionally open and close a
switch respectively:

Module M Switch : B Swi tch (gamma=0.05 , MTTF=10000) {
Initial I n i t C l o s e d = B Switch . Closed
Initial I n i t O p e n = B Switch . Open
Condition Closed = B Switch . Closed
Condition SA Closed = B Switch . SA Closed
forward 〈 i n t o p e n 〉 to B Switch . 〈 i n t o p e n 〉
forward 〈 i n t c l o s e 〉 to B Switch . 〈 i n t c l o s e 〉

}

The System definition further specifies subinstantiations. In order to specify the initial
configuration of the first phase, four of the five instantiated switches are configured
such that they are initially closed whereas the last one remains open. Furthermore, both
instantiated components are initially active.

/∗ ∗∗∗∗∗∗∗∗ Submodule−I n s t a n c e s ∗∗∗∗∗∗∗∗ ∗ /
expand (c l d in {1 .. 4}) { Instance s [c l d] i n i t i a l l y I n i t C l o s e d of

M Switch }
Instance s [5] i n i t i a l l y I n i t O p e n of M Switch
Instance a i n i t i a l l y A c t i v e of M Component
Instance b i n i t i a l l y A c t i v e of M Component

160

5.1 Phased Mission System

a

b
s[1]

s[2]

s[3]

s[4]

s[5]
source target

(a) Phase1

a

b
s[1]

s[2]

s[3]

s[4]

s[5]
source target

(b) Phase2

Figure 5.2: Phases of the PMS

The PMS is constructed in such form that it should cut off a failed component from
a connection by opening the associated switch. The System definition captures that
interaction behaviour by the first two guards statements.

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗ I n t e r a c t i o n Behav iour ∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
a . F a i l e d guards s [2] . 〈 i n t o p e n 〉
b . F a i l e d guards s [3] . 〈 i n t o p e n 〉

The first phase will run as long as there is at least one of the connections associated with
component a including the switches s[2] and s[4] or associated with component b including
s[1] and s[3] established (cf. Figure 5.2(a)). Otherwise, the phase fails which will trigger
the system behaviour via Fail P1.

((a . F a i l e d | n o t s [2] . C losed | n o t s [4] . C losed) &
(b . F a i l e d | n o t s [1] . C losed | n o t s [3] . C losed))
| s [2] . SA Closed | s [3] . SA Closed guards B Phases . 〈 F a i l P 1 〉

If the system withstands the first phase without a failure, the system reconfigures in order
to perform the second phase (cf. Figure 5.2(b)). Therefore, the system attempts to open
the switches s[1] and s[4], to close switch s[5] and to synchronously shift into phase 2:

t r u e guards sync { maxsync { s [1] . 〈 i n t o p e n 〉 , s [4] . 〈 i n t o p e n 〉 , s
[5] . 〈 i n t c l o s e 〉 } , B Phases . 〈 sw i t ch 〉 }

The second phase can be performed as long as none of the components fail and the switches
s[2], s[3], s[5] are closed. Only then may the system accomplish its mission.

a . F a i l e d | b . F a i l e d | n o t s [2] . C losed | n o t s [3] . C losed |
n o t s [5] . C losed guards B Phases . 〈 F a i l P 2 〉

The instance tree constructed for the PMS model is shown in Figure 5.3. Note that
behaviour instances are represented by leaf nodes, so that each node is associated with its
sequential behaviour definition. Each of the 5 switches has 4 states. At the same time each
of the components a and b has two states and the system behaviour comprises 5 states.

Note that subtle notational changes accounted by the evolution of LARES are considered
and applied to the model presented in [68]. Furthermore, this model fixes an issue

161

5 CASE STUDIES AND IMPLICATIONS ON SCALABILITY

PMS_B_PhasesPMS_s[5]_B_Switch PMS_a_B_NonRepairable PMS_b_B_NonRepairable

PMS_s[1]_B_Switch PMS_s[2]_B_Switch

PMS_s[3]_B_Switch PMS_s[4]_B_Switch

Mission_Acc

Phase2

(r:0.02)

Failure

(Fail_P2,impl)

PMS_B_Phases

gen Reconf,Phase2,Failure,Phase1,Mission_Acc

react Fail_P1,switch,Fail_P2

Phase1

Reconf

(r:0.01)

(Fail_P1,impl) (switch,impl)

PMS

gen

react

inherits behavior instance

PMS_s[5]

gen

react int_open,int_close

is child of

PMS_a

gen

react

is child of

PMS_b

gen

react

is child of

PMS_s[1]

gen

react int_open,int_close

is child of

PMS_s[2]

gen

react int_open,int_close

is child of

PMS_s[3]

gen

react int_open,int_close

is child of

PMS_s[4]

gen

react int_open,int_close

is child of

Closed

Open

(int_open,w:0.995)

SA_Open

(r:0.0001) SA_Closed

(int_open,w:0.005)(int_close,w:0.995)

(int_close,w:0.005)

PMS_s[5]_B_Switch

gen Closed,Open,SA_Open,SA_Closed

react int_close,int_close,int_open,int_open

inherits behavior instance

Active

Failed

(r:0.0001)

PMS_a_B_NonRepairable

gen Active,Failed

react

inherits behavior instance

Active

Failed

(r:0.0001)

PMS_b_B_NonRepairable

gen Active,Failed

react

inherits behavior instance

Open

Closed

(int_close,w:0.995)

SA_Open

(int_close,w:0.005)

(int_open,w:0.995)

(r:0.0001)

SA_Closed

(int_open,w:0.005)

PMS_s[1]_B_Switch

gen Closed,Open,SA_Open,SA_Closed

react int_close,int_close,int_open,int_open

inherits behavior instance

Open

Closed

(int_close,w:0.995)

SA_Open

(int_close,w:0.005)

(int_open,w:0.995)

(r:0.0001)

SA_Closed

(int_open,w:0.005)

PMS_s[2]_B_Switch

gen Closed,Open,SA_Open,SA_Closed

react int_close,int_close,int_open,int_open

inherits behavior instance

Closed

SA_Closed

(int_open,w:0.005)

SA_Open

(r:0.0001) Open

(int_open,w:0.995)

PMS_s[3]_B_Switch

gen Closed,Open,SA_Open,SA_Closed

react int_close,int_close,int_open,int_open

(int_close,w:0.995)

(int_close,w:0.005)

inherits behavior instance

Closed

Open

(int_open,w:0.995)

SA_Closed

(int_open,w:0.005)

SA_Open

(r:0.0001)

(int_close,w:0.995)

(int_close,w:0.005)

PMS_s[4]_B_Switch

gen Closed,Open,SA_Open,SA_Closed

react int_close,int_close,int_open,int_open

inherits behavior instance

Figure 5.3: PMS instance tree (generated by the LARES toolset)

concerning the rates and weights (i.e. the rates were spuriously set by the mean time of
certain events and the weighting gamma of an erroneous switching event in B Switch was
falsely set as the complement of gamma instead of 1− gamma). Lastly, the reconfiguration
was primarily initiated when it entered the second phase. This led to an unintended
behaviour as this procedure was not atomic and instead concurred with the failure condition
of the second phase. It was resolved by adding an intermediate vanishing state to the system
behaviour in which the switches are instantaneously reconfigured to the requirements of
the next phase. Note that alternatively one would resolve the above by synchronising the
reconfiguration with the Markovian transition from the first into the second phase without
introducing an additional state.

In addition, certain measures of interest have been formulated via Probability statements
in order to calculate the transient probability of each tangible state, i.e. Phase1, Phase2,
MissionSuccess and MissionFailure:

/∗ ∗∗∗∗∗∗∗ Measures ∗∗∗∗∗∗∗ ∗ /
Probability Phase1 = T r a n s i e n t (B Phases . Phase1 , 500)
Probability Phase2 = T r a n s i e n t (B Phases . Phase2 , 500)
Probability M i s s i o n S u c c e s s = T r a n s i e n t (B Phases . Miss ion Acc , 500)
Probability M i s s i o n F a i l u r e = T r a n s i e n t (B Phases . F a i l u r e , 500)

The results of the analysis are depicted in Figure 5.4. Since the system initially starts in
Phase1, the probability at t = 0 is 1.0. If no failures occur, the sojourn time of the first
phase will be determined by an exponential distribution. Then the system leaves Phase1
and enters Phase2. The state Reconf to reconfigure the switch positions is vanishing. As
its sojourn time is always 0 and thus cannot aggregate any probability mass, it is eliminated
before analysis. Whilst the probability of the first phase decreases, the probability mass
over time thus accumulates in the second phase. The probability of the accomplishment
of the mission (represented by the state PMS MissionSuccess) simultaneously increases,
due to the flow of probability mass from Phase2.

162

5.1 Phased Mission System

Figure 5.4: Transient analysis of state probabilities of the PMS model (generated by the
LARES toolset)

Either because of on-demand-failures (which occur during the process of switching) or
due to the MTTF of a switch or a component, the probability mass drains away towards
the Failure state (PMS MissionFailure) in each phase.

The probability of mission success heavily depends on the MTTF parameters of the compo-
nents and the switches. Nonetheless, the parameter gamma also impacts the overall results.
To emphasize this effect, further Probability statements have been defined (for selected
representative behaviour instances as these behave symmetrically to the omitted ones, i.e.
s1 ∼ s4 and s2 ∼ s3) to highlight the probability of a switch to be either stuck-at-closed
or stuck-at-open and the probability of a component to be failed:

Probability s1 SA Open = T r a n s i e n t (s [1] . SA Open, 500)
Probability s3 SA Open = T r a n s i e n t (s [3] . SA Open, 500)
Probability s5 SA Open = T r a n s i e n t (s [5] . SA Open, 500)
Probability s1 SA Closed = T r a n s i e n t (s [1] . SA Closed , 500)
Probability s3 SA Closed = T r a n s i e n t (s [3] . SA Closed , 500)
Probability a f a i l e d = T r a n s i e n t (a . F a i l e d , 500)

Figure 5.5 depicts the results obtained from the failure measures defined beforehand.
The probability of a component to fail at a certain time point successively increases. As
the switches can fail from Closed to SA Open defined by the MTTF, the initially closed
switches s[1], s[2], s[3] and s[4] (represented by s[1] and s[3]) lose probability mass in
favour of SA Open. In contrast to the course of the probability results for PMS s3 SA Open,
a stagnation can be observed for the results of PMS s1 SA Open. This can be explained due
to the switching from Closed to Open when the reconfiguration for the second phase takes
place. A further effect of the phase change becomes apparent in the probability results

163

5 CASE STUDIES AND IMPLICATIONS ON SCALABILITY

Figure 5.5: Transient analysis of representative PMS failure state probabilities showing the
distribution of the overall probability mass (generated by the LARES toolset)

for PMS s1 SA Closed. It is here that the error-prone switching procedure determined by
gamma comes to a gain of probability mass for SA Closed which correspondingly to the
end of the first phase stagnates. The measures obtained via PMS s5 SA Open aggregate
probability mass by both the phase change and its MTTF. On the one hand this happens
due to a failed closing procedure when the phase changes and on the other hand due to
the transition from Closed to SA Open following the MTTF. PMS s3 SA Closed will only
be reached from Closed if it is switched. There is no switching of s[3] based on the
phase change. If the associated component which in this case is b fails, this will be the
only switching to take place. Due to the low probability of a component failure and the
switching failure weight given by gamma, only a slight increase of probability mass can be
observed over time.

5.2 Larger Case-Study:
The RailCab Spring and Tilt Module

In [104] a real-world self-optimising mechatronical system [131] was modelled using
LARES to determine its reliability. The complexity in terms of its instance tree can
be perceived by Figure 5.6. A more detailed description including parts of the LARES
model specification is given in [104]. The specified spring and tilt module is a functional
submodule of a RailCab which also consists of modules for energy-supply, track-guidance,
and drive-and-braking [97]. It seeks to achieve an almost complete vibration decoupling
between the rail and the vehicle chassis by active suspension which is controlled by making
use of sensor information about lateral and vertical disturbances by the rails. The use

164

5.2 Larger Case-Study:
The RailCab Spring and Tilt Module

of an active suspension system in contrast to conventional dampers introduces further
complexity to a system’s behaviour. For this reason, the LARES language was chosen over
other low-level approaches in order to determine the system’s reliability by including the
active suspension.

ActiveSuspensionSystem_ActuatorGroupL_PositionSensor_Sensor ActiveSuspensionSystem_ActuatorGroupL_CylinderModule[1]_Loose ActiveSuspensionSystem_ActuatorGroupL_CylinderModule[1]_Stuck ActiveSuspensionSystem_ActuatorGroupL_CylinderModule[2]_Loose ActiveSuspensionSystem_ActuatorGroupL_CylinderModule[2]_Stuck ActiveSuspensionSystem_ActuatorGroupL_CylinderModule[3]_Loose ActiveSuspensionSystem_ActuatorGroupL_CylinderModule[3]_Stuck ActiveSuspensionSystem_ActuatorGroupR_PositionSensor_Sensor ActiveSuspensionSystem_ActuatorGroupR_CylinderModule[1]_Loose ActiveSuspensionSystem_ActuatorGroupR_CylinderModule[1]_Stuck ActiveSuspensionSystem_ActuatorGroupR_CylinderModule[2]_Loose ActiveSuspensionSystem_ActuatorGroupR_CylinderModule[2]_Stuck ActiveSuspensionSystem_ActuatorGroupR_CylinderModule[3]_Loose ActiveSuspensionSystem_ActuatorGroupR_CylinderModule[3]_Stuck

ActiveSuspensionSystem_AccelerationSensorGroup_States

ActiveSuspensionSystem_AccelerationSensorGroup_VerticalAccSensor[1]_Sensor ActiveSuspensionSystem_AccelerationSensorGroup_VerticalAccSensor[2]_Sensor ActiveSuspensionSystem_AccelerationSensorGroup_VerticalAccSensor[3]_Sensor ActiveSuspensionSystem_AccelerationSensorGroup_HorizontalAccSensor[1]_Sensor ActiveSuspensionSystem_AccelerationSensorGroup_HorizontalAccSensor[2]_Sensor

ActiveSuspensionSystem_OCM_MLDC

ActiveSuspensionSystem_OCM_Environment

ActiveSuspensionSystem_OCM_Requirements

ActiveSuspensionSystem_OCM_ConfigurationControl_Configuration_Control

ActiveSuspensionSystem

gen

react

ActiveSuspensionSystem_ActuatorGroupL

gen

react ToUsageLevel1,ToUsageLevel2,ToUsageLevel3

is child of

ActiveSuspensionSystem_ActuatorGroupR

gen

react ToUsageLevel1,ToUsageLevel2,ToUsageLevel3

is child of

ActiveSuspensionSystem_AccelerationSensorGroup

gen

react

is child of

ActiveSuspensionSystem_OCM

gen

react MLDCToReconfigurable,MLDCToStabilizable,MLDCToFailed

is child of

ActiveSuspensionSystem_ActuatorGroupL_PositionSensor

gen

react

is child of

ActiveSuspensionSystem_ActuatorGroupL_CylinderModule[1]

gen

react FailureRateS1,FailureRateS2,FailureRateS3

is child of

ActiveSuspensionSystem_ActuatorGroupL_CylinderModule[2]

gen

react FailureRateS1,FailureRateS2,FailureRateS3

is child of

ActiveSuspensionSystem_ActuatorGroupL_CylinderModule[3]

gen

react FailureRateS1,FailureRateS2,FailureRateS3

is child of

functional

failed

(r:0.00003)

ActiveSuspensionSystem_ActuatorGroupL_PositionSensor_Sensor

gen functional,failed

react

inherits behavior instance

functional

failed

(r:0.00002)

ActiveSuspensionSystem_ActuatorGroupL_CylinderModule[1]_Loose

gen functional,failed

react

inherits behavior instance

stuck

ActiveSuspensionSystem_ActuatorGroupL_CylinderModule[1]_Stuck

gen functional,stuck

react FailureRateS1,FailureRateS2,FailureRateS3

functional

(FailureRateS1,r:0.00005) (FailureRateS2,r:0.000075) (FailureRateS3,r:0.0001)

inherits behavior instance

functional

failed

(r:0.00002)

ActiveSuspensionSystem_ActuatorGroupL_CylinderModule[2]_Loose

gen functional,failed

react

inherits behavior instance

functional

stuck

(FailureRateS3,r:0.0001) (FailureRateS1,r:0.00005) (FailureRateS2,r:0.000075)

ActiveSuspensionSystem_ActuatorGroupL_CylinderModule[2]_Stuck

gen functional,stuck

react FailureRateS1,FailureRateS2,FailureRateS3

inherits behavior instance

functional

failed

(r:0.00002)

ActiveSuspensionSystem_ActuatorGroupL_CylinderModule[3]_Loose

gen functional,failed

react

inherits behavior instance

functional

stuck

(FailureRateS1,r:0.00005) (FailureRateS2,r:0.000075) (FailureRateS3,r:0.0001)

ActiveSuspensionSystem_ActuatorGroupL_CylinderModule[3]_Stuck

gen functional,stuck

react FailureRateS1,FailureRateS2,FailureRateS3

inherits behavior instance

ActiveSuspensionSystem_ActuatorGroupR_PositionSensor

gen

react

is child of

ActiveSuspensionSystem_ActuatorGroupR_CylinderModule[1]

gen

react FailureRateS1,FailureRateS2,FailureRateS3

is child of

ActiveSuspensionSystem_ActuatorGroupR_CylinderModule[2]

gen

react FailureRateS1,FailureRateS2,FailureRateS3

is child of

ActiveSuspensionSystem_ActuatorGroupR_CylinderModule[3]

gen

react FailureRateS1,FailureRateS2,FailureRateS3

is child of

functional

failed

(r:0.00003)

ActiveSuspensionSystem_ActuatorGroupR_PositionSensor_Sensor

gen functional,failed

react

inherits behavior instance

functional

failed

(r:0.00002)

ActiveSuspensionSystem_ActuatorGroupR_CylinderModule[1]_Loose

gen functional,failed

react

inherits behavior instance

functional

stuck

(FailureRateS3,r:0.0001) (FailureRateS2,r:0.000075) (FailureRateS1,r:0.00005)

ActiveSuspensionSystem_ActuatorGroupR_CylinderModule[1]_Stuck

gen functional,stuck

react FailureRateS1,FailureRateS2,FailureRateS3

inherits behavior instance

functional

failed

(r:0.00002)

ActiveSuspensionSystem_ActuatorGroupR_CylinderModule[2]_Loose

gen functional,failed

react

inherits behavior instance

functional

stuck

(FailureRateS1,r:0.00005) (FailureRateS3,r:0.0001) (FailureRateS2,r:0.000075)

ActiveSuspensionSystem_ActuatorGroupR_CylinderModule[2]_Stuck

gen functional,stuck

react FailureRateS1,FailureRateS2,FailureRateS3

inherits behavior instance

functional

failed

(r:0.00002)

ActiveSuspensionSystem_ActuatorGroupR_CylinderModule[3]_Loose

gen functional,failed

react

inherits behavior instance

functional

stuck

(FailureRateS3,r:0.0001) (FailureRateS1,r:0.00005) (FailureRateS2,r:0.000075)

ActiveSuspensionSystem_ActuatorGroupR_CylinderModule[3]_Stuck

gen functional,stuck

react FailureRateS1,FailureRateS2,FailureRateS3

inherits behavior instance

functional

failed

(ToFailed,impl)

ActiveSuspensionSystem_AccelerationSensorGroup_States

gen functional,failed

react ToFailed

inherits behavior instance

ActiveSuspensionSystem_AccelerationSensorGroup_VerticalAccSensor[1]

gen

react

is child of

ActiveSuspensionSystem_AccelerationSensorGroup_VerticalAccSensor[2]

gen

react

is child of

ActiveSuspensionSystem_AccelerationSensorGroup_VerticalAccSensor[3]

gen

react

is child of

ActiveSuspensionSystem_AccelerationSensorGroup_HorizontalAccSensor[1]

gen

react

is child of

ActiveSuspensionSystem_AccelerationSensorGroup_HorizontalAccSensor[2]

gen

react

is child of

functional

failed

(r:0.00001)

ActiveSuspensionSystem_AccelerationSensorGroup_VerticalAccSensor[1]_Sensor

gen functional,failed

react

inherits behavior instance

functional

failed

(r:0.00001)

ActiveSuspensionSystem_AccelerationSensorGroup_VerticalAccSensor[2]_Sensor

gen functional,failed

react

inherits behavior instance

functional

failed

(r:0.00001)

ActiveSuspensionSystem_AccelerationSensorGroup_VerticalAccSensor[3]_Sensor

gen functional,failed

react

inherits behavior instance

functional

failed

(r:0.00001)

ActiveSuspensionSystem_AccelerationSensorGroup_HorizontalAccSensor[1]_Sensor

gen functional,failed

react

inherits behavior instance

functional

failed

(r:0.00001)

ActiveSuspensionSystem_AccelerationSensorGroup_HorizontalAccSensor[2]_Sensor

gen functional,failed

react

inherits behavior instance

functional

failed

(ToFailed,impl)

reconfigurable

(ToReconfigurable,impl)

stabilizable

(ToStabilizable,impl)

ActiveSuspensionSystem_OCM_MLDC

gen functional,reconfigurable,stabilizable,failed

react ToReconfigurable,ToStabilizable,ToFailed,ToStabilizable,ToFailed,ToFailed

(ToFailed,impl)

(ToStabilizable,impl)

(ToFailed,impl)

inherits behavior instance

Rough_Track

Smooth_Track

(r:0.007) (r:0.003)

ActiveSuspensionSystem_OCM_Environment

gen Rough_Track,Smooth_Track

react

inherits behavior instance

comfort

energy

(r:0.005)

balanced

(r:0.005)

(r:0.003)

(r:0.003)

(r:0.002)

(r:0.002)

ActiveSuspensionSystem_OCM_Requirements

gen comfort,energy,balanced

react

inherits behavior instance

ActiveSuspensionSystem_OCM_ConfigurationControl

gen

react Todlow,Todhigh,deactivate,Todmed,UseCtrlRec

is child of

nominal_dlow

Inactive

(deactivate,impl)

nominal_dhigh

(Todhigh,impl)

CtrlRec_dlow

(UseCtrlRec,impl)

nominal_dmed

(Todmed,impl)

ActiveSuspensionSystem_OCM_ConfigurationControl_Configuration_Control

gen Inactive,CtrlRec_dhigh,CtrlRec_dlow,nominal_dhigh,nominal_dmed,CtrlRec_dmed,nominal_dlow

react UseCtrlRec,Todmed,Todlow,deactivate,UseCtrlRec,Todhigh,Todlow,deactivate,UseCtrlRec,Todhigh,Todmed,deactivate,Todmed,Todlow,deactivate,Todhigh,Todlow,deactivate,Todhigh,Todmed,deactivate

CtrlRec_dmed

(deactivate,impl)

CtrlRec_dhigh

(Todhigh,impl)

(Todlow,impl)

(deactivate,impl)

(Todmed,impl)

(Todlow,impl)

(Todlow,impl)

(deactivate,impl)

(UseCtrlRec,impl)

(Todmed,impl)

(deactivate,impl)

(Todmed,impl)

(Todhigh,impl)

(Todlow,impl)

(deactivate,impl)

(UseCtrlRec,impl)

(Todhigh,impl)inherits behavior instance

Figure 5.6: Instance tree of the RailCab model (generated by the LARES toolset)

Besides, also the usability of LARES as a modelling language could be explored and
finally testified by the engineers who where responsible for developing the RailCab model
(without having any prior knowledge of LARES). For this purpose, a first version of the
LARES Editor was deployed. The modelling process has proven to benefit from the use of
the editor because it directly supports the modellers in the act of specifying correct syntax.
The requirements to the analysis workflow posed by the modellers had a big impact on the
development of the LARES View-Plugin: The need to compare different measures within
one 2D plot have been implemented and the parallel computation of transient analysis of a
set of time-points exploited the available multi-cores and improved the analysis duration.

The RailCab model is described as follows. Acceleration sensors are represented as
Boolean components, whereas the redundant cylinder modules [103] are non-Boolean:
These are specified via two Behaviors, one to describe the inability to build up pressure
in the cylinder and another one to describe an error in the control-loop which causes the
cylinder to get stuck (at a known position).

The results of the analysis as shown in Figure 5.7 add validity to the behaviour expected by
the modellers: After a few thousands of hours of operation the second level dominates, i.e.
that some components have failed, but can still be stabilised. Afterwards, the third level
becomes dominant, i.e. due to too many failures the system becomes unusable although it
is still stable. There might also be failures that lead to a state in which the system is neither
usable nor stabilisable and which will become increasingly dominant over time.

165

5 CASE STUDIES AND IMPLICATIONS ON SCALABILITY

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0%

20%

40%

60%

80%

100%

Time [h]

P
ro

b
a
b
ili

ty

Level 1: Nominal

Level 2: Reconfigured

Level 3: Stabilisable

Level 4: Defect

Reliability

Figure 5.7: Analysis results of the RailCab model (compiled from [104])

5.3 Parametrisable Recursively Layered
Queueing Network

As an incentive to be able to investigate the scalability of models, a layered queueing
network (LQN) has been modelled that has a recursive structure. The parameters are
evaluated while the model is instantiated. They determine its structure by decreasing
the depth of the subtrees. An abstract queue layer consists of two other queues which
might also be abstract layers depending on the recursion depth (see Figure 5.8(a)). The
instantiation recursion terminates in a subtree when the parameter becomes 0. The concrete
queue/processing unit is then instantiated as shown in Figure 5.8(b).

<enq>

<enq> <deq>

<enq> <deq>

<deq>

n-1 layer

n-1 layer

(a) n-level instance

<enq>

<enq> <deq>

<enq> <deq>

<deq>

(b) 0-level instance

Figure 5.8: Queue Layer Instances

166

5.3 Parametrisable Recursively Layered
Queueing Network

The behaviour of a queue with length max can simply be modelled by defining states for
the discrete fill level of the queue and their interrelating transitions, i.e. whenever a job is
enqueued, the next state with an increased index will be entered and vice versa.

Behavior Q(max=1) {
expand (l in {0 .. max}) { State s t a g e [l] }
expand (l in {0 .. max−1}) {

Transitions from s t a g e [l] i f 〈 enq 〉 → s t a g e [l +1]
Transitions from s t a g e [l +1] i f 〈 t a k e 〉 → s t a g e [l]

}
}

The processing behaviour consists of four states: idle means that a new job can be
processed, processing denotes that a job is currently processed, processed means that
the processing is finished, but the job has not yet been dequeued, and failed is a failure
state which may occur while processing. Whenever a job can be processed, the transition
into processing will be performed if <doProcess> is triggered. It may either take just
the time defined by an exponential distribution with rate p until the job is processed, or the
processing may fail following the Markovian rate f. A failure situation can be resolved
following the Markovian rate rep. Once a job is processed and the transition guarded by
deq is triggered, the behaviour enters the idle state again.

Behavior P (p =1 .0 , f =0 .1 , r e p = 0 . 5) {
State i d l e , p r o c e s s i n g , p r o c e s s e d , f a i l e d
Transitions from i d l e i f 〈 d o P r o c e s s 〉 → p r o c e s s i n g
Transitions from p r o c e s s i n g → p r o c e s s e d , de lay e x p o n e n t i a l p

→ f a i l e d , de lay e x p o n e n t i a l f
Transitions from p r o c e s s e d i f 〈 deq 〉 → i d l e
Transitions from f a i l e d → p r o c e s s i n g , de lay e x p o n e n t i a l r e p

}

A queueing unit comprises a queueing behaviour and a processing behaviour. Of course
the enq and deq can be triggered by the environment, they are internally forwarded to the
queue behaviour and the processing behaviour, respectively. The internal handover of a
job is specified by a guards statement which synchronises the behaviours for taking a job
from the queue and assigns the processing behaviour to do the processing.

Module U(qLength =1, pRate = 1 . 0) : Q(max= qLength) , P (p= pRate) {
forward 〈 enq 〉 to Q. 〈 enq 〉
forward 〈 deq 〉 to P . 〈 deq 〉
t r u e guards sync {Q. 〈 t a k e 〉 , P . 〈 d o P r o c e s s 〉 }

}

167

5 CASE STUDIES AND IMPLICATIONS ON SCALABILITY

An important part of the model (corresponding to Figure 5.8(a) and 5.8(b)) is the Module
definition of a queueing layer. There, a parameter denotes the layer number which is
internally used to decide whether to terminate the recursion by instantiating a concrete
queueing unit or to instantiate another layer. For this purpose, the expand statements
are used to mimic conditional control structures as known from programming languages.
When a Module definition UL is instantiated with parameter n = 0, the intersection of the
sets {n} ∗ ∗{0} evaluates to a set with a single element, whereas the second statements
{n} −−{0} determines the difference which in this case evaluates to the empty set. As
a result, only the statements inside the first expand statement become effective. If n > 0

the evaluation will result the complement such that the statements of the second expand
statements become effective. Internally queued jobs are probabilistically forwarded to the
u1 or the u2 queue, expressed by a choice between two reactive expressions for each of
the two cases.

Module UL(n) {
expand (i in ({ n} ∗∗ {0})) /∗ l e a f l a y e r ∗ / {

Instance u1 of U
Instance u2 of U

}

expand (i in ({ n} −− {0})) /∗ non− l e a f l a y e r ∗ / {
Instance u1 of UL(n=n−1)
Instance u2 of UL(n=n−1)

}

forward 〈 enq 〉 to { u1 . 〈 enq 〉 u2 . 〈 enq 〉 } /∗ c h o i c e ! ∗ /
forward 〈 deq 〉 to { u1 . 〈 deq 〉 u2 . 〈 deq 〉 } /∗ c h o i c e ! ∗ /

}

A simple worker behaviour is defined to be used for arbitrary delayed events following
the Markovian parameter rate. The worker has two states, i.e. either being busy with a
sojourn time given by the exponential distribution with the parameter rate or waiting as
long as the next job arises.

Behavior Worker (r a t e) {
Transitions from busy → w a i t i n g , de lay e x p o n e n t i a l r a t e
Transitions from w a i t i n g i f 〈 j o b 〉 → busy

}

The Worker is used for both the production and the consumption of jobs. The System
definition is specified such that it inherits these behaviours to produce the jobs to be
enqueued in the layered queueing networks and to consume these jobs when they will
be processed and hence dequeued. The interaction among the producer or the consumer

168

5.3 Parametrisable Recursively Layered
Queueing Network

LQN_Producer LQN_Consumer

LQN_qn_u1_Q

LQN_qn_u1_P

LQN_qn_u2_Q LQN_qn_u2_P

busy

waiting

(r:2.00) (job,impl)

LQN_Producer

gen busy,waiting

react job

LQN

gen

react

inherits behavior instance

busy

waiting

(r:2.00) (job,impl)

LQN_Consumer

gen busy,waiting

react job

inherits behavior instance

LQN_qn

gen

react enq,deq

is child of

LQN_qn_u1

gen

react enq,deq

is child of

LQN_qn_u2

gen

react enq,deq

is child of

stage[0]

stage[1]

(enq,impl) (take,impl)

LQN_qn_u1_Q

gen stage[0],stage[1]

react enq,take

inherits behavior instance

failed

processing

(r:0.50)

LQN_qn_u1_P

gen idle,processing,processed,failed

react doProcess,deq

(r:0.10)

processed

(r:1.00)

idle

(deq,impl)

(doProcess,impl)

inherits behavior instance

stage[0]

stage[1]

(enq,impl) (take,impl)

LQN_qn_u2_Q

gen stage[0],stage[1]

react enq,take

inherits behavior instance

processing

failed

(r:0.10)

processed

(r:1.00)(r:0.50)

LQN_qn_u2_P

gen idle,processing,processed,failed

react doProcess,deq

idle

(deq,impl)

(doProcess,impl)

inherits behavior instance

(a) LQN(0)

LQN_Producer LQN_Consumer

LQN_qn_u1_u1_Q LQN_qn_u1_u1_P LQN_qn_u1_u2_Q LQN_qn_u1_u2_P LQN_qn_u2_u1_Q LQN_qn_u2_u1_P LQN_qn_u2_u2_Q

LQN_qn_u2_u2_P

busy

waiting

(r:2.00) (job,impl)

LQN_Producer

gen busy,waiting

react job

LQN

gen

react

inherits behavior instance

busy

waiting

(r:2.00) (job,impl)

LQN_Consumer

gen busy,waiting

react job

inherits behavior instance

LQN_qn

gen

react enq,deq

is child of

LQN_qn_u1

gen

react enq,deq

is child of

LQN_qn_u2

gen

react enq,deq

is child of

LQN_qn_u1_u1

gen

react enq,deq

is child of

LQN_qn_u1_u2

gen

react enq,deq

is child of

stage[0]

stage[1]

(enq,impl) (take,impl)

LQN_qn_u1_u1_Q

gen stage[0],stage[1]

react enq,take

inherits behavior instance

processing

processed

(r:1.00)

failed

(r:0.10)

idle

(deq,impl)

(r:0.50)

LQN_qn_u1_u1_P

gen idle,processing,processed,failed

react doProcess,deq

(doProcess,impl)

inherits behavior instance

stage[0]

stage[1]

(enq,impl) (take,impl)

LQN_qn_u1_u2_Q

gen stage[0],stage[1]

react enq,take

inherits behavior instance

processing

processed

(r:1.00)

failed

(r:0.10)

idle

(deq,impl)

(doProcess,impl)

(r:0.50)

LQN_qn_u1_u2_P

gen idle,processing,processed,failed

react doProcess,deq

inherits behavior instance

LQN_qn_u2_u1

gen

react enq,deq

is child of

LQN_qn_u2_u2

gen

react enq,deq

is child of

stage[0]

stage[1]

(enq,impl) (take,impl)

LQN_qn_u2_u1_Q

gen stage[0],stage[1]

react enq,take

inherits behavior instance

processing

failed

(r:0.10)

processed

(r:1.00)(r:0.50)

LQN_qn_u2_u1_P

gen idle,processing,processed,failed

react doProcess,deq

idle

(deq,impl)

(doProcess,impl)

inherits behavior instance

stage[0]

stage[1]

(enq,impl) (take,impl)

LQN_qn_u2_u2_Q

gen stage[0],stage[1]

react enq,take

inherits behavior instance

failed

processing

(r:0.50)

LQN_qn_u2_u2_P

gen idle,processing,processed,failed

react doProcess,deq

(r:0.10)

processed

(r:1.00)

idle

(doProcess,impl)

(deq,impl)

inherits behavior instance

(b) LQN(1)

Figure 5.9: Parameter dependent instance trees (generated by the LARES toolset)

with the queueing system is specified by the two guards statements, as listed subsequently.
Measures of interest are defined for this system by the Probability statements which
consider the waiting time of both the consumer and the producer.

System LQN : P r o d u c e r ←Worker (r a t e = 2 . 0) , Consumer ←Worker (r a t e
= 2 . 0) {

Instance qn of UL(n =2)
t r u e guards sync { P r o d u c e r . 〈 j o b 〉 , qn . 〈 enq 〉 }
t r u e guards sync {Consumer . 〈 j o b 〉 , qn . 〈 deq 〉 }
Probability ConsumerWait ing = T r a n s i e n t (Consumer . w a i t i n g , 10)
Probability P r o d u c e r W a i t i n g = T r a n s i e n t (P r o d u c e r . w a i t i n g , 10)

}

Figure 5.9(a) shows the instance tree of the system with depth 0 whereas Figure 5.9(b)
depicts the case that the depth is set to 1. The measures of interest for this model are the
probabilities of the producer to wait for the queue to enqueue a job, and the probability
of the consumer to wait for a job from the queue. As shown in Figures 5.10(a),5.10(b)
and 5.10(c), the recursion depth has an impact on the equilibrium. Due to the increased

169

5 CASE STUDIES AND IMPLICATIONS ON SCALABILITY

redundancy of inner-queues and processing units, the overall performance increases,
leading to a lower probability in the long run for the consumer to wait for a job.

(a) LQN(0): PConsumerWaiting(t =∞) = PProducerWaiting(t =∞) = 0,390170

(b) LQN(1): PConsumerWaiting(t =∞) = PProducerWaiting(t =∞) ≈ 0,15848

(c) LQN(2): PConsumerWaiting(t =∞) = PProducerWaiting(t =∞) ≈ 0,0648

Figure 5.10: Analysis results of the LQN models (generated by the LARES toolset)

170

5.4 Case Studies as Benchmarks to Testify the Scalability

5.4 Case Studies as Benchmarks to Testify the Scalability

The provided case-studies are used to determine how the LARES transformation scales
taking different input models into account. Important measures to be taken relate to aspects
of the source model, the representation of the target model and the constructed MTBDD.
These metrics will give a better understanding of how model alteration may impact the
generation process, the target model and the analysis of a model in order to gain insight
into how the applicability of an analysis is influenced. The raised metrics can be used
to assess the transformation and by doing so to determine bottlenecks in order to make
improvements regarding state space or transition encodings.

Beside the transformation’s efficiency, the effectiveness of a model to provide the level
of abstraction in order to facilitate the analysis of the transformed model can be testified.
Apart from the state space explosion problem, the increasing number of encoded transitions,
in particular as a result of additional complexity due to generative/reactive expressions
along the hierarchy, are considered. To give an example of model alteration, a slight change
described in Section 5.3 is applied to the LQN model by substituting the <deq> forward
statement in the body of the UL Module definition with

forward 〈 deq 〉 to maxsync{u1 . 〈 deq 〉 , u2 . 〈 deq 〉 }

This leads to a less good-natured model regarding the number of action encodings arising
from the maxsync operator combined with the successive multiplication corresponding to
the depth of recursion.

Table 5.1 shows the kinds of metrics that have been determined during the analysis process.
The subsequent explanation is also applicable to the other tables provided in this section.

• The first part shows the metrics related to the LARES model description, comprising
the lines-of-code (loc), the number of guards statements (guards), the number of
Condition statements (Conditions) and the number of forward statements (forwards).

• The second part extracts the number of instantiated sequential processes, the lines-
of-code of the generated SPA model and the number of action-prefixes constructed.

• The third part is related to the symbolic MTBDD encoding of the state space of the
process algebra tool CASPA:

- The number of individual action encodings are listed.

- In order to obtain a fully interleaved model specification, all synchronisation
sets of the generated SPA model are emptied. This allows determining the
encoded (potential) state space from the resulting MTBDD and, by performing
reachability analysis thereon, the (reachable) product space (such that the poten-
tial state space arising from the product of all states of instantiated behaviours

171

5 CASE STUDIES AND IMPLICATIONS ON SCALABILITY

is restricted to the states reachability from the initial states of each sequential
process instance).

- The generated SPA model is then used to construct the non-eliminated MTBDD
on the basis of which the reachability analysis was performed to obtain the
number of reachable states, the number of MTBDD nodes, leaves (each repre-
senting a weight or rate value) and minterms (encoding the Markovian and
immediate transitions).

- Subsequently, the eliminated MTBDD is constructed and reachability analysis
performed upon to obtain the labelled Markovian transition system. Thereof,
the number of reachable tangible states, the number of MTBDD nodes, leaves
and minterms will be reported.

The metrics table does not include transformation duration times of the models since the
analysis process always proves to be the bottleneck. It also does not state anything about
the analysis durations, as this is a topic that is related to the CASPA tool and is thus not in
the focus of interest. However, except for the RailCab model and the LQN model (with
a recursive depth larger than two), all of these models could be analysed within seconds.
As expected, the metrics of the assumed ”not that good-natured” modified models exhibit
an increased number of action label encodings within the MTBDD in comparison to the
original models. The higher the recursion depth, the higher is the multiplicative effect of
the recursion and the arising combinatorics from the maxsync operator of the modified
LQN versions (mLQN(n)). The high number of action prefixes is, apart from the large
number of action labels, owed to the many process instances involved in an interaction.

The reason for the equality of the size of the encoded space, the product space and the
reachable states before elimination is, in contrast to the examples later dealt with, given by
the fact that the queue behaviour has 2 states, the processing behaviour has 4 states and the
worker behaviour has 2 states. All of them follow the n’th power of two and can thus be
encoded by a minimal number of Boolean variables. Furthermore, each state of a process
instance is reachable from the provided initial state. To give an example, the size of the
binary encoded space for LQN(0) can be calculated by

Producer and Consumer instances︷ ︸︸ ︷
(21︸︷︷︸

worker encoding

)2 ∗
two unit instances u1, u2︷ ︸︸ ︷

(21︸︷︷︸
queue encoding

∗ 22︸︷︷︸
processor encoding

)2 = 256

and corresponds (due to the previously given reasons for the LQN model type) to the
formula to calculate the size of the product space, e.g. 22 · (2 · 4)2 = 256. Due to its
recursive nature the number of process instances in the model grows exponentially. A
linear growth of process instances would already lead to an exponential blow-up in the

172

5.4 Case Studies as Benchmarks to Testify the Scalability

(a) mLQN(0): PConsumerWaiting(t =∞) = 0,433453 PProducerWaiting(t =∞) = 0,364507

(b) mLQN(1): PConsumerWaiting(t =∞) = 0,310807 PProducerWaiting(t =∞) = 0,063231

(c) mLQN(2): PConsumerWaiting(t =∞) = 0,313650 PProducerWaiting(t =∞) = 0,000229

Figure 5.11: Analysis results of the modified LQN models (generated by the LARES toolset)

173

5 CASE STUDIES AND IMPLICATIONS ON SCALABILITY

L
Q

N
(0

)

m
L

Q
N

(0
)

L
Q

N
(1

)

m
L

Q
N

(1
)

L
Q

N
(2

)

m
L

Q
N

(2
)

L
A

R
E

S
m

od
el

loc 59 59 59 59 59 59
guards 3 3 3 3 3 3
Conditions 0 0 0 0 0 0
forwards 4 4 4 4 4 4

SP
A

m
od

el seq. processes 2 + 4 2 + 4 2 + 8 2 + 8 2 + 16 2 + 16
loc of spa 85 94 155 278 295 4606
action prefixes 12 21 24 147 48 4359

M
T

B
D

D

enc. actions 11 12 17 28 29 276

in
te

rl
. encoded space 256 256 16384 16384 67108864 67108864

product space 256 256 16384 16384 67108864 67108864

be
f.

el
im

. reach. states 256 256 16384 16384 67108864 67108864
nodes 227 246 558 770 1538 6790
leaves 5 5 5 5 5 5
minterms 896 888 98304 95712 ≈7.38·108 ≈7.01·108

af
t.

el
im

. reach. states 87 87 3123 3123 6162243 6162243
nodes 445 444 1699 1583 6836 5072
leaves 5 5 8 8 16 16
minterms 335 331 22213 21245 ≈8.52·107 ≈7.74·107

Table 5.1: Scalability metrics for the LQN model and its modified variant

size of the state space and thus explains why the number of states will increase by orders
of magnitudes when increasing the recursion depth. As a consequence, only LQN models
up to a recursion depth of 2 can be analysed. For the sake of completeness the analysis for
the modified LQN models is provided in Figure 5.11. The system can be regarded as a
construction process due to the applied modification: Whether a job can be dequeued from
a unit layer depends on the availability of a job from the inner units (i.e. if there are two
jobs dequeueable from the inner units, they will be combined. If there is only one single
job available, it will be forwarded without being combined with another one instead). The
results of the measures of interest lead to probabilities which, over time, completely differ
from those of the original model as they do not converge to the same value. Its explanation
can be found in the fact that, depending on the recursion depth, larger combinations of jobs
may be built. For the mLQN(0) model no more than binary combinations can be build.
The average waiting time for the consumer increases only slightly compared to producer’s
waiting time as depicted in Figure 5.11(a). For recursion depth of 1 or 2 a fourfold or even
an eightfold combination may be built respectively. Thus, the gap between the curves
representing the waiting probability further increases to the disadvantage of the consumer
(cf. Figure 5.11(b) and 5.11(c)).

174

5.4 Case Studies as Benchmarks to Testify the Scalability

Now, the analysis of the FTN example as introduced in Chapter 1 is performed. The
number of links was varied from 3 to 6 to show the combinatorics induced by guards
statements and their effect on the MTBDD encoding. The increase of the number of action
encodings for larger number of links (cf. Table 5.2) is less than what could be observed for
the LQN model with increasing recursion depth. The reason is that in the FTN model there
is no extra contribution due to the multiplicative effect of the recursion depth. Instead, the
additional complexity of generative/reactive expressions leads to an increase, just not in the
same order of magnitude as in the LQN setting. As implicated by the previously presented
results, modellers can commonly be recommended to prevent unnecessary combinatorics
as arising from the statement X.x&Y.y guards maxsync{X.〈m〉,Y.〈n〉} within which X

has a state x as well as a guarded transition 〈m〉 and Y has a state y as well as a guarded
transition 〈n〉. The maxsync operator leads to three cases (combined with the fact that
both states x and y have to be current states). Two of the cases, i.e. X.〈m〉∧!Y.〈n〉 and
!X.〈m〉 ∧ Y.〈n〉 will never be performed. In a recursive setting this might even become
worse. To prevent this effect, the maxsync can safely be substituted by a sync without
changing the semantics of the model, since x and y are the only states where 〈m〉 or 〈n〉
are possible, respectively. Another aspect which can be observed in Table 5.2 is that the
encoded space, the product space and the reachable states are not equal. The reason is that
the number of states s, which does not correspond to the power of two, leads to a binary
encoding given by dlog2(s)e digits by which the encodable space is not fully exhausted
(i.e. 2dlog2(s)e − s). Moreover, the distinction of the primary link and the redundant links is
realised by different initialisations of the process instances. As a result, the primary link
has a reachable set of 2 states, while a redundant link has 3 reachable states. The number
of states defined for the other processes (2 states for the processor behaviour, 3 states for
the link repair process and 3 states for the system behaviour) are all reachable from their
initial states. As a consequence, the encoded space for the FTN(3) model is calculated by

network with 3 links︷ ︸︸ ︷
(21)1︸︷︷︸

primary link

· (22)2︸︷︷︸
redundant links

· (22)1︸︷︷︸
repair man

·

two processors︷︸︸︷
(21)2 ·

system behaviour︷︸︸︷
(22)1 = 2048

The product space is a subset of the encoded space. Its size is calculated by the formula
21 · 32 · 31 · 22 · 31 = 648. It is interesting to note that in contrast to the size of the encoded
space, which increases fourfold by each additional link, the set of reachable states only
approximately doubles at each step leading to a moderate growth regarding the MTBDD
metrics.

For the sake of completeness, the metrics of the remaining models are shown in Table 5.3.
This includes the larger case study project RailCab (cf. Section 5.2) as well as the PMS
model (revisited, improved and analysed within Section 5.1), and finally, the component

175

5 CASE STUDIES AND IMPLICATIONS ON SCALABILITY

FT
N

(n
=2

)

FT
N

(n
=3

)

FT
N

(n
=4

)

FT
N

(n
=5

)

FT
N

(n
=6

)

L
A

R
E

S
m

od
el

loc 83 83 83 83 83
guards 5 5 5 5 5
Conditions 5 5 5 5 5
forwards 2 2 2 2 2

SP
A

m
od

el seq. processes 4 + 2 4 + 3 4 + 4 4 + 5 4 + 6
loc of spa 118 164 234 355 587
action prefixes 41 73 129 236 454

M
T

B
D

D

enc. actions 16 21 28 39 58

in
te

rl
. encoded space 512 2048 8192 32768 131072

product space 216 648 1944 5832 17496

be
f.

el
im

. reach. states 132 300 636 1308 2652
nodes 362 576 852 1336 2051
leaves 7 7 7 7 7
minterms 460 1232 2944 6704 14896

af
t.

el
im

. reach. states 32 64 128 256 512
nodes 326 511 707 909 1360
leaves 6 6 6 6 6
minterms 87 203 467 1059 2371

Table 5.2: Metrics for the FTN models with increasing number of Networks n

monitoring system model from Section 1.3. To complete interpreting the analysis results
obtained for the PMS model, the size of the encoded space can be validated by a formula,
where again, the odd number of reachable states for the system behaviour and for switch
s[5] (which has 3 potentially reachable states due to its initial setting, instead of the 4 states
of the other switches) lead to an encoded space of size

system behaviour︷︸︸︷
(23)1 ·

switches 1-4︷︸︸︷
(22)4 ·

switch 5︷︸︸︷
(22)1 ·

components︷︸︸︷
(21)2 = 32768

which is a superset of the product space calculated by

system behaviour︷︸︸︷
(5)1 ·

switches 1-4︷︸︸︷
(4)4 ·

switch 5︷︸︸︷
(3)1 ·

components︷︸︸︷
(2)2 = 15360

Due to the high dependency in the PMS model, a heavy reduction in the size of the
reachable state space can be observed in contrast to the fully interleaved model.

To subsume, considering the formulas and the intuition generated by a number of examples,
modellers should be able to give an estimate how large a model might be, and whether

176

5.4 Case Studies as Benchmarks to Testify the Scalability

R
ai

lC
ab

PM
S

C
M

S

L
A

R
E

S
m

od
el

loc 330 82 101
guards 12 5 5
Conditions 23 4 3
forwards 14 2 5

SP
A

m
od

el seq. processes 23 8 6
loc of spa 46796 283 506
action prefixes 46365 176 417

M
T

B
D

D

enc. actions 3233 31 73

in
te

rl
. encoded space 134217728 32768 2048

product space 100663296 15360 1152

be
f.

el
im

. reach. states 70219776 2511 88
nodes 36196 2047 672
leaves 10 14 6
minterms ≈1.01926·109 9035 303

af
t.

el
im

. reach. states 3188736 915 31
nodes 6539 1499 531
leaves 9 14 8
minterms ≈3.98715·107 2131 95

Table 5.3: Metrics for the RailCab, the Phased Mission System and the Component Monitoring
System models

the analysis will be possible using e.g. the CASPA tool. The state space can be over-
approximated as shown for the encoded space or even further narrowed by the product
space. The number of reachable states may be estimated by the order of magnitude of
inter-dependability, expressed in terms of synchronisation. Furthermore, the number of
transition encodings can be calculated with regard to the complexity of generative/reactive
expressions and the combinatorics arising from the hierarchy. Nevertheless, the intrinsic
complexity of a system can only be reduced by abstraction. It is left to a modeller, which
level of abstraction to choose. Still, knowledge about the transformation process might
help modellers to prevent specifying non-intrinsic and thus unnecessary state and transition
combinatorics.

177

5 CASE STUDIES AND IMPLICATIONS ON SCALABILITY

178

Chapter 6

Approaches Related to LARES

A lot of approaches can be enumerated that devote themselves to dependability analysis.
An almost exhaustive overview is given in [99]. Many of them may be considered as
higher-level dependability languages which build on top of other formal languages such as
Markov chains. For the purpose of generating a model in the target notation and to make
use of the specifically developed tools, numerous mappings have been defined in terms of
transformation rules.

In order to distinguish these higher-level approaches, three categories will be introduced,
each consisting of several criteria for comparison and classification of the considered
approaches:

1. Language Aspects

(a) Expressiveness: Is the language of general purpose or does it only provide
specific constructs to model some restricted aspects of a domain?

(b) Area of deployment: Is the language suited as a stand-alone modelling language
or may it only serve as an intermediate formalism?

(c) Structuredness/Modularity: Does the language provide constructs to reflect
a system’s structure (flat/planar vs. hierarchical/structured) and the ability to
substitute parts of a system easily (monolithic vs. modular)? How are the
component entities composed and how do they interact?

(d) Level of abstraction: Does the language provide high-level language con-
structs?

(e) Separation of concerns: Does the formalism support distinguishing between
structural description, sequential behaviour (nominal, faulty) and interaction
behaviour?

179

6 APPROACHES RELATED TO LARES

2. Transformation Aspects

(a) Target Formalisms: Which types of target formalisms are addressed as semantic
domains and do they capture the whole expressiveness of the source language?

(b) Formality: How are the implemented transformations described (formally, by
example or by code)?

(c) Automation: Is the analysis fully automated or is manual intervention required?

3. Analysis Aspects

(a) Type of analysis: Analytic vs. statistical (e.g. simulation) approaches to
obtain dependability / performability measures, model checking of temporal
properties, optimisation approaches, ... ?

(b) Integration: Is the solver integrated such that users are spared from dealing
with external tools?

Some previously enumerated criteria are ingredients of the concept of an architecture
description as defined in the ISO/IEC/IEEE 42010 standard [88]. An architecture is
required to capture the “aspects considered fundamental about that system in the context of
its environment”. Commonly, an architecture encompasses the system properties embodied
in its elements, is able to represent the system’s structure, consisting of instantiated
substructures, their relationships and evolution over time. An architecture description
language should provide the ability to create, refine, validate and analyse the architecture,
so that the “[...] concerns of the diverse stakeholders can be addressed [...]”.

The authors of [98] concluded that “[...] 1) while practitioners are usually satisfied with
the design capabilities provided by the languages they use, they are dissatisfied with
the architectural language analysis features and their abilities to define extra-functional
properties; 2) architectural languages used in practice mostly originate from industrial
development instead of from academic research; 3) more formality and better usability
are required of an architectural language”, which encourages providing “extra-functional
properties”, sound semantics and better facilities to describe and analyse the systems of
interest.

Beyond “extra-functional properties” such as pure dependability aspects, a language for
dependability analysis is required to capture also dynamic reconfiguration. Following [86],
reconfigurations can be classified into the aspects implementation (i.e. when modules are
replaced by others, maybe due to providing a more efficient implementation), structural
(i.e. when the logical structure and interconnection of modules change) and geometric (i.e.
mapping of the logical structure to the underlying platform, for example a distributed archi-
tecture). Furthermore, events that cause a reconfiguration are distinguished by the author

180

as being synchronous (corresponding to the current process state/step) or asynchronous
(independent of the current process state/step), both in general entailing non-negligible
costs.

This chapter focuses on a set of selected approaches that fall into the category of higher-
level languages which are based on other low-level formalisms. Some of them are already
surveyed in [99] next to numerous low-level formalisms, while others appeared later or
haven’t been considered there. The chosen approaches are examined following the criteria
for the different categories, and how well they perform when it comes to capture the
dynamics of reconfiguration. The comparison shown here does by no means claim to be
complete in the sense that there probably exist further formalisms in this particular domain.

Indeed, many formalisms are used for dependability modelling that are considered too
low-level or weak with respect to the power of the language. Thus, Petri net (PN) or
Markov chain (MC) approaches are skipped, as well as standard Reliability Block Diagram
(RBD) or Fault-Tree (FT) approaches. Nevertheless, the following listing will serve as
an overview of more sophisticated languages, it will give a clue of the characteristics of
these approaches and it will help emphasise the requirements and the resulting incentive to
develop LARES:

• Arcade is a language for modelling and evaluation of dependable systems [22].
It provides language means corresponding to templates representing the building
blocks of a system.

• OpenSesame (Simple but Extensive Structured Availability Modeling Environment)
has increased modelling power with respect to FT or RBD [139] by offering specific
diagrams and constructs (e.g. in order to model common cause failures, failure
propagation and non-perfect failure detection). The specifications are translated to
stochastic PNs and solved by the tool DSPNexpress.

• In [26], a modelling language based on dynamic fault tree (DFT), as an extension to
fault trees, is presented formally by means of I/O-IMCs in order to resolve limitations
in modular analysis and model building. A similar approach has been introduced in
[91], where the formal semantics of a DFT has instead been defined by means of the
process algebra PEPA.

• The Failure Automaton (FA) as given by [111] serves as a simple intermediate
language which is specified using the Z language in order to provide a well-defined
semantics (based on predicate logic and set theory). On top of the FA a number of
high-level reliability formalisms have been defined to emphasise the benefit of this
methodology.

181

6 APPROACHES RELATED TO LARES

• KLAPER (Kernel LAnguage for PErformance and Reliability analysis) has been
presented in [74, 76]. There, a model-driven approach is proposed that defines an
intermediate language that, dependent on a parametric transformation specification,
transforms into a refined model which afterwards may be converted to a specific
solver input model.

• MoDeST (Modeling and Description Language for Stochastic Timed systems) [54]
is a process-oriented language for the analysis of dependable systems and resembles
structural programming languages at the level of sequential behaviour definitions.

• SLIM (System-Level Integrated Modeling) [35] is a model-based hierarchical lan-
guage which was developed within the COMPASS project. It is aimed at detecting
flaws in early design-stages of hardware/software systems in an automated manner.

• AltaRica [114, 115] is aimed at modelling discrete systems and provides means to
reflect a hierarchical system structure. It is mainly used for functional verification.

The approaches from [26] and [91] are excluded as DFTs are known to be too restrictive.
As specific dependability constructs lead to restricted expressiveness, OpenSesame [139] is
omitted too. The remaining approaches are detailed in the following sections and examined
by the criteria posed before. Firstly, ARCADE as a representative of a user-friendly
template language is detailed in Section 6.1. Secondly, FAs are dealt with in Section 6.2,
since the formalisation of the language syntax and semantics using the Z language is very
interesting. In Section 6.3 KLAPER as a model-driven approach is discussed, followed
by Section 6.4 presenting MoDeST which resembles imperative structured programming.
Section 6.5 considers SLIM which seems to be the approach related most closely to LARES
and finally, Section 6.6 details the relation to the wide-spread and well-known formalism
AltaRica. The chapter is concluded with Section 6.7 by exposing all approaches to the
criteria and emphasising their advantages and deficiencies, which helped to elaborate the
desired characteristics and the incentive of developing LARES.

6.1 Arcade: Architectural Dependability Evaluation

The Arcade toolchain is used for dependability evaluation (see [22, 23, 24]) and offers
different input languages such as the specific Arcade formats. As a final goal, UML
[108] and AADL [59] should be addressed as potential input formalisms. The underlying
semantics is given in terms of Input/Output-Interactive Markov Chains (I/O-IMC) as
defined in [25], i.e. an automaton composed of states and discrete (input, output and
internal) actions used to define interactive transitions among the states.

182

6.2 FA: Failure Automaton

Three main building blocks which interact via input/output actions are defined for Arcade:
A basic component, a repair unit and a spare management unit.

Basic Component: The basic component is a building block which is used to specify
physical/logical system components. It comprises predefined operational modes
organised in groups (e.g. active/inactive, on/off) including the transitions between
them. The modes within a single group are mutually exclusive. Further, a failure
model can be attached to each operational group specifying which kind of failure
can occur. The operational modes and the failure model are then superimposed such
that an I/O-IMC can be derived.

Repair Unit: A repair unit may apply one of the predefined repair strategies,
i.e. dedicated repair and variants of first come first served, which may include
preemptive or non-preemtive priorities, defined in terms of I/O-IMCs comprising
failure signals as inputs and repair signals as outputs. The authors of [24] stated
that some repair strategies could lead to large state spaces depending on the number
of components. Unfortunately, it is not mentioned whether these strategies can be
generated automatically for an arbitrary number of components.

Spare Management Unit: Two configurations are predefined in terms of I/O-IMCs
for the spare management unit, i.e. one primary and one spare and one primary and
two or more spares.

The syntax of Arcade resembles different templates for each building block which is
to be completed by the required aspects a building block might capture. To give an
example: For the repair unit a name, the involved components, a predefined strategy and
depending on the chosen strategy a priority for each component have to be specified. The
language can be extended by additional constructs defined by means of an I/O-IMC and
the required syntactical elements. The authors admit in [24, Section 4] that the translation
process of the building blocks has not been automated yet. All resulting I/O-IMCs are
subsequently composed automatically, interleaved by aggregation steps (which implies
the order of composition to be predetermined by the users to avoid running into the state
space problem during composition). The final I/O-IMC is redirected to the CADP tool
[62] which transforms the I/O-IMC to a CTMC and performs the analysis (cf. Figure 6.1).

6.2 FA: Failure Automaton

Most approaches defining languages for reliability analysis have imprecise semantics:
They have a well-defined syntax but lack a complete semantic definition because their
semantics is often only sketched for a number of examples. As a consequence, the authors

183

6 APPROACHES RELATED TO LARES

Arcade
(XML)AADL +

Error Annex

I/O-IMC

applied
solver

solver
languages

high-level
language

CADP

UML

Arcade
(textual/

graphical)

Figure 6.1: Arcade: High-level language mappings (compiled from Figure 1 in [22])

of [111] claim that an intermediate language as a mathematical precise abstraction should
support higher-level languages. By providing a common formal semantic domain, higher-
level languages with precise meaning can be developed and implemented at reduced
cost. Their proposition thus is to use a formally defined intermediate reliability modelling
language instead of poorly understood modelling formalisms that may be semantically
ambiguous. They claim that an intermediate language may help reduce the design and
implementation cost due to the reduced distance between a high-level language (such as
RBD, DFT and Boolean logic Driven Markov Processes (BDMP) [29]) and the low-level
target formalism as illustrated by Figure 6.2. Furthermore, the general confidence in
consistency, in the meaning and the implementation is higher because of an existing well-
defined formal specification. Their intermediate language specification Failure Automaton
(FA) is denoted using the Z language [132]. A FA is a state-based language similar to
a Markov model. A state comprises the state of events (failure status or activity status),
a history (failure sequence to construct high-level features depending on the order of
events), spares in use (keep track of spare allocation) and system status (system failure and
failure coverage). It includes features such as repair on demand (ROD). Each transition is
labelled, representing a causal basic event. A transition either corresponds to a failure or a
repair. One distinguishes between basic events (occurring on their own) and derived events
(representing the interaction of events). While the derived event interaction is described by
the FA, the Basic Event Model describes the stochastic behaviour of a basic event which
is represented by four Markovian transitions (two of them represent a failure event and
the other two represent a repair event which may take place in both the active or the
inactive state). Further it includes a coverage model (probability of event occurrence
causing a complete system failure) and a transfer model (to provide a probability feature
such as ROD). The authors argue that their separation of concerns avoids having fixed rates
and thus a large FA doesn’t have to be completely recomputed for the case that basic event
properties change.

Unfortunately the authors did not publish the complete Z specification of the FA language.
Since FA was originally developed to capture DFTs, for sure also RBDs can be easily

184

6.3 KLAPER: Kernel LAnguage for PErformance and Reliability analysis

solver

Intermediate Language

Markov Model

RBD DFT BDMP

Figure 6.2: FA: High-level language mappings (compiled from Figure 1 in [111])

described, since they only represent a Boolean redundancy structure. Even by additionally
defining BDMP upon their modified version of FAs, the generality of their approach as an
intermediate language for reliability modelling remains unproven. All the considered high-
level languages only allow Boolean models and it remains unclear whether the provided
features are sufficient for all kinds of reliability considerations. Further, since FA still
is a very low-level formalism it will be questionable if the distance is that much lower
than targeting directly to other Markov models. Still, the way of using the Z language for
creating well-defined semantics for a formal language would be desirable in general. The
full disclosure of the FA specification could attract language developers to adopt the FA
approach and to define higher-level languages resting upon.

6.3 KLAPER: Kernel LAnguage for PErformance and
Reliability analysis

In [75], a language has been presented that is designed as an intermediate language, aimed
at bridging the semantic gap between design-oriented and analysis-oriented notations.
As the name KLAPER (KErnel LAnguage for PErformance and Reliability analysis)
implies, it is designed as a compact language to capture only the relevant information of a
(software) system required for performance and dependability evaluation. For KLAPER a
MOF (Meta-Object-Facility) compliant meta-model has been defined [107]. Operations
of a software system can be represented by steps which take some time delay or may fail.
Steps are grouped in behaviours which may either be used in the context of workloads
or resources. For KLAPER, a component-based system is an assembly of interacting
resources that offer services.

In [75], a workflow is sketched starting from an OWL-S [102] service description language
which is mapped to KLAPER and subsequently transformed into an extended queue-
ing network (EQN) that is solved using the Software Performance Engineering (SPE)

185

6 APPROACHES RELATED TO LARES

parametric
transformation
specifications

intermediate
language

high-level model refined model

high-level
input notations

OWL-S

?

intermediate
language

PN

MC

(E/L)QN

?

analysis notations

Figure 6.3: KLAPER: Workflow of language mappings (compiled from Figures in [75, 76, 77])

framework [129]. It seems as if KLAPER was defined having service descriptions in
mind, since many elements of OWL-S nearly directly correspond to elements provided by
KLAPER. Anyway, since the standard OWL-S notation does not provide QoS (Quality
of Service) attributes, some KLAPER elements remain unspecified after transformation
to the KLAPER language and need to be completed to carry out the analysis. In [77]
the KLAPER-D extension has been developed to capture the dynamic reconfiguration
behaviour of component based systems. It starts again from an OWL-S service description
that is mapped to KLAPER-D and then transformed into a semi-Markov reward (SMR)
model which can be analysed by the SHARPE tool [85]. In addition to the OWL-S design
notation in [74] the UML profile for Schedulability, Performance and Time (UML-SPT)
[106] is considered an additional input formalism. Furthermore, a target notation mapping
to layered queueing nets (LQN) [60] is presented and illustrated by a case-study that mod-
els some use-cases of the CoCoME example. All in all, the mapping workflow between
the design-oriented input formalism and the output analysis notations are summarised by
Figure 6.3 following [74, 76]. It is worth mentioning that the KLAPER approach makes
extensive use of Model Driven Development (MDD) techniques. Meta-models are defined
using the MOF standards and the QVT language is used to represent the transformation
rules [107]. The paper states that the whole process is not fully automatic. A number of
tools have been developed around KLAPER for the Eclipse platform that encompass a
meta-model plugin, an editor plugin, the LQN meta-model plugin, an LQN editor plugin
and the corresponding transformation plugin. However, in [74, p. 329] the authors concede
that KLAPER is ‘inherently based on a client-server architectural model. Other styles [...]
are not considered yet’ and that the implementation is still incomplete.

Very recently, the KlaperSuite was presented [41]. It is an integrated framework built upon
the KLAPER language which targets several formalisms or solvers (such as PRISM, RMC
(Recursive Markov Chain), SimJava and LQN). Furthermore, it is claimed that now the
transformation process is fully automated.

186

6.4 MoDeST: Modeling and Description Language for
Stochastic Timed Systems

6.4 MoDeST: Modeling and Description Language for
Stochastic Timed Systems

In [54] the MoDeST language has been introduced to model stochastic and real-time
systems. It is a formally defined descendant of a process algebra language whose syntax
resembles the C language enriched by constructs for data modularisation, exception
handling via try/catch blocks and concepts known from real-time and stochastic discrete
event systems such as probabilistic branching, clocks and random variables. Its formal
semantics is given by means of stochastic timed automata (STA) [18]. Processes can
be composed in parallel or manipulate typed data variables via assignments. Variables
can be declared, whose specific scope is either local or global. All clock-typed variables
run at the same speed. The available predefined probability distributions encompass
exponential, uniform and normal distributions. Interactions among composed processes
are realised by actions that can be guarded and whose semantics underlies a maximal
progress assumption. Internal tau-actions are not attainable for synchronisation. Besides,
exceptions can be raised and handled in catch blocks as known from general programming
languages. Alternatives can be specified, as a number of choices between different possible
behaviours which could be probabilistic, as well as repetitive behaviours.

In [83] the UML-based high-level formalism Stochastic State Chart (StoChart) is addressed
to define a transformation to MoDeST and thus allow using the MOTOR/Möbius toolset
[19, 46] for the analysis of StoChart models. MoDeST is too expressive to be fully captured
by a single analysis tool. The single-formalism multiple-solution approach can thus only
be realised by focussing on restricted subsets that can be handled by some specific analysis
method (i.e. as implemented by specialised tools) [81]. To give an example, there is
also an approach denoted as mcpta to perform model-checking of probabilistic timed
automata specified in the MoDeST language. For that purpose, the model to be checked
is transformed following a predefined mapping of a subset of the MoDeST language to
PRISM’s [95] guarded-command based language [82]. For this purpose, the MoDeST
language has been extended by properties that are included in the transformation such that
their corresponding PRISM properties are generated. Recently, MoDeST has also been
extended to support stochastic hybrid automata [79].

The MoDeST toolset has meanwhile been enriched by numerous tools (i.e. mcpta
to perform model-checking for the probabilistic timed automata subset, mctau [16] to
model-check corresponding to UPPAAL’s [12] networks of timed automata subset, the
discrete-event simulator (DES) modes [17] which includes a statistical model checking
(SMC) feature (and replaces the former MÖBIUS-based simulator), the graphical user
interface mime and the visualisation tool mosta [81]). For an overview of the mappings
and the tools that have been developed see Figure 6.4.

187

6 APPROACHES RELATED TO LARES

MoDeST
language

high-level
input models

StoChart
PTA mcpta (uses Prism)

TA/PTA mctau (uses UPPAAL)

STA modes (a DES incl. SMC)

dot mosta (uses GraphViz)

mime (UI)

restricted subset
by the means of

?

Figure 6.4: MoDeST: Workflow of language mappings

6.5 SLIM: System-Level Integrated Modeling

A number of approaches address AADL [59] as a high-level input language by underlying
a formal semantics thereof. However, the most comprehensive approach results from
the COMPASS (COrrectness Modeling and Performance of AeroSpace Systems) project
that aims to develop “[...] a coherent and multidisciplinary approach towards developing
systems at architecture [...] level [...]” [31] and finally provides a toolset to analyse AADL
models including the Error Model Annex [32]. It was desired to specify the nominal and
the faulty behaviour of a system, to describe sporadic and permanent faults (for hardware
and software), error propagation and degraded modes of operation. Furthermore, the
notions of observability as well as timed, hybrid and probabilistic behaviour were required
to be supported. In order to capture all these aspects, the SLIM (System-Level Integrated
Modelling) language [35] has been defined “[...] in order to provide a cohesive and uniform
approach to model heterogeneous systems, consisting of software [...] and hardware [...]
components, and their interactions” [36].

SLIM supports system hierarchies, is component-oriented and distinguishes between
software (e.g process, thread, thread group) and hardware (processor, memory, device,
bus) and composite components (providing specific language constructs for each type).
Hereby hierarchical structures can be specified. Components are abstract and define a
type providing a specific interface. Each component may be implemented according to
the interface. Continuous variables can be defined in the implementation for capturing
continuous aspects of a system. The language provides constructs to define event and
data ports for inter-component communication. Ports are used to interconnect sibling
components and subcomponents and may depend on the current mode such as clock
invariants, flow expressions (which affect continuous variables) as specified in the mode
transition system. The nominal behaviour will thus be described by mode transitions which
act on the occurrence of a triggering event in case that a guard is satisfied and may perform
an assignment.

188

6.5 SLIM: System-Level Integrated Modeling

SLIM
language

AADL +
Error Annex

SMV

MC +
rewards

Sigref

RAT

applied
solver

Property
Pattern

requirements validation

solver
languages

high-level
language

MRMC

nuSMV

SigRef

performability analysis

safety analysis
correctness/verification
diagnosability analysis

bisimulation minimization

Figure 6.5: SLIM: Workflow of language mappings and tools

An error behaviour can be specified as a companion behaviour to the nominal behaviour.
Error states and incoming or outgoing error propagations can be defined as interface,
whereas its implementation consists of transitions that depend on the defined events which
lead to the actual error state. The nominal behaviour needs to be modified to integrate the
error extension by adapting nominal transitions, adding fault injection transitions, nominal
transitions with fault effects and error propagation transitions.

As a formal basis for the SLIM language, the concept of a Network of Event-Data Automata
(NEDA) has been introduced (which itself is defined by means of state-based transition
systems which require continuous variables to be discretised) in order to give SLIM a
formal semantics [35]. Since the generated state space of a SLIM model could be large,
especially due to continuous variables, Event-Data Automata are symbolically encoded in
terms of Boolean formulas, which hence generalises as well to a NEDA.

Numerous analysis methods dealing with functional correctness, safety and dependability,
performability, fault detection, fault identification, fault recovery effectiveness or require-
ments validation can be performed with the help of the developed toolset as shown in
Figure 6.5, derived from [33]. The COMPASS toolset employs a number of mature tools:
For that purpose, the transformation to the SMV notation allows the NuSMV (real-time,
probabilistic) model checker [43] to be applied. Therefore, the requirements have to be
posed as CTL, LTL formulas or by the Property Specification Language (PTL), which ex-
tends LTL by the power of regular expressions. Advanced abstraction techniques have been
integrated into nuSMV to avoid the state space explosion problem which especially arises
due to the discretisation of continuous variables, e.g. performing abstraction refinement
guided by counterexamples [47] and in addition applying Satisfiability Modulo Theory
based constraint solving [40, 44]. In order to calculate whether specific performance
requirements are met, the MRMC model checker [90] can be invoked.

189

6 APPROACHES RELATED TO LARES

AltaRica
language

SysML

SMV

...

applied
solver

solver
languages

high-level
language

ARC

nuSMV

MEC

model checking

model checking

model checking

FASTer
infinite symbolic transition
systems model checker

... failure probability, prima implicants

... stochastic simulation, availability

...

...

 FT

PN,MC

...

Figure 6.6: AltaRica: Workflow of language mappings and tools

6.6 AltaRica

AltaRica is a mature language that was first presented in [114, 115] and has continuously
been maintained and developed since then. It is designed to model functional and non-
functional behaviour of critical systems to perform dependability analysis. Similar to other
high-level approaches, the aim was to reduce the distance from a modeller’s perspective to
rather low-level models, thereby facilitating the design of complex systems. AltaRica pro-
vides a textual as well as a graphical representation and compiles to low-level formalisms
such as fault trees, Petri nets or Markov chains. The semantics of AltaRica is given in
terms of constraint automata (CA) [37].

The DataFlow subset of AltaRica is based on mode automata (MA) [117] and is claimed
to be easier to compile. In this subset, states are implicitly defined by state variables and a
transfer function (which depends on the current state and the input variables) controls the
output variables. Therefore, events can be defined which alter the state variables. Those
mode automata can be composed by denoting their interconnection and specifying the
synchronisation of events, thus allowing a hierarchical system structures to be defined.
Events may be timed, comprising a probability distribution (e.g. exponential, Weibull), or
instantaneous (i.e. distinguishing immediate or conditional events that may be prioritised).
In [39] a timed extension was introduced for AltaRica, thus allowing real-time aspects to
be captured. And as described in [3], flow-variables were added to incorporate continuous
aspects of “multi-physical systems”. Besides, several tools are implemented to support
the analysis. As only partly surveyed by Figure 6.6, mainly model-checking techniques
are implemented by the tools ARC, MEC [8], FASTer, NuSMV [34] and others. But
other analysis techniques are addressed as well, such as compilers for fault-trees [63]
and Markov Graphs, stochastic simulators, minimal cut set or sequence generators, or
compilers to other formal languages such as Lustre and SMV, which in turn allow their
tool implementations to be applied.

190

6.7 Classification and Distinction

Since AltaRica as a high-level formalism decreases its distance to other architectural
languages such as SysML, it can also serve as an intermediate formalism as shown in [49].
AltaRica enjoys great support from industry partners and can thus rely also of a number
of complex case-studies, which in turn contribute to the whole AltaRica workbench and
development of the language.

6.7 Classification and Distinction

The previous sections gives an overview of a number of selected approaches, dealing with
language definitions, their semantics, the analysis methods and developed toolsets. This
section aims to provide a survey of the important characteristics and differences among
these approaches and to LARES. Table 6.1 attempts to depict the relevant characteristics
to compare the selected approaches. The table contrasts the ability of a language to
capture a broad range of different models by its expressiveness, the manner and purpose
of its deployment (considering the case that an end-user is addressed or the language
serves as an intermediate representation), the ability to achieve modularity of the specified
component types (in order to allow successive embeddings as key features to produce
structured and reusable descriptions to facilitate compositional modelling), the description
of dependencies among the components, its level of abstraction (which often corresponds
to the modelling effort of a language) and whether the different concerns can be separately
described. Furthermore, the transformations into the target notations are addressed by
discussing whether they can reflect the whole expressiveness of the language or the case
that a number of submodels are addressed. The table contrasts also the level of formality of
the description of the semantics and the degree of automation. And, finally, it reflects which
kinds of analysis methods can be applied and whether the analysis workflow integrates
external solvers smoothly.

From a modeller’s perspective, the idea to design Arcade as a template-based language
is beneficial if the desired aspects conform to the expressiveness of the standard Arcade
language. Otherwise, the formalism has to be extended, which requires modellers to deal
with the fairly low-level I/O-IMC formalism. Complex reconfiguration aspects might
be difficult to incorporate into the language as well as specific error behaviour or repair
behaviour that goes beyond the predefined constructs. Furthermore, the distance to other
high-level languages such as AADL seems to be quite large, as Arcade does not even
support for reflecting a system’s hierarchy. Another issue is that the transformation
process of building blocks is not fully automated, which contradicts a neat workflow. We
pursued a similar approach of composing predefined patterns for the ZuVerSicht formalism
[15]: Similarly to Arcade, this formalism could be extended, but this requires doing
implementation work by defining new process algebra patterns. Predefined patterns in

191

6 APPROACHES RELATED TO LARES

A
rcade

FA
K

L
A

PE
R

M
oD

eST
SL

IM
A

ltaR
ica

L
A

R
E

S

language

expressiveness
-

o
+

++
++

++
++

hierarchy/structure
-

-
-

+
++

++
++

m
odularity

+
+

+
+

+
+

+
levelofabstraction

+
–

o
o

o
o

o
separation

ofconcerns
++

-
+

o
++

+
+

purpose
ofdeploym

ent
i&

u
i

i
i&

u
i&

u
i&

u

sem
antics

&
transform

ation

sem
antics

by
m

eans
of

I/O
-IM

C
C

T
M

C
E

Q
N

STA
N

E
D

A
C

A
/M

A
C

T
M

C
/M

D
P

targetlanguages
I/O

-IM
C

C
T

M
C

E
Q

N
m

any
SM

V,M
C

+rew
.

m
any

SPA
/LT

S/M
D

P
degree

ofautom
ation

o
+

o
+

+
+

+
extensibility

+
+

+
+

+
+

++

analysis/tools
analysis

m
ethods

o
o

o
++

++
++

+
toolsupport

-
–

o
++

++
++

+

Table
6.1:

A
survey

to
contrastsom

e
characteristics

betw
een

selected
approaches,

w
here

i=interm
ediate,u=end-userand

the
rating

is
as

follow
s{

–
∧=
�

,-
∧=
�

,0
∧=
�

,+
∧=
�

,++
∧=
�
}

192

6.7 Classification and Distinction

terms of low-level formalisms were considered unnecessary for LARES in order not to
limit the expressiveness and extensibility of its language features. Instead, the language
constructs LARES offers will be used to define reusable “higher-level construct libraries”.

As the FA formalism is designed to serve as an intermediate language, it is rather low-level.
The focus of that approach is to provide its semantics by the Z-notation to serve as a
basis to define higher-level languages. The issue with this approach is that neither the
language specification seems to be available nor that there is any proof of how applicable
this approach is to higher-level languages with higher expressiveness than RBD, DFT
or BDMP. However, it might be very cumbersome to start from such a rather low-level
formalism specification in order to base more advanced languages with constructs of high
abstraction upon the FA description. For LARES, the aim was not to give a formalisation
by a formal language such as the Z-language, but to provide an exhaustive formalisation
by its syntax specification, its abstract representation and by specifying two distinct
transformations which produce behaviourally equivalent models with respect to the notion
of strong bisimulation.

KLAPER takes a purely model-driven development (MDD) approach to specify meta-
models and transformations. It serves as an intermediate formalism. The KLAPER
formalism is tailored to client-server architectures. It therefore suits well for web-service
descriptions. However, this could limit its field of application when it comes to other kinds
of systems. The application of MDD techniques for LARES was also an important design
choice, but is not applied as pervasively as in the KLAPER approach. For LARES, a rather
pragmatic use of MDD has been pursued in order to develop Eclipse-based tools and to
serve as interface to other application level formalisms.

MoDeST is a very concise, easy and expressive language which allows applying various
tools for analysis in order to evaluate several kinds of measures of interest. It is not hierar-
chical in the way of a design/architectural language, nevertheless hierarchical structures
can be specified. The aim to serve as a design language was a crucial requirement for the
definition of LARES to enable modular and hierarchical modelling.

Due to the large community and great support from industry, AltaRica got very mature
over time. By now, a number of expressive extensions and a variety of analysis techniques
have been developed in order to capture also other types of models. AltaRica provides its
tools for download under the LGPL license, which makes it easy to integrate the approach
within other projects.

Considering only expressiveness and available analysis back-ends, MoDeST, AltaRica
and SLIM might be better positioned than LARES, since they also provide constructs to
capture real-time and hybrid aspects or stochastic distributions that go beyond exponential
ones. For this purpose, they bind to multiple solvers which directly support these concepts.
LARES has focussed on extensibility and strict hierarchical modelling. With the upcoming

193

6 APPROACHES RELATED TO LARES

extensions, i.e. reward extension and decision extension [69], LARES language expressive-
ness has extended towards rewards and non-determinism. The underlying target language
is thus given by a Markov Decision Processes (MDPs) that can be used to calculate optimal
policies considering the defined rewards. Nonetheless, the SLIM language has meanwhile
received a great backing by the powerful predicate abstraction techniques integrated into
the nuSMV model checker. These advanced techniques would serve as potential solutions
to tackle with non-Boolean variables addressed by first-order constraints. These could
be introduced within Behavior definitions or as an extension to condition expressions to
LARES in the future as described in Chapter 7. While in LARES an error behaviour is
not explicitly denoted by a keyword and modellers have to care which states to address
by some measure, in SLIM models, the error model has to be connected to the nominal
behaviour by a fault injection-specification. This procedure probably feels a bit odd for
some modellers since they have to consider the composition of the two behaviours. Since
there is no distinction between error and nominal behaviour in LARES, the interconnection
is realised by standard guards statements.

Very recently, in [4] an overview of approaches about model-based design of dependable
systems was given, discussing the limitations and evolution of analysis and verification
approaches. LARES has been compared among other model-based dependability analysis
approaches whether they overcome the limitations known from event-based approaches
such as fault trees. LARES and a few other (mostly model-based transformational)
approaches (including AltaRica) have been categorised to overcome all these limitations
such that they offer the capability to handle temporal notions, provide constructs to capture
the architectural design incorporating the required dependability aspects, perform an
automatic translation into analysis notations and are thus less dependent on a modeller’s
experience or time invested. They can finally capture the component-wise nature of
embedded systems to enable a high-level of reusability. In the category of model-based
verification the SLIM language of the COMPASS project is also addressed as an integrative
approach providing fault injection techniques, among other such as the FIACRE language
[14] as a formal intermediate language for SysML models.

To summarise, the languages SLIM and AltaRica are closely related to LARES. Especially
SLIM provides many features LARES does not yet offer, not at least because of the
powerful nuSMV solver. Despite shortcomings in expressiveness and capabilities of the
addressed back-ends, LARES provides reasonable constructs in order to define complex
interaction patterns which arise in dependable systems (based on the current state and the
possible subsequent behaviour). Possible shortcomings in the language expressiveness
could easily be resolved by adapting the transformation, probably by the cost of a larger
state space or a larger number of transitions. Further extensions to the language may
require addressing solvers other than CASPA in order to be handled adequately.

194

Chapter 7

Conclusion and Future Work

This thesis provides the complete definition of LARES by covering all relevant aspects
such as the language (i.e. its concrete and abstract syntax), its semantics expressed by
means of two distinct transformations and how the validity of these transformations is
guaranteed. As depicted in Figure 7.1, one of the transformations defines rules and
functions which map a LARES model to a stochastic process algebra model as used by the
performance and dependability evaluation tool CASPA. The other transformation denotes
operational semantic rules to determine a weighted ESLTS, which finally leads to a labelled
continuous time Markov chain after performing elimination of vanishing states. As CASPA
implements the formal semantics of its SPA, which is given by means of labelled transition
systems, and supports the elimination of vanishing states, the outcome is again a labelled
Markov chain. Both transformations are defined in a manner such that they finally produce
behaviourally equivalent models following the notion of strong bisimulation equality.

Furthermore, the most important aspects of the implementation have been highlighted. For
the implementation, numerous tools have been applied, e.g. for model-driven development
(such as Eclipse Modelling Framework and Eclipse Xtext), or the Scala programming
language (for building the LARES-core libraries) or external tools such as CASPA for
performing the analysis. As a result, an Eclipse View-plugin emerged which allows
managing experiments, fully automatic drawings of 2D plots for obtained measures or
depicting the model-structure or state space.

LARES

LTS

SPA

LMC

LMC
SPA transformation

LTS transformation

CASPA reachability + elimination

elimination

∼

Figure 7.1: By definition, the LARES LTS and SPA transformation semantics results in two
bisimulation equivalent labelled Markov chains (LMC)

195

7 CONCLUSION AND FUTURE WORK

Case-studies have also been presented to show the applicability of LARES. As part of that,
scalability considerations have been made to clarify how well the analysis performs while
increasing complexity within some aspects of the model, in particular regarding the number
of product terms arising from guards, forward and Condition statements. This led to the
ideas for future research questions on how to perform high-level abstractions/reductions on
a LARES model (by using upper/lower bound techniques to achieve pessimistic/optimistic
estimations) and how to exploit model structure and regularities. Another challenging
future task is to find smart ways for distributing the analysis process of decomposed
independent submodels. Furthermore, additional analysis methods may improve model
construction or system design (such as sensitivity analysis, design space analysis or model
checking).

In comparison to related approaches, LARES has unique characteristics, but still there
is plenty of room for improvements. Various aspects could help improve the LARES
language or toolset in order to become more expressive and feature-rich. The upcoming
reward extension [70] and decision extension [69] have partially been realised, thereby
providing an MDP semantics for LARES. The following subsections sketch some further
directions of future research and development.

7.1 Language Extensions and Expressiveness

In addition to the LTS semantics defined for standard LARES or the MDP semantics that
has been introduced by the decision extension, many other features can enrich the LARES
language expressiveness, e.g. integrating arbitrary distributions, non-Boolean variables
(to capture spacial, time and continuous aspects) in combination with giving users the
opportunity to define more sophisticated expressions that go beyond standard Conditions
which only depend on (Boolean) state variables, i.e. by allowing general first-order logic
expressions that may also depend on non-Boolean variables.

Arbitrary Distributions

General probability distributions can be added to LARES without invalidating the current
Markovian-based semantics by phase-type distributions. There are many algorithms which
allow fitting such distributions by Markov processes comprising a minimal amount of
states (e.g. as described in [116]). In order not to run into state space explosion by counting
the performed phases, it might be better to categorically ensure by the given semantics
that no interaction takes place until a phase-type distribution is absorbed (such that a
behaviour instance is situated within an atomic sequence between the starting and the
absorbing state of a phase-type distribution). Otherwise, this would result in unpredictable

196

7.1 Language Extensions and Expressiveness

behaviour. Assume a phase-type distribution starting in (a1, b) and absorbing in (a2, b)

such that (a1, b)→ (, b)→ (a2, b) represents the Markov process until absorption. A
guards statement such as ¬a1 guards 〈...〉 could imply an invalid interruption of the phase-
type distribution within intermediate phase (, b). This could be avoided by introducing
modifiers to hide state - or guard labels from a Behavior’s environment.

Non-Boolean Variables

CASPA allows defining predicates on process parameters within guards as some sort of
propositional logic that only allows integer arithmetic on the given parameters including
relational operators to map into the Boolean domain, e.g. [i > 5] with parameter i, to
specify whether a certain transition can take place at a specific state defined by i. This
feature is not yet employed by LARES. The specification of Condition statements on states
is too cumbersome to mimic these predicates. Therefore, local non-Boolean (integer)
variable statements which declare a name and some type or domain, e.g. var x : [1..10]

as well as an extended variant of Condition statements that allow reasoning about these
variables in a kind of first-order logic notion could be introduced to the LARES language.
As long as only integer variables are considered, these expressions can easily be captured
by the CASPA process algebra via named processes or process parameters in cooperation
with guarded processes.

• Counting Variables for Deterministic Time. Real-time aspects are also required
by many modellers. Following the semantics as given for timed automata [13], a
clock variable is considered a real typed variable and can be addressed by other
primitives such as clock-invariants or guards. In order to comply with the above
requirement, the LARES language has to be extended by primitives dealing with
deterministic time, similarly to the MoDeST approach which relies on probabilistic
timed automata [82].

• Spatial Variables. The introduction of real typed variables could be used to describe
spatial information, for example how Module instances are distributed on a grid or
a continuous area and, by doing so, to define how spatial information effects the
subsequent behaviour. Let the spatial variables x, y for instance i1 and i2 be given,
then a constraint such as

√
∆(i1.x, i2.x)2 + ∆(i1.y, i2.y)2 ≤ 3 could be defined to

check whether the Euclidean distance ∆ of two instances is smaller or equal to 3.
To illustrate, new notations of LARES statements are required to be introduced, e.g.
to describe a rule for increasing some transmission power when two mobile ad-hoc
nodes reach a specific distance:

(
√
∆(i1.x,i2.x)2 + ∆(i1.y,i2.y)2 ≥ 3)∧ i2.lowPower guards i2.〈highPower〉

197

7 CONCLUSION AND FUTURE WORK

• Hybrid Systems. Real-typed variables allow a wider range of physical systems to be
described, wherein a state as well as its evolution can be continuous. For LARES, the
extension of Condition statements on continuous domains (or even more general, the
gradual change of a continuous state that affects the system’s continuous or discrete
behaviour) could be realised. Even now, guards statements define dependencies
between states and subsequent behaviour. At present, guards statements are still of
discrete manner, but they may also be extended to the continuous domain as stated
previously. As such LARES would be enabled to be used as a language to model
hybrid systems as well (e.g. following the concepts of the compositional Hybrid
Input/Output Automaton approach, cf. [96]). Its evaluation remains difficult: Using
a state-based representation for the analysis requires again a discretisation, but the
resulting state space is usually intractable. As a consequence those kinds of models
have to be handled differently, e.g. performing reachability predicate abstraction [6]
or even incorporating SMT approaches [44].

7.2 Scalability Considerations

While language expressiveness only considers the ability to capture specific aspects of a
model by language constructs, an issue arises from the formal semantics and the ability
for its analysis. The semantics is based on a formal target language to which a model is
transformed. It depends on the destination language whether the expressiveness of the
source language may be captured. Otherwise, simulation techniques have to be applied,
or subsets have to be addressed, or oversimplification is required, e.g. discretising a
continuous variable, approximating immediate events by exponential distributions with
high rates (which can lead to numerical instability), or approximating general stochastic
distributions by phase-type distributions. As a result, the models may have an increased
state space or it may be difficult to reveal how oversimplification impacts the analysis
results. Therefore, it is of importance to consider the scalability of an approach regarding
the ability to analyse an output model.

Reduced Synchronisation Combinatorics

Let a Module instance be composed of the subinstances A and B, a repair Behavior R and
a guards statement inferring whether at least a single subinstance has failed (thereby it is
irrelevant whether this occurred due to A or due to B) in order to invoke the repair process:

1 oo {A.〈failed〉,B.〈failed〉} guards R.〈repair〉

198

7.2 Scalability Considerations

As long as R cannot perform the repair process, A or B can fail. If R reaches the state
which can invoke the repair process, the repair will immediately take place whilst acting
synchronously with actions of A or B which serve as triggers.

When abstracting from the sequence of the addressed variables, fewer action labels will be
needed in order to achieve the required semantics of the guards statement by means of gen-
erated SPA processes. At present, different cases are captured by the SPA transformation
semantics. Therefore, composed actions are built for the first case when only A has failed
(indicated via parameter f) while B has not (indicated via parameter g) (such that the action
oA can be performed), for the opposite case (when the action oB can be performed) and for
the third case when both subinstances have failed (by the action b). These actions are used
to trigger the repair process R to reach its repair state (indicated via parameter r):

(... + oA;A(f) + b;A(f)) |[oA, oB, b]| (... + oA;B(g))

|[oA, oB, b]| (oA;R(r) + oB;R(r) + b;R(r)) // A failed

(... + oB;A(g)) |[b; oB]| (... + oB;B(f) + b;B(f))

|[oA, oB, b]| (oA;R(r) + oB;R(r) + b;R(r)) // B failed

(... + oA;A(f) + b;A(f)) |[oA, oB, b]| (... + oB;B(f) + b;B(f))

|[oA, oB, b]| (oA;R(r) + oB;R(r) + b;R(r)) // A & B failed

As stated above, it is irrelevant which combination (each encoded by an individual action)
of subinstance failures triggers the event. The triggering of the repair process could instead
be carried out by a single action enc for all cases:

((... + enc;A(f)) |[]| B(g)) |[enc]| enc;R(r) // A failed

(A(g) |[]| (... + enc;B(f))) |[enc]| enc;R(r) // B failed

((... + enc;A(f)) |[]| (... + enc;B(f))) |[enc]| enc;R(r) // A & B failed

It is desirable to generalise this for arbitrary guards statements in order to enable a further
reduction of the number of encodings for a certain class of guards statements. However,
the amount of how many encodings have to be stored heavily depends on the composition
structure of the generated SPA model which currently strictly follows the hierarchy of
the LARES model. The caveat is that for example two guards statements could require
different composition structures in order to enable a minimal number of encodings for
each of them, but which itself is impossible to realise in general. Heuristics might help
find a good compromise. The problem is related to finding an adequate variable ordering
in a BDD and requires additional computations to determine the composition structure of
the arising processes. As a consequence, the system structure (as defined by the LARES
model) will no longer be reflected by the composition structure of the generated SPA
specification.

199

7 CONCLUSION AND FUTURE WORK

Other Reduction and Abstraction Techniques

As above, the use of non-Boolean variables or phase-type distributions may lead to an
enormous growth of the number of states. To overcome this obstacle, several techniques
were proposed and developed in the last decades which attract interest in future LARES
developments. These approaches operate on different levels. They either work on language
or the transformation level or they involve special low-level representations. CASPA,
for example, symbolically encodes its transitions using MTBDD techniques on a very
low-level. The composition operator is implemented such that the increase of size of
the MTBDD is linear to the number composed processes (cf. Theorem 5.1.2 in [126]).
Partial-Order-Reduction [65] and Confluence Reduction [80] represent two other low-
level reduction methods. The first is state-based and the latter is transition-based. Other
interesting approaches are described by so-called Magnifying Lens abstraction as described
in [5, 122] which operate on a partition of the state space wherein regions are adaptively
refined until an upper and a lower bound of a property reaches a predefined accuracy. These
approaches are rather limited in their ability to reduce the state space since they operate on
a state-based level. In contrast to these rather low-level state space reduction techniques,
the structure and keywords offered by higher-level languages may directly be used to infer
symmetric replications which allow producing a symmetry-reduced quotient model in
order to keep track of “[...] how many processes reside in each local state [...]” [53]. A
similar approach is the application of the Mean Field Theory to probabilistic systems by
which many equivalent subcomponents can be approximated under the assumption that an
infinite number of components provides a deterministic behaviour [28]. It only regards
fractions of components being in a certain state. These fractions evolve in the course of
time depending on the interactions among these fractions.

LTS Reachability

The reachability algorithm that constructs a LTS from a LARESFLAT model currently
directly operates on the case classes representing the abstract language definition. For
the purpose of checking bisimulation equivalence this approach is sufficient. In order to
construct the state space of larger LARES models for the use of external Markov Chain
solvers, the LARESFLAT model has to be encoded to exploit a better performance. Accord-
ingly the TRA formalism as implemented in this work can not be used as a temporary
structure to capture large state spaces. Instead, a compacted representation needs to be
chosen in order to minimise the effort for the model exchange with the solver or to serve
as a data structure on which performant algorithms can be defined for the analysis.

200

7.3 Modelling and Toolset

Statistical Analysis

A stochastic simulation engine for LARES could easily be derived from the reachability
algorithm that works on the level of LARESFLAT to alleviate the state space explosion.
For this purpose, the implemented reachability algorithm’s state transition functionality
can be reused. While the reachability algorithm explores each possible transition, the
probability distribution of all possible transitions would be taken into account to determine
the sojourn time of the current state. The transition for which the smallest value for the
associated random variable is generated will be used to proceed to the next state. In order
to analyse the measures of interest, statistics have to be collected. For this purpose, a
clock variable is required and it needs to be updated within each step. Furthermore, a
trace as a sequence of states has to be stored continuously which includes information
taken from the clock variable and the transition taken. Nevertheless, especially dependable
systems inherently deal with rare events. To efficiently capture these events, techniques of
rare event simulation need to be incorporated (e.g. as done in [118]) to prevent excessive
numbers of simulation runs. These techniques are commonly based on variance reduction
such as importance sampling [38] or importance splitting (e.g. the restart method [136]).
For future LARES extensions to capture hybrid systems, the level of granularity of the
time intervals of discrete-event simulation may remain an issue regarding the evolution
of continuous variables over time. Another option is to apply techniques and tools which
have been developed to deal with hybrid system simulation. In order to give an example, a
transformation into the hybrid χ-language (a process algebra for hybrid systems which
binds tools for simulation as well as for numerical analysis [100]) could be defined. On the
other hand, non-determinism is differently resolved depending on the applied simulator that
can currently be addressed by the χ language, i.e. by priority, probabilistically, manually
or even disallowed.

7.3 Modelling and Toolset

This section discusses improvements which aim at supporting a modeller in the process of
defining, validating or analysing a model. Therefore, user feedback on system properties,
experiment management or hybrid editing capabilities could be integrated into the LARES
IDE.

User Feedback by proving System Properties

Overlapping conditions can be specified by denoting a number of guards statements so
that several conditions may simultaneously be satisfied by a composed state. According

201

7 CONCLUSION AND FUTURE WORK

to that, several events could occur in form of a choice. A modeller’s task is to carefully
partition the conditions in order to avoid unwanted choices among competing transitions.
Currently, there is no support to warn modellers whether such a competing situation is
introduced to the model. To help modellers with detecting such modelling flaws, a kind of
debugging tool could be integrated or developed in the future. This can be carried out by
either applying tools for model checking or by implementing a simple structural analysis
within CASPA in order to search for multiple outgoing competing transitions for each
state after performing a composition. A feedback mechanism has to be implemented in the
LARES IDE to warn users when they inadvertently introduce choices.

The process of modelling this kind of feedback cannot be performed on-the-fly for larger
submodels. The reason is that the composition time will be an issue regarding the respon-
siveness of the modelling environment. For larger models this kind of validation has to be
performed off-the-fly, but it should be performed on a regular basis (i.e. whenever new
guards statements are introduced).

Experiments Management Capabilities

The View-Plugin developed as part of the LARES Eclipse environment provides the
capabilities to carry out the analysis process and to visualise the model in different views
or the analysis results. However, the feature to manage experiments has not yet been
implemented. For that purpose, a data-base binding would be useful to capture the different
model versions and measures calculated thereof.

Hybrid Graphical/Textual Editor

The editor has improved a lot since its first version. Standard Xtext features such as
code completion and syntax highlighting have been refined. Furthermore, sophisticated
on-the-fly and standard validation capabilities have been integrated. Different LARES
meta-models have hence been defined and applied to perform the required validation
calculations implemented by MDD model transformation techniques using Eclipse Epsilon
[55]. Another matter is the development of a graphical editor applying Graphiti [56],
an EMF based graphical tooling infrastructure. Noticeable progress has been made to
represent most of the LARES features by two diagram types defined for Behavior and
Module definitions. The long-term goal is to offer a coherent hybrid LARES Editor Plugin
which allows switching between textual and graphical representations in order to give
modellers the opportunity to choose for the most suitable representation from both worlds.

202

7.4 Closing Comment

7.4 Closing Comment

Even though the LARES framework is an outcome of an academic research project, it could
serve as a basis for further developments which contribute to a productive environment
for modelling dependable, reconfigurable systems. The transformation process is already
very mature and can be adapted to future language extensions without too much effort.
At present time two extensions have almost completely been implemented allowing the
definition of rewards and non-deterministic decisions. The extensions of the transforma-
tions went smoothly and proved the flexibility of the selected implementation approach. A
website [50] has been set up to promote the LARES environment, to provide publications
related to LARES, to offer tutorials, to invite others to join the development by providing
them with the source code or allow them to apply the LARES toolset by providing platform
specific binaries. It now depends on future development efforts to keep LARES a vividly
emerging dependability modelling language.

203

7 CONCLUSION AND FUTURE WORK

204

Appendix A

Frequently Used Attributed Tuples

Identifier (l, I) ∈ ID

Reference (i, l) ∈ Ref

Parameter expression {(l1, e1), . . .} ∈ PE

Definition reference (r, p) ∈ RefD
Behavior definition (l, p, b, ic) ∈ B

Behavior body (S,T,E, ic) ∈Bbody

Transitions (s, g, d, t) ∈ T

Distribution (Immediate/Markovian) (type, value) ∈ D

Behavior expand statement (ie, b) ∈Bexpand

Module definition (l, p, d, b) ∈M

Module body (B,M,I,C,G,F, IC,E,P) ∈Mbody

Instance statement (l, t, ic) ∈ I

Condition statement (l, c) ∈ C

guards statement (g,CR,ns) ∈ G

forward statement (c, l,CR) ∈ F

Conditional reactive (c, r) ∈k CR
Initial statement (l, IC) ∈ IC

Probability statement (steady-state) (l, c) ∈ ProbS
Probability statement (transient-state) (l, c, t) ∈ ProbT
Module expand statement (ie, b) ∈Mexpand

Guard label reference (i, l, dt) ∈ RefR
Iterator (l, s) ∈ I

205

A FREQUENTLY USED ATTRIBUTED TUPLES

206

Appendix B

Common Substitution and Evaluation
Functions

The following function declaration were used in Section 3.3.1 without any given definition:

• Set Expression Resolution:
h/φSE : SE×PE→ SE

• Condition Expression Resolution:
h/φCE : CE×PE→ CE

• Reactive Expression Resolution:
h/φRE : RE×PE→ RE

• Identifier Resolution:
h/φID : ID×PE→ ID

• Reference Resolution:
h/φRef : Ref×PE→ Ref

• Arithmetic Expression Resolution:
h/φAE : AE×PE→ AE

• Set Expression Evaluation:
φSE : SE→ P(R)

• Parameter Expression Evaluation:
φPE : PE→ PE

This is caught up with the following definitions. The parameter resolution function h/φSE

for a set expression is therefore defined as follows (op hereby denotes an operator of a set
expression and ae1 and ae2 are arithmetic expressions):

h/φSE : se, pe 7→


(h/φSE(se1, pe), op, h/φ

SE(se2, pe)) if se = (se1, op, se2)

(h/φAE(ae1, pe), h/φ
AE(ae2, pe)) if se = (ae1, ae2){

h/φAE(ae, pe) | ae ∈ se
}

if se ∈ P(AE)

207

B COMMON SUBSTITUTION AND EVALUATION FUNCTIONS

The parameter resolution function h/φAE for an arithmetic expression is defined as follows
(op hereby denotes an operator of an arithmetic expression and ae1 and ae2 are arithmetic
expressions):

h/φAE : ae, pe 7→


(h/φAE(ae1, pe), op, h/φ

AE(ae2, pe)) if ae = (ae1, op, ae2)

ae if ae ∈ R
e if ae ∈ Σ∗ ∧ ∃(l, e) ∈ pe : ae = l

The parameter resolution function h/φID for an identifier is defined as follows:

h/φID : id, pe 7→

{
(l, (h/φAE(ae1, pe), . . .)) if id = (l, (ae1, . . .))

(l, ()) else if id = (l, ())

The parameter resolution function h/φRef for a reference is defined as follows:

h/φRef : ref, pe 7→

{
((h/φID(inst, pe)), h/φID(l, pe)) if ref = ((inst), l)

((), h/φID(l, pe)) else if id = ((), l)

The parameter resolution function h/φCE for a condition expression is defined as follows:

h/φCE : ce, pe 7→
{

(h/φCE(ce1, pe), op, h/φ
CE(ce2, pe)) if ce = (ce1, op, ce2)

The parameter resolution function h/φRE for a reactive expression is defined as follows:

h/φRE : re, pe 7→


sync(h/φRE(re1, pe), . . .) if re = sync(re1, . . .)

maxsync(h/φRE(re1, pe), . . .) if re = maxsync(re1, . . .)

choose(h/φRE(re1, pe), . . .) if re = choose(re1, . . .)
h/φRef(re, pe) if re ∈ Ref

The evaluation function φAE for an arithmetic expression is defined so that it can be used
by the subsequent definitions (op hereby denotes an operator of an arithmetic expression
and ae1 and ae2 are arithmetic expressions):

φAE : ae 7→

{
[[h/φAE(ae1, pe) op h/φAE(ae2, pe)]] if ae = (ae1, op, ae2)

[[ae]] if ae ∈ R

208

The evaluation function φSE of a set expression (op hereby denotes an operator of a set
expression) is defined as follows:

φSE : se 7→


[[φAE(se1) op φ

AE(se2)]] if se = (se1, op, se2)⋃φAE(ae2)

i=φAE(ae1)
{i} if se = (ae1, ae2){

φAE(ae) | ae ∈ se
}

if se ∈ P(AE)

Finally, the evaluation function φPE of a parameter expression is defined:

φPE : pe 7→ { (p.l, φAE(p.e)) | p ∈ pe}

209

B COMMON SUBSTITUTION AND EVALUATION FUNCTIONS

210

Appendix C

Refined Synchronisation Semantics of
PACT

In Section 3.5.3 solely the essentials of the PACT synchronisation which are needed for
the transformation from LARESBASE into SPA are described. A more detailed explanation
is given hereinafter.

The information S ∈ S on how a process interacts with its environment is defined as a triple
of sets of tuples (where each tuple comprises an action label and an associated distribution
type):

S = P(Act×Dtypes)
3 , where (Ac,As,An) ∈ S.

The attribute Ac denotes the set of actively consuming actions (i.e. actions which, if
synchronised with another process, will not be needed for further synchronisation of the
resulting composed process), As denotes the set of passively synchronising actions (i.e.
actions which allow being further synchronised) and An represents the set of actions
that are required to stay unsynchronised (and may be used to detect whether an instance
specifies disallowed synchronisations).

A parallel composition operation || : PAC× PAC→ PAC will be defined to construct
valid SPA composition terms (which may also make use of the hide operator), to determine
the corresponding synchronisation information and to return the related process definitions.

When a composition of two PAC structures l, r ∈ PAC takes place, the set of consumed
actions (i.e. actions for which a consuming partner can be found) is given by

Aconsumed = (l.S.Ac ∩ r.S.As)∪ (r.S.Ac ∩ l.S.As)∪ (r.S.Ac ∩ l.S.Ac)

211

C REFINED SYNCHRONISATION SEMANTICS OF PACT

In addition, the set of synchronising action labels is composed of the set of consumed action
labels and by those labels of passively synchronising actions for which a non-consuming
partner can be found:

Asynched = {π2(act) | act ∈ ((l.S.As ∩ r.S.As)∪Aconsumed)}

By the fact that solely immediate-typed actions can be hidden (with regard to the CASPA
semantics), action labels (which have an immediate-typed distribution and satisfy an
implementation specific control function φ) are taken from the set of hidable actions which
consists of consumed actions and actions that are required to stay unsynchronised:

Ahide = {a | a
99K∈ (Aconsumed ∪ l.S.AN ∪ r.S.AN︸ ︷︷ ︸

hidable actions

) : φ(. . .)}

The set of consuming action labels Ac, the set of synchronising action labels As and the
set of action labels remaining unsynchronised An are determined as follows:

Ac = (l.S.Ac ∪ r.S.Ac) \ (Aconsumed ∪Ahide)
As = (l.S.As ∪ r.S.As) \ (Aconsumed ∪Ahide)
An = (l.S.An ∪ r.S.An ∪Aconsumed) \Ahide

The definition of the parallel composition function || is therefore given as follows:

|| : (l, r) 7→
(

hide Ahide in (l.t|[Asynched]|r.t)︸ ︷︷ ︸
process algebra term

, (Ac,As,An)︸ ︷︷ ︸
sync. info.

, (l.D ∪ r.D)︸ ︷︷ ︸
proc. definitions

)
Let an n-ary parallel composition function be given by ||n : P(PAC)→ PAC which makes
use of the binary composition to create a binary composition tree of processes. The final
specification is constructed by the function pact2spa : PACTN → PAT .

It recursively processes the PACT structure such that t finally represents the initial process
name and D consists of all process definitions which encompass the full SPA specification
of the model:

pact2spa : e 7→ (e.x,S,D ∪ {e.x := t}), where
(t, S,D) = ||n({pact2spa(c) | c ∈ e.C ∩PACN}︸ ︷︷ ︸

substructures

∪ (e.C ∩PAT)︸ ︷︷ ︸
leaves

)

212

Appendix D

On Combining Generative/Reactive
Expressions

This section describes how generative and reactive expressions are combined by transform-
ing them into their normal forms, so that a distinct behaviour is obtained regarding the
composed state space.

Literals, DNF, Canonical DNF

Definition 1 (Literal). A literal is an expression of the form x or ¬x, where x is a Boolean
variable either representing a proposition on a state or on a guarded transition.

Definition 2 (DNF). A disjunctive normal form is defined as an expression of the form

m∨
k=1

Ck =
m∨
k=1

(∧
i∈Ak

xi ∧
∧
j∈Bk

¬xj

)
(D.1)

where each Ck(k = 1,2, . . . ,m) is an elementary conjunction, i.e. a product term of the
DNF.

Definition 3 (Canonical DNF). Let f be a Boolean function on Bn, let T (f) be the
set of true evaluations of f . A minterm of f is an elementary conjunction of the form(∧

i|yi=1 xi ∧
∧
j|yj=0¬xj

)
, where Y = (y1, . . . , yn) ∈ T (f). The DNF

φf (x1, . . . , xn) =
m∨

Y ∈T (f)

 ∧
i|yi=1

xi ∧
∧

j|yj=0

¬xj

 (D.2)

is the canonical DNF of f .

213

D ON COMBINING GENERATIVE/REACTIVE EXPRESSIONS

Minterms can be uniquely numbered by using a binary encoding for a given variable order
(e.g. an alphabetical order). Let an unnegated literal be assigned with value 1 and a negated
literal with value 0. For example, abc is encoded by the value 1012 in binary system or 510

in decimal system. Standard product terms can also be numbered as above. Therefore, a
fixed variable order is needed and don’t care variables are valued by e.g. 0.

The Exhaustive Approach

Let the instance tree depicted in Figure D.1 be given. It has the following guards statement
inside the black-filled node:

L . L . B . a | L . B . b guards maxsync {L . B . 〈 c 〉 , R . R . B . 〈 d 〉 }

Let ns be the current namespace and let the conditional reactive arising from the above
guards statement be enumerated by 0. Both the generative and the reactive part are Boolean
expressions which can be represented by their canonical DNF (consisting of minterms
which represent satisfiable paths). A function ptminterm is declared which determines and
enumerates all (distinct) canonical minterms for a given Boolean expression:

ptminterm : BE→ P(BE×N)

There may be different definitions implemented which are not further detailed.

A Boolean expression will be fulfilled if one of the arising product terms is fulfilled (see
Eq. (D.1)). In LARES, a product term combination where both product terms are fulfilled
will enable a transition in the composed system. As illustrated in Table D.1, a composed
enumeration is built which includes ns and 0 in order to derive a unique encoding for each
minterm combination by building the cross-product of both sets of enumerated minterms.

L R

RLL B

BB Bl Br

marks an instance
with a guard statement

marks the intermediate
instances

marks the behavior instances

Figure D.1: Instance subtree from the perspective of a single guards statement

214

generative part reactive part encoding

L.L.B.a∨L.B.b L.B.〈c〉 ∨R.R.B.〈d〉 ns,0, ,
⇓ ptminterm(L.L.B.a∨L.B.b)

L.L.B.a∧L.B.b L.B.〈c〉 ∨R.R.B.〈d〉 ns,0,0,
L.L.B.a∧¬L.B.b L.B.〈c〉 ∨R.R.B.〈d〉 ns,0,1,
¬L.L.B.a∧L.B.b L.B.〈c〉 ∨R.R.B.〈d〉 ns,0,2,

⇓ ptminterm(L.B.〈c〉 ∨R.R.B.〈d〉)
L.L.B.a∧L.B.b L.B.〈c〉 ∧R.R.B.〈d〉 ns,0,0,0
L.L.B.a∧L.B.b L.B.〈c〉 ∧ ¬R.R.B.〈d〉 ns,0,0,1
L.L.B.a∧L.B.b ¬L.B.〈c〉 ∧R.R.B.〈d〉 ns,0,0,2
L.L.B.a∧¬L.B.b L.B.〈c〉 ∧R.R.B.〈d〉 ns,0,1,0
L.L.B.a∧¬L.B.b L.B.〈c〉 ∧ ¬R.R.B.〈d〉 ns,0,1,1
L.L.B.a∧¬L.B.b ¬L.B.〈c〉 ∧R.R.B.〈d〉 ns,0,1,2
¬L.L.B.a∧L.B.b L.B.〈c〉 ∧R.R.B.〈d〉 ns,0,2,0
¬L.L.B.a∧L.B.b L.B.〈c〉 ∧ ¬R.R.B.〈d〉 ns,0,2,1
¬L.L.B.a∧L.B.b ¬L.B.〈c〉 ∧R.R.B.〈d〉 ns,0,2,2

Table D.1: Illustration of the encoding of all tuple combinations

All combinations from the given guards statement can thus be encoded using ptminterm.
The first column of the figure considers the generative part of the guards statement, whereas
the second column considers the reactive part. The third column contains the derived
encoding. Hereby, the application of ptminterm on the generative part yields a block of rows
representing the product due to the minterms and the additional encoding information. The
application of ptminterm on the reactive part finally completes all minterm combinations
and their encoding.

Towards A More Efficient Encoding

It turns out that the number of encodings can safely be reduced by not explicitly generating
a canonical DNF representation for the generative part. Instead, addressed state variables
of Behavior instances may be omitted by merging minterms. By doing so, a sum of product
terms arises with fewer product terms and fewer variables within the merged terms. A DNF
is suitable in case it has a minimal number of product terms (and a minimal number of
literals). BDDs are used in order to find a compactified representation. In [21] it is shown
that finding an optimal solution is an NP-complete problem. Depending on the variable
ordering a BDD can vary between being exponential or polynomial in size of the number
of variables. In [78] a number of algorithms finding optimal variable orderings is given.
However, it is far beyond the scope of this work to go into details of these algorithms.

215

D ON COMBINING GENERATIVE/REACTIVE EXPRESSIONS

L.L.B.a

L.B.b

L.B.<c>

R.R.B.<d>

no behavioral change
due to reactive part

no behavioral change
due to generative part

}generative part

}reactive part:
explitit minterm
representation

0 1

0,0
1,0

0,2
1,2

0,1
1,1

Figure D.2: Using BDDs to obtain simplified DNFs

generative part reactive part encoding

L.L.B.a∨L.B.b L.B.〈c〉 ∨R.R.B.〈d〉 ns,0,-,-
⇓ pt(L.L.B.a∨L.B.b)

L.L.B.a L.B.〈c〉 ∨R.R.B.〈d〉 ns,0,0,-
¬L.L.B.a∧L.B.b L.B.〈c〉 ∨R.R.B.〈d〉 ns,0,1,-

⇓ ptminterm(L.B.〈c〉 ∨R.R.B.〈d〉)
L.L.B.a L.B.〈c〉 ∧R.R.B.〈d〉 ns,0,0,0
L.L.B.a L.B.〈c〉 ∧ ¬R.R.B.〈d〉 ns,0,0,1
L.L.B.a ¬L.B.〈c〉 ∧R.R.B.〈d〉 ns,0,0,2
¬L.L.B.a∧L.B.b, L.B.〈c〉 ∧R.R.B.〈d〉 ns,0,1,0
¬L.L.B.a∧L.B.b, L.B.〈c〉 ∧ ¬R.R.B.〈d〉 ns,0,1,1
¬L.L.B.a∧L.B.b, ¬L.B.〈c〉 ∧R.R.B.〈d〉 ns,0,1,2

Table D.2: Illustration of the encoding of all tuple combinations

The function pt : BE→ P(BE×N) which uses BDDs in order to generate the product
terms and enumerate them is accordingly declared. Note that the function ptminterm can
also be implemented by using BDDs. This requires the function to explicitly consider
don’t care variables (by their true and false evaluation) in order to determine all minterms
of the canonical DNF. A composed application of pt on the generative part and ptminterm
on the reactive part is shown in Figure D.2 as a single BDD using a fixed variable ordering.
Fewer satisfiable paths arise (as listed in Table D.2) by doing so than by using canonical
DNFs (cf. Table D.1).

216

Revealed
Behaviour

Canonical minterms by using ptminterm :

L.B.〈c〉R.R.B.〈d〉︸ ︷︷ ︸
mte1

∨¬L.B.〈c〉R.R.B.〈d〉︸ ︷︷ ︸
mte2

∨ L.B.〈c〉¬R.R.B.〈d〉︸ ︷︷ ︸
mte3

Non-canonical
product terms by using pt:

L.B.〈c〉¬R.R.B.〈d〉︸ ︷︷ ︸
pte1

∨ R.R.B.〈d〉︸ ︷︷ ︸
pte2

sL.B
sR.R.B

〈c〉,2

〈d〉,3
s�mte1 s 6�mte2 s 6�mte3

(sL.B ,sR.R.B)
e1,6
99K(s′L.B ,s

′
R.R.B)

s 6�pte1 s�pte2

(sL.B ,sR.R.B)
e2,3
99K(sL.B ,s

′
R.R.B)

sL.B
sR.R.B

〈d〉,3 s 6�mte2 s�mte2 s 6�mte3
s
e2,3
99K...

s6�pte1 s�pte2

s
e2,3
99K...

sL.B
sR.R.B

〈c〉,2
s 6�mte3 s 6�mte2 s�mte3

s
e3,2
99K...

s�pte1 s 6�pte2
s
e1,2
99K...

Table D.3: A comparison of the outcome when applying the SPA semantics for LARES by
using product terms constructed via an BDD with variable order R.R.B.〈d〉 < L.B.〈c〉 or by
using canonical minterms instead (hereby, s := (sL.B, sR.R.B))

The reactive expression maxsync{L.B.〈c〉,R.R.B.〈d〉} is used to illustrate why applying the
function pt for transforming reactive expressions into non-canonical product terms does
not match the intended semantics of LARES. In Table D.3 three cases are distinguished.
Hereby, the first column illustrates the starting situation of each case with regard to the
ability of the Behavior instances L.B and R.R.B to perform a guarded transition 〈c〉 and
〈d〉, respectively. The second column applies ptminterm in order to generate canonical
minterms as implemented in the LARES framework. The third column shows which
events would occur if non-canonical product terms were constructed using the function
pt. Hereby, the first case leads to incorrect semantics as it differs in the obtained weight
and the composed target state. Beyond that, the kind of arising weight and target states
by using non-canonical product terms is ambiguous and heavily depends on the applied
variable order. For these reasons, canonical minterms have to be used for the reactive part,
where the application of pminterm is unambiguous and coincides with the intended LARES
semantics.

217

D ON COMBINING GENERATIVE/REACTIVE EXPRESSIONS

218

Bibliography

[1] Aceto, L., Fokkink, W., Verhoef, C.: Structural Operational Semantics. In: Bergstra,
J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 197–292. Elsevier
Science (2001), http://dx.doi.org/10.1016/B978-044482830-9/50021-7

(Cited on page 94)

[2] Adeku, M.: A Study of Multiset Algebras: A Systematization of Fundamentals of
Multiset Theory. Lambert Academic Publishing (2011) (Cited on page 27)

[3] Adeline, R., Cardoso, J., Darfeuil, P., Humbert, S., Seguin, C.: Toward a methodol-
ogy for the AltaRica modelling of multi-physical systems. In: Ale, B., Papazoglou,
I., Zio, E. (eds.) Proceedings of European Safety and Reliability Conference, ESREL
2010. Rhodes (Greece) (September 2010) (Cited on page 190)

[4] Aizpurua, J.I., Muxika, E.: Model-Based Design of Dependable Systems: Limita-
tions and Evolution of Analysis and Verification Approaches. International Jour-
nal on Advances in Security (IARIA Conferences) 6(1&2), 12–31 (2013), http:
//www.iariajournals.org/security/tocv6n12.html (Cited on page 194)

[5] Alfaro, L., Roy, P.: Magnifying-Lens Abstraction for Markov Decision Processes.
In: Damm, W., Hermanns, H. (eds.) Computer Aided Verification, Lecture Notes
in Computer Science, vol. 4590, pp. 325–338. Springer (2007), http://dx.doi.
org/10.1007/978-3-540-73368-3_38 (Cited on page 200)

[6] Alur, R., Dang, T., Ivančic, F.: Progress on Reachability Analysis of Hybrid Sys-
tems Using Predicate Abstraction. In: Maler, O., Pnueli, A. (eds.) Hybrid Sys-
tems: Computation and Control, Lecture Notes in Computer Science, vol. 2623,
pp. 4–19. Springer Berlin Heidelberg (2003), http://dx.doi.org/10.1007/

3-540-36580-X_4 (Cited on page 198)

[7] Ammar, H., Huang, Y., Liu, R.: Hierarchical models for systems reliability, main-
tainability, and availability. Circuits and Systems, IEEE Transactions on 34(6),
629–638 (Jun 1987) (Cited on page 107)

219

http://dx.doi.org/10.1016/B978-044482830-9/50021-7
http://www.iariajournals.org/security/tocv6n12.html
http://www.iariajournals.org/security/tocv6n12.html
http://dx.doi.org/10.1007/978-3-540-73368-3_38
http://dx.doi.org/10.1007/978-3-540-73368-3_38
http://dx.doi.org/10.1007/3-540-36580-X_4
http://dx.doi.org/10.1007/3-540-36580-X_4

BIBLIOGRAPHY

[8] Arnold, A.: Mec: a system for constructing and analysing transition systems. In:
Sifakis, J. (ed.) Automatic Verification Methods for Finite State Systems, Lecture
Notes in Computer Science, vol. 407, pp. 117–132. Springer (1990), http://dx.
doi.org/10.1007/3-540-52148-8_11 (Cited on page 190)

[9] AT&T Research: Graph Visualization Software (2007), http://www.graphviz.
org, [Online; accessed 3-September-2013] (Cited on page 138)

[10] Bachmann, J.: Entwurf und Implementierung eines graphischen Modelleditors und
einer Benutzerschnittstelle für das Werkzeug CASPA. Master’s thesis, Universität
der Bundeswehr München, Dept. of Computer Science 4 (in German) (2007) (Cited
on page 137)

[11] Bachmann, J., Riedl, M., Schuster, J., Siegle, M.: An Efficient Symbolic Elimina-
tion Algorithm for the Stochastic Process Algebra Tool CASPA. In: Nielsen, M.,
Kučera, A., Miltersen, P., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM
2009: Theory and Practice of Computer Science, Lecture Notes in Computer Sci-
ence, vol. 5404, pp. 485–496. Springer (2009), http://dx.doi.org/10.1007/
978-3-540-95891-8_44 (Cited on pages 58, 103, 104, 106, and 137)

[12] Behrmann, G., David, A., Larsen, K.G., Pettersson, P., Yi, W.: Developing U P -
PA A L over 15 Years. Software: Practice and Experience 41(2), 133–142 (February
2011), http://dx.doi.org/10.1002/spe.1006 (Cited on page 187)

[13] Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri
Nets, Lecture Notes in Computer Science, vol. 3098, pp. 87–124. Springer (2004),
http://dx.doi.org/10.1007/978-3-540-27755-2_3 (Cited on page 197)

[14] Berthomieu, B., Bodeveix, J.P., Farail, P., Filali, M., Garavel, H., Gaufillet, P.,
Lang, F., Vernadat, F.: Fiacre: An Intermediate Language for Model Verification
in the Topcased Environment. In: ERTS 2008. Toulouse, France (2008), http:
//hal.inria.fr/inria-00262442 (Cited on page 194)

[15] Blum, M., Schiller, F.: Effiziente Sicherheitsmodellierung in der Automatisierungs-
technik. In: Verl, A., Bender, K., Schumacher, W. (eds.) Tagungsband SPS/IPC/-
DRIVES 2009. pp. 189–197. VDE Verlag GmbH, Berlin (2009) (Cited on page 191)

[16] Bogdoll, J., David, A., Hartmanns, A., Hermanns, A.: mctau: Bridging the
Gap between Modest and UPPAAL. In: Donaldson, A., Parker, D. (eds.) Model
Checking Software, Lecture Notes in Computer Science, vol. 7385, pp. 227–
233. Springer (2012), http://dx.doi.org/10.1007/978-3-642-31759-0_16
(Cited on page 187)

220

http://dx.doi.org/10.1007/3-540-52148-8_11
http://dx.doi.org/10.1007/3-540-52148-8_11
http://www.graphviz.org
http://www.graphviz.org
http://dx.doi.org/10.1007/978-3-540-95891-8_44
http://dx.doi.org/10.1007/978-3-540-95891-8_44
http://dx.doi.org/10.1002/spe.1006
http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://hal.inria.fr/inria-00262442
http://hal.inria.fr/inria-00262442
http://dx.doi.org/10.1007/978-3-642-31759-0_16

BIBLIOGRAPHY

[17] Bogdoll, J., Hartmanns, A., Hermanns, H.: Simulation and Statistical Model Check-
ing for Modestly Nondeterministic Models. In: Schmitt, J.B. (ed.) Measurement,
Modelling, and Evaluation of Computing Systems and Dependability and Fault Tol-
erance, Lecture Notes in Computer Science, vol. 7201, pp. 249–252. Springer (2012),
http://dx.doi.org/10.1007/978-3-642-28540-0_20 (Cited on page 187)

[18] Bohnenkamp, H., D’Argenio, P., Hermanns, H., Katoen, J.: MODEST: A Composi-
tional Modeling Formalism for Hard and Softly Timed Systems. IEEE Transactions
on Software Engineering 32(10), 812–830 (2006), http://dx.doi.org/10.1109/
TSE.2006.104 (Cited on page 187)

[19] Bohnenkamp, H., Hermanns, H., Katoen, J.P.: MOTOR: The MODEST Tool
Environment. In: Grumberg, O., Huth, M. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems, Lecture Notes in Computer Sci-
ence, vol. 4424, pp. 500–504. Springer (2007), http://dx.doi.org/10.1007/
978-3-540-71209-1_38 (Cited on page 187)

[20] Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applications.
Wiley, 2nd edn. (2006) (Cited on page 1)

[21] Bollig, B., Wegener, I.: Improving the Variable Ordering of OBDDs is NP-Complete.
IEEE Transactions on Computers 45, 993–1002 (September 1996), http://dx.
doi.org/10.1109/12.537122 (Cited on page 215)

[22] Boudali, H., Crouzen, P., Haverkort, B.R., Kuntz, M., Stoelinga, M.: Arcade
– A Formal, Extensible, Model-based Dependability Evaluation Framework. In:
Proceedings of the 13th IEEE International Conference on Engineering of Complex
Computer Systems, ICECCS 2008. pp. 243–248. IEEE Computer Society Press, Los
Alamitos (April 2008), http://doc.utwente.nl/64850/ (Cited on pages 181,
182, and 184)

[23] Boudali, H., Crouzen, P., Haverkort, B.R., Kuntz, M., Stoelinga, M.: Rich Interfaces
for Dependability: Compositional Methods for Dynamic Fault Trees and Arcade
models. In: Proceedings of the Second Workshop on Foundations of Interface
Theories (FIT 2008). pp. 5–10. University of Aalborg, Aalborg, Denmark (April
2008), http://doc.utwente.nl/65424/ (Cited on page 182)

[24] Boudali, H., Crouzen, P., Haverkort, B., Kuntz, M., Stoelinga, M.: Architectural
dependability evaluation with Arcade. In: Proceedings of the IEEE International
Conference Dependable Systems and Networks With FTCS and DCC, DSN 2008.

221

http://dx.doi.org/10.1007/978-3-642-28540-0_20
http://dx.doi.org/10.1109/TSE.2006.104
http://dx.doi.org/10.1109/TSE.2006.104
http://dx.doi.org/10.1007/978-3-540-71209-1_38
http://dx.doi.org/10.1007/978-3-540-71209-1_38
http://dx.doi.org/10.1109/12.537122
http://dx.doi.org/10.1109/12.537122
http://doc.utwente.nl/64850/
http://doc.utwente.nl/65424/

BIBLIOGRAPHY

pp. 512–521. IEEE Computer Society Press, Los Alamitos (2008), http://doc.
utwente.nl/64537/ (Cited on pages 182 and 183)

[25] Boudali, H., Crouzen, P., Stoelinga, M.: A Compositional Semantics for Dynamic
Fault Trees in Terms of Interactive Markov Chains. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) Automated Technology for Verification and Anal-
ysis, Lecture Notes in Computer Science, vol. 4762, pp. 441–456. Springer (2007),
http://dx.doi.org/10.1007/978-3-540-75596-8_31 (Cited on page 182)

[26] Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic Fault Tree Analysis Using
Input/Output Interactive Markov Chains. In: Proceedings of the 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks. pp.
708–717. DSN ’07, IEEE Computer Society, Washington, DC, USA (2007),
http://dx.doi.org/10.1109/DSN.2007.37 (Cited on pages 181 and 182)

[27] Boudali, H., Haverkort, B.R., Kuntz, M., Stoelinga, M.: Best of Three Worlds:
Towards Sound Architectural Dependability Models. In: 8th International Workshop
on Performability Modeling of Computer and Communication Systems (PMCCS).
pp. 45–49. CTIT Workshop Proceedings, University of Twente, CTIT, Enschede
(September 2007), http://doc.utwente.nl/64339/ (Cited on page 2)

[28] Boudec, J., McDonald, D., Mundinger, J.: A Generic Mean Field Convergence
Result for Systems of Interacting Objects. In: Proceedings of the Fourth International
Conference on Quantitative Evaluation of Systems. pp. 3–18. QEST ’07, IEEE
Computer Society, Washington, DC, USA (2007), http://dx.doi.org/10.1109/
QEST.2007.3 (Cited on page 200)

[29] Bouissou, M., Bon, J.L.: A new formalism that combines advantages of fault-
trees and Markov models: Boolean logic driven Markov processes. Reliability
Engineering & System Safety 82(2), 149–163 (2003), http://dx.doi.org/10.
1016/S0951-8320(03)00143-1 (Cited on page 184)

[30] Bouissou, M., Dutuit, Y., Maillard, S.: Reliability Analysis of a Dynamic Phased
Mission System: Comparison of Two Approaches. In: Modern Statistical and
Mathematical Methods in Reliability, Quality, Reliability and Engineering Statis-
tics, vol. 10, pp. 87–104. World Scientific Publishing Company (2005) (Cited on
page 157)

[31] Bozzano, M., Cavada, R., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll,
T., Olive, X.: Formal Verification and Validation of AADL Models.

222

http://doc.utwente.nl/64537/
http://doc.utwente.nl/64537/
http://dx.doi.org/10.1007/978-3-540-75596-8_31
http://dx.doi.org/10.1109/DSN.2007.37
http://doc.utwente.nl/64339/
http://dx.doi.org/10.1109/QEST.2007.3
http://dx.doi.org/10.1109/QEST.2007.3
http://dx.doi.org/10.1016/S0951-8320(03)00143-1
http://dx.doi.org/10.1016/S0951-8320(03)00143-1

BIBLIOGRAPHY

In: Proceedings of Embedded Real Time Software and Systems Confer-
ence (2010), http://www.academia.edu/2742812/Formal_verification_

and_validation_of_aadl_models (Cited on page 188)

[32] Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
Dependability and Performance Analysis of Extended AADL Models. The Com-
puter Journal 54(5), 754–775 (2011), http://comjnl.oxfordjournals.org/
content/54/5/754.abstract (Cited on page 188)

[33] Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M., Wimmer,
R.: A Model Checker for AADL. In: Touili, T., Cook, B., Jackson, P. (eds.) Com-
puter Aided Verification, Lecture Notes in Computer Science, vol. 6174, pp. 562–
565. Springer (2010), http://dx.doi.org/10.1007/978-3-642-14295-6_48
(Cited on page 189)

[34] Bozzano, M., Cimatti, A., Lisagor, O., Mattarei, C., Mover, S., Roveri, M., Tonetta,
S.: Symbolic Model Checking and Safety Assessment of Altarica models. In: Pro-
ceedings of the 11th International Workshop on Automated Verification of Critical
Systems (AVoCS 2011). vol. 46. Electronic Communications of the EASST (2011),
http://journal.ub.tu-berlin.de/eceasst/article/view/697 (Cited on
page 190)

[35] Bozzano, M., Cimatti, A., Roveri, M., Katoen, J.P., Nguyen, V.Y., Noll, T.: Codesign
of Dependable Systems: A Component-Based Modeling Language. In: Proceedings
of the 7th IEEE/ACM international conference on Formal Methods and Models
for Codesign. pp. 121–130. MEMOCODE’09, IEEE Press, Piscataway, NJ, USA
(2009), http://dl.acm.org/citation.cfm?id=1715759.1715776 (Cited on
pages 182, 188, and 189)

[36] Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V., Noll, T., Roveri, M.: The COM-
PASS Approach: Correctness, Modelling and Performability of Aerospace Systems.
In: Buth, B., Rabe, G., Seyfarth, T. (eds.) Computer Safety, Reliability, and Secu-
rity, Lecture Notes in Computer Science, vol. 5775, pp. 173–186. Springer (2009),
http://dx.doi.org/10.1007/978-3-642-04468-7_15 (Cited on page 188)

[37] Brlek, S., Rauzy, A.: Synchronization of Constrained Transition Systems. In: Hong,
H. (ed.) Proceedings of the First International Symposium on Parallel Symbolic
Computation (PASCO’94). pp. 54–62. World Scientific Publishing, Linz, Austria
(1994) (Cited on page 190)

[38] Bucklew, J.: Introduction to Rare Event Simulation. Springer Series in Statistics,
Springer (2004) (Cited on pages 1 and 201)

223

http://www.academia.edu/2742812/Formal_verification_and_validation_of_aadl_models
http://www.academia.edu/2742812/Formal_verification_and_validation_of_aadl_models
http://comjnl.oxfordjournals.org/content/54/5/754.abstract
http://comjnl.oxfordjournals.org/content/54/5/754.abstract
http://dx.doi.org/10.1007/978-3-642-14295-6_48
http://journal.ub.tu-berlin.de/eceasst/article/view/697
http://dl.acm.org/citation.cfm?id=1715759.1715776
http://dx.doi.org/10.1007/978-3-642-04468-7_15

BIBLIOGRAPHY

[39] Cassez, F., Pagetti, C., Roux, O.: A Timed Extension for AltaRica. Fundamenta
Informaticae 62(3-4), 291–332 (March 2004), http://dl.acm.org/citation.
cfm?id=1227052.1227054 (Cited on page 190)

[40] Cavada, R., Cimatti, A., Franzén, A., Kalyanasundaram, K., Roveri, M., Shyama-
sundar, R.K.: Computing Predicate Abstractions by Integrating BDDs and SMT
Solvers. In: Formal Methods in Computer Aided Design. pp. 69–76. FMCAD ’07
(2007), http://dx.doi.org/10.1109/FAMCAD.2007.35 (Cited on page 189)

[41] Ciancone, A., Drago, M.L., Filieri, A., Grassi, V., Koziolek, H., Mirandola, R.: The
KlaperSuite framework for model-driven reliability analysis of component-based
systems. Software & Systems Modeling pp. 1–22 (2013), http://dx.doi.org/
10.1007/s10270-013-0334-8 (Cited on page 186)

[42] Ciardo, G., Muppala, J., Trivedi, K.: SPNP: Stochastic Petri Net Package. In:
Proceedings of the Third International Workshop on Petri Nets and Performance
Models. pp. 142–151 (December 1989), http://dx.doi.org/10.1109/PNPM.
1989.68548 (Cited on page 58)

[43] Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic
Model Checking. In: Brinksma, E., Larsen, K. (eds.) Computer Aided Verification,
Lecture Notes in Computer Science, vol. 2404, pp. 359–364. Springer (2002),
http://dx.doi.org/10.1007/3-540-45657-0_29 (Cited on page 189)

[44] Cimatti, A., Franzén, A., Griggio, A., Kalyanasundaram, K., Roveri, M.: Tighter
Integration of BDDs and SMT for Predicate Abstraction. In: Proceedings of the
Conference on Design, Automation and Test in Europe. pp. 1707–1712. DATE ’10,
European Design and Automation Association, Leuven, Belgium (2010) (Cited on
pages 189 and 198)

[45] Clark, A., Gilmore, S., Hillston, J., Tribastone, M.: Stochastic Process Algebras.
In: Bernardo, M., Hillston, J. (eds.) Formal Methods for Performance Evaluation,
Lecture Notes in Computer Science, vol. 4486, pp. 132–179. Springer (2007),
http://dx.doi.org/10.1007/978-3-540-72522-0_4 (Cited on page 1)

[46] Clark, G., Courtney, T., Daly, D., Deavours, D., Derisavi, S., Doyle, J.M., Sanders,
W.H., Webster, P.: The Möbius Modeling Tool. In: Proceedings of the 9th in-
ternational Workshop on Petri Nets and Performance Models (PNPM’01). pp.
241–250. PNPM ’01, IEEE Computer Society, Washington, DC, USA (2001),
http://dl.acm.org/citation.cfm?id=882474.883479 (Cited on page 187)

224

http://dl.acm.org/citation.cfm?id=1227052.1227054
http://dl.acm.org/citation.cfm?id=1227052.1227054
http://dx.doi.org/10.1109/FAMCAD.2007.35
http://dx.doi.org/10.1007/s10270-013-0334-8
http://dx.doi.org/10.1007/s10270-013-0334-8
http://dx.doi.org/10.1109/PNPM.1989.68548
http://dx.doi.org/10.1109/PNPM.1989.68548
http://dx.doi.org/10.1007/3-540-45657-0_29
http://dx.doi.org/10.1007/978-3-540-72522-0_4
http://dl.acm.org/citation.cfm?id=882474.883479

BIBLIOGRAPHY

[47] Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Ab-
straction Refinement for Symbolic Model Checking. Journal of the ACM 50(5), 752–
794 (September 2003), http://dx.doi.org/10.1145/876638.876643 (Cited
on page 189)

[48] Codd, E.F.: A Relational Model of Data for Large Shared Data Banks (Reprint).
Communications of the ACM 26(1), 64–69 (1983), http://dx.doi.org/10.

1145/357980.358007 (Cited on page 29)

[49] David, P., Idasiak, V., Kratz, F.: Automating the synthesis of AltaRica Data-Flow
models from SysML. In: Bris, R., Guedes Soares, C., Martorell, S. (eds.) Proceed-
ings of European Safety and Reliability Conference, ESREL 2009. European Safety
and Reliability Association, Praha, Czech Republic (2009) (Cited on page 191)

[50] Design of Computer and Communication Systems Group (Inf 3) UniBw: LARES
Website (2013), http://rocks.w3.rz.unibw-muenchen.de (Cited on page 203)

[51] Devlin, K.: The Joy of Sets: Fundamentals of Contemporary Set Theory. Springer,
second edn. (1994) (Cited on page 27)

[52] Distefano, S., Puliafito, A.: Dynamic Reliability Block Diagrams VS Dynamic
Fault Trees. In: Proceedings of the Annual Reliability and Maintainability Sympo-
sium (RAMS ’07). pp. 71–76 (2007), http://dx.doi.org/10.1109/RAMS.2007.
328095 (Cited on page 1)

[53] Donaldson, A.F., Miller, A., Parker, D.: Language-Level Symmetry Reduction for
Probabilistic Model Checking. In: Proceedings of the Sixth International Conference
on the Quantitative Evaluation of Systems. pp. 289–298 (September 2009), http:
//dx.doi.org/10.1109/QEST.2009.21 (Cited on page 200)

[54] D’Argenio, P.R., Hermanns, H., Katoen, J.P., Klaren, R.: MoDeST – A Modelling
and Description Language for Stochastic Timed Systems. In: Alfaro, L., Gilmore,
S. (eds.) Process Algebra and Probabilistic Methods. Performance Modelling and
Verification, Lecture Notes in Computer Science, vol. 2165, pp. 87–104. Springer
(2001), http://dx.doi.org/10.1007/3-540-44804-7_6 (Cited on pages 182
and 187)

[55] Eclipse Foundation: Epsilon (2013), http://www.eclipse.org/epsilon, [On-
line; accessed 10-September-2013] (Cited on pages 137 and 202)

[56] Eclipse Foundation: Graphiti – A Graphical Tooling Infrastructure (2013), http:
//www.eclipse.org/graphiti/, [Online; accessed 4-September-2013] (Cited
on pages 137 and 202)

225

http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1145/357980.358007
http://dx.doi.org/10.1145/357980.358007
http://rocks.w3.rz.unibw-muenchen.de
http://dx.doi.org/10.1109/RAMS.2007.328095
http://dx.doi.org/10.1109/RAMS.2007.328095
http://dx.doi.org/10.1109/QEST.2009.21
http://dx.doi.org/10.1109/QEST.2009.21
http://dx.doi.org/10.1007/3-540-44804-7_6
http://www.eclipse.org/epsilon
http://www.eclipse.org/graphiti/
http://www.eclipse.org/graphiti/

BIBLIOGRAPHY

[57] Eclipse Foundation Inc.: Eclipse Modeling Framework Project (2013), http://
www.eclipse.org/modeling/emf/, [Online; accessed 10-Oktober-2013] (Cited
on pages 135 and 137)

[58] Eclipse Foundation Inc.: Xtext (2013), http://www.eclipse.org/Xtext, [On-
line; accessed 3-May-2013] (Cited on pages 30 and 134)

[59] Feiler, P.H., Gluch, D.P., Hudak, J.J.: The Architecture Analysis & Design Lan-
guage (AADL): An Introduction. Tech. Rep. CMU/SEI-2006-TN-011, Software En-
gineering Institute, Carnegie Mellon University (2006), www.dtic.mil/cgi-bin/
GetTRDoc?AD=ADA455842 (Cited on pages 182 and 188)

[60] Franks, G., Al-Omari, T., Woodside, M., Das, O., Derisavi, S.: Enhanced Modeling
and Solution of Layered Queueing Networks. IEEE Transactions on Software
Engineering 35(2), 148–161 (March 2009), http://dx.doi.org/10.1109/TSE.
2008.74 (Cited on page 186)

[61] Friebert, J.: Entwicklung eines Editor- und Analyseumgebung für LARES-Modelle.
Master’s thesis, Universität der Bundeswehr München, Dept. of Computer Science
4 (in German) (2011) (Cited on page 137)

[62] Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: A toolbox for the
construction and analysis of distributed processes. International Journal on Software
Tools for Technology Transfer 15(2), 89–107 (2013), http://dx.doi.org/10.
1007/s10009-012-0244-z (Cited on page 183)

[63] Gauthier, J., Leduc, X., Rauzy, A.: Assessment of Large Automatically Generated
Fault Trees by means of Binary Decision Diagrams. Journal of Risk and Reliability
221(2), 95–105 (2007) (Cited on page 190)

[64] Glabbeek, R.J.V., Smolka, S.A., Steffen, B.: Reactive, Generative, and Stratified
Models of Probabilistic Processes. Information and Computation 121(1), 59–80
(1995), http://dx.doi.org/10.1006/inco.1995.1123 (Cited on page 7)

[65] Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer (1996), http://dx.doi.
org/10.1007%2F3-540-60761-7 (Cited on page 200)

[66] Gouberman, A., Grand, C., Riedl, M., Siegle, M.: An IDE for the LARES Toolset.
In: Fischbach, K., Krieger, U.R. (eds.) Measurement, Modelling, and Evaluation
of Computing Systems and Dependability and Fault Tolerance, Lecture Notes in
Computer Science, vol. 8376, pp. 240–254. Springer International Publishing (2014),

226

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/Xtext
www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA455842
www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA455842
http://dx.doi.org/10.1109/TSE.2008.74
http://dx.doi.org/10.1109/TSE.2008.74
http://dx.doi.org/10.1007/s10009-012-0244-z
http://dx.doi.org/10.1007/s10009-012-0244-z
http://dx.doi.org/10.1006/inco.1995.1123
http://dx.doi.org/10.1007%2F3-540-60761-7
http://dx.doi.org/10.1007%2F3-540-60761-7

BIBLIOGRAPHY

http://dx.doi.org/10.1007/978-3-319-05359-2_17 (Cited on pages 133,
136, and 137)

[67] Gouberman, A., Riedl, M., Schuster, J., Siegle, M.: A Modelling and Analysis
Environment for LARES. In: Schmitt, J.B. (ed.) Measurement, Modelling, and
Evaluation of Computing Systems and Dependability and Fault Tolerance, Lecture
Notes in Computer Science, vol. 7201, pp. 244–248. Springer (2012), http://dx.
doi.org/10.1007/978-3-642-28540-0_19 (Cited on page 133)

[68] Gouberman, A., Riedl, M., Schuster, J., Siegle, M., Walter, M.: LARES - A Novel
Approach for Describing System Reconfigurability in Dependability Models of
Fault-Tolerant Systems. In: Guedes Soares, C., Bri, R., Martorell, S. (eds.) Reliabil-
ity, Risk, and Safety: Theory and Applications. Proceedings of the European Safety
and Reliability Conference (ESREL ’09), vol. 1, pp. 153–160. CRC Press (2009),
http://dx.doi.org/10.1201/9780203859759.ch22 (Cited on pages 157, 158,
and 161)

[69] Gouberman, A., Riedl, M., Siegle, M.: A Modular and Hierarchical Modelling
Approach for Stochastic Control. In: Klement, E., Borutzky, W., Fahringer, T.,
Hamza, M., Uskov, V. (eds.) Proceedings of the 32nd IASTED International Con-
ference on Modelling, Identification and Control (MIC ’13). ACTA Press (2013),
http://dx.doi.org/10.2316/P.2013.794-066 (Cited on pages 133, 134, 155,
194, and 196)

[70] Gouberman, A., Riedl, M., Siegle, M.: Transformation of LARES performability
models to continuous-time Markov reward models. In: Proceedings of the 7th Inter-
national Workshop on Verification and Evaluation of Computer and Communication
Systems (VECOS ’13). eWiC, British Computer Society (2013) (Cited on pages 133,
134, 155, and 196)

[71] Grand, C.: Extension of a textual editor for the specification language LARES -
Model transformation, validation and feature development. Master’s thesis, Univer-
sität der Bundeswehr München, Dept. of Computer Science 4 (in German) (2013)
(Cited on page 136)

[72] Graphical Editing Framework: (2013), http://www.eclipse.org/gef/, [Online;
accessed 3-September-2013] (Cited on page 138)

[73] Graphical Modeling Project: (2013), http://www.eclipse.org/modeling/

gmp/, [Online; accessed 10-September-2013] (Cited on page 137)

[74] Grassi, V., Mirandola, R., Randazzo, E., Sabetta, A.: KLAPER: An Intermediate
Language for Model-Driven Predictive Analysis of Performance and Reliability.

227

http://dx.doi.org/10.1007/978-3-319-05359-2_17
http://dx.doi.org/10.1007/978-3-642-28540-0_19
http://dx.doi.org/10.1007/978-3-642-28540-0_19
http://dx.doi.org/10.1201/9780203859759.ch22
http://dx.doi.org/10.2316/P.2013.794-066
http://www.eclipse.org/gef/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/

BIBLIOGRAPHY

In: Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Compo-
nent Modeling Example, Lecture Notes in Computer Science, vol. 5153, pp. 327–
356. Springer (2008), http://dx.doi.org/10.1007/978-3-540-85289-6_13
(Cited on pages 182 and 186)

[75] Grassi, V., Mirandola, R., Sabetta, A.: From Design to Analysis Models: A Kernel
Language for Performance and Reliability Analysis of Component-based Systems.
In: Proceedings of the 5th international workshop on Software and performance. pp.
25–36. WOSP ’05, ACM, New York, NY, USA (2005), http://dx.doi.org/10.
1145/1071021.1071024 (Cited on pages 185 and 186)

[76] Grassi, V., Mirandola, R., Sabetta, A.: A Model Transformation Approach for
the Early Performance and Reliability Analysis of Component-Based Systems.
In: Gorton, I., Heineman, G., Crnkovic, I., Schmidt, H., Stafford, J., Szyperski,
C., Wallnau, K. (eds.) Component-Based Software Engineering, Lecture Notes
in Computer Science, vol. 4063, pp. 270–284. Springer (2006), http://dx.doi.
org/10.1007/11783565_19 (Cited on pages 182 and 186)

[77] Grassi, V., Mirandola, R., Sabetta, A.: A Model-Driven Approach to Performability
Analysis of Dynamically Reconfigurable Component-Based Systems. In: Proceed-
ings of the 6th international workshop on Software and performance. pp. 103–114.
WOSP ’07, ACM, New York, NY, USA (2007), http://dx.doi.org/10.1145/
1216993.1217011 (Cited on page 186)

[78] Grumberg, O., Livne, S., Markovitch, S.: Learning to order BDD variables in
verification. Journal of Artificial Intelligence Research 18, 83–116 (January 2003),
http://dx.doi.org/10.1613/jair.1096 (Cited on page 215)

[79] Hahn, E., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional modelling
and analysis framework for stochastic hybrid systems. Formal Methods in System
Design pp. 1–42 (2012), http://dx.doi.org/10.1007/s10703-012-0167-z
(Cited on page 187)

[80] Hansen, H., Timmer, M.: Why Confluence is More Powerful than Ample Sets
in Probabilistic and Non-Probabilistic Branching Time. In: 10th Workshop on
Quantitative Aspects of Programming Languages (QAPL 2012), Tallinn, Estonia.
Istituto di Scienza e Tecnologie dell’Informazione, Pisa (April 2012), http://doc.
utwente.nl/80456/ (Cited on page 200)

[81] Hartmanns, A.: MODEST – A unified language for quantitative models.
In: Proceeding of the Forum on Specification and Design Languages. pp.

228

http://dx.doi.org/10.1007/978-3-540-85289-6_13
http://dx.doi.org/10.1145/1071021.1071024
http://dx.doi.org/10.1145/1071021.1071024
http://dx.doi.org/10.1007/11783565_19
http://dx.doi.org/10.1007/11783565_19
http://dx.doi.org/10.1145/1216993.1217011
http://dx.doi.org/10.1145/1216993.1217011
http://dx.doi.org/10.1613/jair.1096
http://dx.doi.org/10.1007/s10703-012-0167-z
http://doc.utwente.nl/80456/
http://doc.utwente.nl/80456/

BIBLIOGRAPHY

44–51. IEEE (2012), http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?
arnumber=6336982 (Cited on page 187)

[82] Hartmanns, A., Hermanns, H.: A Modest Approach to Checking Probabilistic Timed
Automata. In: Proceedings of the Sixth International Conference on the Quantitative
Evaluation of Systems. pp. 187–196 (September 2009), http://dx.doi.org/10.
1109/QEST.2009.41 (Cited on pages 187 and 197)

[83] Hermanns, H., Jansen, D., Usenko, Y.: From StoCharts to MoDeST: A comparative
reliability analysis of train radio communications. In: Proceedings of the 5th interna-
tional workshop on Software and performance, WOSP ’05. pp. 13–23. ACM Press,
New York, NY, USA (2005), http://doc.utwente.nl/54793/, hJU05 (Cited
on page 187)

[84] Hermanns, H., Siegle, M.: Bisimulation Algorithms for Stochastic Process Algebras
and Their BDD-Based Implementation. In: Katoen, J.P. (ed.) Formal Methods for
Real-Time and Probabilistic Systems, Lecture Notes in Computer Science, vol. 1601,
pp. 244–264. Springer (1999), http://dx.doi.org/10.1007/3-540-48778-6_
15 (Cited on pages 120, 121, and 122)

[85] Hirel, C., Sahner, R., Zang, X., Trivedi, K.: Reliability and Performability
Modeling Using SHARPE 2000. In: Haverkort, B., Bohnenkamp, H., Smith,
C. (eds.) Computer Performance Evaluation.Modelling Techniques and Tools,
Lecture Notes in Computer Science, vol. 1786, pp. 345–349. Springer (2000),
http://dx.doi.org/10.1007/3-540-46429-8_28 (Cited on page 186)

[86] Hofmeister, C.R.: Dynamic Reconfiguration of Distributed Applications. Ph.D.
thesis, University of Maryland, College Park, MD, USA (1993) (Cited on page 180)

[87] IEC: IEC 61508 Edition 2.0 – Functional Safety of Electrical / Electronic / Pro-
grammble Electronic Safety-Related Systems (April 2010) (Cited on page 18)

[88] ISO/IEC/(IEEE): ISO/IEC 42010 (IEEE Std) 1471-2000 : Systems and Software en-
gineering - Recomended practice for architectural description of software-intensive
systems (July 2007) (Cited on page 180)

[89] JFree: (2013), http://www.jfree.org/, [Online; accessed 4-September-2013]
(Cited on page 139)

[90] Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The Ins and
Outs of The Probabilistic Model Checker MRMC. Performance Evaluation 68(2),
90–104 (2011), http://dx.doi.org/10.1016/j.peva.2010.04.001, advances
in Quantitative Evaluation of Systems, QEST 2009 (Cited on page 189)

229

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6336982
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6336982
http://dx.doi.org/10.1109/QEST.2009.41
http://dx.doi.org/10.1109/QEST.2009.41
http://doc.utwente.nl/54793/
http://dx.doi.org/10.1007/3-540-48778-6_15
http://dx.doi.org/10.1007/3-540-48778-6_15
http://dx.doi.org/10.1007/3-540-46429-8_28
http://www.jfree.org/
http://dx.doi.org/10.1016/j.peva.2010.04.001

BIBLIOGRAPHY

[91] Kloul, L.: From DFTs to PEPA: A Model-to-Model Transformation. In: Bradley,
J.T. (ed.) Computer Performance Engineering, Lecture Notes in Computer Sci-
ence, vol. 5652, pp. 94–109. Springer (2009), http://dx.doi.org/10.1007/
978-3-642-02924-0_8 (Cited on pages 181 and 182)

[92] Knuth, D.E.: Top-down syntax analysis. Acta Informatica 1(2), 79–110 (1971),
http://dx.doi.org/10.1007/BF00289517 (Cited on page 30)

[93] Knuth, D.E.: Fundamental Algorithms, The Art of Computer Programming, vol. 1,
Section 2.3, pp. 308–316. Addison-Wesley Professional, Reading, Massachusetts,
third edn. (July 1997), TREES (Cited on page 29)

[94] Kuntz, M., Siegle, M., Werner, E.: Symbolic Performance and Dependability
Evaluation with the Tool CASPA. In: Núñez, M., Maamar, Z., Pelayo, F.L.,
Pousttchi, K., Rubio, F. (eds.) Applying Formal Methods: Testing, Performance,
and M/E-Commerce, Lecture Notes in Computer Science, vol. 3236, pp. 293–
307. Springer (2004), http://dx.doi.org/10.1007/978-3-540-30233-9_22
(Cited on page 104)

[95] Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Symbolic Model
Checker. In: Field, T., Harrison, P., Bradley, J., Harder, U. (eds.) Computer Perfor-
mance Evaluation: Modelling Techniques and Tools, Lecture Notes in Computer
Science, vol. 2324, pp. 200–204. Springer (2002), http://dx.doi.org/10.1007/
3-540-46029-2_13 (Cited on page 187)

[96] Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O Automata. Information and
Computation 185(1), 105–157 (August 2003), http://dx.doi.org/10.1016/
S0890-5401(03)00067-1 (Cited on page 198)

[97] Lückel, J., Grotstollen, H., Henke, M., Hestermeyer, T., Liu-Henke, X.: RailCab Sys-
tem: Engineering Aspects. In: Schiehlen, W. (ed.) Dynamical Analysis of Vehicle
Systems, CISM International Centre for Mechanical Sciences, vol. 497, pp. 237–281.
Springer Vienna (2009), http://dx.doi.org/10.1007/978-3-211-76666-8_6
(Cited on page 164)

[98] Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What Industry
Needs from Architectural Languages: A Survey. IEEE Transactions on Software
Engineering 39(6), 869–891 (2013), http://dx.doi.org/10.1109/TSE.2012.
74 (Cited on page 180)

[99] Malek, M., Hoffmann, G.A., Milanovic, N., Brüning, S., Meyer, R., Milic, B.:
Methoden und Werkzeuge zur Verfügbarkeitsermittlung. Informatik-Berichte 219,

230

http://dx.doi.org/10.1007/978-3-642-02924-0_8
http://dx.doi.org/10.1007/978-3-642-02924-0_8
http://dx.doi.org/10.1007/BF00289517
http://dx.doi.org/10.1007/978-3-540-30233-9_22
http://dx.doi.org/10.1007/3-540-46029-2_13
http://dx.doi.org/10.1007/3-540-46029-2_13
http://dx.doi.org/10.1016/S0890-5401(03)00067-1
http://dx.doi.org/10.1016/S0890-5401(03)00067-1
http://dx.doi.org/10.1007/978-3-211-76666-8_6
http://dx.doi.org/10.1109/TSE.2012.74
http://dx.doi.org/10.1109/TSE.2012.74

BIBLIOGRAPHY

Humboldt-Universität zu Berlin, Institut für Informatik (2007), http://edoc.
hu-berlin.de/series/informatik-berichte/219/PDF/219.pdf (Cited on
pages 179 and 181)

[100] Man, K.L., Schiffelers, R.R.H.: Formal Specification and Analysis of Hybrid
Systems. Ph.D. thesis, Eindhoven University of Technology, Eindoven, Netherlands
(2006) (Cited on page 201)

[101] Marciniak, C.: Erweiterung von LARES zur Modellierung von Entschei-
dungsprozessen. Master’s thesis, Universität der Bundeswehr München, Dept. of
Computer Science 4 (in German) (2012) (Cited on page 155)

[102] Martin, D., Burstein, M., Hobbs, E., Lassila, O., Mcdermott, D., Mcilraith, S.,
Narayanan, S., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S:
Semantic Markup for Web Services. Tech. rep., W3C (November 2004), http:
//www.w3.org/Submission/OWL-S/ (Cited on page 185)

[103] Meyer, T., Kessler, J., Sextro, W., Trachtler, A.: Increasing Intelligent Systems’
Reliability by Using Reconfiguration. In: Proceedings of the Annual Reliability and
Maintainability Symposium (RAMS ’13). pp. 1–6 (2013), http://dx.doi.org/
10.1109/RAMS.2013.6517636 (Cited on page 165)

[104] Meyer, T., Sondermann-Wölke, C., Sextro, W., Riedl, M., Gouberman, A., Siegle,
M.: Bewertung der Zuverlässigkeit selbstoptimierender Systeme mit dem LARES-
Framework. In: Gausemeier, J., Dumitrescu, R., Rammig, F., Schäfer, W., Trächtler,
A. (eds.) 9. Paderborner Workshop Entwurf Mechatronischer Systeme. pp. 161–174.
HNI-Verlagsschriftenreihe, Heinz-Nixdorf-Institut, Paderborn (2013) (Cited on
pages 164 and 166)

[105] Norris, J.: Markov Chains. No. Nr. 2008 in Cambridge Series in Statistical and
Probabilistic Mathematics, Cambridge University Press (1998) (Cited on page 1)

[106] Object Management Group: UML Profile for Schedulability, Performance, and
Time Specification (2005), http://www.omg.org/spec/SPTP/1.1/ (Cited on
page 186)

[107] Object Management Group: Meta Object Facility (MOF) Core Specification Version
2.0 (2006), http://www.omg.org/cgi-bin/doc?formal/2006-01-01 (Cited
on pages 185 and 186)

[108] Object Management Group: UML 2.3 Superstructure (May 2010), http://www.
omg.org/spec/UML/2.3 (Cited on page 182)

231

http://edoc.hu-berlin.de/series/informatik-berichte/219/PDF/219.pdf
http://edoc.hu-berlin.de/series/informatik-berichte/219/PDF/219.pdf
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://dx.doi.org/10.1109/RAMS.2013.6517636
http://dx.doi.org/10.1109/RAMS.2013.6517636
http://www.omg.org/spec/SPTP/1.1/
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/spec/UML/2.3
http://www.omg.org/spec/UML/2.3

BIBLIOGRAPHY

[109] Object Management Group: OMG Systems Modeling Language (OMG SysMLTM)
(2012), www.omgsysml.org (Cited on page 3)

[110] Odersky, M., Spoon, L., Venners, B.: Programming in Scala: A Comprehensive
Step-by-step Guide. Artima Inc. (2008) (Cited on pages 140 and 141)

[111] Painter, R., Coppit, D.: Developing High-Level Reliability Languages Using A
General Intermediate Domain. In: Proceedings of the Annual Reliability and Main-
tainability Symposium (RAMS ’05). pp. 133–138 (2005), http://dx.doi.org/
10.1109/RAMS.2005.1408351 (Cited on pages 181, 184, and 185)

[112] Petri, C.: Kommunikation mit Automaten. Ph.D. thesis, Institut für instrumentelle
Mathematik, Bonn (1962) (Cited on page 1)

[113] Plotkin, G.D.: A Structural Approach to Operational Semantics. Journal of Logic
and Algebraic Programming 60-61, 17–139 (2004), http://dx.doi.org/10.

1016/j.jlap.2004.05.001 (Cited on page 94)

[114] Point, G.: AltaRica: Contribution à l’unification des méthodes formelles et de
la sûreté de fonctionnement. Thèse de doctorat, LaBRI – Université Bordeaux I
(January 2000) (Cited on pages 182 and 190)

[115] Point, G., Rauzy, A.: AltaRica – Constraint automata as a description language.
Journal Européen des Systèmes Automatisés 33(8–9), 1033–1052 (1999) (Cited on
pages 182 and 190)

[116] Pulungan, R.: Reduction of Acyclic Phase-Type Representations. Ph.D. thesis,
Universität des Saarlandes, Saarbrücken, Germany (2009) (Cited on page 196)

[117] Rauzy, A.: Modes Automata and their Compilation into Fault Trees. Reliability En-
gineering and System Safety 78(1), 1–12 (2002), http://dx.doi.org/10.1016/
S0951-8320(02)00042-X (Cited on page 190)

[118] Reijsbergen, D., de Boer, P.-T., Scheinhardt, W., Haverkort, W.: Rare event simula-
tion for highly dependable systems with fast repairs. Performance Evaluation 69(7-
8), 336–355 (July 2012), http://dx.doi.org/10.1016/j.peva.2011.11.004
(Cited on page 201)

[119] Riedl, M., Schuster, J., Siegle, M.: Recent Extensions to the Stochastic Process
Algebra Tool CASPA. In: Proceedings of the 5th International Conference on
Quantitative Evaluation of Systems (QEST ’08). pp. 113–114 (2008), http://dx.
doi.org/10.1109/QEST.2008.13 (Cited on pages 104 and 107)

232

www.omgsysml.org
http://dx.doi.org/10.1109/RAMS.2005.1408351
http://dx.doi.org/10.1109/RAMS.2005.1408351
http://dx.doi.org/10.1016/j.jlap.2004.05.001
http://dx.doi.org/10.1016/j.jlap.2004.05.001
http://dx.doi.org/10.1016/S0951-8320(02)00042-X
http://dx.doi.org/10.1016/S0951-8320(02)00042-X
http://dx.doi.org/10.1016/j.peva.2011.11.004
http://dx.doi.org/10.1109/QEST.2008.13
http://dx.doi.org/10.1109/QEST.2008.13

BIBLIOGRAPHY

[120] Riedl, M., Schuster, J., Siegle, M., Blum, M., Schiller, F.: Dependability Model
Transformation – A Stochastic Process Algebra Semantics for ZuverSicht Models.
In: Ale, B., Papazoglou, I., Zio, E. (eds.) Reliability, Risk and Safety: Back to the
Future. Proceedings of the European Safety and Reliability Conference (ESREL
’10). pp. 932–940. CRC Press London (2010) (Cited on page 108)

[121] Riedl, M., Siegle, M.: A LAnguage for REconfigurable dependable Systems: Seman-
tics & Dependability Model Transformation. In: Proceedings of the 6th International
Workshop on Verification and Evaluation of Computer and Communication Systems
(VECOS ’12). pp. 78–89. eWiC, British Computer Society (August 2012) (Cited
on page 10)

[122] Roy, P., Parker, D., Norman, G., de Alfaro, L.: Symbolic Magnifying Lens
Abstraction in Markov Decision Processes. In: Quantitative Evaluation of Sys-
tems, 2008. QEST ’08. Fifth International Conference on. pp. 103–112 (2008),
http://dx.doi.org/10.1109/QEST.2008.41 (Cited on page 200)

[123] Schuster, J.: Towards faster numerical solution of Continuous Time Markov Chains
stored by symbolic data structures. Ph.D. thesis, Universität der Bundeswehr
München (2012), http://d-nb.info/102057920X (Cited on pages 104, 106,
and 158)

[124] Schuster, J., Siegle, M.: Dependability modelling with the stochastic process algebra
tool CASPA. In: Proceedings of the First Workshop on DYnamic Aspects in DEpend-
ability Models for Fault-Tolerant Systems (DYADEM-FTS ’10). pp. 35–36. ACM,
New York, NY, USA (2010), http://dx.doi.org/10.1145/1772630.1772640
(Cited on pages 104 and 157)

[125] Schuster, J., Siegle, M.: Path-based calculation of MTTFF, MTTFR, and asymptotic
unavailability with the stochastic process algebra tool CASPA. Proceedings of the
Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 225(4),
399–406 (2011), http://dx.doi.org/10.1177/1748006X11392286 (Cited on
page 104)

[126] Siegle, M.: Behavior analysis of communication systems: Compositional modelling,
compact representation and analysis of performability properties. Berichte aus der
Informatik, Shaker (2002), http://d-nb.info/965520692 (Cited on pages 120
and 200)

[127] Singh, D., Ibrahim, A.M., Yohanna, T., Singh, J.N.: A systematization of fundamen-
tals of multisets. Lecturas Matematicas 29, 33–48 (2008) (Cited on page 27)

233

http://dx.doi.org/10.1109/QEST.2008.41
http://d-nb.info/102057920X
http://dx.doi.org/10.1145/1772630.1772640
http://dx.doi.org/10.1177/1748006X11392286
http://d-nb.info/965520692

BIBLIOGRAPHY

[128] Singh, D., Ibrahim, A.M., Yohanna, T., Singh, J.N.: Complementation in Multiset
Theory. International Mathematical Forum 6(38), 1877–1884 (2011) (Cited on
page 27)

[129] Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA (2002) (Cited on page 186)

[130] Society of Automotive Engineers (SAE): The SAE Architecture Analysis and
Design Language (AADL) standard, http://www.aadl.info/, [Online; accessed
27-January-2014] (Cited on page 3)

[131] Sondermann-Wölke, C., Sextro, W.: Integration of Condition Monitoring in Self-
optimizing Function Modules Applied to the Active Railway Guidance Module.
International Journal on Advances in Intelligent Systems 3(1&2), 65–74 (2010)
(Cited on page 164)

[132] Spivey, J.: The Z Notation: A Reference Manual. Prentice Hall International Series
in Computer Science, Prentice Hall (1992), http://spivey.oriel.ox.ac.uk/

~mike/zrm/zrm.pdf (Cited on page 184)

[133] Standard Widget Toolkit: (2013), http://www.eclipse.org/swt/, [Online; ac-
cessed 3-September-2013] (Cited on page 138)

[134] Torreborre, E.: specs2 – Software Specifications for Scala (2013), http://specs2.
org, [Online; accessed 13-December-2011] (Cited on page 155)

[135] Typesafe Inc.: The Akka Toolkit (2013), http://akka.io/, [Online; accessed
4-September-2013] (Cited on page 139)

[136] Villen-Altamirano, M., Villen-Altamirano, J.: Restart: A straightforward method
for fast simulation of rare events. In: Simulation Conference Proceedings, 1994.
Winter. pp. 282–289 (1994), http://dx.doi.org/10.1109/WSC.1994.717150
(Cited on page 201)

[137] W3C: Scalable Vector Graphics (SVG) (2013), http://www.w3.org/Graphics/
SVG/, [Online; accessed 3-September-2013] (Cited on page 139)

[138] Walter, M.: Simple Non-Markovian Models for Complex Repair and Maintenance
Strategies with LARES+. In: Bérenguer, C., Grall, A., Soares, C.G. (eds.) Advances
in Safety, Reliability and Risk Management. Proceedings of the European Safety
and Reliability Conference (ESREL ’11). pp. 962–969. CRC Press London (2011),
http://dx.doi.org/10.1201/b11433-135 (Cited on page 36)

234

http://www.aadl.info/
http://spivey.oriel.ox.ac.uk/~mike/zrm/zrm.pdf
http://spivey.oriel.ox.ac.uk/~mike/zrm/zrm.pdf
http://www.eclipse.org/swt/
http://specs2.org
http://specs2.org
http://akka.io/
http://dx.doi.org/10.1109/WSC.1994.717150
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://dx.doi.org/10.1201/b11433-135

BIBLIOGRAPHY

[139] Walter, M., Siegle, M., Bode, A.: OpenSESAME - The Simple but Extensive,
Structured Availability Modeling Environment. Reliability Engineering & System
Safety 93(6), 857–873 (2008), http://dx.doi.org/10.1016/j.ress.2007.03.
034 (Cited on pages 181 and 182)

[140] Wikipedia: Lares – Wikipedia, The Free Encyclopedia (2011), http://en.

wikipedia.org/w/index.php?title=Lares&oldid=463655702, [Online; ac-
cessed 13-December-2011] (Cited on page 2)

[141] Zimmermann, A., Knoke, M., Huck, A., Hommel, G.: Towards version 4.0 of
TimeNET. In: Proceedings of the 13th GI/ITG Conference on Measuring, Modelling
and Evaluation of Computer and Communication Systems (MMB). pp. 473–476.
VDE Verlag VDE Verlag (March 2006), http://ieeexplore.ieee.org/xpl/
abstractAuthors.jsp?arnumber=5755407 (Cited on page 58)

235

http://dx.doi.org/10.1016/j.ress.2007.03.034
http://dx.doi.org/10.1016/j.ress.2007.03.034
http://en.wikipedia.org/w/index.php?title=Lares&oldid=463655702
http://en.wikipedia.org/w/index.php?title=Lares&oldid=463655702
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=5755407
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=5755407

BIBLIOGRAPHY

236

Acronyms

AADL Architecture Analysis & Design
Language

AST Abstract Syntax Tree

BDD Binary Decision Diagram

BDMP Boolean logic Driven Markov
Processes

CASPA Composition and Analysis of SPA

CMS Component Monitoring System

CPU Central Processing Unit

CTL Computation Tree Logic

CTMC Continuous Time Markov Chain

DE Deterministic Extension

DES Discrete Event Simulation

DFG Deutsche Forschungsgemeinschaft

DFT Dynamic FT

DNF Disjunctive Normal Form

EBNF Extended Backus-Naur Form

EDA Event Driven Automaton

eDSPN Extended Deterministic and SPN

EMF Eclipse Modeling Framework

EPL Epsilon Pattern Language

EQN Extended Queueing Network

ESA European Space Agency

ESLTS Extended Stochastic LTS

FA Failure Automaton

FMEA Failure Mode an Effects Analysis

FoD Failure-on-Demand

FoR Failure-on-Repair

FT Fault Tree

FTN Fault Tolerant Network

GMF Graphical Modeling Framework

GUI Graphical User Interface

IDE Integrated Development
Environment

IEC International Electrotechnical
Commission

IEEE Institute of Electrical and
Electronics Engineers

IMC Interactive MC

ISO International Organization for
Standardization

LARES LAnguage for REconfigurable
(dependable) Systems

LFA LARES Flat Automata

LFIA LARES Flat Interacting Automata

LGPL GNU Lesser General Public
License

lMC Interactive Markov Chain

LQN Layered Queueing Network

LTL Linear Temporal Logic

LTS Labelled Transition System

MC Markov Chain

MDD Model Driven Development

MDP Markov Decision Process

mLQN modified LQN

MOF MetaObject Facility

237

ACRONYMS

MS Monitoring System

MTBDD Multi-Terminal BDD

MTTF Mean-Time-To-Failure

NEDA Network of EDAs

OOP Object Oriented Programming

OWL Web Ontology Language

PAC Process Algebra Composition

PACT Process Algebra Composition
Tuple

PAT Process Algebra Tuple

PMS Phased Mission System

PN Petri Net

PTL Probabilistic Timed Logic

QoS Quality of Service

QVT Query View Transformation

RBD Reliability Block Diagram

RE Reward Extension

RG Reachability Graph

SAT Satisfiability

SLTS Stochastic LTS

SMC Statistical Model Checking

SMR semi-Markov reward (model)

SMT Satisfiability Modulo Theory

SOS Structural Operational Semantic

SPA Stochastic Process Algebra

SPE Software Performance Engineering

SPN Stochastic PN

SVG Scalable Vector Graphics

SWT Standard Widget Toolkit

SysML System Modelling Language

TS Transition System

UML Unified Modeling Language

URL Uniform Resource Locator

XML Extensible Markup Language

238

	1 Introduction
	1.1 Informal Introduction to LARES
	1.2 Fault Tolerant Network Example
	1.3 Component Monitoring System Example
	1.4 Contribution
	1.5 Organisation of this Thesis

	2 LARES - Formal Language Definition
	2.1 Notation
	2.2 Concrete and Abstract Syntax of LARES
	2.2.1 The LARES Root Element
	2.2.2 Behavior Definition
	2.2.3 Module Definition
	2.2.4 Common Sublanguages and their Adaption to LARES

	3 Transformation Semantics
	3.1 Traversing LARES Models
	3.2 Scoping Semantics
	3.3 Transformation into LARESBASE
	3.3.1 Parameter & Instance Tree Expansion
	3.3.2 Condition Expansion
	3.3.3 Guard Expansion

	3.4 From LARESBASE to LTS as Target Formalism
	3.4.1 LARESFLAT: A Hierarchy-Resolved LARESBASE
	3.4.2 Abstract Representation of a Transition Systems
	3.4.3 LTS Semantics for LARESFLAT

	3.5 From LARESBASE to SPA as Target Formalism
	3.5.1 Syntax and Semantics of the CASPA SPA
	3.5.2 Compositionality Issues
	3.5.3 Intermediate Composition Structure of Process Algebra Terms
	3.5.4 LARESBASE to SPA

	3.6 Assuring the Correctness of different Transformation-Semantics
	3.6.1 Testing Based Approach
	3.6.2 General Proof Sketch

	4 Structure and Implementation of the LARES Framework
	4.1 Components of the Eclipse-based LARES IDE
	4.1.1 Textual Editor Plugin
	4.1.2 Graphical Editor Plugin
	4.1.3 LARES View Plugin

	4.2 The Scala-based Library Implementation
	4.2.1 LARES-independent Formalisms & Algorithms
	4.2.2 LARES-related Formalisms & Transformations
	4.2.3 LARES Model Transformation Validation

	5 Case Studies and Implications on Scalability
	5.1 Phased Mission System
	5.2 Larger Case-Study: The RailCab Spring and Tilt Module
	5.3 Parametrisable Recursively Layered Queueing Network
	5.4 Case Studies as Benchmarks to Testify the Scalability

	6 Approaches Related to LARES
	6.1 Arcade: Architectural Dependability Evaluation
	6.2 FA: Failure Automaton
	6.3 KLAPER: Kernel LAnguage for PErformance and Reliability analysis
	6.4 MoDeST: Modeling and Description Language for Stochastic Timed Systems
	6.5 SLIM: System-Level Integrated Modeling
	6.6 AltaRica
	6.7 Classification and Distinction

	7 Conclusion and Future Work
	7.1 Language Extensions and Expressiveness
	7.2 Scalability Considerations
	7.3 Modelling and Toolset
	7.4 Closing Comment

	A Frequently Used Attributed Tuples
	B Common Substitution and Evaluation Functions
	C Refined Synchronisation Semantics of PACT
	D On Combining Generative/Reactive Expressions
	Bibliography
	Acronyms

