
Dissertation

On the

Complexity, Approximation and Modeling

Aspects

of

Special Partition Problems

by

Bernhard Reinbold

Full imprint approved by the Fakultät für Informatik of the Universität der Bun-

deswehr München to obtain the academic degree of Doctor rerum naturalium

(Dr. rer. nat.).

1. & 2. Advisor:

Prof. Dr. Andreas Brieden

Prof. Dr. Stefan Pickl

Committee:

Prof. Ph.D. Klaus Buchenrieder

Prof. Dr. Andreas Brieden

Prof. Dr. Stefan Pickl

Prof. Dr. Uwe M. Borgho�

Prof. Dr.-Ing. Andreas Karcher

Prof. Dr. Oliver Rose

This dissertation was submitted to the Universität der Bundeswehr München

and accepted by the Fakultät für Informatik on March 27th, 2014. The oral

examination was held on October 22nd, 2014.





Abstract

In many practical applications partition problems play an important role. In

most cases in this context a target function and a basic set are given. The basic

set has to be divided into subsets, while certain constraints have to be satis�ed.

To de�ne the mostly linear target functions and constraints weight functions

are used. These assign a constant value to each element of the basic set. In

this work a partition problem is analyzed in which the weights are not constant

but also depend on the partition itself. Especially, the complexity in relation

with monotonic properties of the weight function is in the focus of the research.

Further, another partition problem with piecewise linear convex target function

is de�ned and modeled as integer linear program. Additionally, heuristics are

developed that solve the problem in short time.





Abstract (German)

In vielen praktischen Anwendungen spielen Partitionsprobleme eine wichtige

Rolle. In den meisten Fällen sind in diesem Zusammenhang eine Zielfunktion

und eine Grundmenge gegeben. Die Grundmenge muss in Teilmengen unterteilt

werden, wobei bestimmte Nebenbedingungen eingehalten werden müssen. Zur

De�nition der meist linearen Zielfunktionen und Nebenbedingungen werden

Gewichtsfunktionen verwendet. Diese ordnen jedem Element der Grundmenge

einen konstantenWert zu. In dieser Arbeit wird ein Partitionsproblem analysiert,

in dem die Gewichte nicht konstant sind, sondern auch von der Partition selbst

abhängen. Vor allem die Komplexität in Abhängigkeit von Monotonieeigen-

schaften der Gewichtsfunktion steht imMittelpunkt der Untersuchungen. Auÿer-

dem wird ein weiteres Partitionsproblem mit stückweise linearer konvexer Ziel-

funktion de�niert und als ganzzahliges lineares Programm modelliert. Darüber

hinaus werden Heuristiken entwickelt, die das Problem in kurzer Zeit lösen.
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Introduction

Partition problems are one of the most common and basic problems in discrete

optimization. Besides stand-alone variants they often occur as subproblems in

larger scale problem settings. In general all partition problems share that an

arbitrary �nite basic set has to be divided into a number of subsets.

Basically there are two types of partition problems. The �rst are decision type

problems, where a partition has to be found that satis�es some condition or a set

of conditions. The second are minimization (or maximization) type problems,

where a partition has to be found that minimizes (or maximizes) some target

function. The conditions and target functions are often expressed on the basis of

di�erent weight functions. These weight functions assign values to elements or

tuples of elements of the basic set. Furthermore, in most cases the two problem

types are mixed. This means a minimal partition with respect to the target

function has to be found among the set of feasible partitions that ful�ll the

given conditions.

Example partition problems

In the following a large variety of partition problems and the state of research

in this �eld are presented.

The most elementary decision type partition problem is the Number Partition

Problem (NPP). In NPP the basic set is a �nite set of natural numbers. The

goal is to �nd a partition of this set into two subsets such that the sums of

the elements in both subsets are equal. According to Garey and Johnson [37]

already this elementary problem is NP-complete.

In particular, in this work NPP is very important since the newly introduced

special partition problems are closely related. Especially, this becomes obvious

in the proofs of the corresponding complexity results. In these proofs the NP-
hardness of NPP is transferred to the according partition problem.
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Introduction

Partition problems very often arise in the �eld of graph theory. Holyer [46], for

example, studied the problem to partition the edges of a graph such that all

resulting subgraphs are complete. In the List Partition Problem a vertex par-

tition has to be found and a given matrix encodes whether edges are required,

forbidden or arbitrary between the partitioning subsets ([13]). The problem to

partition the vertices of a graph into a minimum number of cliques was analyzed

by Pirwani and Salavatipour [74]. Their work considered only a special set of

graphs called unit disk graphs. Another special set of graphs (random geometric

graphs) was studied by Mahjoub, Leskovskaya and Matula [65]. They engaged

the problem to partition the vertices of a graph into a maximum number of in-

dependent dominating sets. In another problem derived from graph theory the

goal is to �nd a partition that minimizes the maximum number of edges leaving

the partitioning subsets ([6]). Yan and Chang [89] studied an edge partition

problem for so-called block graphs. In this problem the edges of a graph have

to be partitioned into a minimum number of vertex disjunct paths.

To give an example derived from computer science the Minimum Common

String Partition Problem (MCSP) shall be mentioned ([19], [36]). In MCSP

two given strings are partitioned into the same collection of substrings such

that the number of these substrings is minimal.

All of these partition problems are of structural di�culty and do not involve a

special weight function as input. An example for a partition problem involving

a weight function that values elements of the basic set is the Optimum Cost

Chromatic Partition Problem (OCCP) for graphs ([53], [55]). In this problem a

set of di�erent colors, which are weighted by some input function, is given. The

goal is to �nd a coloring of the vertices such that neighboring vertices have dif-

ferent colors and the weight of the used colors is minimal. Feo, Goldschmidt and

Khellaf [31] studied the problem to partition the vertices of an edge weighted

graph. The objective in this problem is to minimize the sum of edges that have

both endpoints in the same partitioning set.

A prominent example for a minimization type partition problem that involves a

weight function on tuples of elements was introduced by Dantzig and Ramser [24]

in 1959. It is well-known today as the Vehicle Routing Problem (VRP). In this

problem one central depot in which n vehicles are stationed is given. Further,

there is a set of customers which have to be visited by these vehicles. The weight

function, for example, is the distance or travel time between two locations. The

2
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problem is to �nd a partition of the customers into n subsets and n tours such

that each vehicle visits one subset of customers. Vehicles start the tour at the

depot and return after visiting all customers. The target is to minimize the to-

tal distance or travel time of all vehicles. Due to Lenstra and Rinnooy Kan [59]

VRP is NP-complete. This directly follows from the hardness of the so-called

Travelling Salesman Problem by Karp [52], which equals VRP for n = 1. Even

for one vehicle the problem to �nd a shortest tour through a set of customers

is NP-complete.

Besides the standard formulation of VRP ([73]) many extensions of the problem

exist. In the following an extensive list of variants is provided since the �rst of

the partition problems studied in this work is motivated by a similar problem

and thus delineation of existing work is necessary.

Very often versions of VRP are studied in which customers have a certain de-

mand of resources. These resources have to be delivered by capacity bounded

vehicles ([75]). Incompatibility constraints that restrict certain resources within

one vehicle ([67]) or haul constraints that restrict travel times for vehicle drivers

([76]) are possible. Further, vehicles can be used multiple times ([4]) or split

deliveries can be allowed ([28]). This means that vehicles can return to the de-

pot before visiting further customers or the demand of a customer can also be

accommodated by multiple vehicles. Golden, Assad, Levy and Gheysens [40]

studied a problem setting involving nonidentical vehicles that have di�erent

cost and capacity structures. Additionally, customers can also give resources

back to the vehicles ([41]) and the capacity of the vehicles can depend on the

loading sequence of the resources ([72]). Gutiérrez-Jarpa, Desaulniers, Laporte

and Marianov [43] considered a version of this problem where just pro�table

resource pickups are made. Another very popular extension of VRP are time

windows for the customers ([21], [20]). In this case customers cannot be vis-

ited anytime but have to be served within certain time limits. Also soft time

windows are considered ([35]). This means a penalty has to be paid if the cus-

tomer is visited outside the window. The Multi-Depot Vehicle Routing Problem

([22], [45]) is also of great practical relevance. In this setting the vehicles are not

located at one single depot but at multiple depots from which customers can

be visited. Vidal, Crainic, Gendreau, Lahrichi and Rei [86] analyzed a periodic

model in which customers have to be visited frequently within some period.

In all cases also stochastic demands or travel times are imaginable ([67], [20]).

3
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Further, dynamic customer requests or travel time changes that may happen

during the routing process can be considered in solving methods ([64]). Ceschia,

Di Gaspero and Schaerf [14] imposed that vehicles are owned by external carri-

ers. These carriers bill costs to the routing company in di�erent ways. Baldacci,

Mingozzi, Roberti and Calvo [5] introduced satellite depots. Satellites are sup-

plied from a central depot and customers are just supplied from the satellites.

This leads to a two level routing problem.

Also di�erent target functions are studied. For example, special edge sets can

cost a one-time fee if accessed ([77]). This models road user charges. The target

can also be to �nd the smallest number of vehicles which is su�cient to serve all

customers ([40]) or to minimize the sum of the arrival times at the customers

([71]).

An example for a minimization type partition problem that involves a multidi-

mensional weight function on single elements and a weight function on tuples of

elements was introduced and studied by Borgwardt, Brieden and Gritzmann [8].

It is called Constrained Minimum-k-Star Clustering (CSC). Not only a minimal

partition with respect to the target function has to be found but also multiple

conditions have to be ful�lled. These conditions depend on the multidimensional

weight function.

CSC evolves from the consolidation of farmland, where the problem is to reas-

sign the land of the participating farmers. The goal is to arrange the lots of one

farmer as close together as possible to reduce travel expenses. In this process

a lot of constraints, like land quality or personal preferences, have to be con-

sidered. The set of all lots has to be partitioned such that every farmer gets a

subset of lots, where quality or preference constraints have to be met and travel

distances are minimal.

Borgwardt, Brieden and Gritzmann [8] showed that CSC is NP-complete even

for two farmers and a one-dimensional weight function on the lots. On the posi-

tive side, using the concept of total unimodularity, they showed that the problem

is solvable in polynomial time if the instances are restricted to uniform weights.

Note that all examples mentioned above and also all other common partition

problems just consider constant weights. This means only one constant value,

which does not depend on other problem parameters, is assigned to each element

or tuple. Later it is demonstrated that this is a strong limitation. In many
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practical applications nonconstant weight functions, which also depend on the

partition itself, are necessary. But �rst another class of partition problems is

presented.

Partition as assignment problems

Many problems can be rephrased such that they belong to the class of partition

problems. For example, assignment problems can also be understood as partition

problems. In assignment problems two �nite sets A and B are given and each

element of A has to be assigned to an element of B. Of course, in most cases

some conditions and a minimization criterion have to be ful�lled. This problem

also can be stated as a partition problem. Consider A as the basic set which

has to be partitioned into |B| subsets. Thus, each subset is related to some

element in B. Solutions of the partition problem correspond to solutions of the

assignment problem in the way that all elements of one subset are assigned to

the according element in B and vice versa all elements assigned to an element

in B form a subset. Hence, partition and assignment problems just di�er in

the notation. Usually problems are denoted in the way in which they can be

speci�ed more easily.

A famous assignment problem is the Quadratic Assignment Problem (QAP). In

QAP it is |A| = |B| and an one to one assignment has to be found. Further,

a quadratic target function is assumed ([56]). QAP has many applications in

location theory or scheduling ([12]). For example, campaign itinerary planning

for politicians is a QAP ([56]). Since QAP is NP-complete, only small instances

are solved optimally ([78]). For larger instances suboptimal algorithms are de-

veloped ([39]). Also ant systems ([66]) or genetic algorithms ([85]) are used to

solve QAP.

There are many other practical problems which lead to assignment problems.

Alejo, Díaz-Báñez, Cobano, Pérez-Lantero and Ollero [2] studied a velocity as-

signment problem for aircrafts sharing airspace to prevent collisions. Also the

distribution of guests to hotel rooms to reduce gaps in the room occupancy is an

assignment problem ([63]). In logistics, where goods have to be stored in special

slots in warehouses, naturally assignment problems arise ([18]). The problem to

assign channels to overlapping WLANs was analyzed by Elwekeil, Alghoniemy,

Furukawa and Muta [30].
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Another important class of assignment problems are job scheduling problems.

Since the second problem studied in this work belongs to this problem class, an

extensive overview of existing research is given.

In job scheduling a set of jobs and a set of machines are given. The problem is

to �nd a processing schedule of the jobs on the machines such that the schedule

is feasible or, in addition to that, some target function is minimized. Machines

can only handle one job at a time. Thus, the jobs are assigned to time slots on

the machines such that no two jobs are processed at the same time on the same

machine. In the partition version of this problem for each machine a subset of

jobs which have to be processed by the according machine must be found.

The following informal de�nition is taken from Applegate and Cook [3] and

represents a variant in which each job has to be processed on several machines

in a certain order. The target is to minimize the completion time of the last

�nished job.

De�nition (Job-Shop Problem)

The Job-Shop Problem (JSP) is to schedule a set of jobs on a set of machines,

subject to the constraint that each machine can handle at most one job at a time

and the fact that each job has a speci�ed processing order through the machines.

The objective is to schedule the jobs so as to minimize the maximum of their

completion times.

Already in 1979 Lenstra and Rinnooy Kan [60] showed that JSP is NP-complete.

There are also a lot of other variants to the job scheduling problem. For exam-

ple, jobs may have to visit some machines more often ([29]). Bartusch, Möhring

and Radermacher [7] proposed a version with resource constraints. This means

processing a job binds a certain amount of a resource that cannot be used by

other processes. This amount is released when the job is �nished and can be

used for the processing of other jobs. Not only one but a whole set of di�erent

resources is possible. Additionally, the availability of the resources may change

over time or the duration of processing a job may depend on the amount of

available resources ([87]). Further, the starting time of processing a job may

be constricted by constraints. Thus, starting a job is just allowed in a certain

time window ([7]). Additionally, availability constraints for machines are pos-

sible ([58]). Setup times to prepare machines for the next job were studied by

Mika, Waligora and W¦glarz [68]. These setup times can also depend on the

previous job on the machine ([27]). Lenstra, Shmoys and Tardos [61] introduced

6
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a setting in which the jobs do not have to be processed by all machines but

by a subset of machines. The goal is to minimize the makespan of the produc-

tion schedule. A project scheduling variant was analyzed by Brucker, Drexl,

Möhring, Neumann and Pesch [11]. The jobs are interpreted as projects which

have temporal dependencies. Thus, certain jobs must be �nished before others

can be started.

Also all kinds of target functions are conceivable. For example, Lee and Kim [57]

or Yang, Yang and Cheng [90] studied the Earliness-Tardiness Job Scheduling

Problem, in which all jobs should be �nished at a given due date. Finishing

before or after this date is punished by some penalty factor. Moradi, Fatemi

Ghomi and Zandieh [69] studied a job-shop problem which involves maintenance

of machines. The two-sided goal in their work was to minimize the makespan

of the production part and to minimize the system unavailability for the main-

tenance part. Maintenance can be interrupted and resumed later ([62]). Also

versions with aging jobs and deteriorating maintenance of machines are con-

sidered ([90], [17], [49]). Thus, the durations of jobs and maintenance activities

depend on their starting time. Mosheiov [70] studied a variant in which the

deterioration of the jobs does not depend on time but on the position in the

production sequence. There can also be job dependent learning e�ects which

increase the production rate of following jobs on a machine ([51], [16], [49]).

Hall and Sriskandarajah [44] or Schuster and Framinan [81] analyzed blocking

or no-wait production settings in which jobs stay on the actual machine until

the next machine to process the job gets free. A version that involves trans-

portation constraints was studied by Soukhal, Oulamara and Martineau [84]. In

this setting jobs or products are transported to the next machine or customer by

vehicles. In this problem capacity and time of this transportation is also taken

into account.

The complexity of the job scheduling variants mentioned above mainly results

from the additional constraints like time windows, setup times or maintenance

activities. Most of these are already studied extensively, whereas di�erent tar-

get functions are proposed rather rarely. In most cases the objective is a linear

function like the makespan or an earliness-tardiness function for due dates. Nev-

ertheless, nonlinear or at least only piecewise linear target functions are very

common in practical settings.

In the following an outsourcing problem is presented. In this problem naturally
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TVs Smartphones

Tablets Laptops

Printers

Webcams

Cameras

Group 1

Group 2

Group 3

Figure 1: First partition problem in the outsourcing problem

a piecewise linear convex target function is entailed. In addition to that a non-

constant weight function is required to express the inherent partition problem.

An outsourcing problem

Consider the following situation. A big electronic enterprise produces electronic

devices and all necessary electronic pieces. To focus on the production of the

latter in the subsequent years the assembly of the devices will be outsourced

to extern manufacturers. These can only process one order at a time. As the

manufacturers have to be supplied with the relevant electronic pieces, logistics

costs incur. Therefore, groups of devices that share many electronic parts are

built. In this way the logistics costs can be reduced since a smaller variety

of parts has to be delivered to the manufacturer. Further, each manufacturer

handles only one group of devices. But one group can be outsourced to more

than one manufacturer as often one manufacturer is not enough to manage all

orders in that group. For example, manufacturers M1 and M2 both process the

group �Smartphones and Tablets�. But M1 builds the phone P1 whereas M2

builds tablet T1 since the orders for P1 and T1 have to be processed at the same

time. For a �xed price each manufacturer o�ers a �xed amount of working hours

for the whole period. Price and working hours are negotiated beforehand. If the

orders take more time than the �xed amount, an additional fee per extra hour

has to be paid. This problem setting contains two di�erent partition problems.

The �rst is the grouping of the devices, which is obviously a partition problem.

8



An outsourcing problem

Order of Webcam W1

Order of Smartphone S1

Order of Printer P1

Order of Camera C1

Order of Tablet T1

Order of Smartphone S2

Group 1
Manufacturer M1,1

Group 1
Manufacturer M1,2

Group 2
Manufacturer M2,1

Group 3
Manufacturer M3,1

Figure 2: Second partition problem in the outsourcing problem

The costs of one device are composed of the production costs for the electronic

pieces and the logistics costs. The production costs of the pieces are �xed for

each device and are known in advance. But the logistics costs depend on the

other devices in the group. If two devices share components, these have to be

delivered to the manufacturer only once in a higher quantity. This is cheaper

than handling a large variety of pieces. Thus, the relative logistic costs per device

decrease if similar devices are outsourced together. This means the costs or, in

a wider sense, the weight of a device is not constant. It also depends on the

corresponding group or subset of devices.

The second partition problem is the distribution of orders to manufacturers. In

terms of a partition problem, the orders have to be partitioned into subsets,

where each subset corresponds to one manufacturer. Or simpler in terms of an

assignment problem, each order has to be assigned to a manufacturer. Orders

assigned to one manufacturer are not allowed to overlap since manufacturers

can only process one order at a time. The function describing the manufacturer

costs is piecewise linear and convex. Until the �xed amount of working hours is

not exceeded a manufacturer just costs the constant �xed price, but after that

the costs increase linearly.

Nonconstant weight functions and/or piecewise linear convex target functions

also naturally appear in many other applications in which objects share common
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Introduction

resources, like in tra�c routing or in demand and supply problems, and/or

where a base amount of service is included in a �xed price, like for car rentals

or for mobile internet rates. Thus, studying nonconstant weight functions and

piecewise linear convex target functions in combination with partition problems

in a general form is of great relevance and has been neglected until now. In

this work both function types are discussed separately in connection with two

di�erent partition problem classes and with di�erent focus. Nevertheless, in both

cases a strong connection to NPP, as mentioned before, exists.

At the beginning of this work a chapter of preliminaries is given. In this chapter

the notation is clari�ed and needed previous knowledge is speci�ed. Further-

more, some de�nitions and results from complexity and graph theory, which are

required later, are stated.

It follows a chapter that gives a short overview of the results. The two partition

problem classes introduced in this work are brie�y outlined and major state-

ments are presented.

In the third chapter partition problems with nonconstant weight functions are

introduced. Therefore, a new class of weight functions, which also depend on

subsets of the basic set, is de�ned. Special monotonic properties, motivated by

practical problems like the above mentioned outsourcing problem, are de�ned

for this class. Using these new weights a set of decision and minimization type

partition problems can be introduced. The major focus in this chapter lies on

the complexity analysis for those new problems. Further, the in�uence of the

monotonic properties on the complexity is studied. Approximation algorithms

are developed and proofs for the corresponding approximation ratios are given.

Also heuristics are presented and tested along with the approximation algo-

rithms on randomly generated instances.

Following a special partition problem in which jobs have to be distributed among

machines of di�erent types is proposed in the fourth chapter. In accordance with

the outsourcing problem the target function is piecewise linear and convex. For

an easier notation the problem is speci�ed as an assignment problem. Initially

the starting times of the jobs are assumed to be �xed, but also movable jobs

are introduced. To �nd solutions models based on integer linear programming

are developed. These models are on the major focus in this chapter. Contrary

to the most practical approaches via genetic algorithms and other heuristics in

this way the problem can be solved optimally. Deliberately for movable jobs
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an approach is chosen in which the time is not needed to be discretized since

this becomes insu�cient for long periods. Rather a set of continuous variables

is introduced, which are expected to be �easy� for linear optimization. Proofs

to verify the correctness of linear constraints and improvements to reduce the

number of variables and constraints are essential. Especially the latter is impor-

tant for the case of movable jobs since the number of variables and constraints

is quadratic in the number of jobs. Finally, some heuristics are created and nu-

merical tests of the models are performed on randomly generated instances.

In the last chapter all results are summarized and evaluated. Additionally, in-

teresting topics for future research are pointed out.
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Chapter 1

Preliminaries

The nomenclature used in this work is based on the common use in mathematical

topics. Nevertheless, in the following a short overview of all used symbols and

identi�ers is given. Prerequisite background in complexity and graph theory

which is assumed to be known is outlined. All needed knowledge can be found

in pertinent literature.

1.1 Notation and wording

By default the natural numbers N := {1, 2, . . .} are de�ned without 0. The

natural numbers including 0 are denoted by N0 := {0, 1, 2, . . .}.
For a ∈ R the following intervals are de�ned:

R≥a := [a,∞), R>a := (a,∞), R+ := R>0, R+
0 := R≥0

The set R+ is called the set of positive real numbers and R+
0 the set of nonneg-

ative real numbers.

For an arbitrary set V the power set is de�ned as

P(V ) := {W : W ⊆ V }.

For an arbitrary set X and f : X → R the argmin function returns the elements

Y ⊆ X that minimize f over X:

Y = argmin
x∈X

f(x) :⇔ f(y) ≤ f(x) ∀x ∈ X, y ∈ Y
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1 Preliminaries

Likewise the argmax function is de�ned as follows:

Y = argmax
x∈X

f(x) :⇔ f(y) ≥ f(x) ∀x ∈ X, y ∈ Y

The following de�nition formally introduces the term �partition�.

De�nition 1.1.1

Let V be an arbitrary set and I be an indexing set. A family W = {Wi}i∈I with
Wi ⊆ V is called partition of V if and only if

Wi ∩Wj = ∅

for all i, j ∈ I and ⋃
i∈I

Wi = V .

The sets Wi are called partitioning sets of W.

Finally, the signum function is de�ned as

sgn : R→ {−1, 0, 1}, x 7→


−1 if x < 0

0 if x = 0

1 if x > 0

.

At some points in this work pieces of text are connected by a vertical line.

This notation is only used for structural reasons in remarks or proofs to denote

an embedded proof of an embedded claim. See this in the following example

theorem.

Theorem

If A then C.

Proof

If A then B:

Arguments proving that B follows from A.

It is known that C follows from B. Thus, C follows from A.
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1.2 Complexity Theory

Complexity theory is mostly needed in Chapter 3, where the complexity of par-

tition problems with nonconstant weight functions is analyzed. Basic knowledge

can be found in Hopcraft, Motwani and Ullman [47] or Hromkovi£ [48]. In this

regard, the reader has to be familiar with the concepts of decision and mini-

mization type problems. The terms feasible and solvable as well as infeasible

and unsolvable are used as synonyms. By �a function is computable in poly-

nomial time� it is meant that the function can be evaluated at every point of

the domain in polynomial time and space on a Turing machine. The complexity

classes P, NP, NP-hard and NP-complete are assumed to be known along with

methods of proof to transfer the complexity class of one problem to another.

Likewise, the big O notation or the term �algorithm�and associated de�nitions

are not explained any further. An introduction can be found in Jansen and

Margraf [50] or Wanka [88]. However, the terms �approximation algorithm� and

�approximation ratio� are introduced in the following de�nition as in literature

the denotation of these terms is sometimes not consistent.

De�nition 1.2.1

Let P be a minimization problem and c : X → [1,∞) a function, where X is

the set of possible inputs for P . An algorithm A is called c(x)-approximation

algorithm if and only if for every input x ∈ X with optimal solution value z∗x
the inequality

z′x ≤ c(x) · z∗x

holds, where z′x is the solution value returned by A for input x. Further, c(x) is

called approximation ratio or approximation factor.

An easy way to prove that a problem belongs to a certain complexity class is to

take a problem from this class and to show that this problem can be solved by

transforming it to the given problem. In the following two NP-complete problems

are speci�ed that will be used as such representatives later.
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De�nition 1.2.2 (Number Partition Problem)

Let S ⊆ N be a �nite set. The Problem to �nd a partition {T1, T2} of S with∑
s∈T1

s =
∑
s∈T2

s

is called Number Partition Problem (NPP).

Already in 1979 Garey and Johnson [37] showed that NPP is NP-complete.

Obviously, the subset sums have to be equal to half of the sum of all elements

in S. This is stated in the next lemma.

Lemma 1.2.3

Let I = (S) be an instance of NPP, {T1, T2} a valid partition for I and S :=∑
s∈S s. Then

∑
s∈T1

s =
∑
s∈T2

s =
S

2
.

Proof

It is

2
∑
s∈T1

s =
∑
s∈T1

s+
∑
s∈T1

s =
∑
s∈T2

s+
∑

s∈S\T2

s =
∑
s∈S

s = S.

The same argument works for T2.

Another NP-complete problem is to �nd a subset of elements which sum up to

a given value.

De�nition 1.2.4 (Subset Sum Problem)

Let S ⊆ N be a �nite set and σ ∈ N. The Problem to �nd T ⊆ S with∑
s∈T

s = σ

is called Subset Sum Problem (SSP).

Referring to Karp [52] SSP is NP-complete.

16



1.3 Graph Theory

1.3 Graph Theory

The basic concepts of graph theory are expected to be known. An overview of all

relevant topics is given by Gritzmann [42] or Diestel [25]. In this work all graphs

are assumed to be undirected, simple and loop-free if not mentioned di�erently.

Graph theory is mainly used in Section 4.1.2 to derive an upper bound for

the number of machines needed to process a set of jobs. In the following some

denotations are introduced which sometimes are not consistent in literature and

thus have to be made clear.

De�nition 1.3.1

Let G = (V,E) be a graph. The neighborhood δG(v) of a vertex v ∈ V in G is

de�ned as

δG(v) := {w ∈ V : {v, w} ∈ E} .

A set V ⊆ V is called clique or |V|-clique if and only if

{{v, w} : v, w ∈ V, v 6= w} ⊆ E.

A function f : V → N is called coloring of G if and only if for all v ∈ V

f(v) 6= f(w)

for all w ∈ δG(v). A coloring with f(v) ≤ k for all v ∈ V and k ∈ N is called

k-coloring. G is called k-colorable if it has a k-coloring.

The following de�nition introduces the term �chord�, which is not covered in

standard literature but is needed later on.

De�nition 1.3.2

Let G = (V,E) be a graph and C a cycle in G. An edge e ∈ E is called chord of

C if it connects two vertices in C which are not already connected with an edge

belonging to C.

A graph in which each cycle with length more than three has at least one chord

is called chordal.
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The following theorem was proven by Dirac [26] in 1961 and establishes a con-

nection between colorability and the cliques of a graph.

Theorem 1.3.3

If a chordal graph is not k-colorable, then it contains a (k + 1)-clique.

Proof

See the proof of Theorem 3 in [26], where chordal graphs are called rigid circuit

graphs.

1.4 Linear programming, implementation and nu-

merical tests

It is assumed that the reader is familiar with linear programming, in particular,

with integer linear programming and the standard ways to express integer linear

programs (ILPs) with linear equalities and inequalities. Basic concepts of linear

programming can be found in Korte and Vygen [54], Dantzig [23], Gass [38] or

Solow [82]. For integer linear programming see Schrijver [80] or Salkin [79].

All algorithms in this work are implemented in the IVE Editor [33] with Xpress-

Mosel [34], which are developed by FICO [32]. Xpress-Mosel is mainly used to

solve ILPs. Nevertheless, in this work also algorithms which do not involve linear

optimization are implemented in Xpress-Mosel to ensure the comparability of

runtimes.

The size of problem instances depends strongly on the area of application. In the

outsourcing problem (see Introduction) 50 devices and 10 extern manufacturers

seem to be a reasonable size, but for biological problems, in which genes have to

be analyzed, the input size should be much larger. Since the problems introduced

in this work are applicable in various �elds, the expression �instances with a size

of practical relevance� is not applicable in this context. Thus, the test instances

in this work are generated such that they can be solved by the algorithms in

about 1 minute or less. Trends in runtimes are already observable in this way.

All numerical tests are implemented and performed on a 64-bit Windows system

with Intel Core i7 860 CPU (2.80GHz, 4 Cores) and 4GB memory.
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Chapter 2

Result overview

In this work two di�erent classes of partition problems are introduced. Whereas

for the �rst class an analysis of complexity is in the center attention, for the

second class modeling the problems as ILPs is of main interest. In both cases

algorithms are developed and tested afterwards. To give a brief overview all

de�nitions and statements are presented in a concentrated way. A formally more

precise and detailed presentation can be found in the corresponding chapters.

2.1 Nonconstant Weight Partition Problems

Nonconstant weight partition problems are introduced in a very general form.

As basic set some �nite set V is given. This set has to be partitioned into k ∈ N
subsets. For each subset a bounding value bi ∈ R+

0 is given. Partitions of V are

denoted by W . The most important part is the nonconstant weight function p,

which not only depends on a v ∈ V but also on a subsetW ⊆ V . Thus, formally

it is p : P(V )× V → R. The cumulated weights of a subset are denoted by the

function P (W ) =
∑

v∈W p(W, v).

The weight function p is called monotonically decreasing if for all W ′ ⊆ W ⊆ V

and all v ∈ V it is p(W ′, v) ≥ p(W, v) and P is called monotonically increasing

if it is P (W ′) ≤ P (W ) (De�nitions 3.0.1 and 3.0.2).

With these de�nitions the following decision type partition problem can be

formulated.

De�nition (De�nition 3.1.1)

The problem to �nd a partition W = {W1, . . . ,Wk} of V with P (Wi) ≤ bi for

i ∈ {1, . . . , k} is called Feasible Partition Problem (FPP).

Even for monotonic p and P this problem is NP-complete.
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2 Result overview

Theorem (Theorem 3.1.3)

FPP is NP-complete even if p is monotonically decreasing and P is monotoni-

cally increasing.

Thus, a heuristic based on integer linear programming is developed that itera-

tively creates partitions. The weights in the current partition are predicted by

regarding the weights of the previous partition. In this way feasible solutions can

be found in reasonable time, whereas for larger instances a random approach

does not �nd solutions at all.

Also two minimization type partition problems are introduced. These involve

the sum of all subset weights sp(W) =
∑

W∈W P (W ) and the maximum of all

subset weights mp(W) = maxW∈W P (W ) as target functions.

De�nition (De�nitions 3.2.3 and 3.2.13)

The problem to �nd a partition W of V , where sp(W) is minimal, is called

MinSum Partition Problem (MinSumPP).

The problem to �nd a partition W of V , where mp(W) is minimal, is called

MinMax Partition Problem (MinMaxPP).

In this general form both problems do not admit approximation algorithms.

Theorem (Theorems 3.2.4 and 3.2.14)

Unless P = NP, there is no polynomial-time approximation algorithm that solves

MinSumPP or MinMaxPP with approximation ratio f for some function f :

X → [1,∞), where X is the set of possible instances.

Even if P is monotonically increasing MinSumPP and MinMaxPP do not admit

approximation algorithms with an exponential approximation ratio.

Theorem (Theorems 3.2.9 and 3.2.19)

Unless P = NP, there is no polynomial-time approximation algorithm that solves

MinSumPP or MinMaxPP with approximation ratio in O
(
2poly(|V |,k)

)
for some

polynomial poly : R+ × R+ → R≥1 even if P is monotonically increasing.

But if on the other hand p is assumed to be monotonically decreasing the sit-

uation changes completely. For monotonically decreasing p the trivial solution

(one partitioning set contains all elements of V ) even is optimal for MinSumPP.

For MinMaxPP the trivial solution is an approximation with a ratio that still
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2.1 Nonconstant Weight Partition Problems

depends on the values of p and |V |. This is shown in Lemmas 3.2.5 and 3.2.15.

To exclude these special cases for both problems nonempty versions are intro-

duced.

De�nition (De�nitions 3.2.6 and 3.2.16)

The problem to �nd a partition W = {W1, . . . ,Wk} of V with Wi 6= ∅ for

i ∈ {1, . . . , k}, where sp(W) is minimal, is called Nonempty MinSum Partition

Problem (MinSumPP 6=∅).

The problem to �nd a partition W = {W1, . . . ,Wk} of V with Wi 6= ∅ for

i ∈ {1, . . . , k}, where mp(W) is minimal, is called Nonempty MinMax Partition

Problem (MinMaxPP 6=∅).

If empty partitioning sets are forbidden for monotonically decreasing p, no ap-

proximation algorithm with an exponential approximation ratio can exist. A

result like above concerning a monotonically increasing P also still holds.

Theorem (Theorems 3.2.8 and 3.2.18)

Unless P = NP, there is no polynomial-time approximation algorithm that solves

MinSumPP 6=∅ or MinMaxPP 6=∅ with approximation ratio in O
(
2poly(|V |,k)

)
for

some polynomial poly : R+ × R+ → R≥1 even if p is monotonically decreasing.

Unless P = NP, there is no polynomial-time approximation algorithm that solves

MinSumPP 6=∅ or MinMaxPP 6=∅ with approximation ratio in O
(
2poly(|V |,k)

)
for

some polynomial poly : R+ × R+ → R≥1 even if P is monotonically increasing.

This situation again changes if both monotonic properties are considered to-

gether. In this case for MinSumPP 6=∅ as well as for MinMaxPP6=∅ approxima-

tion algorithms can be found. The approximation ratio of the algorithm for

MinSumPP6=∅ is (1+ |V | − k), for MinMaxPP6=∅ it is
(
1 +

⌊
|V |−1
k

⌋)
. Since both

algorithms produce nonempty partitioning sets, they also can be used to approx-

imate MinSumPP and MinMaxPP. This is especially important for MinMaxPP

because the approximation ratio of the trivial solution still depends on the values

of p. The according algorithms and results can be found in Section 3.2.2

Besides the two approximation algorithms also a heuristic is developed for the

general cases of MinSumPP and MinMaxPP. The idea of this heuristic is to

start with a partition and then to improve the target function by moving or

switching elements between the partitioning sets. In the numerical tests the

approximations from above are used as start partitions for the heuristic. The
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2 Result overview

results are compared to an algorithm that randomly generates solutions. The

heuristic is presented in Section 3.2.1.

For MinSumPP the results of the approximation are not outstanding and equal

the results of the randomized algorithm. This lies in the mediocre approximation

ratio of (1 + |V | − k). Nevertheless, the heuristic can improve the solution in

average about 12%. Finding a better approximation algorithm is a goal in future

research.

However, for MinSumPP the results are really convincing. The ratio of the

approximation algorithm is much better than that for MinSumPP and this

is re�ected in the results. The approximation is about 39% better than the

randomized algorithm and in combination with the heuristic even about 46%.

2.2 A partition problem with convex target func-

tion

The second partition problem in this work belongs to the class of job scheduling

problems. It is denoted as an assignment problem in which each job has to be

assigned to a machine. The set of machines is M . Each machine is of a certain

type. The set of types is called T . In di�erent problems either jobs J or movable

jobs K are considered. A job is a tuple containing its starting time and the

duration d. A movable job is a triple containing a lower and an upper bound for

the starting time and also the duration. The function t̂ assigns each machine to

its type and the restriction matrix r encodes whether a job or movable job can

be processed by a certain machine type. For a subset of jobs J ′ the indicator ρJ ′

represents the maximum number of jobs that have to be processed at the same

time. It is shown that this number also equals the number of needed machines

to process the jobs (Theorem 4.1.22). Thus, an assignment of the jobs to ρJ ′

machines exists such that no two jobs on a machine overlap.

The constants f , c0, c1 and c2 are needed to model a piecewise linear convex

function with one bend. This function is used as target function. The parameter

c0 is the factor for the constant part and models the �xed price that has to be

paid for a machine if it is used. The parameters c1 and c2 are the two di�erent

slopes of the function and f is the point where the slope changes from c1 to c2.

To get a convex function c1 ≤ c2 is presumed. The fact that only one bend is

22



2.2 A partition problem with convex target function

allowed is no loss of generality since more bends can be introduced in the same

way. This leads to the following problem.

De�nition (De�nition 4.1.2)

The problem to �nd an assignment a : J → M with ρa−1(m) ≤ 1 for all m ∈ M
and rj,t̂(a(j)) = 1 for all j ∈ J , where

c0|a(J)|+
∑
m∈M

max

c1 ∑
j∈a−1(m)

dj, c2
∑

j∈a−1(m)

dj − f(c2 − c1)


is minimal, is called Convex Job Assignment Problem (JAP).

JAP does not admit an approximation algorithm with exponential approxima-

tion ratio.

Theorem (Theorem 4.1.3)

Unless P = NP, there is no polynomial-time approximation algorithm that solves

JAP with approximation ratio in O
(
2poly(|J |,|M |,|T |,f)

)
for some polynomial poly :

R4
≥0 → R≥1.

To solve JAP an ILP is developed. This program can be found in De�nition 4.1.4.

A similar problem can be formulated for movable jobs. Thus, not only an as-

signment to machines has to be found but also the starting times, which have to

lie within the given bounds, have to be determined. A set of movable jobs with

�xed starting times is called a corresponding set of jobs for the set of movable

jobs. The problem is de�ned as follows.

De�nition 2.2.1 (De�nition 4.1.5)

The problem to �nd a feasible set of corresponding jobs J = {jk}k∈K for K and

an assignment a : J →M with ρa−1(m) ≤ 1 for all m ∈M and rk,t̂(a(jk)) = 1 for

all k ∈ K, where

c0|a(J)|+
∑
m∈M

max

c1 ∑
j∈a−1(m)

dj, c2
∑

j∈a−1(m)

dj − f(c2 − c1)


is minimal, is called Convex Movable Job Assignment Problem (MJAP).
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2 Result overview

Like JAP also MJAP does not admit an approximation algorithm with expo-

nential approximation ratio. To solve MJAP again an ILP is developed. In this

process di�erent variables are introduced and connected via logical expressions.

These expressions are modeled as linear inequalities, whose correctness is proven.

Further, the formulation of the program is tightened so that less variables and

inequalities are needed. The resulting program can be found in De�nition 4.1.16.

Besides the linear program to solve MJAP optimally also a heuristic is presented.

The idea is to separate the assignment of starting times and the assignment of

jobs to machines. After determining the starting times simply JPA can be solved.

Since each machine costs a �xed price, the jobs are arranged in such a way that

as less as possible machines are needed. As mentioned before the number of

needed machines is in one to one correlation with the maximum number of jobs

that overlap at a time. Thus, the jobs are arranged so that they overlap as less

as possible. The ILP to solve this problem is presented in De�nition 4.1.36. In

the development of this problem not only the correctness of all linear constraints

is proven but also an extensive analysis is done that provides criteria to reduce

variables and constraints in certain cases.

Another type of heuristic for both problems, JAP and MJAP, is proposed in Sec-

tion 4.2. In practical problems often the number of machines is much larger than

the number of di�erent machine types. Therefore, assigning jobs only to machine

types reduces the complexity of the previously mentioned ILPs drastically. The

assignment of jobs to single machines can be done in a post processing step for

each machine type. The according job to machine type assignment problems for

JAP and MJAP are characterized as follows.

De�nition (De�nitions 4.2.1 and 4.2.4)

The problem to �nd an assignment a : J → T with rj,a(j) = 1 for all j ∈ J and

ρa−1(t) ≤ |t̂−1(t)| for all t ∈ T , where

c0
∑
t∈T

ρa−1(t) +
∑
t∈T

max

c1 ∑
j∈a−1(t)

dj, c2
∑

j∈a−1(t)

dj − ρa−1(t)f(c2 − c1)


is minimal, is called Compact Convex Job Assignment Problem (CJAP).
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2.2 A partition problem with convex target function

The problem to �nd a feasible set of corresponding jobs J = {jk}k∈K for K and

an assignment a : J → T with rk,a(jk) = 1 for all k ∈ K and ρa−1(t) ≤ |t̂−1(t)|
for all t ∈ T , where

c0
∑
t∈T

ρa−1(t) +
∑
t∈T

max

c1 ∑
j∈a−1(t)

dj, c2
∑

j∈a−1(t)

dj − ρa−1(t)f(c2 − c1)


is minimal, is called the Compact Convex Movable Job Assignment Problem

(CMJAP).

The corresponding ILPs can be found in De�nitions 4.2.3 and 4.2.7. The as-

signment of jobs to single machines is also modeled as ILP. Since in practical

settings often an equal workload of the machines is desirable, the job durations

are evenly distributed among the machines. The according ILPs are stated in

De�nitions 4.2.8 and 4.2.9.

Altogether, this results in one alternative way to solve JAP and three alternative

ways to solve MJAP.

• JAP:

(i) Solve CJAP → assign jobs to machines for each machine type

• MJAP:

(ii) Solve CMJAP → assign jobs to machines for each machine type

(iii) Heuristically determine starting times of jobs → solve JAP

(iv) Heuristically determine starting times of jobs → solve CJAP

→ assign jobs to machines for each machine type

All solution approaches are tested on randomly generated instances and com-

pared with an algorithm that randomly tries to �nd feasible assignments. It

turns out that all heuristics perform outstandingly and �nd the optimal solu-

tion for all instances. Only on specially designed instances that involve certain

job structures the heuristics fail. Solving the larger instances via the primal ILP,

for JAP and MJAP, takes up to one minute, whereas the heuristics (i) and (iv)

run in a fraction of a second. Furthermore, the random algorithm does not �nd

a solution for about half of the instances. This on the one hand highlights the

complexity of the instances and on the other hand underlines the predominance

of the heuristics.
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Chapter 3

Nonconstant Weight Partition Prob-

lems

In all prominent partition problems constant weight functions are used. This

means each element of the basic set or objects in the underlying constraints

are weighted by a constant value. These elements and objects can, for example,

be vertices ([8]) or edges ([24]) of a graph, natural numbers ([37]), which are

simply weighted by their value, or colors ([53], [55]). In this chapter the weight

functions are extended such that the weight may depend on the partition itself.

Like this, synergy e�ects of the elements in one partitioning set can be modeled.

The main results of this chapter will also be published in [10].

To introduce partition problems with nonconstant weight functions �rst these

weight functions have to be de�ned. This is done in the following. Further, some

monotonic properties are speci�ed.

De�nition 3.0.1 (Subset function)

For a �nite set V a function

p : P(V )× V → R

that is computable in polynomial time depending on the size of V is called subset

function on V , and nonnegative subset function or positive subset function if

and only if

p : P(V )× V → R+
0

or

p : P(V )× V → R+.
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3 Nonconstant Weight Partition Problems

A subset function p is called monotonically decreasing if and only if for all

W ′ ⊆ W ⊆ V and all v ∈ V

p(W ′, v) ≥ p(W, v)

holds.

Subset functions have two parameters, a subset W and an element v ∈ V . In
this way weights can be assigned to v that also depend on W . In other words,

for each subset a di�erent weight can be assigned to an element. To motivate the

monotonic property the outsourcing example from the introduction is used. For

each device exist a �xed absolute cost component and a relative cost component

which depends on the other devices in the group. The relative costs should

decrease if additional devices are added to the group since these probably have

similar electronic pieces and thus relative logistics costs decrease. Exactly this

property is represented by a monotonically decreasing subset function.

To weight a subset of V the weights of all elements with respect to the subset

are added. This leads to the following de�nition of cumulated subset functions.

Again a monotonic property is introduced.

De�nition 3.0.2 (Cumulated subset function)

Let V be a �nite set and p a subset function on V . Then

P : P(V )→ R, W 7→
∑
v∈W

p(W, v)

is called cumulated subset function for p. For W ⊆ V the value P (W ) is called

subset value of W .

A cumulated subset function P is called monotonically increasing if and only if

for all ∅ 6= W ′ ⊆ W ⊆ V

P (W ′) ≤ P (W )

holds.

Remark 3.0.3

To avoid additional indices or other identi�ers subset functions always are de-

noted by lower case characters and the corresponding cumulated subset func-
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tions are speci�ed by the according upper case characters and vice versa (for

example: p corresponds to P or p̂ corresponds to P̂ ).

The purpose of the monotonic ascent for cumulated subset functions can again

be motivated by the outsourcing problem. The relative costs of the devices in

a group may decrease if other devices are added. Nevertheless, the total costs

for producing and delivering the electronic pieces in the bigger group should be

larger. This behavior is modeled by monotonically increasing cumulated subset

functions. In the de�nition the empty set is excluded from the subsets since

P (∅) = 0 and thus subsets could not be weighted with negative values. However,

for nonnegative subset functions, which are mainly studied in this work, this is

no constriction.

The following lemma or rather the subsequent corollary is used in proofs later

on. It states that for nonnegative and monotonically decreasing p the subset

value of the union of two subsets is bounded by the sum of the subset values of

these sets.

Lemma 3.0.4

Let V be a �nite set and p a nonnegative and monotonically decreasing subset

function on V . Then for any W,W ′ ⊆ V it is

P (W ∪W ′) ≤ P (W ) + P (W ′).

Proof

It is

P (W ∪W ′) =
∑

w∈W∪W ′
p(W ∪W ′, w)

≤
∑
w∈W

p(W ∪W ′, w) +
∑
w∈W ′

p(W ∪W ′, w)

≤
∑
w∈W

p(W,w) +
∑
w∈W ′

p(W ′, w)

= P (W ) + P (W ′),

where the �rst �≤� is no �=� becauseW andW ′ do not have to be disjunct.
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3 Nonconstant Weight Partition Problems

This corollary follows immediately.

Corollary 3.0.5

Let V be a �nite set and p a nonnegative and monotonically decreasing subset

function on V . Then for any W ⊆ V and v ∈ V it is

P (W ∪ {v})− P (W ) ≤ P ({v}).

The next de�nition describes the restriction of subset functions from V to sub-

sets of V . This is useful later, especially in Section 3.2.2 for proofs by induction

on the size of V .

De�nition 3.0.6

Let V be a �nite set and p a subset function on V . For V ′ ⊆ V de�ne the subset

function p|V ′ : P(V
′)× V ′ → R as

p|V ′ (W
′, v′) := p(W ′, v′)

for W ′ ⊆ V ′ and v′ ∈ V ′.

Remark 3.0.7

To make the notation easier and due to the canonical transformation in the

following p|V ′ is abbreviated as p. Thus, p is also used as subset function for V ′.

3.1 Feasible Partition Problems

In this section a decision type partition problem and its complexity is studied.

The problem is to �nd a partition of a basic set for which the subset values are

bounded by given constants.

De�nition 3.1.1 (Feasible Partition Problem)

Let V be a �nite set, p a nonnegative subset function on V , k ∈ N and bi ∈ R+
0

for i ∈ {1, . . . , k}.
The problem to �nd a partition W = {W1, . . . ,Wk} of V with P (Wi) ≤ bi for

i ∈ {1, . . . , k} is called Feasible Partition Problem (FPP).

NPP can be transformed to FPP. Since NPP is NP-complete ([37]), so is FPP.

This is true even if p is just allowed to take the values 0 and 1 and V has to be

partitioned into two subsets only.

30



3.1 Feasible Partition Problems

Theorem 3.1.2

FPP is NP-complete even if p is {0, 1}-valued and k = 2.

Proof

Let I = (S) be an instance of NPP. De�ne S :=
∑

s∈S s and an instance

J := (V, p, k, b) of FPP with V := S and

p(W, v) :=

0 if
∑

w∈W w = S
2

1 otherwise
,

where W ⊆ V and v ∈ V . Obviously, p is polynomially computable in the size

of V . Note that not every possible value of p is computed at this point and just

a formal de�nition of p is given. This makes the transformation polynomial.

Further, let k := 2 and b1 := b2 := 0.

The instance J is solvable if and only if I is solvable:

�⇒�: Let W = {W1,W2} be a feasible solution for J and without loss of gen-

erality W1 6= ∅ (because without loss of generality V 6= ∅). Since

P (W1) =
∑
v∈W1

p(W1, v) ≤ b1 = 0

and p is nonnegative, it follows p(W1, v) = 0 for all v ∈ W1. Let v ∈ W1.

It follows p(W1, v) = 0 and thus

∑
w∈W1

w =
S

2
.

Further,

∑
w∈W2

w =
∑
v∈V

v −
∑
w∈W1

w =
∑
s∈S

s− S

2
=
S

2
=
∑
w∈W1

w.

This means {T1, T2} with T1 := W1 and T2 := W2 is a solution for I.

�⇐�: Let {T1, T2} be a partition of S with∑
s∈T1

s =
∑
s∈T2

s.
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3 Nonconstant Weight Partition Problems

De�ne a partition W = {W1,W2} of V with W1 := T1 and W2 := T2.

With Lemma 1.2.3 it is

∑
w∈W1

w =
∑
w∈W2

s =
S

2
.

This means p(W1, v) = p(W2, v) = 0 for all v ∈ V . Therefore,

P (W1) = 0 = b1,

P (W2) = 0 = b2

and W is a feasible solution for J .

Thus, FFP is NP-hard. Furthermore, P is computable in polynomial time and

thus checking whether P (Wi) ≤ bi for all i ∈ {1, . . . , k} is possible in polyno-

mial time. Checking whether W is a partition of V is possible in polynomial

time, too. This means FPP ∈ NP and therefore FPP is NP-complete. Thus,

FFP is NP-hard. Furthermore, P is computable in polynomial time and thus

checking whether P (Wi) ≤ bi for all i ∈ {1, . . . , k} is possible in polynomial

time. Checking whether W is a partition of V is possible in polynomial time,

too. This means FPP ∈ NP and therefore FPP is NP-complete.

The question is what happens if p and P satisfy the monotonic properties and

in addition p is positive. The next theorem states that even in this case FPP

is NP-complete. This can also simply be seen by de�ning p(W, v) := v and

choosing

b1 := b2 :=

∑
s∈S s

2

in the last proof. Since p is constant for each v, it is also monotonically de-

creasing and since v ∈ N the cumulated subset function P is monotonically

increasing. Nevertheless, in the next proof a di�erent transformation with a

�real� nonconstant weight function is used that is even strictly monotonic. This

means for W ′ ( W ⊆ V and v ∈ V it is

p(W ′, v) > p(W, v) and P (W ′) < P (W ).

For the transformation SSP is used, which is NP-complete ([52]).
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3.1 Feasible Partition Problems

Theorem 3.1.3

FPP is NP-complete even if k = 2, p is positive, (strictly) monotonically de-

creasing and P is (strictly) monotonically increasing.

Proof

SSP can be polynomially transformed to FPP, where p is positive, (strictly)

monotonically decreasing and P is (strictly) monotonically increasing.

For a given instance I = (S, σ) of SSP set S :=
∑

s∈S s and smax := maxs∈S s.

Without loss of generality let 0 < σ < S, |S| ≥ 1 and smax > 1, otherwise

solving I would be trivial. De�ne an instance J := (V, p, k, b) of FPP with

V := S and

p(W, v) :=


v +

∑
w∈V \W

w

|W | · smax
if W 6= ∅

smax + |V | otherwise

,

where W ⊆ V and v ∈ V . Obviously, p is polynomially computable in the size

of V . Further, let k := 2,

b1 :=
S + (smax − 1)σ

smax
> 0

and

b2 :=
S · smax − (smax − 1)σ

smax
= S − σ︸ ︷︷ ︸

>0

+
σ

smax
> 0.

The subset function p is positive since

v +
∑

w∈V \W

w

|W | · smax︸ ︷︷ ︸
≥0

> 0

for W 6= ∅ and smax + |V | > 0. For all ∅ 6= W ⊆ V it is

P (W ) =
∑
v∈W

p(W, v)

=
∑
v∈W

v + ∑
w∈V \W

w

|W | · smax


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3 Nonconstant Weight Partition Problems

=
∑
v∈W

v + |W |
∑

w∈V \W

w

|W | · smax

=
∑
w∈W

w +
∑

w∈V \W

w

smax

=
smax

∑
w∈W w

smax
+
S −

∑
w∈W w

smax

=
S + (smax − 1)

∑
w∈W w

smax
.

Let ∅ 6= W ′ ( W ⊆ V and v ∈ V . p is strictly monotonically decreasing because

p(W ′, v) = v +
∑

w∈V \W ′

w

|W ′| · smax

> v +
∑

w∈V \W

w

|W ′| · smax

> v +
∑

w∈V \W

w

|W | · smax

= p(W, v)

and

p(∅, v) = smax + |V | ≥ v +
∑
w∈V

w

smax
> v +

∑
w∈V \W ′

w

|W ′| · smax
.

Further,

P (W ′) =
S + (smax − 1)

∑
w∈W ′ w

smax
<
S + (smax − 1)

∑
w∈W w

smax
= P (W )

holds and thus P is strictly monotonically increasing.

The instance J is solvable if and only if I is solvable:

�⇒�: LetW = {W1,W2} be a feasible solution for I. It is Wi 6= ∅ for i ∈ {1, 2}.
If for example W2 = ∅, then W1 = S 6= ∅ would follow and thus

P (W1) ≤ b1 ⇔
S + (smax − 1)

∑
w∈W1

w

smax
≤ S + (smax − 1)σ

smax

⇔ S + (smax − 1)S

smax
≤ S + (smax − 1)σ

smax

⇔ S ≤ σ.
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3.1 Feasible Partition Problems

This is in contradiction to the assumption σ < S.

Because

P (W1) =
S + (smax − 1)

∑
w∈W1

w

smax
≤ b1 =

S + (smax − 1)σ

smax

and

P (W2) =
S + (smax − 1)

∑
w∈W2

w

smax
≤ b2 =

S · smax − (smax − 1)σ

smax

it holds ∑
w∈W1

w ≤ σ

and

S + (smax − 1)
∑

w∈W2
w

smax
≤ S · smax − (smax − 1)σ

smax

⇔ S + (smax − 1)
∑
w∈W2

w ≤ S · smax − (smax − 1)σ

⇔ (smax − 1)

(∑
w∈W2

w + σ

)
≤ (smax − 1)S

⇔
∑
w∈W2

w + σ ≤ S

⇔ σ ≤ S −
∑
w∈W2

w.

Since W is a partition, it follows

σ ≤ S −
∑
w∈W2

w =
∑
w∈W1

w ≤ σ

and T := W1 ⊆ S is valid subset for I.

�⇐�: Let T ⊆ S with ∑
s∈T

s = σ.
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3 Nonconstant Weight Partition Problems

De�ne a partition W = {W1,W2} of V with W1 := T and W2 := V \T .
Since 0 < σ < S, it follows Wi 6= ∅ for i ∈ {1, 2}. Thus,

P (W1) =
S + (smax − 1)

∑
w∈W1

w

smax

=
S + (smax − 1)

∑
s∈T s

smax

=
S + (smax − 1)σ

smax

= b1

and

P (W2) =
S + (smax − 1)

∑
w∈W2

w

smax

=
S + (smax − 1)

(
S −

∑
w∈W1

w
)

smax

=
S + (smax − 1)

(
S − σ

)
smax

=
S · smax − (smax − 1)σ

smax

= b2

and W is a feasible solution for J .

This makes FFP NP-hard. The completeness follows like before.

In many practical problems there are �xed centers which must be contained

in certain partitioning sets. For example in CSC if some farmers want to keep

certain lots or in the outsourcing problem if some devices have to be contained

in certain groups. Therefore, FPP is extended as follows.

De�nition 3.1.4 (Feasible Partition Problem with �xed centers)

Let V be a �nite set, p a nonnegative subset function on V , k ∈ N, bi ∈ R+
0 and

wi ∈ V for i ∈ {1, . . . , k} with wi 6= wj for all i, j ∈ {1, . . . , k}.
The problem to �nd a partition W = {W1, . . . ,Wk} of V with wi ∈ Wi and

P (Wi) ≤ bi for i ∈ {1, . . . , k} is called Feasible Partition Problem with �xed

centers (FPPc).
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3.1 Feasible Partition Problems

Analog complexity results like above hold also for FPPc since FPP can be

transformed to FPPc.

Theorem 3.1.5

FPPc is NP-complete even if p is {0, 1}-valued and k = 2.

Proof

FPP is NP-complete even if p is {0, 1}-valued, k = 2 and bi = 0 for all i ∈
{1, . . . , k} (Theorem 3.1.2).

For a given instance I = (V, p, k, b) of FPP with an arbitrary set V , a {0, 1}-
valued nonnegative subset function p on V , k = 2 and b1 = b2 = 0 de�ne an

instance Î := (V̂ , p̂, k̂, b̂, ŵ) of FPPc with V̂ := V ∪ {ŵ1, ŵ2}, where ŵ1, ŵ2 /∈ V
are two arbitrary elements with ŵ1 6= ŵ2, and

p̂(Ŵ , v̂) :=

p(Ŵ ∩ V, v̂) if v̂ ∈ V

0 otherwise
,

where Ŵ ⊆ V̂ and v̂ ∈ V̂ . The subset function p̂ is polynomially computable

in the size of V̂ because p is polynomially computable. Further, let k̂ := k and

b̂i := bi = 0 for i ∈ {1, 2}. By de�nition p̂ is {0, 1}-valued.
The instance Î is solvable if and only if I is solvable:

�⇒�: Let Ŵ = {Ŵ1, Ŵ2} be a feasible solution for Î. The familyW := {W1,W2}
with Wi := Ŵi ∩ V = Ŵi\{ŵi} for i ∈ {1, 2} is a feasible solution for I
because

P̂ (Ŵi) =
∑
v̂∈Ŵi

p̂(Ŵi, v̂)

=
∑
v̂∈Wi

p̂(Ŵi, v̂) + p̂(Ŵi, ŵi)

=
∑
v̂∈Wi

p(Ŵi ∩ V, v̂) + 0

=
∑
v∈Wi

p(Wi, v)

= P (Wi)
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3 Nonconstant Weight Partition Problems

and thus

P̂ (Ŵi) ≤ b̂i = 0

⇔ P (Wi) ≤ bi = 0

for i ∈ {1, 2}.

�⇐�: For a feasible partition W := {W1,W2} for I de�ne Ŵ := {Ŵ1, Ŵ2} with
Ŵi := Wi ∪ {wi} for i ∈ {1, 2}. Like in the �⇒� part Ŵ is a solution for

Î.

Thus, FFPc is NP-hard. Checking whether ŵi ∈ Ŵi for all i ∈ {1, . . . , k} is

possible in polynomial time. Therefore, FPPc ∈ NP and FPPc is NP-complete.

The transformation in the proof of the next theorem is very similar to the one

in the last proof. However, since p̂ has to be positive an ε ∈ R+ has to be added.

The main work is to verify the monotonicity. The rest follows analogously.

Theorem 3.1.6

FPPc is NP-complete even if k = 2 and p is positive, monotonically decreasing

and P is monotonically increasing.

Proof

FPP is NP-hard even if k = 2 and p is positive, monotonically decreasing and

P is monotonically increasing (Theorem 3.1.3).

For a given instance I = (V, p, k, b) of FPP with an arbitrary set V , k = 2

and a positive, monotonically decreasing subset function p and monotonically

increasing cumulated subset function P de�ne an instance Î := (V̂ , p̂, k̂, b̂, ŵ)

of FPPc with V̂ := V ∪ {ŵ1, ŵ2}, where ŵ1, ŵ2 /∈ V are two arbitrary elements

with ŵ1 6= ŵ2, and

p̂(Ŵ , v̂) :=

p(Ŵ ∩ V, v̂) if v̂ ∈ V

ε otherwise
,

where Ŵ ⊆ V̂ , v̂ ∈ V̂ and ε > 0. The subset function p̂ is polynomially com-

putable in the size of V̂ because p is polynomially computable. Further, let

k̂ := k and b̂i := bi + ε for i ∈ {1, 2}.
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3.1 Feasible Partition Problems

The subset function p̂ is positive since p is positive. Further, p̂ is monotonically

decreasing:

Let Ŵ ′ ⊆ Ŵ ⊂ V̂ and v̂ ∈ V̂ . It follows Ŵ ′ ∩ V ⊆ Ŵ ∩ V and thus with the

monotonicity of p it is

p̂(Ŵ ′, v̂) = p(Ŵ ′ ∩ V, v̂) ≥ p(Ŵ ∩ V, v̂) = p̂(Ŵ , v̂)

for v̂ ∈ V and

p̂(Ŵ ′, v̂) = ε = p̂(Ŵ , v̂)

for v̂ ∈ V̂ \V .

The cumulated subset function P̂ is monotonically increasing:

For ∅ 6= Ŵ ′ ⊆ Ŵ ⊂ V̂ de�ne W ′ := Ŵ ′ ∩ V = Ŵ ′\{ŵ1, ŵ2} and W :=

Ŵ ∩ V = Ŵ\{ŵ1, ŵ2}. With

P (W ) =
∑
v∈W

p(W, v)

=
∑
v∈W

p(Ŵ ∩ V, v)

=
∑
v∈W

p̂(Ŵ , v)

=
∑

v̂∈Ŵ\{ŵ1,ŵ2}

p̂(Ŵ , v̂)

it follows

P̂ (Ŵ ) =
∑

v̂∈Ŵ\{ŵ1,ŵ2}

p̂(Ŵ , v̂) +
∑

v̂∈Ŵ∩{ŵ1,ŵ2}

p̂(Ŵ , v̂)

= P (W ) +
∑

v̂∈Ŵ∩{w1,w2}

ε

= P (W ) + |Ŵ ∩ {w1, w2}|ε

and analogously

P (W ′) = P (W ′) + |Ŵ ′ ∩ {w1, w2}|ε.
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Therefore,

P̂ (Ŵ ′) = P (W ′) + |Ŵ ′ ∩ {w1, w2}|ε ≤ P (W ) + |Ŵ ∩ {w1, w2}|ε = P̂ (Ŵ )

holds.

The instance Î is solvable if and only if I is solvable:

�⇒�: Let Ŵ = {Ŵ1, Ŵ2} be a feasible solution for Î. The familyW := {W1,W2}
with Wi := Ŵi ∩ V = Ŵi\{ŵi} for i ∈ {1, 2} is a feasible solution for I
because

P̂ (Ŵi) =
∑
v̂∈Ŵi

p̂(Ŵi, v̂)

=
∑
v̂∈Wi

p̂(Ŵi, v̂) + p̂(Ŵi, ŵi)

=
∑
v̂∈Wi

p(Ŵi ∩ V, v̂) + ε

=
∑
v∈Wi

p(Wi, v) + ε

= P (Wi) + ε

and thus

P̂ (Ŵi) ≤ b̂i

⇔ P (Wi) + ε ≤ bi + ε

⇔ P (Wi) ≤ bi

for i ∈ {1, 2}.

�⇐�: For a feasible partition W := {W1,W2} for I de�ne Ŵ := {Ŵ1, Ŵ2} with
Ŵi := Wi ∪ {wi} for i ∈ {1, 2}. Like in the �⇒� part Ŵ is a solution for

Î.

Thus, FFPc is NP-complete.

The last two proofs show that the transformations from FPPc to FPP are not of

structural di�culty. The main idea is adding the centers of an instance of FPPc

to an instance of FPP and extending the subset function canonically. Because
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3.1 Feasible Partition Problems

of this in the following section just algorithms for FPP are considered. Instances

of FPPc can be handled in the same way.

3.1.1 Heuristic approach

Since FPP is NP-complete, a heuristic is used to solve the problem. To create

such a heuristic some structure on p is needed. Thus, in this section p is as-

sumed to be monotonically decreasing and P is assumed to be monotonically

increasing. The idea is to start with some random partition of V and iteratively

modify it until a feasible partition is found. In the following de�nition an ILP

is introduced. This program creates an incidence vector for a new partition,

which is used as partition in the next iteration. To avoid loops in this process

one special partitioning set (indexed by j) is selected. The target function is

designed such that moving elements to a di�erent partitioning set is punished

except if the destination set is Wj. The key result of this section is that loops

cannot occur if the program can be solved with optimal solution value 0.

De�nition 3.1.7

Let I = (V, p, k, b) be an instance of FPP, W = (W1, . . . ,Wk) a partition of V

and j ∈ {1, . . . , k}. The problem FPPlinI,W,j is de�ned as the following ILP:

min
k∑

i=1
i 6=j

∑
v/∈Wi

xi,v

s.t.

k∑
i=1

xi,v = 1 ∀v ∈ V∑
v∈V

p(Wi ∪ {v}, v)xi,v ≤ bi ∀i ∈ {1, . . . , k}

xi,v ∈ {0, 1} ∀i ∈ {1, . . . , k}, v ∈ V

The incidence vector x encodes the membership of elements of V to a parti-

tioning set. That means xi,v = 1 if v ∈ V belongs to partitioning set Wi. The

coe�cients p(Wi ∪{v}, v) are used to approximate the weight of v if v is moved

to Wi. Generally, this is not the exact weight since other elements could also be

added to Wi or removed from Wi.
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3 Nonconstant Weight Partition Problems

The following de�nition describes how a family of subsets of V is created from x.

De�nition 3.1.8

Let V be a �nite set, k ∈ N and x ∈ {0, 1}{1,...,k}×V . For i ∈ {1, . . . , k} de�ne

W x
i := {v ∈ V : xi,v = 1}

and

Wx := {W x
1 , . . . ,W

x
k }.

Obviously, Wx forms a partition of V if
∑k

i=1 xi,v = 1 for all v ∈ V .

Lemma 3.1.9

Let V be a �nite set, k ∈ N and x ∈ {0, 1}{1,...,k}×V . If

k∑
i=1

xi,v = 1

for all v ∈ V , then Wx is a partition of V .

Proof

For each v ∈ V there exists exactly one iv ∈ {1, . . . , k} with xiv ,v = 1. This

means v ∈ W x
iv and v /∈ W x

j for all j ∈ {1, . . . , k}\{iv}. Thus, Wx is a partition

of V .

If FPPlinI,W,j can be solved with optimal solution value 0, the following lemma

guarantees that P (W x
j ) ≤ bj and that the subset values of all other partition-

ing sets do not increase. Thus, in this case iteratively solving FPPlinI,W,j and

updating W with Wx cannot lead to a loop.

Lemma 3.1.10

Let I = (V, p, k, b) be an instance of FPP, where p is monotonically decreasing

and P is monotonically increasing, W = {W1, . . . ,Wk} be a partition of V and

j ∈ {1, . . . , k}. If FPPlinI,W,j is solvable with solution x and optimal solution

value 0, then P (W x
j ) ≤ bj and P (W

x
i ) ≤ P (Wi) for all i ∈ {1, . . . , k}\{j}.
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3.1 Feasible Partition Problems

Proof

Let i ∈ {1, . . . , k}\{j} and v /∈ Wi. Since

k∑
i=1
i 6=j

∑
v/∈Wi

xi,v = 0,

it is xi,v = 0 and therefore v /∈ W x
i . This means W x

i ⊆ Wi. Thus, for all

i ∈ {1, . . . , k}\{j} it follows

P (W x
i ) ≤ P (Wi).

Since W and Wx are partitions of V and W x
i ⊆ Wi for i ∈ {1, . . . , k}\{j}, it

follows Wj ⊆ W x
j . Thus, also for all w ∈ W x

j it is Wj ∪ {w} ⊆ W x
j . The claim

follows with

P (W x
j ) =

∑
w∈Wx

j

p(W x
j , w)

≤
∑
w∈Wx

j

p(Wj ∪ {w}, w)

=
∑
v∈V

p(Wj ∪ {v}, v)xj,v

≤ bj.

Remark 3.1.11

If FPPlinI,W,j is solvable with an optimal solution value of 0, then with the pre-

vious Lemma 3.1.10 it is P (W x
j ) ≤ bj. However, P (W x

i ) ≤ bi is not guaranteed

for i ∈ {1, . . . , k}\{j} even if the inequalities of the program may suggest this.

Consider the following example:

Let I = (V, p, k, b) be an instance of FPP with V := {v1, v2} and

p(W, v) :=


1
2

if W = V

3
4

if W = {v1} ∨W = {v2}

1 if W = ∅
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3 Nonconstant Weight Partition Problems

for W ⊆ V and v ∈ V . Further, let k := 2, b1 := 3
4
and b2 := 1

2
. The possible

subset values are P (V ) = 1, P ({v1}) = P ({v2}) = 3
4
and P (∅) = 0. It is easy

to see that p is monotonically decreasing and P is monotonically increasing.

As starting partition select W := {W1,W2} with W1 := ∅ and W2 := V and

choose j := 1.

The x vector with the components x1,v1 = 1, x1,v2 = 0, x2,v1 = 0, x2,v2 = 1 is

a solution for FPPlinI,W,j since

k∑
i=1

xi,v = 1

for v ∈ {v1, v2} and∑
v∈V

p(W1 ∪ {v}, v)x1,v =
∑
v∈V

p({v}, v)x1,v =
3

4

∑
v∈V

x1,v =
3

4
= b1,

∑
v∈V

p(W2 ∪ {v}, v)x2,v =
∑
v∈V

p(V, v)x2,v =
1

2

∑
v∈V

x2,v =
1

2
= b2.

The value of this solution is 0:

k∑
i=1
i 6=j

∑
v/∈Wi

xi,v =
2∑

i=1
i 6=1

∑
v/∈Wi

xi,v =
∑
v/∈W2

xi,v =
∑
v/∈V

xi,v = 0

It is Wx = {{v1}, {v2}} and P (W x
1 ) = P ({v1}) = 3

4
= b1, but P (W x

2 ) =

P ({v2}) = 3
4
> b2. Thus, x is a solution for FPPlinI,W,j with value 0 but Wx

is not feasible for I.

Due to Lemma 3.1.10 solving FPPlinI,W,j with an optimal solution value of 0 cre-

ates a partition with P (W x
j ) ≤ bj and P (W x

i ) ≤ P (Wi) for all i ∈ {1, . . . , k}\{j}.
Thus, after one iteration with solution value 0 the subset Wj already ful�lls the

feasibility criterion. This means after k iterations with solution value 0 and

j = 1, j = 2 to j = k a feasible solution is found.

However, in the iterative process FPPlinI,W,j may become infeasible. This leads

to the termination of the process without �nding a solution. In the following a

more general approach is presented since P (W x
j ) ≤ bj is not necessarily required

after one iteration. Already P (W x
j ) < P (Wj) would be su�cient to ensure a de-

scent in the subset value of Wj and in this way avoid the occurrence of loops.

Like this the chance of generating infeasible instances is reduced.
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3.1 Feasible Partition Problems

De�nition 3.1.12

Let I = (V, p, k, b) be an instance of FPP, W = (W1, . . . ,Wk) a partition of V ,

j ∈ {1, . . . , k} and ε ∈ R+. The problem FPPlinI,W,j,ε is de�ned as the following

ILP:

min
k∑

i=1
i 6=j

∑
v/∈Wi

xi,v

s.t.

k∑
i=1

xi,v = 1 ∀v ∈ V∑
v∈V

p(Wi ∪ {v}, v)xi,v ≤ max{bi, P (Wi)− ε} ∀i ∈ {1, . . . , k}

xi,v ∈ {0, 1} ∀i ∈ {1, . . . , k}, v ∈ V

For FPPlinI,W,j,ε an equivalent result as Lemma 3.1.10 follows directly.

Lemma 3.1.13

Let I = (V, p, k, b) be an instance of FPP, where p is monotonically decreasing

and P is monotonically increasing, W = (W1, . . . ,Wk) be a partition of V , j ∈
{1, . . . , k} and ε ∈ R+. If FPPlinI,W,j,ε is solvable with solution x and optimal

solution value 0, then P (W x
j ) ≤ max{bj, P (Wj) − ε} and P (W x

i ) ≤ P (Wi) for

all i ∈ {1, . . . , k}\{j}.

Proof

Like the proof of Lemma 3.1.10. Substitue bj by max{bj, P (Wj)− ε}.

The result of Lemma 3.1.13 directly leads to the de�nition of Algorithm 3.1.14.

The following theorem states that Algorithm 3.1.14 terminates if from some

point all programs FPPlinI,W,j,ε can be solved with solution value 0.

Theorem 3.1.15

Let I = (V, p, k, b) be an instance of FPP, where p is monotonically decreasing

and P is monotonically increasing, W = (W1, . . . ,Wk) a partition of V and

ε ∈ R+. If Algorithm 3.1.14 is started with I, W and ε as input and from some

point all programs FPPlinI,W,j,ε are solvable with optimal solution value 0, then

Algorithm 3.1.14 terminates and returns a feasible solution for FPP.

45



3 Nonconstant Weight Partition Problems

Algorithm 3.1.14 FPP �nd solution
Input: • Instance I = (V, p, k, b) of FPP

• Partition W = {W1, . . . ,Wk} of V
• ε ∈ R+

Output: PartitionW = {W1, . . . ,Wk} of V with P (Wi) ≤ bi for i ∈ {1, . . . , k}

1: while ∃i ∈ {1, . . . , k} : P (Wi) > bi do
2: for j = 1→ k do
3: if FPPlinI,W,j,ε is infeasible then
4: error: no solution found
5: else
6: let x∗ be an optimal solution for FPPlinI,W,j,ε

7: W ←Wx∗

8: end if
9: end for

10: end while
11: return W

Proof

If Algorithm 3.1.14 terminates, it returns a partition of V (Lemma 3.1.9). Fur-

ther, P (Wi) ≤ bi for all i ∈ {1, . . . , k} since otherwise the while loop (line 1)

would not break. Thus, if Algorithm 3.1.14 terminates, a feasible solution for

FPP is returned.

To show that Algorithm 3.1.14 terminates assume that FPPlinI,W,j,ε in line 6

always is solvable with optimal solution value 0. Thus, with Lemma 3.1.13 in

each step of the for loop (line 2) it is P (W x∗
j ) ≤ bj or P (W x∗

j ) ≤ P (Wj) − ε
and P (W x∗

i ) ≤ P (Wi) for i ∈ {1, . . . , k}\{j}. Therefore, after a complete cycle

through the for loop the subset value P (Wi) decreases by ε or it is P (Wi) ≤ bi

for all i ∈ {1, . . . , k}. This means after a �nite number cycles through the while

loop (line 1) it is P (Wi) ≤ bi for all i ∈ {1, . . . , k} and Algorithm 3.1.14 termi-

nates.

3.1.2 Numerical results

To test Algorithm 3.1.14 feasible instances of FPP with 4 di�erent sizes of V

and 4 di�erent values for k are constructed. For each instance the runtime of

Algorithm 3.1.14 is measured, where as starting partition some random parti-

tion is taken.
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3.1 Feasible Partition Problems

As comparison a randomized algorithm is implemented. This algorithm ran-

domly generates partitions and returns a feasible partition if one is found. To

ensure the comparability of the results the random algorithm is just run for the

time Algorithm 3.1.14 needs to solve the instance. The randomized algorithm

is run for 100 times. In this way the expected ratio of �nding a solution in the

same time as Algorithm 3.1.14 can be determined.

The test instances are generated as follows. For each element v ∈ V an absolute

and a relative weight value

av ∈
{⌊
|V |
2

⌋
+ 1,

⌊
|V |
2

⌋
+ 2, . . . , |V |

}
and

rv ∈
{
1, 2, . . . ,

⌊
|V |
2

⌋}
are randomly generated. The ranges are chosen dependent on V to get a diverse

set of weights. Further, note that maxv∈V rv ≤ av. The subset function on V is

de�ned as

p(W, v) :=

av +
rv
|W |

if W 6= ∅

av + rv otherwise

for W ⊆ V and v ∈ V . Obviously, p is monotonically decreasing and it is

P (W ) =
∑
w∈W

aw +

∑
w∈W rw

|W |

for ∅ 6= W ⊆ V . With∑
w∈W rw

|W |
≤
∑

w∈W maxv∈V rv

|W |
= max

v∈V
rv ≤ av

for all W ⊆ V and v ∈ V it follows

P (W ′) =
∑
w∈W ′

aw +

∑
w∈W ′ rw

|W ′|
≤
∑
w∈W

aw ≤ P (W )

for all ∅ 6= W ′ ( W ⊆ V . Thus, P is monotonically increasing.
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3 Nonconstant Weight Partition Problems

The value of the bounding vector b is chosen as⌈∑
v∈V av

k
+

∑
v∈V rv

|V |

⌉
and such that all components are equal. Thus,

b1 = b2 = . . . = bk =

⌈∑
v∈V av

k
+

∑
v∈V rv

|V |

⌉
.

The expression ∑
v∈V av

k
+

∑
v∈V rv

|V |

represents an estimation of the average subset value if the elements could be

distributed fractionally among the partitioning sets. However, since the distribu-

tion is not fractional this may produce infeasible instances. If Algorithm 3.1.14

cannot �nd a feasible partition for an instance within 15 minutes, the instance

is assumed to be infeasible and the value of b is increased iteratively by 1 until

a feasible partition can be found. This practice does not give Algorithm 3.1.14

any structural advantage over the randomized approach because in both cases

the same instance with the same b is solved.

Instances with four di�erent sizes of V (20, 40, 60 and 80) and four di�erent

values of k (2, 3, 5 and 10) are generated. The values are chosen such that the

instances can be solved within 60 seconds. Of course in practical applications

often much larger problems occur. However, already for these small problems

trends in runtimes and the performance of the randomized algorithms can be

observed.

In Table 3.1 the results for the generated test instances are presented. The �rst

two columns contain the size of V and the number of the partitioning sets. In

the third column the runtime of the heuristic (Algorithm 3.1.14) is shown. This

is also the time after which the randomized algorithm is terminated. The ratio

with which the randomized algorithm can �nd a feasible solution, i.e. how often

in the 100 runs a solution is found in the given time, is illustrated in the last

column.

For |V | = 20 and |V | = 40 a solution can be randomly found in 100% of the runs

if k = 2. Also for |V | = 20 and k = 3 a ratio of 95% can be achieved. However,
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|V| k

FPP

heur. rand.

time ratio

20 2 0.218 100%

3 0.062 95%

5 1.442 0%

10 5.513 5%

40 2 0.453 100%

3 0.463 8%

5 0.787 0%

10 11.368 0%

60 2 0.297 32%

3 0.486 0%

5 2.404 0%

10 37.533 0%

80 2 1.047 0%

3 1.656 0%

5 4.093 0%

10 40.789 0%

Table 3.1: FPP results
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while |V | and k increase the ratio decreases drastically. For k = 5 and k = 10

nearly never a solution can be found at all. For |V | ≥ 60 random solutions are

found only for k = 3 with a ratio of 32%. This is an indicator of the hardness of

FPP and shows that the complexity increases strongly with increasing |V | or k.
Nevertheless, Algorithm 3.1.14 solves the instances in acceptable time. Indeed,

the runtime also increases with increasing |V | or k but for k ∈ {2, 3, 5} all

instances can still be solved in less than 10 seconds. For |V | = 80 and k = 10 a

solution still can be found in about 40 seconds.

3.2 Minimal Partition Problems

After analyzing a decision type partition problem with nonconstant weight func-

tions in this section two minimization type problems are studied. In contrast

to the previous results for these problems the monotonic properties of p and P

make a di�erence in the hardness. To specify the problems two target functions

are de�ned.

De�nition 3.2.1

Let V be a �nite set and p be a subset function on V . For a set W of subsets of

V the value

sp(W) :=
∑
W∈W

P (W )

is called sum subset value and

mp(W) := max
W∈W

P (W )

is called maximum subset value of W for subset function p.

If P is monotonically increasing, a lower bound for the maximum subset value

can be given. This is useful in some proofs later on.

Lemma 3.2.2

Let W be a partition of a �nite set V and p a subset function on V , where P is

monotonically increasing. Then

mp(W) ≥ max
v∈V

p({v}, v).
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Proof

Since P is monotonically increasing, it follows P (W ) ≥ P ({w}) for all W ⊆ V

and w ∈ W . Thus,

mp(W) = max
W∈W

P (W )

≥ max
W∈W

max
w∈W

P ({w})

= max
W∈W

max
w∈W

p({w}, w)

= max
v∈V

p({v}, v).

Now a partition problem can be de�ned in which the sum of the subset values

of all partitioning sets has to be minimized.

De�nition 3.2.3 (MinSum Partition Problem)

Let V be a �nite set, p a nonnegative subset function on V and k ∈ N.
The problem to �nd a partition W = {W1, . . . ,Wk} of V , where sp(W) is min-

imal, is called MinSum Partition Problem (MinSumPP).

The following theorem shows that MinSumPP cannot be approximated in poly-

nomial time if P 6= NP, because otherwise NPP could be solved in polynomial

time.

Theorem 3.2.4

Unless P = NP, there is no polynomial-time approximation algorithm that solves

MinSumPP with approximation ratio f for some function f : X → [1,∞), where

X is the set of possible instances of MinSumPP, even if p is {0, 1}-valued and

k = 2.

Proof

For a given instance I = (S) of NPP let S :=
∑

s∈S s. De�ne an instance

J := (V, p, k) of MinSumPP with V := S and

p(W, v) :=

0 if
∑

w∈W w = S
2

1 otherwise
,

where W ⊆ V and v ∈ V . Obviously, p is polynomially computable in the size

of V . Further let k := 2.
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Like in the proof of Theorem 3.1.2 if follows that the optimal solution of J has

a sum subset value of 0 if and only if I is solvable.

Assumed a polynomial-time f -approximation A for MinSumPP existed, then A
would return at most f(J ) · 0 = 0 for J if I was solvable and a value strictly

greater than 0 if I was not solvable. Thus, I can be solved in polynomial time

by solving J with A. This is in contradiction to the hardness of NPP.

In the previous theorem the premises appear to be arti�cially designed to get

the bad approximation result. The optimal solution of the constructed instance

of MinSumPP has value 0 if the corresponding instance of NPP is solvable.

Therefore any approximation algorithm must return 0 if the corresponding in-

stance of NPP is solvable. Thus, restricting p to be positive would be interesting.

However, before this case is studied note the following lemma.

Lemma 3.2.5

Let I = (V, p, k) be an instance of MinSumPP, where p is nonnegative and

monotonically decreasing. Then W∗ := {W ∗
1 , . . . ,W

∗
k } with W ∗

1 := V and W ∗
i =

∅ for i ∈ {2, . . . , k} is an optimal solution for I.

Proof

Let W = {W1, . . . ,Wk} be some partition of V . With Lemma 3.0.4 it follows

P (W1) + P (W2) ≥ P (W1 ∪W2) = P (W1 ∪W2) + 0 = P (W1 ∪W2) + P (∅).

Thus, moving all elements from W2 to W1 leaves sp(W) unchanged or even

reduces the value. The claim follows by repeating this procedure for all Wi with

i ∈ {3, . . . , k}.

This means that if p is monotonically decreasing, the partition, where all ele-

ments of V are contained in one partitioning set and all other sets are empty,

is an optimal solution for MinSumPP. To exclude this trivial case the following

problem is de�ned.

De�nition 3.2.6 (Nonempty MinSum Partition Problem)

Let V be a �nite set, p a nonnegative subset function on V and k ∈ N, with
|V | ≥ k.

The problem to �nd a partition W = {W1, . . . ,Wk} of V with Wi 6= ∅ for

i ∈ {1, . . . , k}, where sp(W) is minimal, is called Nonempty MinSum Partition

Problem (MinSumPP 6=∅).

52



3.2 Minimal Partition Problems

For MinSumPP 6=∅ an equivalent result like for MinSumPP can be shown. The

proof is very similar to the proof of Theorem 3.2.4 except the constructed subset

function has to be monotonically decreasing and the resulting partitioning sets

are not allowed to be empty.

Theorem 3.2.7

Unless P = NP, there is no polynomial-time approximation algorithm that solves

MinSumPP 6=∅ with approximation ratio f for some function f : X → [1,∞),

where X is the set of possible instances of MinSumPP6=∅, even if p is monoton-

ically decreasing, {0, 1}-valued and k = 2.

Proof

For a given instance I = (S) of NPP let S :=
∑

s∈S s. Without loss of generality

let |S| ≥ 2. De�ne an instance J := (V, p, k) of MinSumPP6=∅ with V := S and

p(W, v) :=

0 if
∑

w∈W w ≥ S
2

1 otherwise
,

where W ⊆ V and v ∈ V . Obviously, p is polynomially computable in the

size of V . Further let k := 2 ≤ |V |. The subset function p is monotonically

decreasing:

Let W ′ ⊆ W ⊆ V and v ∈ V :
• Case

∑
w∈W ′ w < S

2
:

p(W ′, v) = 1 ≥ p(W, v) ∈ {0, 1}

• Case
∑

w∈W ′ w ≥
S
2
:

It is
∑

w∈W w ≥
∑

w∈W ′ w ≥
S
2
and therefore

p(W ′, v) = 0 = p(W, v)

The optimal solution for J has a sum subset value of 0 if and only if I is

solvable:

�⇒�: Let W = {W1,W2} be a feasible solution for J with Wi 6= ∅ for i ∈ {1, 2}
and sp(W) = 0. Since

0 ≤ P (W1) ≤ sp(W) = 0
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and

0 ≤ P (W2) ≤ sp(W) = 0,

it follows p(Wi, v) = 0 for all v ∈ Wi and i ∈ {1, 2}. Since W1 6= ∅, it
follows

∑
w∈W1

w ≥ S

2

⇔ 2
∑
w∈W1

w ≥ S

⇔ 2
∑
w∈W1

w ≥
∑
s∈S

s =
∑
v∈V

v

⇔
∑
w∈W1

w ≥
∑
v∈V

v −
∑
w∈W1

w =
∑

v∈V \W1

v =
∑
v∈W2

w.

Because W2 6= ∅ in the same way∑
w∈W2

w ≥
∑
w∈W1

w

follows and therefore ∑
w∈W1

w =
∑
w∈W2

w.

Then T := {T1, T2} with T1 := W1 and T2 := W2 is a valid partition of S

for I.

�⇐�: Let T = {T1, T2} be a partition of S with∑
s∈T1

s =
∑
s∈T2

s.

Since |S| ≥ 2, it is Ti 6= ∅ for i ∈ {1, 2}. With Lemma 1.2.3 it follows

∑
s∈T1

s =
∑
s∈T2

s =
S

2
.
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De�ne Wi := Ti 6= ∅ for i ∈ {1, 2}. Then

P (Wi) =
∑
v∈Wi

p(Wi, v) =
∑
v∈Wi

0 = 0

for i ∈ {1, 2} and {W1,W2} is a valid partition of V for J with a sum

subset value of 0.

The claim follows like in the proof of Theorem 3.2.4.

As already mentioned before, Theorems 3.2.4 and 3.2.7 seem to be designed in

a way to get bad approximation results since the optimal value of MinSumPP

or MinSumPP6=∅ is 0. Thus, the following two theorems cover the case with a

positive subset function p for which an optimal value of 0 is impossible.

In Theorem 3.2.8 for MinSumPP 6=∅ the subset function p is assumed to be

monotonically decreasing and in Theorem 3.2.9 for MinSumPP the cumulated

subset function P is assumed to be monotonically increasing.

Theorem 3.2.8

Unless P = NP, there is no polynomial-time approximation algorithm that solves

MinSumPP 6=∅ with approximation ratio in O
(
2poly(|V |,k)

)
for some polynomial

poly : R+×R+ → R≥1 even if k = 2 and p is positive, monotonically decreasing

and only takes two values.

Proof

Let I = (S) be an instance of NPP and S :=
∑

s∈S s. Without loss of gener-

ality let |S| ≥ 2. Assumed a polynomial-time M -approximation algorithm A
for MinSumPP 6=∅ existed with M ≥ 1. De�ne an instance J := (V, p, k) of

MinSumPP6=∅ with V := S,

p(W, v) :=

ε if
∑

w∈W w ≥ S
2

M |V | otherwise
,

for W ⊆ V , v ∈ V , ε ∈ (0, 1
2
) and k := 2 ≤ |V |. Obviously, p is polynomially

computable in the size of V and positive.
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Further, p is monotonically decreasing:

Let W ′ ⊆ W ⊆ V and v ∈ V :
• Case

∑
w∈W ′ w < S

2
:

p(W ′, v) =M |V | ≥ p(W, v) ∈ {ε,M |V |}

• Case
∑

w∈W ′ w ≥
S
2
:

It is
∑

w∈W w ≥
∑

w∈W ′ w ≥
S
2
and therefore

p(W ′, v) = ε = p(W, v)

It is

P (W ) =
∑
v∈W

p(W, v) =

ε|W | if
∑

w∈W w ≥ S
2

M |V ||W | otherwise
.

For a solution W = {W1,W2} of J with

∑
w∈W1

w =
∑
w∈W2

w =
S

2

it follows P (Wi) = ε|Wi| ≤ ε|V | for i ∈ {1, 2} and therefore sp(W) ≤ 2ε|V | <
|V |. For a solution W = {W1,W2} of J with

∑
w∈W1

w 6=
∑

w∈W2
w (without

loss of generality
∑

w∈W1
w >

∑
w∈W2

w) it is

2
∑
w∈W2

w =
∑
w∈W2

w + S −
∑
w∈W1

w <
∑
w∈W1

w + S −
∑
w∈W1

w = S

⇔
∑
w∈W2

w <
S

2
.

Therefore, sp(W) ≥ P (W2) =M |V ||W2| ≥M |V | because W2 6= ∅.
Altogether, since A is a polynomial-time M -approximation, a value less than

M |V | is returned by A for J if and only if I is solvable and a value larger or

equal M |V | if and only if I is infeasible. Setting M := 2poly(|V |,k) with some

polynomial poly : R+ ×R+ → R≥1 leaves the transformation polynomial in the

coding length of the input. This proves the claim.
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Theorem 3.2.9

Unless P = NP, there is no polynomial-time approximation algorithm that solves

MinSumPP with approximation ratio in O
(
2poly(|V |,k)

)
for some polynomial

poly : R+ × R+ → R≥1 even if k = 2, p is positive and only takes two val-

ues and P is monotonically increasing.

Proof

Let I = (S) be an instance of NPP and S :=
∑

s∈S s. Without loss of generality

let |S| ≥ 2. Assumed a polynomial-time M -approximation algorithm A for

MinSumPP existed withM ≥ 1. De�ne an instance J := (V, p, k) of MinSumPP

with V := S,

p(W, v) :=

ε if
∑

w∈W w ≤ S
2

M |V | otherwise
,

for W ⊆ V , v ∈ V , ε ∈ (0, 1
2
) and k := 2. Obviously, p is polynomially com-

putable in the size of V and positive.

Further, P is monotonically increasing:

• Case
∑

w∈W ′ w ≤
S
2
:

p(W ′, v) = ε ≤ p(W, v) ∈ {ε,M |V |}

• Case
∑

w∈W ′ w > S
2
:

It is
∑

w∈W w ≥
∑

w∈W ′ w > S
2
and therefore

p(W ′, v) =M |V | = p(W, v)

Similar as in the proof of Theorem 3.2.8 it is

P (W ) =
∑
v∈W

p(W, v) =

ε|W | if
∑

w∈W w ≤ S
2

M |V ||W | otherwise
.

For a solution W = {W1,W2} of J with

∑
w∈W1

w =
∑
w∈W2

w =
S

2
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it follows P (Wi) = ε|Wi| ≤ ε|V | for i ∈ {1, 2} and therefore sp(W) ≤ 2ε|V | <
|V |. For a solution W = {W1,W2} of J with

∑
w∈W1

w 6=
∑

w∈W2
w (without

loss of generality
∑

w∈W1
w >

∑
w∈W2

w) it is

2
∑
w∈W1

w =
∑
w∈W1

w + S −
∑
w∈W2

w >
∑
w∈W2

w + S −
∑
w∈W2

w = S.

This also means W1 6= ∅. Therefore, sp(W) ≥ P (W1) =M |V ||W1| ≥M |V |.
Altogether, since A is a polynomial-time M -approximation a value less than

M |V | is returned by A for J if and only if I is solvable and a value larger or

equal M |V | if and only if I is infeasible. Setting M := 2poly(|V |,k) with some

polynomial poly : R+ ×R+ → R≥1 leaves the transformation polynomial in the

coding length of the input. This proves the claim.

Note that in Theorem 3.2.9 MinSumPP is studied and thus empty partitioning

sets are allowed. This is because Lemma 3.2.5 just holds for monotonically

decreasing subset functions. Nevertheless, a similar result with the same proof

can be obtained for MinSumPP6=∅.

From a practical point of view Theorems 3.2.8 and 3.2.9 are not very promising.

Even if either p is monotonically decreasing or if P is monotonically increasing

there is no approximation algorithm for MinSumPP 6=∅ with an approximation

ratio polynomial in the size of the input. On the positive side, for the case where

both monotonic properties hold such an approximation algorithm is presented

later on.

But �rst, like in the previous section, MinSumPP and MinSumPP 6=∅ can be

extended by a set of �xed centers which have to be contained in di�erent par-

titioning sets.

De�nition 3.2.10 (MinSum Partition Problem with �xed centers)

Let V be a �nite set, p a nonnegative subset function on V , k ∈ N and wi ∈ V
for i ∈ {1, . . . , k} with wi 6= wj for all i, j ∈ {1, . . . , k}.
The problem to �nd a partition W = {W1, . . . ,Wk} of V with wi ∈ Wi for

i ∈ {1, . . . , k}, where sp(W) is minimal, is called MinSum Partition Problem

with �xed centers (MinSumPPc).
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De�nition 3.2.11 (Nonempty MinSum Partition Problem with �xed centers)

Let V be a �nite set, p a nonnegative subset function on V , k ∈ N, with |V | ≥ 2k,

and wi ∈ V for i ∈ {1, . . . , k} with wi 6= wj for all i, j ∈ {1, . . . , k}.
The problem to �nd a partition W = {W1, . . . ,Wk} of V with wi ∈ Wi and

Wi\{wi} 6= ∅ for all i ∈ {1, . . . , k}, where sp(W) is minimal, is called Nonempty

MinSum Partition Problem with �xed centers (MinSumPPc 6=∅).

For these two problems equivalent results as Theorems 3.2.8 and 3.2.9 can be

obtained by a transformation to the corresponding problems without �xed cen-

ters.

Theorem 3.2.12

Unless P = NP, there is no polynomial-time approximation algorithm that solves

MinSumPPc 6=∅ with approximation ratio O
(
2poly(|V |,k)

)
for some polynomial

poly : R+ × R+ → R≥1 even if k = 2 and p is positive, monotonically de-

creasing and only takes three values.

Further unless P = NP, there is no polynomial-time approximation algorithm

that solves MinSumPPc with approximation ratio O
(
2poly(|V |,k)

)
for some poly-

nomial poly : R+ × R+ → R≥1 even if k = 2, p is positive, only takes three

values and P is monotonically increasing.

Proof

Let I = (V, p, k) be an instance of MinSumPP 6=∅ (or MinSumPP respectively)

with positive subset function p, k = 2 and without loss of generality |V | > 0.

De�ne an instance Î = (V̂ , p̂, k̂, ŵ) of MinSumPPc6=∅ (or MinSumPPc respec-

tively) with V̂ := V ∪ {ŵ1, ŵ2}, where ŵ1, ŵ2 /∈ V are two arbitrary elements

with ŵ1 6= ŵ2, and

p̂(Ŵ , v̂) :=

p(Ŵ ∩ V, v̂) if v̂ ∈ V

ε otherwise
,

where Ŵ ⊆ V̂ , v̂ ∈ V̂ and

ε := min

{
min
v∈V

p({v}, v),min
v∈V

p(V, v)

}
.

Obviously, p̂ is polynomially computable in the size of V̂ because p is polynomi-

ally computable in the size of V . It is ε > 0 since p is positive. Thus, p̂ is positive.
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Further, let k̂ := k = 2 (if k ≤ |V | then 2k̂ = 2k = k + k ≤ |V | + 2 = |V̂ |). As
in the proof of Theorem 3.1.6 p̂ is monotonically decreasing if p is positive and

monotonically decreasing, and P̂ is monotonically increasing if P is monotoni-

cally increasing. Also, p̂ only takes three values if p only takes two values.

For a feasible partition Ŵ = {Ŵ1, Ŵ2} for Î, de�ne the corresponding partition
W := {W1,W2} of V for I with Wi := Ŵi\{ŵi} for i ∈ {1, 2}. Thus, Wi 6= ∅ if
Ŵi\{ŵi} 6= ∅ for i ∈ {1, 2}. Like in the proof of Theorem 3.1.6 it is

P̂ (Ŵi) = P (Wi) + ε

and therefore

sp(W) =
∑
i∈{1,2}

P (Wi)

<
∑
i∈{1,2}

P (Wi) + kε

=
∑
i∈{1,2}

(P (Wi) + ε)

= sp̂(Ŵ).

(3.2.1)

IfWi = Ŵi\{ŵi} 6= ∅, then for positive and monotonically decreasing p it follows

ε ≤ min
v∈V

p(V, v) ≤
∑
v∈Wi

p(V, v) ≤
∑
v∈Wi

p(Wi, v) = P (Wi)

and for positive p and monotonically increasing P it follows

ε ≤ min
v∈V

p({v}, v) = min
v∈V

P ({v}) ≤ min
w∈Wi

P ({w}) ≤ P (Wi)

for i ∈ {1, 2}. Thus, in both cases

P̂ (Ŵi) = P (Wi) + ε ≤ 2P (Wi)

if Wi 6= ∅ for i ∈ {1, 2}, which also means

sp̂(Ŵ) =
∑
i∈{1,2}

P̂ (Ŵi) ≤
∑
i∈{1,2}

2P (Wi) = 2sp(W). (3.2.2)
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If for example W1 = ∅, then it is Ŵ1 = {ŵ1}, W2 = V 6= ∅ and

sp̂(Ŵ) =
∑
i∈{1,2}

P̂ (Ŵi)

= P̂ (Ŵ1) + P̂ (Ŵ2)

= ε+ P (W2) + ε

≤ 3P (W2)

= 3sp(W).

(3.2.3)

Thus, altogether in any case

sp̂(Ŵ) ≤ 3sp(W).

Let z∗ be the optimal solution value for I and ẑ the value of the corresponding

solution for Î (centers are removed from all partitioning sets). Note that ẑ is

not necessarily the optimal value for Î. It follows

3z∗ ≥ ẑ.

Let A′ be a polynomial-time c-approximation algorithm for some c ≥ 1 for

MinSumPPc 6=∅ (or MinSumPPc respectively), ẑ∗ the optimal solution value for

Î, Ŵ ′ the solution returned by A′ and W ′ the corresponding solution for I.
Further, let ẑ′ := sp̂(Ŵ ′) and z′ := sp(W ′). Then

3z∗ ≥ ẑ ≥ ẑ∗ ≥ 1

c
ẑ′ >

1

c
z′,

where the last inequality follows from Equation (3.2.1). This means A′ is a 3c-

approximation algorithm for MinSumPP6=∅ (or MinSumPP respectively). The

claim follows with Theorem 3.2.8 for monotonically decreasing p and with The-

orem 3.2.9 for monotonically increasing P .

The next problem studied is the MinMax Partition Problem, which is very

similar to the MinSum Partition Problem. In this context not the sum of all

subset values has to be minimized but the maximum of all these values. Thus,

the problem is de�ned as follows.
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De�nition 3.2.13 (MinMax Partition Problem)

Let V be a �nite set, p a nonnegative subset function on V and k ∈ N.
The problem to �nd a partition W = {W1, . . . ,Wk} of V , where mp(W) is

minimal, is called MinMax Partition Problem (MinMaxPP).

The complexity results are almost identical to the results for MinSumPP. This

is shown in the following theorems.

Theorem 3.2.14

Unless P = NP, there is no polynomial-time approximation algorithm that solves

MinMaxPP with approximation ratio f for some function f : X → [1,∞), where

X is the set of possible instances of MinMaxPP, even if p is {0, 1}-valued and

k = 2.

Proof

For a �nite set V , a nonnegative subset function p and a set W of subsets of V

mp(W) = 0⇔ sp(W) = 0

holds. Thus, the same transformation as in the proof of Theorem 3.2.4 can be

used and the claim follows.

For MinSumPP with monotonically decreasing p it was shown that the trival

partition is an optimal solution. A similar result holds for MinMaxPP. If p is

monotonically decreasing, already the trivial partition is an approximate solu-

tion. However, the approximation ratio depends on the values of p.

Later, for monotonically increasing P also an approximation algorithm is pre-

sented whose approximation ratio only depends on the size of V and k.

Lemma 3.2.15

Let I = (V, p, k) be an instance of MinMaxPP, where p is positive and mono-

tonically decreasing. Further let W∗ := {W ∗
1 , . . . ,W

∗
k } be an optimal solution

for I, ε := maxv∈V p({v}, v) > 0 and δ := minv∈V p(V, v) > 0. Then

mp(W) ≤ ε

δ
|V |mp(W∗)

for the partition W := {W1, . . . ,Wk} of V with W1 := V and Wi = ∅ for

i ∈ {2, . . . , k}.
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Proof

Without loss of generality assume V 6= ∅ and P (W ∗
1 ) ≥ . . . ≥ P (W ∗

k ). Then

W1 6= ∅ and mp(W∗) = P (W ∗
1 ). Further,

P (W ∗
1 ) =

∑
w∈W ∗1

p(W ∗
1 , w)

≥ min
w∈W ∗1

p(W ∗
1 , w)

≥ min
v∈V

p(W ∗
1 , v)

≥ min
v∈V

p(V, v)

= δ

and

P (V ) =
∑
v∈V

p(V, v) ≤
∑
v∈V

p({v}, v) ≤
∑
v∈V

ε = ε|V |.

Thus,

mp(W) = P (V ) ≤ ε|V | = ε

δ
|V |δ ≤ ε

δ
|V |P (W ∗

1 ) =
ε

δ
|V |mp(W∗).

To exclude this trivial solution the following de�nition is given.

De�nition 3.2.16 (Nonempty MinMax Partition Problem)

Let V be a �nite set, p a nonnegative subset function on V and k ∈ N, with
|V | ≥ k.

The problem to �nd a partition W = {W1, . . . ,Wk} of V with Wi 6= ∅ for

i ∈ {1, . . . , k}, where mp(W) is minimal, is called Nonempty MinMax Partition

Problem (MinMaxPP 6=∅).

All following theorems up to Theorem 3.2.22 are in one-to-one correspondence

with the theorems for MinSumPP.
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Theorem 3.2.17

Unless P = NP, there is no polynomial-time approximation algorithm that solves

MinMaxPP 6=∅ with approximation ratio f for some function f : X → [1,∞),

where X is the set of possible instances of MinMaxPP 6=∅, even if p is monoton-

ically decreasing, {0, 1}-valued and k = 2.

Proof

For a �nite set V , a nonnegative subset function p and a set W of subsets of V

mp(W) = 0⇔ sp(W) = 0

holds. Thus, the same transformation as in the proof of Theorem 3.2.7 can be

used and the claim follows.

Theorem 3.2.18

Unless P = NP, there is no polynomial-time approximation algorithm that solves

MinMaxPP 6=∅ with approximation ratio in O
(
2poly(|V |,k)

)
for some polynomial

poly : R+×R+ → R≥1 even if k = 2 and p is positive, monotonically decreasing

and only takes two values.

Proof

The proof is analogous to the proof of Theorem 3.2.8 except ε ∈ (0, 1) and

sp(W) is substituted by mp(W).

Theorem 3.2.19

Unless P = NP, there is no polynomial-time approximation algorithm that

solves MinMaxPP with approximation ratio in O
(
2poly(|V |,k)

)
for some polyno-

mial poly : R+ ×R+ → R≥1 even if k = 2, p is positive and P is monotonically

increasing.

Proof

The proof is analogous to the proof of Theorem 3.2.9 except ε ∈ (0, 1) and

sp(W) is substituted by mp(W).

Like for MinSumPP a similar result of Theorem 3.2.19 holds for MinMaxPP6=∅.

In the following two de�nitions �xed centers are introduced for MinMaxPP.

64



3.2 Minimal Partition Problems

De�nition 3.2.20 (MinMax Partition Problem with �xed centers)

Let V be a �nite set, p a nonnegative subset function on V , k ∈ N and wi ∈ V
for i ∈ {1, . . . , k} with wi 6= wj for all i, j ∈ {1, . . . , k}.
The problem to �nd a partition W = {W1, . . . ,Wk} of V with wi ∈ Wi for

i ∈ {1, . . . , k}, where mp(W) is minimal, is called MinMax Partition Problem

with �xed centers (MinMaxPPc).

De�nition 3.2.21 (Nonempty MinMax Partition Problem with �xed centers)

Let V be a �nite set, p a nonnegative subset function on V , k ∈ N, with |V | ≥ 2k

and wi ∈ V for i ∈ {1, . . . , k} with wi 6= wj for all i, j ∈ {1, . . . , k}.
The problem to �nd a partition W = {W1, . . . ,Wk} of V with wi ∈ Wi and

Wi\{wi} 6= ∅ for i ∈ {1, . . . , k}, such thatmp(W) is minimal, is called Nonempty

MinMax Partition Problem with �xed centers (MinMaxPPc 6=∅).

Again, also these problems do not admit a polynomial-time approximation al-

gorithm with exponential approximation ratio.

Theorem 3.2.22

Unless P = NP, there is no polynomial-time approximation algorithm that

solves MinMaxPPc6=∅ with approximation ratio O
(
2poly(|V |,k)

)
for some poly-

nomial poly : R+ × R+ → R≥1 even if k = 2 and p is positive, monotonically

decreasing and only takes three values.

Further unless P = NP, there is no polynomial-time approximation algorithm

that solves MinMaxPPc with approximation ratio O
(
2poly(|V |,k)

)
for some poly-

nomial poly : R+ × R+ → R≥1 even if k = 2, p is positive, only takes three

values and P is monotonically increasing.

Proof

The proof is analogous to the proof of Theorem 3.2.12 with a few substitutions.

Equation (3.2.1) becomes

mp(W) = max
i∈{1,2}

P (Wi) < max
i∈{1,2}

P (Wi) + ε = max
i∈{1,2}

(P (Wi) + ε) = mp̂(Ŵ),

Equation (3.2.2) becomes

mp̂(Ŵ) = max
i∈{1,2}

P̂ (Ŵi) ≤ max
i∈{1,2}

2P (Wi) = 2mp(W)
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and Equation (3.2.3) becomes

mp̂(Ŵ) = max
i∈{1,2}

P̂ (Ŵi)

= max{P̂ (Ŵ1), P̂ (Ŵ2)}

= max{ε, P (W2) + ε}

≤ 2P (W2)

= 2sp(W).

Altogether then

mp̂(Ŵ) ≤ 2mp(W).

AlgorithmA′ is a polynomial-time c-approximation algorithm for MinMaxPPc6=∅
(or MinMaxPPc respectively) and thus also is a 2c-approximation algorithm for

MinMaxPP 6=∅ (or MinMaxPP respectively). Further, replace ẑ′ := mp̂(Ŵ ′) and
z′ := mp(W ′). The claim follows with Theorems 3.2.18 and 3.2.19.

The last proofs show that the problems MinSumPPc, MinSumPPc6=∅, Min-

MaxPPc and MinMaxPPc 6=∅ are not structurally di�erent from MinSumPP,

MinSumPP6=∅, MinMaxPP and MinMaxPP 6=∅. Thus, no special algorithms are

developed in the next section. All problems can be solved with the methods for

the corresponding problem without �xed centers.

3.2.1 Heuristic approach

Since in general MinSumPP and MinMaxPP do not admit polynomial-time

approximation algorithms, in this section heuristics for the general case are

presented. The idea is to start with some partition of V and move single ele-

ments from one partitioning set to another or switch two elements such that

the target function decreases. For MinSumPP characterizing the descent of the

target function is rather easy, whereas for MinMaxPP several cases have to be

distinguished.

First, depending on a partition of V , two new partitions must be de�ned. These

are generated by moving one element from one partitioning set to another or

switching two elements. This is stated in the following two de�nitions.
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De�nition 3.2.23

Let V be a �nite set and W = {W1, . . . ,Wk} a partition of V with k ∈ N. Let
v ∈ V and j ∈ {1, . . . , k}, where v /∈ Wj. De�ne

W(v,j) := {W(v,j)1
, . . . ,W(v,j)k

}

with W(v,j)i
:= Wi\{v}, W(v,j)j

:= Wj ∪ {v} and W(v,j)l
:= Wl for all l ∈

{1, . . . , k}\{i, j}, where i ∈ {1, . . . , k} such that v ∈ Wi.

Further, de�ne the set of possible moves for W as

M(W) := {(v, j) ∈ V × {1, . . . , k} : v /∈ Wj}.

De�nition 3.2.24

Let V be a �nite set and W = {W1, . . . ,Wk} a partition of V with k ∈ N. Let
v, w ∈ V , where |{v, w} ∩W | ≤ 1 for all W ∈ W. De�ne

W(v,w) := {W(v,w)1
, . . . ,W(v,w)k

}

with W(v,w)i
:= (Wi\{v}) ∪ {w}, W(v,w)j

:= (Wj\{w}) ∪ {v} and W(v,w)l
:= Wl

for l ∈ {1, . . . , k}\{i, j}, where i, j ∈ {1, . . . , k} such that v ∈ Wi and w ∈ Wj.

Further de�ne the set of possible switches for W as

S(W) := {(v, w) ∈ V 2 : |{v, w} ∩W | ≤ 1 ∀W ∈ W}.

Remark 3.2.25

Obviously, the two sets W(v,j) and W(v,w) are partitions of V . The condition

v /∈ Wj in De�nition 3.2.23 implies that v is not already in the partitioning set

to which it is moved. Further, the condition |{v, w}∩W | ≤ 1 in De�nition 3.2.24

encodes that v and w must be in di�erent partitioning sets. Thus,W(v,j) as well

as W(v,w) are di�erent from the original partition W and di�er in exactly two

partitioning sets. The sets of possible moves and switches are de�ned to get a

cleaner notation in algorithms.

MinSumPP

In the following a function gs is de�ned to compare partitions which di�er in

two partitioning sets. It indicates which of the two partitions has the smaller
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sum subset value. For MinSumPP this seems to be overloaded in some way but

for MinMaxPP such a criterion is useful. Thus, for the sake of conformity the

following de�nition is given.

De�nition 3.2.26

For an instance I = (V, p, k) of MinSumPP and two feasible solutions W =

{W1, . . . ,Wk} and W ′ = {W ′
1, . . . ,W

′
k} for I with |W ∩W ′| = k − 2 de�ne

gs(W ,W ′) := P (Wi)− P (W ′
i ) + P (Wj)− P (W ′

j),

where i, j ∈ {1, . . . , k} such that Wi 6= W ′
i and Wj 6= W ′

j.

The function gs depends on the selection of some i, j ∈ {1, . . . , k} and thus

it must be shown that gs is well-de�ned. In the upcoming proof W and W ′

di�er in two partitioning sets. The indices i and j basically identify these two

partitioning sets.

Lemma 3.2.27

gs is well-de�ned.

Proof

First notice that |W ∩ W ′| = k − 2 and therefore the selection of i and j

always is possible. It is left to show that gs does not depend on the selection of

i, j ∈ {1, . . . , k}.
Let i, j ∈ {1, . . . , k} with Wi 6= W ′

i and Wj 6= W ′
j . The only other possible

selection is i′ = j and j′ = i. Then

gs(W ,W ′) = P (Wi)− P (W ′
i ) + P (Wj)− P (W ′

j)

= P (Wj′)− P (W ′
j′) + P (Wi′)− P (W ′

i′)

= P (Wi′)− P (W ′
i′) + P (Wj′)− P (W ′

j′)

= gs(W ,W ′).
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The connection between gs and sp follows directly.

Lemma 3.2.28

Let I = (V, p, k) be an instance of MinSumPP, i, j ∈ {1, . . . , k} and W =

{W1, . . . ,Wk} and W ′ = {W ′
1, . . . ,W

′
k} two feasible solutions for I, where |W ∩

W ′| = k − 2. Then

sp(W)− sp(W ′) = gs(W ,W ′)

and therefore

sp(W) > sp(W ′)⇔ 0 < gs(W ,W ′), (3.2.4)

sp(W) = sp(W ′)⇔ 0 = gs(W ,W ′) (3.2.5)

and

sp(W) < sp(W ′)⇔ 0 > gs(W ,W ′) (3.2.6)

hold.

Proof

Let i, j ∈ {1, . . . , k} such that Wi 6= W ′
i and Wj 6= W ′

j . Then it is

gs(W ,W ′) = P (Wi)− P (W ′
i ) + P (Wj)− P (W ′

j).

Further, Wl ∈ W ∩W ′ for all l ∈ {1, . . . , k}\{i, j}. Therefore,

sp(W)− sp(W ′) =
k∑
l=1

P (Wl)−
k∑
l=1

P (W ′
l )

= P (Wi)− P (W ′
i ) + P (Wj)− P (W ′

j)

= gs(W ,W ′).

This proves the claim.

This means the partition W ′ is �better� than partition W (i.e. the sum subset

value is smaller) if gs(W ,W ′) is positive.
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In the following the two Algorithms 3.2.29 and 3.2.30 are presented. The idea

is to start with some partition and then reduce the sum subset value by moving

or switching elements. In Algorithm 3.2.29 the move or switch which is found

�rst is made, whereas in Algorithm 3.2.30 the move or switch which reduces the

target function the most is made.

Note that in the algorithms presented in this section often the continue com-

mand is used. The technical meaning of this command is explained as follows.

continue, which can only be called in loops, skips the rest of the code in the

loop and directly goes back to the beginning of the loop. In nested loops a pa-

rameter which speci�es the levels of loops to go back can be passed. Thus, in two

nested loops continue 1 goes to the beginning of the inner and continue 2 to

the beginning of the outer loop.

Algorithm 3.2.29 MinSumPP move/exchange
Input: • Instance I = (V, p, k) of MinSumPP

• Partition W = {W1, . . . ,Wk} of V
Output: Partition W ′ = {W ′

1, . . . ,W
′
k} of V with sp(W ′) ≤ sp(W)

1: W ′ ←W
2: loop
3: for all (v, j) ∈M(W ′) do
4: if 0 < gs(W ′,W ′(v,j)) then
5: W ′ ←W ′(v,j)
6: continue 2
7: end if
8: end for
9: for all (v, w) ∈ S(W ′) do

10: if 0 < gs(W ′,W ′(v,w)) then
11: W ′ ←W ′(v,w)
12: continue 2
13: end if
14: end for
15: return W ′
16: end loop

The following theorem shows that Algorithms 3.2.29 and 3.2.30 terminate. Fur-

ther, both algorithms produce a feasible solution which is at least as good as

the input partition.
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Algorithm 3.2.30 MinSumPP maximal move/exchange
Input: • Instance I = (V, p, k) of MinSumPP

• Partition W = {W1, . . . ,Wk} of V
Output: Partition W ′ = {W ′

1, . . . ,W
′
k} of V with sp(W ′) ≤ sp(W)

1: W ′ ←W
2: loop
3: m← max

(v,j)∈M(W ′)
gs(W ′,W ′(v,j))

4: s← max
(v,w)∈S(W ′)

gs(W ′,W ′(v,w))
5: if s ≤ m and 0 < m then
6: // Move is better than switch and reduces target function
7: (v, j) ∈ argmax

(v,j)∈M(W ′)
gs(W ′,W ′(v,j))

8: W ′ ←W ′(v,j)
9: continue 1

10: else if m ≤ s and 0 < s then
11: // Switch is better than move and reduces target function
12: (v, w) ∈ argmax

(v,w)∈S(W ′)
gs(W ′,W ′(v,w))

13: W ′ ←W ′(v,w)
14: continue 1
15: end if
16: return W ′
17: end loop
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Theorem 3.2.31

Algorithms 3.2.29 and 3.2.30 terminate after a �nite number of steps for an

instance I = (V, p, k) of MinSumPP and partition W = {W1, . . . ,Wk} of V as

input. The outputW ′ = {W ′
1, . . . ,W

′
k} is a partition of V with sp(W ′) ≤ sp(W).

Proof

First W is assigned to W ′. Then in each cycle W ′ either becomes W ′(v,j) or

W ′(v,w), which both are partitions of V since W ′ is a partition of V . Thus, the

returned set also is a partition of V .

With Lemma 3.2.28 Equation (3.2.4) (�⇐�) in each cycle either the sum subset

value of W ′ decreases or the current partition is returned. Thus, sp(W ′) ≤
sp(W).

Since there is only a �nite number of partitions of V and the sum subset value of

W ′ always decreases, there is a point where no further descent is possible. With

Lemma 3.2.28 Equation (3.2.4) (�⇒�) at this point the algorithm terminates.

MinMaxPP

For MinMaxPP a second criterion is introduced to compare solutions. First of

all, a partition W ′ is �better� than partition W if mp(W ′) < mp(W). However,

if mp(W ′) = mp(W), also the number of partitioning sets W (or W ′) with

P (W ) = mp(W) (or P (W ′) = mp(W ′)) is crucial. Often the maximum subset

value cannot be reduced by moves or switches because there are three or more

of these sets. Thus, secondly a partition where this number is smaller should be

preferred. To put this in a formal context the following de�nition is given.

De�nition 3.2.32

Let I = (V, p, k) be an instance of MinMaxPP and W = {W1, . . . ,Wk} a parti-

tion of V . A partitioning set Wi is called maxset of W if and only if

P (Wi) = mp(W).

The set

IW := {i ∈ {1, . . . , k} : P (Wi) = mp(W)}

is called the set of maxset indices of W.
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Remark 3.2.33

Note that due to the de�nition of mp(W) always |IW | ≥ 1 holds.

The following lemma is used in the upcoming proofs and is just stated here to

save some work later.

Lemma 3.2.34

Let I = (V, p, k) be an instance of MinMaxPP and W = {W1, . . . ,Wk} and

W ′ = {W ′
1, . . . ,W

′
k} two feasible solutions for I with mp(W) = mp(W ′) and

P (Wi) ≥ P (W ′
i ) for all i ∈ {1, . . . , k}. Then IW ′ ⊆ IW .

Proof

Let i ∈ IW ′ , then

mp(W) = mp(W ′) = P (W ′
i ) ≤ P (Wi) ≤ mp(W)

and thus P (Wi) = mp(W). This means i ∈ IW .

Like for MinSumPP a function gm which compares two partitions of V can be

de�ned. This function is positive if partition W ′ should be preferred over parti-

tion W , it is 0 if both partitions are considered equal and otherwise it is −1. In
this context −1 is just some negative number and has no further interpretation.

To prefer a partition in this regard means that either the maximum subset value

is smaller or the maximum subset value is equal and the number of maxsets is

smaller. Thus, a partitionW ′ can only be preferred over a partitionW if it does

not have the same maxsets, i.e. for some i ∈ IW it must be Wi 6= W ′
i . This is

considered in the following de�nition. Besides the two partitions gm has another

parameter i ∈ IW .

De�nition 3.2.35

Let I = (V, p, k) be an instance of MinMaxPP, W = {W1, . . . ,Wk} and W ′ =
{W ′

1, . . . ,W
′
k} two feasible solutions for I and i ∈ IW , where |W ∩W ′| = k − 2

and Wi 6= W ′
i . De�ne

gm(i,W ,W ′) :=


−1 if A

0 if B

2P (Wi)− P (W ′
i )− P (W ′

j) if C

,
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3 Nonconstant Weight Partition Problems

where j ∈ {1, . . . , k}\{i} such that Wj 6= W ′
j and

A = P (Wi) < P (W ′
i )∨

P (Wi) < P (W ′
j)∨

(j /∈ IW ∧ P (Wi) = P (W ′
i ) ∧ P (Wi) = P (W ′

j)),

B = (j ∈ IW ∧ P (Wi) = P (W ′
i ) ∧ P (Wi) = P (W ′

j))∨

(j /∈ IW ∧ P (Wi) = P (W ′
i ) ∧ P (Wi) > P (W ′

j))∨

(j /∈ IW ∧ P (Wi) > P (W ′
i ) ∧ P (Wi) = P (W ′

j))

and

C = (P (Wi) > P (W ′
i ) ∧ P (Wi) > P (W ′

j))∨

(j ∈ IW ∧ P (Wi) = P (W ′
i ) ∧ P (Wi) > P (W ′

j))∨

(j ∈ IW ∧ P (Wi) > P (W ′
i ) ∧ P (Wi) = P (W ′

j))

are three logical expressions.

Remark 3.2.36

If

(P (Wi) > P (W ′
i ) ∧ P (Wi) > P (W ′

j))∨

(j ∈ IW ∧ P (Wi) = P (W ′
i ) ∧ P (Wi) > P (W ′

j))∨

(j ∈ IW ∧ P (Wi) > P (W ′
i ) ∧ P (Wi) = P (W ′

j))

is true in De�nition 3.2.35, then 2P (Wi) − P (W ′
i ) − P (W ′

j) > 0. Thus, it is

gm(i,W ,W ′) > 0 if and only if C is true.

The function gm depends on the selection of some j ∈ {1, . . . , k}\{i} and thus it

must be shown that gm is well-de�ned. Further, it has to be veri�ed that exactly

one of the expressions A, B or C is true.

Lemma 3.2.37

gm is well-de�ned.

Proof

That exactly one of the expressions A, B or C is true can be seen in a disjunct

lineup like this:
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• P (Wi) < P (W ′
i ) ∨ P (Wi) < P (W ′

j): A

• P (Wi) < P (W ′
i ) ∨ P (Wi) < P (W ′

j)

◦ P (Wi) > P (W ′
i ) ∧ P (Wi) > P (W ′

j): C

◦ P (Wi) = P (W ′
i ) ∧ P (Wi) = P (W ′

j)

� j ∈ IW : B

� j /∈ IW : A

◦ P (Wi) = P (W ′
i ) ∧ P (Wi) > P (W ′

j)

� j ∈ IW : C

� j /∈ IW : B

◦ P (Wi) > P (W ′
i ) ∧ P (Wi) = P (W ′

j)

� j ∈ IW : C

� j /∈ IW : B

Since j ∈ {1, . . . , k}\{i}, |W ∩ W ′| = k − 2 and Wi 6= W ′
i , the selection of j

always is possible and unique.

The following lemmas characterize the connection between gm and the maximum

subset value and the number of maxsets of two partitions. For two partitions

with equal maximum subset value the partition with the smaller number of

maxsets should be preferred. Thus, mathematically speaking, W ′ is �better�

than W if

(mp(W) ≥ mp(W ′) ∧ |IW | > |IW ′ |) ∨mp(W) > mp(W ′).

Lemma 3.2.38

Let I = (V, p, k) be an instance of MinMaxPP, W = {W1, . . . ,Wk} and W ′ =
{W ′

1, . . . ,W
′
k} two feasible solutions for I and i ∈ IW , where |W ∩W ′| = k − 2

and Wi 6= W ′
i . Then

(mp(W) ≥ mp(W ′) ∧ |IW | > |IW ′|) ∨mp(W) > mp(W ′)⇔ 0 < gm(i,W ,W ′)

holds.
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Proof

Let j ∈ {1, . . . , k}\{i} such that Wj 6= W ′
j . It is to show that

(mp(W) ≥ mp(W ′) ∧ |IW | > |IW ′|) ∨mp(W) > mp(W ′)

if and only if

(P (Wi) > P (W ′
i ) ∧ P (Wi) > P (W ′

j))∨

(j ∈ IW ∧ P (Wi) = P (W ′
i ) ∧ P (Wi) > P (W ′

j))∨

(j ∈ IW ∧ P (Wi) > P (W ′
i ) ∧ P (Wi) = P (W ′

j)).

It is

mp(W)

{
>

≥

}
mp(W ′)⇒ P (Wi)

{
>

≥

}
P (W ′

i ) ∧ P (Wi)

{
>

≥

}
P (W ′

j) (3.2.7)

since

mp(W)

{
>

≥

}
mp(W ′)⇒ P (Wi) = mp(W)

{
>

≥

}
mp(W ′) ≥

P (W ′
i )

P (W ′
j)

holds.

• Case IW = {i}:
Since |IW ′ | ≥ 1 and j /∈ IW , it remains to show

mp(W) > mp(W ′)⇔ P (Wi) > P (W ′
i ) ∧ P (Wi) > P (W ′

j).

�⇒�: Follows with Equation (3.2.7).

�⇐�: For all l ∈ {1, . . . , k}\{i, j} it is Wl = W ′
l and therefore mp(W) =

P (Wi) > P (Wl) = P (W ′
l ). Further,

mp(W) = P (Wi) >

P (W ′
i )

P (W ′
j)

and thus mp(W) > mp(W ′).

• Case |IW | ≥ 2 and j ∈ IW :
It is P (Wi) = P (Wj).
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�⇒�: If mp(W) > mp(W ′), then P (Wi) > P (W ′
i ) and P (Wi) > P (W ′

j)

follows directly with Equation (3.2.7).

If mp(W) ≥ mp(W ′) and |IW | > |IW ′|, then P (Wi) ≥ P (W ′
i ) and

P (Wi) ≥ P (W ′
j) also with Equation (3.2.7). Assumed it was P (Wi) =

P (W ′
i ) and P (Wi) = P (W ′

j). Because with Wl = W ′
l for all l ∈

{1, . . . , k}\{i, j} then it also was IW = IW ′ . This is a contradiction.

Thus, P (Wi) > P (W ′
i ) or P (Wi) > P (W ′

j).

�⇐�: Let without loss of generality P (Wi) > P (W ′
i ) and P (Wj) = P (Wi) ≥

P (W ′
j) (since i, j ∈ IW both indices can be exchanged). Then ei-

ther mp(W) = mp(W ′) and thus i /∈ IW ′ and IW ′ ⊆ IW\{i} with

Lemma 3.2.34 or mp(W) > mp(W ′).

• Case |IW | ≥ 2 and j /∈ IW :
There exists l ∈ {1, . . . , k}\{i, j} with l ∈ IW and thus mp(W) = mp(W ′).
SinceWl = W ′

l for all l ∈ {1, . . . , k}\{i, j}, it follows IW\{i} = IW ′\{i, j}.
It remains to show

|IW | > |IW ′ | ⇔ P (Wi) > P (W ′
i ) ∧ P (Wi) > P (W ′

j).

�⇒�: Assumed i ∈ IW ′ or j ∈ IW ′ , then |IW | = |IW\{i}|+1 = |IW ′\{i, j}|+
1 ≤ |IW ′ |, which is in contradiction to |IW | > |IW ′|. Therefore,
P (W ′

i ) < mp(W ′) = mp(W) = P (Wi) and P (W ′
j) < mp(W ′) =

mp(W) = P (Wi).

�⇐�: It is P (W ′
i ) < P (Wi) = mp(W) = mp(W ′) and P (W ′

j) < P (Wi) =

mp(W) = mp(W ′). Thus, i, j /∈ IW ′ and therefore |IW | = |IW\{i}|+
1 = |IW ′\{i, j}|+ 1 = |IW ′|+ 1.

Two partitions should only be considered as equal if the maximum subset value

and the number of maxsets are equal. The connection to gm is given in the

following lemma.

Lemma 3.2.39

Let I = (V, p, k) be an instance of MinMaxPP, W = {W1, . . . ,Wk} and W ′ =
{W ′

1, . . . ,W
′
k} two feasible solutions for I and i ∈ IW , where |W ∩W ′| = k − 2

and Wi 6= W ′
i .
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Then

mp(W) = mp(W ′) ∧ |IW | = |IW ′ | ⇔ 0 = gm(i,W ,W ′)

holds.

Proof

Let j ∈ {1, . . . , k}\{i} such that Wj 6= W ′
j . Like in the proof of Lemma 3.2.38

it is to show

mp(W) = mp(W ′) ∧ |IW | = |IW ′ |

if and only if

(j ∈ IW ∧ P (Wi) = P (W ′
i ) ∧ P (Wi) = P (W ′

j))∨

(j /∈ IW ∧ P (Wi) = P (W ′
i ) ∧ P (Wi) > P (W ′

j))∨

(j /∈ IW ∧ P (Wi) > P (W ′
i ) ∧ P (Wi) = P (W ′

j)).

�⇒�: The inequalities

P (Wi) = mp(W) = mp(W ′) ≥

P (W ′
i )

P (W ′
j)

hold. Further, since Wl = W ′
l for all l ∈ {1, . . . , k}\{i, j} and mp(W) =

mp(W ′), it is IW\{i, j} = IW ′\{i, j}.
If j ∈ IW , then also P (Wj) = P (Wi) ≥ P (W ′

j) and thus with Lemma 3.2.34

IW ′ ⊆ IW . Since |IW | = |IW ′ |, this means IW ′ = IW and therefore

P (W ′
i ) = P (W ′

j) = mp(W ′) = mp(W) = P (Wi) = P (Wj).

If j /∈ IW , then P (Wi) 6= P (W ′
i ) or P (Wi) 6= P (W ′

j). Otherwise P (W
′
i ) =

P (Wi) = mp(W) = mp(W ′) and P (W ′
j) = P (Wi) = mp(W) = mp(W ′)

and then IW ′ = IW ∪ {j}, which is in contradiction to |IW | = |IW ′ |. Fur-
ther, P (Wi) = P (W ′

i ) or P (Wi) = P (W ′
j). Otherwise P (W

′
i ) < P (Wi) =

mp(W) = mp(W ′) and P (W ′
j) < P (Wi) = mp(W) = mp(W ′) and then

IW ′ = IW\{i}, which also is in contradiction to |IW | = |IW ′ |.
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�⇐�: With P (Wi) = P (W ′
i ) ∧ P (Wi) = P (W ′

j), P (Wi) = P (W ′
i ) ∧ P (Wi) >

P (W ′
j) or P (Wi) > P (W ′

i )∧ P (Wi) = P (W ′
j) it follows directly mp(W) =

mp(W ′) and thus like before IW\{i, j} = IW ′\{i, j}.
If j ∈ IW , then also P (Wi) = P (W ′

i ) ∧ P (Wi) = P (W ′
j). This means

i, j ∈ IW ′ and thus IW = IW ′ .

If j /∈ IW , then either P (Wi) = P (W ′
i )∧P (Wi) > P (W ′

j), and thus i ∈ IW ′
and j /∈ IW ′ , or P (Wi) > P (W ′

i ) ∧ P (Wi) = P (W ′
j), and thus i /∈ IW ′ and

j ∈ IW ′ . In Both cases |IW | = |IW ′ |.

The following lemma is just given to shorten the proof of Lemma 3.2.41.

Lemma 3.2.40

Let a, b ∈ R and c, d ∈ N. Then

a < b ∨ (c < d ∧ a ≤ b)⇔ (a ≥ b ∧ c > d) ∨ a > b ∧ a = b ∧ c = d.

Proof

The following implications hold:

a < b ∨ (c < d ∧ a ≤ b)

⇔ a < b ∨ (c ≤ d ∧ c 6= d ∧ a ≤ b)

⇔ (a < b ∨ c ≤ d) ∧ (a < b ∨ (a ≤ b ∧ c 6= d))

⇔ (a < b ∨ c ≤ d) ∧ (a ≤ b ∧ (a 6= b ∨ c 6= d))

⇔ (a < b ∨ c ≤ d) ∧ a ≤ b) ∧ (a 6= b ∨ c 6= d)

⇔ (a ≥ b ∧ c > d) ∨ a > b ∧ a = b ∧ c = d

Lemma 3.2.41

Let I = (V, p, k) be an instance of MinMaxPP, W = {W1, . . . ,Wk} and W ′ =
{W ′

1, . . . ,W
′
k} two feasible solutions for I and i ∈ IW , where |W ∩W ′| = k − 2

and Wi 6= W ′
i . Then

mp(W) < mp(W ′) ∨ (|IW | < |IW ′| ∧mp(W) ≤ mp(W ′))⇔ 0 > gm(i,W ,W ′)

holds.
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Proof

With Lemma 3.2.40 it is

mp(W) < mp(W ′) ∨ (|IW | < |IW ′| ∧mp(W) ≤ mp(W ′))

if and only if

(mp(W) ≥ mp(W ′) ∧ |IW | > |IW ′|) ∨mp(W) > mp(W ′)∧

mp(W) = mp(W ′) ∧ |IW | = |IW ′|.

The claim follows with Lemmas 3.2.38 and 3.2.39.

The maximum subset value or the number of maxsets just are decreased by a

move or switch if a maxset is changed. Thus, in the following de�nition sets of

moves or switches which a�ect a certain set of partitioning sets are de�ned.

De�nition 3.2.42

Let V be a �nite set, W = {W1, . . . ,Wk} a partition of V with k ∈ N and

I ⊆ {1, . . . , k}. De�ne

M(W ; I) := {(v, j, i) ∈M(W)× I : v ∈ Wi ∨ j = i}

and

S(W ; I) := {(v, w, i) ∈ S(W)× I : v ∈ Wi ∨ w ∈ Wi}.

Using this de�nition only the moves fromM(W ; IW) or switches from S(W ; IW)

can reduce the maxium subset value or the number of maxsets of a partitionW .

As for MinSumPP the following algorithms represent the approach of moving

one element from one partitioning set to another or switching two elements. In

Algorithm 3.2.43 the �rst move or switch, where gm is positive, is made, whereas

in Algorithm 3.2.44 the move or switch, where gm is maximal, is made. Note

that the value of gm does not really re�ect the actual reduction of the target

function. The function gm is even positive if the maximum subset value stays

the same but the number of maxsets reduces. In fact, in this case gm compares

the subset values of the two changed partitioning sets with the old maximum
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subset value. However, then a large gm implies that the subset values of these

two partitioning sets are small and therefore maximizing gm is eligible.

Algorithm 3.2.43 MinMaxPP move/exchange
Input: • Instance I = (V, p, k) of MinMaxPP

• Partition W = {W1, . . . ,Wk} of V
Output: Partition W ′ = {W ′

1, . . . ,W
′
k} of V with mp(W ′) ≤ mp(W)

1: W ′ ←W
2: loop
3: for all (v, j, i) ∈M(W ′; IW ′) do
4: if 0 < gm(i,W ′,W ′(v,j)) then
5: W ′ ←W ′(v,j)
6: continue 2
7: end if
8: end for
9: for all (v, w, i) ∈ S(W ′; IW ′) do

10: if 0 < gm(i,W ′,W ′(v,w)) then
11: W ′ ←W ′(v,w)
12: continue 2
13: end if
14: end forreturn W ′
15: end loop

The following theorem shows that Algorithms 3.2.43 and 3.2.44 terminate. Fur-

ther, both algorithms produce a feasible solution which is at least as good as

the input partition.

Theorem 3.2.45

Algorithms 3.2.43 and 3.2.44 terminate after a �nite number of steps for an

instance I = (V, p, k) of MinMaxPP and partition W = {W1, . . . ,Wk} of V

as input. The output W ′ = {W ′
1, . . . ,W

′
k} is a partition of V with mp(W ′) ≤

mp(W).

Proof

First W is assigned to W ′. Then in each cycle W ′ either becomes W ′(v,j) or

W ′(v,w), which both are partitions of V since W ′ is a partition of V . Thus, the

returned set is also a partition of V .

With Lemma 3.2.38 (�⇐�) in each cycle either the maximum subset value of

W ′ decreases or the size of IW ′ decreases while the maximum subset value is
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Algorithm 3.2.44 MinMaxPP maximal move/exchange
Input: • Instance I = (V, p, k) of MinMaxPP

• Partition W = {W1, . . . ,Wk} of V
Output: Partition W ′ = {W ′

1, . . . ,W
′
k} of V with mp(W ′) ≤ mp(W)

1: W ′ ←W
2: loop
3: m← max

(v,j,i)∈M(W ′;IW′ )
gm(i,W ′,W ′(v,j))

4: s← max
(v,w,i)∈S(W ′;IW′ )

gm(i,W ′,W ′(v,w))

5: if s ≤ m and 0 < m then
6: // Move is better than switch and reduces target
7: (v, j, i) ∈ argmax

(v,j,i)∈M(W ′;IW′ )
gm(i,W ′,W ′(v,j))

8: W ′ ←W ′(v,j)
9: continue 1

10: else if m ≤ s and 0 < s then
11: // Switch is better than move and reduces target
12: (v, w, i) ∈ argmax

(v,w,i)∈S(W ′;IW′ )
gm(i,W ′,W ′(v,w))

13: W ′ ←W ′(v,w)
14: continue 1
15: end if
16: return W ′
17: end loop
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unchanged or the current partition is returned. Thus, mp(W ′) ≤ mp(W).

If the maximum subset value is unchanged in one cycle, the size of IW ′ decreases.

Since |IW ′| always has to be larger than 0, after a �nite number of steps the

maximum subset value has to decrease. Further, since there is only a �nite

number of partitions of V and the maximum subset value ofW ′ decreases, there
is a point where no further descent is possible and the size of IW ′ cannot be

reduced. With Lemma 3.2.38 (�⇒�) the algorithm terminates at this point.

Expand search regions

Algorithms 3.2.29, 3.2.30, 3.2.43 and 3.2.44 just move or switch elements if a

real improvement can be gained. To reduce the probability to get stuck in a

local optimum the search region can be expanded in the cases where no real

improvement can be found. To do this a search tree is created. In this tree all

partitions are stored which are of equal preference as the current partition. If

a real improvement can be achieved via one of these partitions, the according

partition is used as next partition and the search tree is deleted.

The algorithms in this section are rather of conceptual purpose. They are not

implemented and tested as e�cient programming of a search tree is not in the

focus of this work. The main reason that a search tree approach works is that the

equality of preference gets entailed in the tree. This is proven in the following

lemma.

Lemma 3.2.46

Let I = (V, p, k) be an instance of MinSumPP, W = {W1, . . . ,Wk}, W ′ =
{W ′

1, . . . ,W
′
k} and W ′′ = {W ′′

1 , . . . ,W
′′
k } three feasible solutions for I, where

|W ∩W ′| = k − 2 and |W ′ ∩W ′′| = k − 2. Then

gs(W ,W ′) = gs(W ′,W ′′) = 0⇒ sp(W) = sp(W ′′)

holds.

Proof

Since gs(W ,W ′) = 0 and gs(W ′,W ′′) = 0, with Lemma 3.2.28 it follows

sp(W) = sp(W ′) and sp(W ′) = sp(W ′′).
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In Algorithm 3.2.47 the search tree is stored in the set X and partitions are only

added if they are of equal preference. The search tree from the last iteration is

saved in Xo. The algorithm terminates if no real improvement and no further

partitions of equal preference can be found.

Algorithm 3.2.47 MinSumPP global move
Input: • Instance I = (V, p, k) of MinSumPP

• Partition W = {W1, . . . ,Wk} of V
Output: Partition W ′ = {W ′

1, . . . ,W
′
k} of V with sp(W ′) ≤ sp(W)

1: W ′ ←W
2: loop
3: for all (v, j) ∈M(W ′) do
4: if 0 < gs(W ′,W ′(v,j)) then
5: W ′ ←W ′(v,j)
6: continue 2
7: end if
8: end for
9: Xo ← ∅

10: X ← {W ′}
11: while X 6= Xo do
12: for all V ∈ X , (v, j) ∈M(V) do
13: if V(v,j) /∈ X then
14: if 0 < gs(V ,V(v,j)) then
15: W ′ ← V(v,j)
16: continue 3
17: else if 0 = gs(V ,V(v,j)) then
18: Xo ← X
19: X ← X ∪ {V(v,j)}
20: end if
21: end if
22: end for
23: end while
24: return W ′
25: end loop

Theorem 3.2.48

Algorithm 3.2.47 terminates after a �nite number of steps for an instance I =

(V, p, k) of MinSumPP and partition W = {W1, . . . ,Wk} of V as input. The

output is a partition W ′ = {W ′
1, . . . ,W

′
k} of V with sp(W ′) ≤ sp(W).
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Proof

First W is assigned to W ′, which is a partition of V . Since all involved sets are

derived by possible moves, they all are partitions of V .

If the if query in line 4 is true, then with Lemma 3.2.28 Equation (3.2.4) the

sum subset value of W ′ decreases. If the if query is false, a new search tree

X which only contains W ′ is generated. With Lemma 3.2.46 for every added

partition V(v,j) it is sp(V(v,j)) = sp(W ′). The while loop in line 11 terminates

since never elements are removed from X and there is just a �nite number of

partitions of V .

If the if query in line 14 is true, then the sum subset value of W ′ decreases
since sp(V) = sp(W ′) for all V ∈ X and thus sp(V(v,j)) < sp(V) = sp(W ′).
Otherwise the current W ′ is returned. Thus, in each loop of line 2 either the

sum subset value of W ′ decreases or the current W ′ is returned. Since there is
only a �nite number of partitions, with Equation (3.2.4) in Lemma 3.2.28 the

claim is proven.

Remark 3.2.49

Algorithm 3.2.47 is an extension of Algorithm 3.2.29 without switching elements.

Algorithm 3.2.30 can be modi�ed in the same way to expand the search region

and also switching elements can be added easily.

The following lemma shows that the equality of preference also gets entailed in

the search tree for MinMaxPP.

Lemma 3.2.50

Let I = (V, p, k) be an instance of MinMaxPP, W = {W1, . . . ,Wk}, W ′ =
{W ′

1, . . . ,W
′
k} and W ′′ = {W ′′

1 , . . . ,W
′′
k } three feasible solutions for I, where

|W ∩W ′| = k − 2, |W ′ ∩W ′′| = k − 2, i ∈ IW and i′ ∈ IW ′. If

gm(i,W ,W ′) = gm(i
′,W ′,W ′′) = 0,

then

mp(W) = mp(W ′′) ∧ |IW | = |IW ′′ |

holds.
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Proof

Since gm(i,W ,W ′) = 0 and gm(i′,W ′,W ′′) = 0, with Lemma 3.2.39 it follows

mp(W) = mp(W ′) ∧ |IW | = |IW ′ | and mp(W ′) = mp(W ′′) ∧ |IW ′| = |IW ′′ |.

Algorithm 3.2.51 MinMaxPP global move
Input: • Instance I = (V, p, k) of MinMaxPP

• Partition W = {W1, . . . ,Wk} of V
Output: Partition W ′ = {W ′

1, . . . ,W
′
k} of V with mp(W ′) ≤ mp(W)

1: W ′ ←W
2: loop
3: W ′ ← ∅
4: for all (v, j, i) ∈M(W ′; IW ′) do
5: if 0 < gm(i,W ′,W ′(v,j)) then
6: W ′ ←W ′(v,j)
7: continue 2
8: end if
9: end for

10: Xo ← ∅
11: X ← {W ′}
12: while X 6= Xo do
13: for all V ∈ X , (v, j, i) ∈M(V ; IV) do
14: if V(v,j) /∈ X then
15: if 0 < gm(i,V ,V(v,j)) then
16: W ′ ← V(v,j)
17: break 3
18: else if 0 = gm(i,V ,V(v,j)) then
19: Xo ← X
20: X ← X ∪ {V(v,j)}
21: end if
22: end if
23: end for
24: end while
25: return W ′
26: end loop
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Theorem 3.2.52

Algorithm 3.2.51 terminates after a �nite number of steps for an instance I =

(V, p, k) of MinMaxPP and partition W = {W1, . . . ,Wk} of V as input. The

output is a partition W ′ = {W ′
1, . . . ,W

′
k} of V with mp(W ′) ≤ mp(W).

Proof

As in the proof of Theorem 3.2.48 the set W ′ is a partition of V .

If the if query in line 5 is true, with Lemma 3.2.38 the maximum subset value

of W ′ decreases or the size of IW ′ decreases while the maximum subset value is

unchanged. If the if query is false, a new search tree X which only containsW ′

is generated. With Lemma 3.2.50 for every recursively added partition V(v,j) it is
mp(V(v,j)) = mp(W ′) and |IV(v,j) | = |IW ′|. The while loop in line 12 terminates

since never elements are removed from X and there is just a �nite number of

partitions of V .

It is mp(V) = mp(W ′) and |IV | = |IW ′ | for all V ∈ X . Thus, if the if query in

line 15 is true, the maximum subset value decreases or the number of maxsets

decreases while the maximum subset value is unchanged since mp(V(v,j)) <

mp(V) = mp(W ′), or |IV(v,j)| < |IV | = |IW ′| and mp(V(v,j)) = mp(V) = mp(W ′).
Otherwise the current W ′ is returned. Thus, in each loop of line 2 either the

maximum subset value of W ′ decreases or the size of IW ′ decreases while the

maximum subset value is unchanged or the current W ′ is returned. Since |IW ′|
has to be always greater than 0, after a �nite number of steps the maximum

subset value has to decrease. Thus, as there is only a �nite number of partitions,

with Lemma 3.2.38 the claim is proven.

Remark 3.2.53

As before, Algorithm 3.2.51 is an extension of Algorithm 3.2.43 without switch-

ing elements. Algorithm 3.2.44 can be modi�ed in the same way to expand the

search region and also switching elements can be added easily.

3.2.2 Approximation

For the case, where p is not monotonically decreasing or P is not monoton-

ically increasing, in Section 3.2 it was demonstrated that MinSumPP6=∅ and

MinMaxPP 6=∅ do not admit polynomial-time approximation algorithms with a

polynomial approximation ratio. Thus, in this section p is assumed to be mono-

tonically decreasing and P is assumed to be monotonically increasing. Approxi-
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mation algorithms for MinSumPP 6=∅ and MinMaxPP6=∅ with polynomial approx-

imation ratio are developed. These results complete the approximation analysis

for the minimization type partition problems.

MinSumPP

With Lemma 3.2.5 already the trivial partition is optimal for MinSumPP if p

is monotonically decreasing. Thus, in this section an approximation algorithm

is only presented for MinSumPP 6=∅.

The leading thought for Algorithm 3.2.54 is to distribute the �expensive� el-

ements of V among the partitioning sets and then �ll up the sets with the

�cheaper� ones. For monotonically decreasing p this should reduce the weight of

the former and thus produce a good solution. As it is demonstrated later, this

approach leads to a multiplicative error of at most (1 + |V | − k).

Algorithm 3.2.54 MinSumPP6=∅ approximation

Input: • Instance I = (V, p, k) of MinSumPP 6=∅

Output: Feasible solution W = {W1, . . . ,Wk} for I

1: n← |V |
2: Sort and rename V = {v1, . . . , vn} such that P ({v1}) ≥ . . . ≥ P ({vn})
3: for i = 1→ k do
4: Wi ← ∅
5: end for
6: for j = 1→ n do
7: W((j−1) mod k)+1 ← W((j−1) mod k)+1 ∪ {vj}
8: end for
9: W ← {W1, . . . ,Wk}

10: return W

First it is shown that Algorithm 3.2.54 terminates and produces a feasible so-

lution for MinSumPP6=∅.

Lemma 3.2.55

With an instance I = (V, p, k) of MinSumPP6=∅ as input Algorithm 3.2.54 runs

in polynomial time in the size of the input, terminates and returns a feasible

solution W = {W1, . . . ,Wk} for I.
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Proof

Since sorting can be done in polynomial time, Algorithm 3.2.54 runs in polyno-

mial time. It terminates since all involved loop constructs are for loops. Further,

note that

((j − 1) mod k) + 1 ∈ {1, . . . , k}

for j ∈ {1, . . . , |V |}. In the for loop (line 6) each v ∈ V is added exactly once

to a set Wi with i ∈ {1, . . . , k}. Thus, W forms a partition of V . Since vi ∈ Wi

and |V | ≥ k, it is Wi 6= ∅ for i ∈ {1, . . . , k} and W is a feasible solution for

I.

To prove the approximation ratio a proof by induction is be used. Thus, some

elements of V are removed. For the resulting set V the induction base case holds

and the idea is to show that adding the elements which were removed before

does not increase the target value too much. In this context an upper bound

for the optimal sum subset value of V is needed. This bound is provided by the

following lemma.

Lemma 3.2.56

Let I = (V, p, k) and I = (V , p, k) be two instances of MinSumPP6=∅, where

V ⊆ V and P is monotonically increasing. Further, let W∗ = {W ∗
1 , . . . ,W

∗
k } be

an optimal solution for I andW∗ an optimal solution for I. If P ({v}) ≤ P ({v})
for all v ∈ V and v ∈ V \V , then

sp(W
∗
) ≤ sp(W∗).

Proof

Assumed sp(W
∗
) > sp(W∗). De�ne W

′
:= {W ′

1, . . . ,W
′
k} with W

′
i := W ∗

i ∩ V .
Since W∗ is a partition of V and V ⊆ V , W ′ is a partition of V . Further,

P (W
′
i) ≤ P (Wi) because W

′
i ⊆ Wi for all i ∈ {1, . . . , k}.

If there is i ∈ {1, . . . , k} with W ′
i = ∅, then W ∗

i ⊆ V \V and therefore

P ({v}) ≤ P ({w∗i })

for all v ∈ V and w∗i ∈ W ∗
i 6= ∅.
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Since |V | ≥ k, there exists a j ∈ {1, . . . , k} with j 6= i and |W ′
j| ≥ 2. Select

w′j ∈ W
′
j ⊆ V , move w′j from W

′
j to W

′
i and name the new partition W ′′. Then

it is

P (W
′′
i ) = P ({w′j}) ≤ P ({w∗i }) ≤ P (W ∗

i )

and

P (W
′′
j ) = P (W

′
j\{w′j}) ≤ P (W

′
j) ≤ P (W ∗

j ).

Thus, P (W
′′
i ) ≤ P (Wi) for all i ∈ {1, . . . , k}. Repeat this procedure until W

′′
i 6=

∅ for all i ∈ {1, . . . , k}. Then W ′′ is a feasible solution for I and

sp(W
∗
) > sp(W∗) ≥ sp(W

′′
),

which is in contradiction to the optimality of W∗.

With this result the approximation ratio of Algorithm 3.2.54 can be speci�ed.

Theorem 3.2.57

Let I = (V, p, k) be an instance of MinSumPP 6=∅, where p is positive, mono-

tonically decreasing and P is monotonically increasing. Further, let W∗ be an

optimal solution for I. Then Algorithm 3.2.54 �nds a solution W for I with

sp(W∗) ≤ sp(W) ≤ (1 + |V | − k) sp(W∗).

This means Algorithm 3.2.54 is a (1 + |V | − k)-approximation algorithm for

MinSumPP 6=∅ if p is positive, monotonically decreasing and P is monotonically

increasing.

Proof

The claim can be proven by induction on the size of V in the form �n→ n+ k�.

For the base case let |V | = k. In this case there is just one feasible and therefore

optimal partition of V (each partitioning set exactly contains one element). This

partition is created by Algorithm 3.2.54 as shown in Lemma 3.2.55. Thus, in

this case Algorithm 3.2.54 is a 1-approximation algorithm. With

1 = 1 + |V | − k
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the base case is proven.

Now let |V | = n ≥ 2k with n ∈ N. Without loss of generality let V =

{v1, . . . , vn} such that P ({v1}) ≥ . . . ≥ P ({vn}). Thus, v1 is the �rst and vn is

the last element selected by Algorithm 3.2.54. De�ne I := (V , p, k) with

V := V \{v1, . . . , vk}.

Thus, V = {vk+1, . . . , vn} with P (vk+1) ≥ . . . ≥ P (vn). Further,

P ({v}) ≤ P ({v}) (3.2.8)

for all v ∈ V and v ∈ V \V = {v1, . . . , vk}.
Let W = {W1, . . . ,Wk} be the partition of V created by Algorithm 3.2.54 for

I as input and accordingly W = {W 1, . . . ,W k} the partition of V created by

Algorithm 3.2.54 with I as input. Since ((i−1) mod k)+1 = ((i+k−1) mod k)+

1, it is Wi = W i ∪ {vi} for all i ∈ {1, . . . , k}. Further, let W∗ = {W ∗
1 , . . . ,W

∗
k }

be an optimal solution for I and W∗ = {W ∗
1, . . . ,W

∗
k} an optimal solution for

I.
Because of the base case

sp(W) ≤
(
1 + |V | − k

)
sp(W

∗
)

holds. With Equation (3.2.8) and Lemma 3.2.56 it follows

sp(W) ≤
(
1 + |V | − k

)
sp(W∗).

Further, with Corollary 3.0.5 it is

sp(W)− sp(W) =
k∑
i=1

P (Wi)− P (W i)

=
k∑
i=1

P (W i ∪ {vi})− P (W i)

≤
k∑
i=1

P ({vi})

≤ kP ({v1}).
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Let without loss of generality v1 ∈ W ∗
1 . Then

P ({v1}) ≤ P (W ∗
1 ) ≤ sp(W∗)

and thus

sp(W)− sp(W) ≤ kP ({v1}) ≤ ksp(W∗).

Altogether

sp(W) ≤ sp(W) + ksp(W∗)

≤
(
1 + |V | − k

)
sp(W∗) + ksp(W∗)

≤
(
1 + |V | − k + k

)
sp(W∗)

≤ (1 + |V | − k) sp(W∗),

which completes the proof.

MinMaxPP

For MinMaxPP a trivial approximation was already presented in Lemma 3.2.15.

However, for this trivial approximation the approximation ratio still depends on

the values of p. In this section an algorithm is developed whose approximation

ratio only depends on the size of V and k, namely
(
1 +

⌊
|V |−1
k

⌋)
. The approxi-

mation algorithm also is applicable to MinMaxPP 6=∅, which is shown at the end

of this section.

The idea of Algorithm 3.2.58 is to start with a set of empty partitioning sets

and iteratively distribute all elements of V . For that a set R is introduced

which holds the elements which still have to be distributed. In each iteration

the partitioning set with the smallest subset value is chosen and the element

from R which reduces the subset value the least is added.

Remark 3.2.59

For simplicity reasons in Algorithm 3.2.58 the minimum

argmin
v∈R

P (W
(l−1)
1 ∪ {v})
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Algorithm 3.2.58 MinMaxPP approximation
Input: • Instance I = (V, p, k) of MinMaxPP

Output: Feasible solution W = {W1, . . . ,Wk} for I

1: n← |V |
2: R← V
3: for i = 1→ k do
4: W

(0)
i ← ∅

5: end for
6: for l = 1→ n do
7: v ∈ argmin

v∈R
P (W

(l−1)
1 ∪ {v})

8: W
(l)
1 ← W

(l−1)
1 ∪ {v}

9: for i = 2→ k do
10: W

(l)
i ← W

(l−1)
i

11: end for
12: R← R\{v}
13: Rename W (l)

1 , . . . ,W
(l)
k such that P (W (l)

1 ) ≤ . . . ≤ P (W
(l)
k )

14: end for
15: return W(n) = {W (n)

1 , . . . ,W
(n)
k }

is assumed to be nonambiguous. If there is more than one element in R which

achieves the minimum, an indexing of V = {v1, . . . , vn} is assumed and the

element with the smallest index is selected.

The same is assumed for the renaming of the partition (line 13). If there are

partitioning sets with equal subset value, they are ordered like in the starting

family of empty sets.

The �rst step is to show the correctness of Algorithm 3.2.58.

Theorem 3.2.60

With an instance I = (V, p, k) of MinMaxPP as input Algorithm 3.2.58 runs

in polynomial time in the size of the input, terminates and returns a feasible

solution for I.

Proof

Since the renaming can be done in polynomial time and all involved loop con-

structs are for loops, Algorithm 3.2.58 runs in polynomial time and terminates.

In each step of the for loop (line 6) a v ∈ R is selected (since R is �nite the

minimum always exists), is added to one of the sets and removed from R. Since
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every v ∈ V is selected exactly once, �nally {W (n)
1 , . . . ,W

(n)
k } forms a partition

of V and thus is a feasible solution for I.

Like in the last section the following lemma provides an upper bound for the

maximum subset value if V is reduced to some subset V .

Lemma 3.2.61

Let I = (V, p, k) and I = (V , p, k) be two instances of MinMaxPP, where V ⊆ V

and P is monotonically increasing. Further, let W∗ = {W ∗
1 , . . . ,W

∗
k } be an

optimal solution for I and W∗ an optimal solution for I. Then

mp(W
∗
) ≤ mp(W∗).

Proof

Assumed mp(W
∗
) > mp(W∗). De�neW

′
:= {W ′

1, . . . ,W
′
k} withW

′
i := W ∗

i ∩V .
Since W∗ is a partition of V and V ⊆ V , W ′ is a partition of V . Further,

P (W
′
i) ≤ P (W ∗

i ) because W
′
i ⊆ W ∗

i for all i ∈ {1, . . . , k}. Therefore

mp(W
∗
) > mp(W∗) ≥ mp(W

′
),

which is in contradiction to the optimality of W∗.

The following lemma states that Algorithm 3.2.58 does not create empty parti-

tioning sets if p is positive.

Lemma 3.2.62

With an instance I = (V, p, k) of MinMaxPP as input, where |V | ≥ k and p

is positive, Algorithm 3.2.58 returns a partition W(n) = {W (n)
1 , . . . ,W

(n)
k } of V

with W
(n)
i 6= ∅ for all i ∈ {1, . . . , k}.

Proof

That Algorithm 3.2.58 creates a partition of V already follows with Theo-

rem 3.2.60. It is left to show that these partitioning sets are not empty.

At the beginning all partitioning sets W (0)
i are empty and thus P (W (0)

i ) = 0

for i ∈ {1, . . . , k}. In the �rst cycle through the for loop (line 6) one v ∈ V is

added toW (0)
1 . Since p is positive, it is P (W (0)

1 ∪{v}) = P ({v}) = p({v}, v) > 0.

Thus, this set will not be selected again before all other sets contain at least

one element. Since |V | ≥ k, in the end all k partitioning sets contain at least

one element.
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Using this result, the proof for the approximation ratio of Algorithm 3.2.58 is

given in the following theorem.

Theorem 3.2.63

Let I = (V, p, k) be an instance of MinMaxPP, where p is positive, monotonically

decreasing and P is monotonically increasing. Further, let W∗ be an optimal

solution for I. Then Algorithm 3.2.58 �nds a solution W for I with

mp(W∗) ≤ mp(W) ≤
(
1 +

⌊
|V | − 1

k

⌋)
mp(W∗).

This means Algorithm 3.2.58 is a
(
1 +

⌊
|V |−1
k

⌋)
-approximation algorithm for

MinMaxPP if p is positive, monotonically decreasing and P is monotonically

increasing.

Proof

The claim can be proven by induction on the size of V in the form �n→ n+ k�.

For the base case let |V | = k. In this case the partition, where each parti-

tioning set exactly contains one element, is optimal. Since P is monotonically

increasing, the maxiumum subset value for all other partitions is larger. With

Lemma 3.2.62 this partition is created by Algorithm 3.2.58. Thus, in this case,

it is a 1-approximation algorithm. With

1 = 1 +

⌊
|V | − 1

k

⌋
the base case is proven.

Now let |V | = n ≥ 2k with n ∈ N. De�ne I := (V , p, k) with

V := V \{vn−k+1, . . . , vn},

where vn ∈ V is the last element selected by Algorithm 3.2.58, vn−1 ∈ V is the

one selected before that and so on.

For l ∈ {1, . . . , n} let W(l) = {W (l)
1 , . . . ,W

(l)
k } be the sets created by Algo-

rithm 3.2.58 with I as input. Accordingly, let W(l)
= {W (l)

1 , . . . ,W
(l)

k } for

l ∈ {1, . . . , n − k} be the sets Algorithm 3.2.58 creates for input I. Due to

Remark 3.2.59 it is W(l)
= W(l) for l ∈ {1, . . . , n − k}. Further, let W∗ =

{W ∗
1 , . . . ,W

∗
k } be an optimal solution for I and W∗ = {W ∗

1, . . . ,W
∗
k} an opti-
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mal solution for I. Since |V | = n and |V | = n − k, Algorithm 3.2.58 returns

W(n) for I and W(n−k)
for I. Because of the base case

mp(W
(n−k)

) ≤
(
1 +

⌊
|V | − 1

k

⌋)
mp(W

∗
) (3.2.9)

holds.

With Equation (3.2.9) and Lemma 3.2.61 it follows

mp(W(n−k)) ≤
(
1 +

⌊
|V | − 1

k

⌋)
mp(W∗). (3.2.10)

With Corollary 3.0.5 it is

P (W
(n−k)
1 ∪ {vn−k+1})− P (W (n−k)

k ) ≤ p({vn−k+1}, vn−k+1)

≤ max
v∈V

p({v}, v)

and therefore

P (W
(n−k)
1 ∪ {vn−k+1}) ≤ P (W

(n−k)
k ) + max

v∈V
p({v}, v)

holds. Further, W(n−k+1) still contains at least k − 1 sets W (n−k+1) ∈ W(n−k+1)

with P (W (n−k+1)) ≤ P (W
(n−k)
k ), including W (n−k)

k itself (remember W (n−k)
k is

the partitioning set with maximal subset value in W(n−k+1)). One of these sets

is selected in the next cycle through the while loop. Thus, after k − 1 steps,

in which vn−k+2, . . ., vn are successively added, still P (W (n)) ≤ P (W
(n−k)
k ) +

maxv∈V p({v}, v) holds for all W (n) ∈ W(n). Therefore it is

mp(W(n)) ≤ P (W
(n−k)
k ) + max

v∈V
p({v}, v).

With Lemma 3.2.2 and Equation (3.2.10) it follows

mp(W(n)) ≤ P (W
(n−k)
k ) + max

v∈V
p({v}, v)

≤ mp(W(n−k)) +mp(W∗)

≤
(
1 +

⌊
|V | − 1

k

⌋)
mp(W∗) +mp(W∗)

=

(
1 +

⌊
|V | − 1

k

⌋
+ 1

)
mp(W∗)
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=

(
1 +

⌊
|V | − 1

k
+ 1

⌋)
mp(W∗)

=

(
1 +

⌊
|V |+ k − 1

k

⌋)
mp(W∗)

=

(
1 +

⌊
|V | − 1

k

⌋)
mp(W∗),

which completes the proof.

The previous result holds for instances of MinMaxPP where p is positive, mono-

tonically decreasing and P is monotonically increasing. In the following it is

shown that Algorithm 3.2.58 also is a
(
1 +

⌊
|V |−1
k

⌋)
-approximation algorithm

for MinMaxPP6=∅ if p is positive, monotonically decreasing and P is monotoni-

cally increasing.

First it is shown that if an instance of MinMaxPP is interpreted as an instance

of MinMaxPP 6=∅, the optimal solution value of the latter must be larger or equal.

This is stated in the following lemma.

Lemma 3.2.64

Let I = (V, p, k) be an instance of MinMaxPP and I ′ := (V, p, k) an instance of

MinMaxPP 6=∅. Further, let W∗ and W ′∗ optimal solutions for I and I ′. Then

mp(W∗) ≤ mp(W ′∗).

Proof

Every feasible solution for I ′ is feasible for I.

With this knowledge the previous results can be transferred to MinMaxPP 6=∅.

Theorem 3.2.65

Algorithm 3.2.58 is a
(
1 +

⌊
|V |−1
k

⌋)
-approximation algorithm for MinMaxPP 6=∅

if p is positive, monotonically decreasing and P is monotonically increasing.

Proof

Let I ′ = (V, p, k) be an instance of MinMaxPP 6=∅ and W ′∗ an optimal solution

for I ′. With Lemma 3.2.62 and Theorem 3.2.63 Algorithm 3.2.58 produces a

feasible solution W ′ for I ′ with

mp(W ′) ≤
(
1 +

⌊
|V | − 1

k

⌋)
mp(W∗),
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where W∗ is an optimal solution for the instance I = (V, p, k) of MinMaxPP.

With Lemma 3.2.64 it is mp(W∗) ≤ mp(W ′∗) and thus

mp(W ′) ≤
(
1 +

⌊
|V | − 1

k

⌋)
mp(W ′∗),

which proves the claim.

The approximation ratio of Algorithm 3.2.58 is best possible in the sense that

there are instances of MinMaxPP 6=∅ for which a solution is produced that is(
1 +

⌊
|V |−1
k

⌋)
times worse than the optimal solution. Such an instance is pre-

sented in the following paragraph. Also it has to be mentioned that even in the

absence of Remark 3.2.59 the multiplicative gap of
(
1 +

⌊
|V |−1
k

⌋)
is achieved.

Thus, even if there is an ambiguous choice (in line 7 or 13) and if Algo-

rithm 3.2.58 could guess the best choice, still a solution is produced that is(
1 +

⌊
|V |−1
k

⌋)
times worse than the optimal solution. This is also demonstrated

in the following paragraph since the given example is nonambiguous.

The idea is to create an instance of MinMaxPP6=∅, where V contains two types

of elements. The elements ai have a weight less but close to 1 for i ∈ {1, . . . , k}.
For i ∈ {1, . . . , k− 1} the elements bi in general have a weight of 1 but a weight

close to 0 if the corresponding ai is contained in the same partitioning set. The

element bk in general has a weight of 1 but a weight smaller than all other

bi if the partitioning set contains any other element. An optimal solution for

this instance is the partition {{ai, bi}}i∈{1,...,k}. Algorithm 3.2.58 starts with dis-

tributing the ai elements among the partitioning sets. Afterwards bk is added to

{a1} since it is the �cheapest� bi. In this way the optimal solution is obstructed

and b1 gets the high weight of 1.

Example 3.2.66 (Worst case example for Algorithm 3.2.58)

Let I = (V, p, k) be an instance of MinMaxPP 6=∅ with k ≥ 2 and the basic set

V = {a1, . . . , ak, b1, . . . , bk}. Further, let

p(W,ai) = 1− ε

i

for i ∈ {1, . . . , k},
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b1

2ε

a1

b2

3ε

a2

. . .

. . .

. . .

bk−1

kε

ak−1

bk

εε
ε

ε

ak

. . .

Figure 3.1: Illustration of Example 3.2.66

p(W, bi) =

(i+ 1)ε if ai ∈ W ∧ |W | ≥ 2

1 otherwise

for i ∈ {1, . . . , k − 1} and

p(W, bk) =

ε if |W | ≥ 2

1 otherwise
,

where W ⊆ V and ε ∈ R+ such that ε ≤ 1
k+2

.

It ist

1− ε

i
> 0

and thus p is positive. Further, p is monotonically decreasing:

Let W ′ ⊆ W ⊆ V . For ai ∈ V with i ∈ {1, . . . , k} it is

p(W ′, ai) = p(W,ai).

For bi ∈ V with i ∈ {1, . . . , k} �rst note that

|W ′| ≥ 2⇒ |W | ≥ 2

and

ai ∈ W ′ ⇒ ai ∈ W
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and therefore it either follows

p(W ′, bi) = p(W, bi)

or

p(W ′, bi) = 1 >
k

k + 2
≥ kε ≥ p(W, bi).

To show that P is monotonically increasing some subset W ′ of V is chosen and

it is shown that adding some element v ∈ V \W ′ increases the subset value.

Iteratively this shows the monotony of P :

Let ∅ 6= W ′ ⊆ V and v ∈ V \W ′. Assumed there were w,w′ ∈ W ′ with w 6= w,

p(W ′, w) > p(W ′ ∪ {v}, w) and p(W ′, w′) > p(W ′ ∪ {v}, w′). Then of course

|W ′| ≥ 2. Further, it is w = bi, w′ = bj with i, j ∈ {1, . . . , k − 1} since

p(W ′, ai) = p(W ′ ∪{v}, ai) for i ∈ {1, . . . , k} and p(W ′, bk) = p(W ′ ∪{v}, bk).
Then it follows ai = v = aj and thus i = j and w = w′, which is a contradition.

This means there is at most one w ∈ W ′ with p(W ′, w) > p(W ′ ∪ {v}, w).
If there is no element w ∈ W ′ with p(W ′, w) > p(W ′ ∪ {v}, w), then

P (W ′) =
∑
w∈W ′

p(W ′, w)

≤
∑
w∈W ′

p(W ′ ∪ {v}, w)

≤
∑

w∈W ′∪{v}

p(W ′ ∪ {v}, w)

= P (W ′ ∪ {v})

and nothing is to show.

Thus, assumed w ∈ W ′ was the one element in W ′ for which p(W ′, w) >

p(W ′ ∪ {v}, w). Since p(W ′, ai) = p(W ′ ∪ {v}, ai) for i ∈ {1, . . . , k}, it must
be w = bi with i ∈ {1, . . . , k}. This means

p(W ′, w′) ≤ p(W ′ ∪ {v}, w′)

for all w′ ∈ W ′\{bi} and ε ≤ p(W ′ ∪ {v}, bi) < p(W ′, bi) = 1.
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• Case v ∈ {a1, . . . , ak}:
It is

P (W ′ ∪ {v})− P (W ′)

=
∑

w∈W ′∪{v}

p(W ′ ∪ {v}, w)−
∑
w∈W ′

p(W ′, w)

≥ p(W ′ ∪ {v}, v) + p(W ′ ∪ {v}, bi)− p(W ′, bi)

≥ (1− ε) + ε− 1

≥ 0

and therefore P (W ′) ≤ P (W ′ ∪ {v}).
• Case v = bj with j ∈ {1, . . . , k − 1}:
Assumed |W ′| ≥ 2. With p(W ′, bi) > p(W ′ ∪ {bj}, bi) it follows i 6= k.

This entails aj /∈ W ′ and aj ∈ W ′ ∪ {bj}, which is impossible. Thus,

|W ′| = 1, which means W ′ = {bi}.
With the same argument i 6= k follows. Thus, W ′ = {bk}. Altogether it
is

p(W ′ ∪ {v}, v) + p(W ′ ∪ {v}, bi)− p(W ′, bi)

= p({bj, bk}, bj) + p({bj, bk}, bk)− p({bk}, bk)

= 1 + ε− 1

> 0

and therefore P (W ′) ≤ P (W ′ ∪ {v}).
• Case v = bk:

As before it follows |W ′| = 1 and W ′ = {bk}, which is in contradiction

to bk = v /∈ W ′. Thus, this case is impossible and does not have to be

considered.

Altogether, P (W ′) ≤ P (W ′ ∪ {v}) and thus P is monotonically increasing.
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An optimal solution for I is

W∗ := {{a1, b1}, {a2, b2}, . . . , {ak, bk}}:

It is

P ({ai, bi}) = p({ai, bi}, ai) + p({ai, bi}, bi)

=
(
1− ε

i

)
+ (i+ 1)ε

≤
(
1− ε

(i+ 1)

)
+ ((i+ 1) + 1)ε

= P ({ai+1, bi+1})

for i ∈ {1, . . . , k − 2} and

P ({ak, bk}) = p({ak, bk}, ak) + p({ak, bk}, bk) =
(
1− ε

k

)
+ ε.

Further,

2 ≥ 1 +
1

k(k − 1)

⇒ k ≥ 1 +
1

k(k − 1)

⇒ k ≥ 1 +
1

k − 1
− 1

k

⇒ − 1

k − 1
+ (k − 1) ≥ −1

k

⇒ − ε

k − 1
+ (k − 1)ε ≥ − ε

k

⇒
(
1− ε

k − 1

)
+ kε ≥

(
1− ε

k

)
+ ε.

Thus,

P ({ak−1, bk−1}) =
(
1− ε

k − 1

)
+ kε ≥

(
1− ε

k

)
+ ε = P ({ak, bk})
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and

mp(W∗) = P ({ak−1, bk−1}) =
(
1− ε

k − 1

)
+ kε.

To prove the optimality consider any other partition of V and assume that

for one i ∈ {1, . . . , k} the elements ai and bi were in di�erent partitioning

sets. Then in the partitioning set of bi either there is an element aj with

j ∈ {1, . . . , k}\{i} or there are no elements from {a1, . . . ak}. In the second

case there must exist i′, j′ ∈ {1, . . . , k} with i′ 6= j′ so that ai′ and aj′ are in

one partitioning set.

Thus, in summary there exist i, j ∈ {1, . . . , k} with i 6= j so that either bi and

aj, or ai and aj are contained in one partitioning set. It is

P ({bi, aj}) = 1 +

(
1− ε

j

)
and

P ({ai, aj}) =
(
1− ε

i

)
+

(
1− ε

j

)
.

Thus, this partition has a maximum subset value of at least 1+
(
1− ε

j

)
. Since

ε ≤ 1

k + 2

⇒ (k + 2)ε ≤ 1

⇒ kε+ 2ε− ε

k − 1
≤ 1

⇒ 1− ε

k − 1
+ kε ≤ 2− 2ε

⇒ 1− ε

k − 1
+ kε ≤

(
1− ε

i

)
+

(
1− ε

j

)
⇒ mp(W∗) ≤ 1 +

(
1− ε

j

)
,

W∗ is an optimal solution for I.
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Algorithm 3.2.58 produces the solution

W ′ := {{a1, bk}, {a2, b2}, {a3, b3}, . . . , {ak−1, bk−1}, {ak, b1}}:

Algorithm 3.2.58 starts with a family of empty sets. It is

P ({ai}) = 1− ε

i
< 1− ε

i+ 1
= P ({ai+1})

for i ∈ {1, . . . , k − 1} and

P ({ak}) = 1− ε

k
< 1 = P ({bi})

for i ∈ {1, . . . , k}. Thus, �rst a1 is added to one of the empty sets, then a2 to

one of the remaining empty sets because P (∅) = 0 < p({a1}, a1) = P ({a1}),
then a3 to another empty set and so on until each set contains one of the

elements of {a1, . . . , ak}.
After that the set {a1} is selected because it has the smallest subset value and

bk is added since

P ({a1, bk}) =
(
1 +

ε

1

)
+ ε <

(
1 +

ε

1

)
+ (1 + 1)ε = P ({a1, b1})

and

P ({a1, bk}) = 1 +
ε

1
+ ε = 1 + 2ε ≤ 1 +

2

k + 2
< 1 + 1 = P ({a1, bi})

for all i ∈ {2, . . . , k − 1}.
The next selected set is {a2} since

P ({ai}) = 1− ε

i
< 1 + 2ε = P ({a1, bk})

for i ∈ {2, . . . , k}, and b2 is added since

P ({a2, b2}) = 1− ε

2
+ (2 + 1)ε < 1− ε

2
+ 1 = P ({a2, bi})

for all i ∈ {1, 3, 4, . . . , k − 1}.
Iteratively for i ∈ {3, 4, . . . , k− 1} the set {ai} is selected and bi is added like
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in the step before. Finally, the set {ak} is selected and the only remaining

element is b1. Therefore W ′ is the resulting partition with

mp(W ′) ≥ P ({ak, b1}) =
(
1− ε

k

)
+ 1 = 2− ε

k
=

2k − ε
k

.

It is

2k − ε
k

=
(2k − ε)(k − 1)(k − 1− ε+ (k − 1)kε)

k(k − 1)(k − 1− ε+ (k − 1)kε)

=
(2k − ε)(k − 1)

k(k − 1− ε+ (k − 1)kε)
· (k − 1− ε+ (k − 1)kε)

(k − 1)

=
(2k − ε)(k − 1)

k(k − 1− ε+ (k − 1)kε)

(
1− ε

k − 1
+ kε

)
=

(2k − ε)(k − 1)

k(k − 1− ε+ (k − 1)kε)
mp(W∗)

and therefore

(2k − ε)(k − 1)

k(k − 1− ε+ (k − 1)kε)
mp(W∗) =

2k − ε
k

≤ mp(W ′).

With

lim
ε→0

(k − 1)(2k − ε)
(k − 1− ε+ (k − 1)kε)k

=
(k − 1)2k

(k − 1)k

= 2

= 1 +

⌊
2k − 1

k

⌋
= 1 +

⌊
|V | − 1

k

⌋
for any δ > 0 there exists an instance I ′ (choose ε in I small enough) of

MinMaxPP 6=∅ such that Algorithm 3.2.58 produces a solution for I ′ that is(
1 +

⌊
|V |−1
k

⌋
− δ
)
times larger than the optimal solution.

3.2.3 Numerical results

The test instances for the minimization type problems are generated like in

Section 3.1.2 except that no b vector is created. Instances with four di�erent

values for |V | and three di�erent values for k are constructed. Like before p is

monotonically decreasing and P is monotonically increasing and thus only the
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nonempty problem versions are considered.

For MinSumPP6=∅ as well as for MinMaxPP6=∅ the instances are solved with the

approximation algorithms (Algorithms 3.2.54 and 3.2.58) from Section 3.2.2.

Further, for comparison randomized algorithms are run for the time the ap-

proximation algorithms needs. The best solution found in this time is returned.

In this process only partitions with nonempty partitioning sets are considered.

To get the expected solution values the randomized algorithms are run 100 times

and the means are calculated.

To solve MinSumPP 6=∅ and MinMaxPP6=∅ heuristically the Algorithms 3.2.30

and 3.2.44 from Section 3.2.1 are used, where only moves or switches are al-

lowed which leave the partitioning sets nonempty. As start partition for the

heuristics the approximations of Algorithms 3.2.54 and 3.2.58 are used. Thus,

the heuristics are used to improve the results of the approximation algorithms.

Of course the time to calculate the approximations is included in the runtime

of the heuristics. Like previously the instances are solved by a randomized al-

gorithm 100 times and the average of the best results is computed. Of course,

this time the runtime of each run is bounded by the time the heuristic needs.

Like before, the sizes of the instances are chosen such that they can be solved in

within about 60 seconds. Nevertheless, trends in runtimes and the performance

of the randomized algorithms can already be detected with these instances.

All results for MinSumPP 6=∅ are summarized in Table 3.2. The runtime for the

approximation algorithm is almost 0 for all instances. For the heuristic the run-

time increases with increasing |V | whereas size of k does not have a big impact.

This means only |V | in�uences the number of possible moves or switches to re-

duce the target value. A further quantitative analysis of the heuristic runtime is

fallacious since it strongly depends on the quality of the start partition (starting

with an optimal partition for example always leads to a runtime of 0 since no

moves or switches improve the solution).

In addition it is apparent that the runtime of the randomized algorithm has

no impact on the quality of the average solution value. For comparison with

the approximation it is allowed to run 0.001 seconds for each instance. For the

heuristic it is allowed to run between 0.435 and 65.471 seconds but the change in

the average target value is insigni�cant. Thus, in the feasible region the sections

with �good� solutions must be very small and hard to hit with random tries.
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|V| k

MinSumPP6=∅
approx. rand. heur. rand.

time target target time target target

50 10 0.001 1354.4 1361.3 0.898 1210.4 1352.5

20 0.001 1589.8 1559.7 0.703 1297.7 1545.5

30 0.001 2004.0 1848.4 0.435 1718.3 1838.7

70 10 0.001 2836.0 2842.6 2.792 2555.7 2834.2

20 0.001 3159.4 3174.0 2.840 2705.5 3168.1

30 0.001 3609.7 3550.2 2.573 3094.3 3544.0

100 10 0.001 5538.5 5578.6 10.819 5169.6 5542.0

20 0.001 6046.8 6124.9 10.443 5320.9 6074.5

30 0.001 6495.3 6540.4 11.076 5463.0 6501.6

150 10 0.001 11994.2 12071.3 65.471 11373.5 11980.7

20 0.001 12503.3 12604.7 58.241 11250.8 12524.7

30 0.001 13347.6 13542.0 52.919 11814.7 13441.4

Table 3.2: MinSumPP 6=∅ results

|V| k
MinSumPP6=∅ approx. MinSumPP 6=∅ heur.

vs rand. vs approx. vs rand.

50 10 1% 11% 11%

20 -2% 18% 16%

30 -8% 14% 7%

70 10 0% 10% 10%

20 0% 14% 15%

30 -2% 14% 13%

100 10 1% 7% 7%

20 1% 12% 12%

30 1% 16% 16%

150 10 1% 5% 5%

20 1% 10% 10%

30 1% 11% 12%

Table 3.3: Improvement of MinSumPP6=∅ approximation compared to random-
ized results and improvement of MinSumPP6=∅ heuristic compared to approxi-
mation and randomized results
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|V| k

MinMaxPP 6=∅
approx. rand. heur. rand.

time target target time target target

50 10 0.002 161.0 256.9 0.026 135.5 237.6

20 0.002 108.0 177.3 0.031 80.5 176.0

30 0.002 109.0 160.4 0.010 79.0 151.0

70 10 0.005 315.1 506.6 0.083 282.1 469.0

20 0.003 185.8 323.3 0.108 157.0 316.5

30 0.004 162.7 287.8 0.046 123.5 281.4

100 10 0.010 607.2 903.3 0.278 552.4 851.1

20 0.008 347.8 649.0 0.223 299.4 604.1

30 0.007 261.3 493.3 0.198 215.0 458.8

150 10 0.026 1277.1 1703.1 0.958 1196.9 1674.3

20 0.019 691.4 1128.3 0.543 620.3 1100.0

30 0.016 526.0 952.2 0.410 441.6 885.3

Table 3.4: MinMaxPP 6=∅ results

The results of the approximation algorithm, the heuristic and the randomized

algorithms are compared in Table 3.3. In the �rst column the approximation

results are compared to the corresponding randomized results (for |V | = 50 and

k = 10, for example, the approximation result is 1% better than the average

random result). It is noticeable that the approximation is not much better and in

three cases even worse than with random trying. The reason for that is certainly

the mediocre approximation ratio of (1+|V |−k). A better approximation ratio at

this point would be desirable. Nevertheless, the heuristic in average can improve

the solution about 12%.

The results for MinMaxPP6=∅ are illustrated in Table 3.4. The time to calculate

the approximation does not exceed 0.026 seconds for all instances. Further,

also the heuristic always runs in less than 1 second. This is a hint towards

the presumption that the quality of the approximation is already quite good

so that not many moves or switches can be made to improve the solution.

As comparison for both approaches, the approximation and the heuristic, a

randomized algorithm is tested. Like for MinSumPP 6=∅ it is conspicuous that

the runtime of the randomized algorithm does not change the quality of the
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3.2 Minimal Partition Problems

|V| k
MinMaxPP 6=∅ approx. MinMaxPP6=∅ heur.

vs rand. vs approx. vs rand.

50 10 37% 16% 43%

20 39% 25% 54%

30 32% 28% 48%

70 10 38% 10% 40%

20 43% 15% 50%

30 43% 24% 56%

100 10 33% 9% 35%

20 46% 14% 50%

30 47% 18% 53%

150 10 25% 6% 29%

20 39% 10% 44%

30 45% 16% 50%

Table 3.5: Improvement of MinMaxPP6=∅ approximation compared to random-
ized results and improvement of MinMaxPP6=∅ heuristic compared to approxi-
mation and randomized results

solution and thus the sections with �good� solutions in the feasible region must

be very small.

The results for MinMaxPP6=∅ are compared in Table 3.5. Already the approxima-

tion in average is 39% better than the random results whereas for MinSumPP 6=∅
the approximation value almost equals the random result. This can be explained

by the much better approximation ratio of
(
1 +

⌊
|V |−1
k

⌋)
. The heuristic even

�nds a solution that in average is 46% better than the average random result.

For the approximation as well as for the heuristic with increasing k the results

get better compared to the results of the randomized algorithm. This makes

sense for two reasons. On the one hand with increasing k the number of pos-

sible partitions increases and thus it is harder for the randomized algorithm to

�nd good solutions. On the other hand with increasing k the approximation ra-

tio
(
1 +

⌊
|V |−1
k

⌋)
decreases and thus the approximation should get better. The

same holds for the heuristic since it is started with the result of the approxima-

tion algorithm.

Altogether, the algorithms for MinMaxPP6=∅ perform much better than the al-

gorithms for MinSumPP6=∅. It is most likely that this di�erence is due to the
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3 Nonconstant Weight Partition Problems

di�erent approximation ratios. The term
(
1 +

⌊
|V |−1
k

⌋)
is much smaller than

(1+ |V | − k) for large V and k. The creation of an approximation algorithm for

MinSumPP6=∅ with improved ratio is the goal in future work.
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Chapter 4

A partition problem with convex tar-

get function

In this chapter a special partition problem with convex target function is intro-

duced. In contrast to the last chapter the focus is not on the complexity and

approximation of the problem but on the modeling of ILPs to �nd optimal so-

lutions. Further, some heuristics also based on integer linear programming are

introduced. These heuristics divide the problem into smaller subproblems and

combine the single solutions to get a solution for the original problem.

The partition problem in this chapter is presented as an assignment problem,

in particular as a job assignment problem, in which jobs have to be assigned to

machines ([3]). This makes the notation simpler. In the corresponding partition

problem the set of jobs would have to be partitioned into a number of subsets,

where each subset is related to a machine.

Most job scheduling problems consider linear target functions ([57], [90]). In

this chapter more general piecewise linear convex target functions are assumed.

In this way more practical objectives can be covered, which arise, for example,

if leasing or phone contracts with included free kilometers or minutes are in-

volved. Furthermore, in practice job scheduling problems are mostly solved with

genetic or ant algorithms ([1], [83] or [15]). In this work the problem is modeled

as an ILP. It is very important to �nd a neat formulation with as few variables

and constraints as possible since otherwise runtimes may explode. Therefore,

an approach is chosen where the time is not discretized. Discretizing the time

would result in large programs for long periods. Also the ILP formulation is an-

alyzed and tightened extensively so that many variables and constraints become

redundant. Like this, instances with 200 jobs and 8 machine types can still be

solved in less than a minute. Parts of this chapter will also be published in [9].
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4 A partition problem with convex target function

Since the partition problem is denoted as job assignment problem, the term �job�

has to be clari�ed. Also a time window version ([7]) of the assignment problem

in which the starting times of the jobs are variable is introduced later. Thus,

also the term �movable job� has to be speci�ed. This is done in the following

de�nition.

De�nition 4.0.1

A tuple j = (s, d) with s ∈ N0 and d ∈ N is called job, s is called starting time

and d is called duration of the job.

A triple k = (smin, smax, d) with smin, smax ∈ N0 and d ∈ N, where smin ≤ smax,

is called movable job, smin is called lower bound for the starting time, smax is

called upper bound for the starting time and d is called duration of the movable

job.

Let K = {(smin
1 , smax

1 , d1), . . . , (s
min
l , smax

l , dl)} be a set of l ∈ N movable jobs.

A set of jobs J = {(s1, d1), . . . , (sl, dl)} is called feasible for K if and only if

smin
i ≤ si ≤ smax

i for all i ∈ {1, . . . , l}. The tuple (si, di) is called corresponding

job for the movable job (smin
i , smax

i , di) and vice versa for all i ∈ {1, . . . , l}.

Remark 4.0.2

For a set of l ∈ N jobs J = {j1, . . . , jl} the starting times and durations should

be denoted by si and di for i ∈ {1, . . . , l}. However, in the following for a job

j ∈ J the starting time and the duration rather are denoted by sj and dj, i.e.

j = (sj, dj). In this way it is easier to address starting times and durations of

arbitrary sets of jobs, which is helpful in the following de�nition. Thus, once j

denotes the real job j ∈ J and once j is just an indexing identi�er.

To indicate which jobs can be processed together on one machine the concept

of overlapping jobs has to be introduced. Two jobs which overlap temporally

cannot be processed on the same machine since only one job can be handled at

a time.

De�nition 4.0.3

Let J be a �nite set of jobs, where sj is the starting time and dj the duration of

job j ∈ J . Two jobs j, j′ ∈ J are called overlapping if and only if there exists a

number τ ∈ N0 with

sj ≤ τ < sj + dj and sj′ ≤ τ < sj′ + dj′.

112



The variable τ is called overlapping indicator for j and j′.

The set of jobs J is called overlapping set if and only if there exists a number

τ ∈ N0 with

sj ≤ τ < sj + dj

for all j ∈ J . Like before τ is called overlapping indicator for J .

The set of all overlapping subsets of J is denoted by

OJ := {J ′ ⊆ J : J ′ is overlapping set}.

The size of a maximal cardinality overlapping subset of J is denoted by

ρJ := max{|J ′| : J ′ ∈ OJ}.

For a given τ ∈ N0 a job j ∈ J is called active at τ if and only if

sj ≤ τ < sj + dj.

Remark 4.0.4

If a set of jobs J is an overlapping set, then every pair of jobs j, j′ ∈ J overlaps

(the overlapping indicator of the overlapping set τ can also be used as overlap-

ping indicator for every pair of jobs).

The maximal cardinality overlapping subset ρJ is well-de�ned because the empty

set always is an overlapping set and J is a �nite set. Furthermore, ρJ ≥ 1 for

every nonempty set of jobs J since {j} is an overlapping set for all j ∈ J .

For a subset J of a set of jobs J the overlapping sets can be obtained by

intersecting all overlapping sets in J with J . This is proven in the following

lemma.

Lemma 4.0.5

Let J be a �nite set of jobs and J ⊆ J . Then

OJ =
⋃
O∈OJ

O ∩ J .
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4 A partition problem with convex target function

Proof

�⊆�: Let O ∈ OJ . Then O is also an overlapping set in J (the same overlapping

indicator as for O can be used). Thus, set O := O ∈ OJ . It follows O = O∩J ∈⋃
O∈OJ

O ∩ J .
�⊇�: Select an arbitrary O ∈ OJ . Then O∩J ⊆ J and O∩J is an overlapping set

in J (the same overlapping indicator as forO can be used). Thus,O∩J ∈ OJ .

The following lemma shows that as overlapping indicator for an overlapping set

always the latest starting time of the jobs can be selected. This also implies that

all overlapping subsets can be calculated by determining the active jobs at the

starting times of the jobs.

Lemma 4.0.6

If a �nite set of jobs J is an overlapping set, then there is a job j′ ∈ J with

sj ≤ sj′ < sj + dj ∀j ∈ J .

Proof

Let τ ∈ N0 be an overlapping indicator for J . Thus,

sj ≤ τ < sj + dj

for all j ∈ J . Choose j′ ∈ argmaxj∈J{sj}. By de�nition sj ≤ sj′ for all j ∈ J and

since j′ ∈ J , also sj′ ≤ τ . Altogether sj ≤ sj′ ≤ τ < sj + dj for all j ∈ J .

4.1 Standard formulation

The upcoming de�nition introduces the job assignment problem with convex

target function, where the set M represents the set of machines and T the set

of di�erent machine types. Further, the function t̂ speci�es which machine is

of which type. The matrix r de�nes if a job can be processed by a certain

type of machine or not (0 for �no�, 1 for �yes�). The goal is to �nd a solution or

assignment a which assigns each job to a machine such that no two jobs overlap.

This is assured by ρa−1(m) ≤ 1 for each m ∈ M , where a−1(m) is the preimage

of m under a. Thus, a−1(m) contains all jobs that are assigned to m. The cost

vector c is composed of a �xed cost component c0, which represents the costs

to provide a machine and is independent of the production on this machine,
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4.1 Standard formulation

and the production cost components c1 and c2, which represent the costs per

production time. The production limit f is the point where these costs increase

from c1 to c2.

Before giving the actual de�nition, the structure of the cost function is intro-

duced in the following lemma. It is veri�ed that the target function is convex

and further that it is piecewise linear. This is important for solving the problem

with integer linear programming.

Lemma 4.1.1

Let f ∈ N0, c1, c2 ∈ R+
0 , with c1 ≤ c2, and x ∈ R. If x ≤ f , then

max {c1x, c2x− f(c2 − c1)} = c1x

and if x > f , then

max {c1x, c2x− f(c2 − c1)} = c2x− f(c2 − c1).

Thus,

g : R→ R, x 7→ max {c1x, c2x− f(c2 − c1)}

is a piecewise linear convex function.

Proof

If x ≤ f , then c2x − f(c2 − c1) ≤ c2x − x(c2 − c1) = c1x. Otherwise if x > f ,

then c2x− f(c2 − c1) ≥ c2x− x(c2 − c1) = c1x. Thus, g is piecewise linear.

With c1f = c2f − f(c2 − c1) the function g is continuous. Since c1 ≤ c2, it also

is convex.

The de�nition of the Convex Job Assignment Problem is given as follows.

De�nition 4.1.2 (Convex Job Assignment Problem)

Let J be a �nite set of jobs, where dj is the duration of job j ∈ J . Further, let
M and T be �nite sets, t̂ : M → T , r ∈ {0, 1}J×T , f ∈ N0 and c0, c1, c2 ∈ R+

0

with c1 ≤ c2.
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4 A partition problem with convex target function

The problem to �nd an assignment a : J → M with ρa−1(m) ≤ 1 for all m ∈ M
and rj,t̂(a(j)) = 1 for all j ∈ J , where

c0|a(J)|+
∑
m∈M

max

c1 ∑
j∈a−1(m)

dj, c2
∑

j∈a−1(m)

dj − f(c2 − c1)


is minimal, is called Convex Job Assignment Problem (JAP).

The total number of machines which process a job is the cardinality of the

image of the assignment function |a(J)|. In the notation of a partition problem

a new identi�er counting the number of nonempty partitioning sets would have

to be introduced. Thus, at this point it becomes evident that the assignment

problem notation is superior. The number |a(J)| has to be multiplied by the

�xed costs c0 to get the total �xed costs. The sum
∑

j∈a−1(m) dj represents the

total production time on a single machine m.

It has to be mentioned that the three dimensional cost vector c also could depend

on machines or machine types. This is often the case in practical applications.

For simplicity reasons a constant vector for all machines and machine types is

assumed at this point. However, further dimensions for machines or machine

types can be simply added to c without a�ecting the results of this chapter.

The following theorem provides a small insight into the complexity of the assign-

ment problem. Even if restricted to instances with a small number of machines

and machine types, JAP does not admit a polynomial-time approximation al-

gorithm with exponential approximation ratio.

Theorem 4.1.3

Unless P = NP, there is no polynomial-time approximation algorithm that solves

JAP with approximation ratio in O
(
2poly(|J |,|M |,|T |,f)

)
for some polynomial poly :

R4
≥0 → R≥1. This is true even if |M | = 2, |T | = 2, rj,t = 1 for all j ∈ J and

t ∈ T , c0 = 0 and c1 = 1.

Proof

Let I = (N) be an instance of NPP with N = {n1, . . . , nl}, where l ∈ N, and
N :=

∑l
i=1 ni (N is used for NPP instead of S so that nl cannot be confused with

sj). Without loss of generality let every number inN be even (otherwise multiply

every number by 2 and solve the equivalent problem) and N
2
≥ 1. Assumed a

116



4.1 Standard formulation

polynomial Z-approximation algorithm A for JAP existed with Z ∈ R≥1. De�ne
an instance J := (J,M, T, t̂, r, f, c) of JAP with M := {m1,m2}, T := {t1, t2},
t̂(m1) := t1 and t̂(m2) := t2. Thus, there are two machines m1 and m2 which

are of type t1 and t2. Futher, let f := N
2
∈ N, c0 := 0, c1 := 1 and

c2 := (Z − 1)N︸ ︷︷ ︸
≥0

+ 2 > 1 = c1.

De�ne the set J = {(sj, dj)}j∈{1,...,l} of l jobs with

(sj, dj) :=

(
i<j∑
i=1

ni, nj

)

for j ∈ {1, . . . , l}.
Let (sj, dj) and (sj′ , dj′) be two of these jobs with j < j′. Then

sj + dj =

i<j∑
i=1

ni + nj =

i<j+1∑
i=1

ni ≤
i<j′∑
i=1

ni = sj′

and thus no τ ∈ N0 with

sj ≤ τ < sj + dj and sj′ ≤ τ < sj′ + dj′

exists. Hence, no two jobs overlap.

Further, de�ne rj,t := 1 for all j ∈ J and t ∈ T . Let a : J → M be an

assignment that assigns each job to a machine. Further, let Ai := a−1(mi) be

the jobs assigned to machine mi with i ∈ {1, 2}. Thus, A1 ∪ A2 = J . Since no

jobs overlap, it is ρa−1(mi) ≤ 1 for i ∈ {1, 2}.
If

∑
j∈Ai

dj =
∑
j∈Ai

nj =
N

2
= f

for i ∈ {1, 2}, then {{nj}j∈A1 , {nj}j∈A2} is a feasible partition for I.
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4 A partition problem with convex target function

Further, it is

2∑
i=1

max

{
c1
∑
j∈Ai

dj, c2
∑
j∈Ai

dj − f(c2 − c1)

}

=
2∑
i=1

max {c1f, c2f − f(c2 − c1)}

= 2fc1

= 2f .

If without loss of generality

∑
j∈A1

dj =
∑
j∈A1

nj >
N

2
= f ,

then

∑
j∈A2

dj =
∑
j∈A2

nj = N −
∑
j∈A1

nj <
N

2
= f .

Since nj ∈ N for all j ∈ J and f ∈ N, also
∑

j∈A1
nj − f ≥ 1 holds. Thus, with

Lemma 4.1.1 it is

2∑
i=1

max

{
c1
∑
j∈Ai

dj, c2
∑
j∈Ai

dj − f(c2 − c1)

}
= c2

∑
j∈A1

nj − f(c2 − c1) + c1
∑
j∈A2

nj

= c2
∑
j∈A1

nj − f(c2 − 1) +

(
N −

∑
j∈A1

nj

)
=
∑
j∈A1

nj(c2 − 1)− f(c2 − 1) +N

=

(∑
j∈A1

nj − f

)
(c2 − 1) +N

≥ (c2 − 1) +N

= ((Z − 1)N + 2− 1) +N

= ZN + 1
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4.1 Standard formulation

= 2Zf + 1

> 2Zf .

Since A is a Z-approximation, a value less or equal 2Zf is returned by A for J if

and only if I is solvable and a value larger than 2Zf if and only if I is infeasible.
Setting Z := 2poly(|M |,|T |,|J |,f) with some polynomial poly : R4

≥0 → R≥1 leaves

the transformation polynomial in the coding length of the input. This proves

the claim.

To solve JAP an ILP is formulated in the following. The only needed decision

variables are

xj,m ∈ {0, 1}

for all j ∈ J and m ∈M and

wm ∈ {0, 1}

for all m ∈ M . The x variables are in one-to-one correspondence with the

assignment function a. Thus, a job j is assigned to machine m if xj,m = 1. The

w variables indicate whether a machine m is needed or not, i.e. whether at least

one job is assigned to this machine. Thus, wm = 1 if there is a j ∈ J with

xj,m = 1.

Further, three constraints are needed. The fact that each job is assigned to

exactly one machine is modeled by∑
m∈M

xj,m = 1

for all j ∈ J . To determine if a machine is needed the constraints

xj,m ≤ wm

for all j ∈ J and m ∈ M are introduced. These are su�cient since in the

minimization problem wm is automatically set to the smallest possible value.

This is 1 if a job is assigned and to 0 if not. Also because of this the integrity

of the w variables can be omitted and thus wm ∈ R for all m ∈M .
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4 A partition problem with convex target function

The jobs on a machine are not allowed to overlap. This is represented by the

constraints ∑
j∈O

xj,m ≤ 1 (4.1.1)

for all m ∈ M and all overlapping sets O ∈ OJ . The type restrictions are

enforced by

xj,m ≤ rj,t̂(m)

for all j ∈ J and m ∈M .

The cost or target function assembles as

c0
∑
m∈M

wm +
∑
m∈M

max

{
c1
∑
j∈J

djxj,m, c2
∑
j∈J

djxj,m − f(c2 − c1)

}
,

which is not linear because of the maximum in the second summand. How-

ever, due to the piecewise linearity and the convexity (Lemma 4.1.1) and since

JAP is a minimization problem this part can be linearized as follows (also see

Figure 4.1). A set of new variables

ym ∈ R

for all m ∈M is introduced. With

c1
∑
j∈J

djxj,m ≤ ym and c2
∑
j∈J

djxj,m − f(c2 − c1) ≤ ym

these form an upper bound for

max

{
c1
∑
j∈J

djxj,m, c2
∑
j∈J

djxj,m − f(c2 − c1)

}
.

Since JAP is a minimization problem, exactly the value of the maximum is

assigned to ym and the target function becomes

c0
∑
m∈M

wm +
∑
m∈M

ym.
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4.1 Standard formulation

∑
j∈J

djxj,m

ym

f

Figure 4.1: Linearizing a piecewise linear convex function

The complete ILP is presented in the following de�nition.

De�nition 4.1.4

Let I := (J,M, T, t̂, r, c, f) be an instance of JAP, where dj is the duration of

job j ∈ J . The problem JAPlinI is de�ned as the following ILP:

min c0
∑
m∈M

wm +
∑
m∈M

ym

s.t.∑
m∈M

xj,m = 1 ∀j ∈ J

xj,m ≤ wm ∀j ∈ J,m ∈M

xj,m ≤ rj,t̂(m) ∀j ∈ J,m ∈M

c1
∑
j∈J

djxj,m ≤ ym ∀m ∈M

c2
∑
j∈J

djxj,m − f(c2 − c1) ≤ ym ∀m ∈M∑
j∈O

xj,m ≤ 1 ∀m ∈M,O ∈ OJ

xj,m ∈ {0, 1} ∀j ∈ J,m ∈M

wm ∈ R ∀m ∈M

ym ∈ R ∀m ∈M
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4 A partition problem with convex target function

4.1.1 Movable jobs

In this section time windows for jobs are introduced. This means the starting

time of a job is not �xed anymore but the job has to start within certain bounds.

The problem is not just to �nd an assignment of jobs to machines but also to

�nd a feasible set of starting times within the bounds. Of course, no two jobs

on a machine are allowed to overlap. In the following de�nition and also later

on the set of movable jobs is denoted by K.

De�nition 4.1.5 (Convex Movable Job Assignment Problem)

Let K be a �nite set of movable jobs, where dj is the duration of job j ∈ J .

Further, let M and T be �nite sets, t̂ : M → T , r ∈ {0, 1}K×T , c0, c1, c2 ∈ R+
0

with c1 ≤ c2 and f ∈ N0.

The problem to �nd a feasible set of corresponding jobs J = {jk}k∈K for K and

an assignment a : J →M with ρa−1(m) ≤ 1 for all m ∈M and rk,t̂(a(jk)) = 1 for

all k ∈ K, where

c0|a(J)|+
∑
m∈M

max

c1 ∑
j∈a−1(m)

dj, c2
∑

j∈a−1(m)

dj − f(c2 − c1)


is minimal, is called Convex Movable Job Assignment Problem (MJAP).

The complexity result from JAP can directly be transferred to MJAP.

Theorem 4.1.6

Unless P = NP, there is no polynomial-time approximation algorithm that solves

MJAP with approximation ratio in O
(
2poly(|K|,|M |,|T |,f)

)
for some polynomial

poly : R4
≥0 → R≥1. This is true even if |M | = 2, |T | = 2, rk,t = 1 for all k ∈ K

and t ∈ T , c0 = 0 and c1 = 1.

Proof

Let I = (J,M, T, t̂, r, c, f) be an instance of JAP. De�ne an instance J =

(K,M, T, t̂, r, c, f) with K := {(sj, sj, dj)}j∈J . Solving I is equivalent to solving
J because the only feasible set of jobs for K is J . The claim follows with

Theorem 4.1.3.

To derive an ILP formulation of MJAP the xj,m variables from before are sub-

stituted by xk,m variables which encode the assignment of job jk to a machine
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4.1 Standard formulation

m. Since the overlapping sets are not �xed anymore, the according restrictions

are removed and a set of new variables is introduced. The variables

sk ∈ [smin
k , smax

k ] ∩ Z

encode the starting time of the job jk for each k ∈ K. The variables

ok,k′ ∈ {0, 1}

for k, k′ ∈ K indicate if jk and jk′ overlap and the variables

esk,k′ ∈ {0, 1}

encode if jk ends before jk′ begins. Two jobs jk and jk′ do not overlap if either

jk ends before jk′ starts or jk′ ends before jk starts.

At this point the o variables are introduced to get a better understanding of the

feasible region. Later it is shown that these are redundant and can be substituted

by the es variables. However, for now the feasible region is expressed by the

following three logical expressions:

esk,k′ = 1⇔ sk + dk ≤ sk′ (4.1.2)

esk,k′ = 1 ∨ esk′,k = 1⇔ ok,k′ = 0 (4.1.3)

xk,m = xk′,m = 1⇒ ok,k′ = 0 (4.1.4)

Expression (4.1.4), which characterizes that jobs on the same machine are not

allowed to overlap, is only needed for k 6= k′. Thus, all o variables are only

created for k 6= k′. Also the es variables are only created for k 6= k′ because

these are just needed to determine o. Since sk and dk are integer, an equivalent

reformulation for Expression (4.1.2) is:

(esk,k′ = 1 ∧ sk + dk ≤ sk′) ∨ (esk,k′ = 0 ∧ sk + dk ≥ sk′ + 1) (4.1.5)

To �nd a linear representation for Expression (4.1.5) the following lemma is

given. Set A represents the feasible region for sk + dk, set B the feasible region

for sk′ and the set {0, 1} the region for esk,k′ . The parameter τ is chosen to be

variable so that the lemma can be applied in further situations.
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4 A partition problem with convex target function

Lemma 4.1.7

Let A,B ⊆ R be two bounded subsets of R, X := {0, 1} × A× B and τ ∈ {0, 1}.
Further, let H ∈ R be some constant with H ≥ maxa∈A,b∈B(a− b),

A := {(x, a, b) ∈ X : x = τ ∨ a ≤ b}

and

B := {(x, a, b) ∈ X : a− b+H((1− 2τ)x+ τ − 1) ≤ 0} .

Then A = B.

Proof

Note that for τ ∈ {0, 1} it is τ 2 = τ .

A ⊆ B:

Let (x, a, b) ∈ A.
• Case x = τ :

a− b+H((1− 2τ)x+ τ − 1)

= a− b+H((1− 2τ)τ + τ − 1)

= a− b+H(τ − 2τ 2 + τ − 1)

= a− b+H(τ − 2τ + τ − 1)

= a− b−H

≤ 0

• Case x 6= τ : It follows a ≤ b and then

a− b+H((1− 2τ)x+ τ − 1)

= a− b+H((1− 2τ)(1− τ) + τ − 1)

= a− b+H(1− τ − 2τ + 2τ 2 + τ − 1)

= a− b+H(1− τ − 2τ + 2τ + τ − 1)

= a− b

≤ 0.

Therefore (x, a, b) ∈ B.
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4.1 Standard formulation

A ⊇ B:

Let (x, a, b) ∈ B. If x = τ , there is nothing to show. For x 6= τ :

a = a− b+ 0 + b = a− b+H((1− 2τ)x+ τ − 1) + b ≤ b

Therefore (x, a, b) ∈ A.

This corollary follows directly.

Corollary 4.1.8

Let A,B ⊆ R be two bounded subsets of R and X := {0, 1}×A×B. Further, let
H ∈ R be some constant with H ≥ maxa∈A,b∈B |b− a|,

A := {(x, a, b) ∈ X : (x = 1 ∧ a ≤ b) ∨ (x = 0 ∧ a ≥ b+ 1)}

and

B := {(x, a, b) ∈ X : (b+ 1− a− (H + 1)x ≤ 0) ∧ (a− b+H(x− 1) ≤ 0)}.

Then A = B.

Proof

First observe that

(x = 1 ∧ a ≤ b) ∨ (x = 0 ∧ a ≥ b+ 1)

⇔ (x = 1 ∨ a ≥ b+ 1) ∧ (x = 0 ∨ a ≤ b).

Further, if H ≥ maxa∈A,b∈B |b − a|, then (H + 1) ≥ maxa∈A,b∈B |(b + 1) − a| =
maxa∈A,b∈B |a− (b+ 1)|. Now apply Lemma 4.1.7.

Thus, Expression (4.1.5) can be modeled by the linear constraints

sk′ + 1− (sk + dk)− (H + 1)esk,k′ ≤ 0 (4.1.6)

and

(sk + dk)− sk′ +H(esk,k′ − 1) ≤ 0, (4.1.7)
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4 A partition problem with convex target function

x
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b
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[
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Figure 4.2: Illustration of Corollary 4.1.8

where H ≥ (smax
k + dk) − smin

k′ and H ≥ smax
k′ − (smin

k + dk). Later H is chosen

such that it is large enough for any pair of movable jobs k, k′ ∈ K.

To get a linear representation of Expressions (4.1.3) and (4.1.4) the two following

lemmas are proven. The set X represents the feasible region of esk,k′ , esk′,k and

ok,k′ (for Expression (4.1.3)) or xk,m, xk′,m and ok,k′ (for Expression (4.1.4)).

τ1, τ2 and υ are constants which have to be chosen according to the relevant

expression.

Lemma 4.1.9

Let X := {0, 1}3 and τ1, τ2, υ ∈ {0, 1}. Further, let

A := {(x1, x2, y) ∈ X : (x1 = τ1 ∨ x2 = τ2)⇒ y = υ} .

Then

A = B := {(x1, x2, y) ∈ X : 2υ − τ1 − τ2 + (2τ1 − 1)x1

+(2τ2 − 1)x2 + 2(1− 2υ)y ≤ 0}.

Proof

For i ∈ {1, 2} it is (2τi − 1)xi − τi = 0 for xi = τi and (2τi − 1)xi − τi = −1 for

xi 6= τi.
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4.1 Standard formulation

A ⊆ B:

Let (x1, x2, y) ∈ A.
• Case x1 = τ1 ∨ x2 = τ2: It follows y = υ and then

2υ − τ1 − τ2 + (2τ1 − 1)x1 + (2τ2 − 1)x2 + 2(1− 2υ)y

≤ 2υ + 2(1− 2υ)υ

≤ 2υ + 2υ − 4υ

= 0.

• Case x1 6= τ1 ∧ x2 6= τ2:

2υ − τ1 − τ2 + (2τ1 − 1)x1 + (2τ2 − 1)x2 + 2(1− 2υ)y

= 2υ − 2 + 2(1− 2υ)y

≤ 0

For the last �≤� check all possible assignments of υ and y.

Therefore (x1, x2, y) ∈ B.

A ⊇ B:

Let (x1, x2, y) ∈ B.
For x1 6= τ1∧x2 6= τ2 there is nothing to show. So let without loss of generality

x1 = τ1. Assume y 6= υ:

2υ − τ1 − τ2 + (2τ1 − 1)x1 + (2τ2 − 1)x2 + 2(1− 2υ)y

= 2υ − τ2 + (2τ2 − 1)x2 + 2(1− 2υ)(1− υ)

≥ 2υ − 1 + 2(1− 2υ)(1− υ)

= 1

> 0

Therefore y = υ and (x1, x2, y) ∈ A.

Lemma 4.1.10

Let X := {0, 1}3 and τ1, τ2, υ ∈ {0, 1}. Further let

A := {(x1, x2, y) ∈ X : (x1 = τ1 ∨ x2 = τ2)⇐ y = υ} .
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4 A partition problem with convex target function

Then

A = B := {(x1, x2, y) ∈ X : υ − τ1 − τ2 + (2τ1 − 1)x1

+(2τ2 − 1)x2 + (1− 2υ)y ≥ −1}.

Proof

For i ∈ {1, 2} it is (2τi − 1)xi − τi = 0 for xi = τi and (2τi − 1)xi − τi = −1 for

xi 6= τi.

A ⊆ B

Let (x1, x2, y) ∈ A.
• Case y = υ: Then it follows x1 = τ1 ∨ x2 = τ2 and

υ − τ1 − τ2 + (2τ1 − 1)x1 + (2τ2 − 1)x2 + (1− 2υ)y

≥ υ − 1 + (1− 2υ)y

≥ − 1.

• Case y 6= υ:

υ − τ1 − τ2 + (2τ1 − 1)x1 + (2τ2 − 1)x2 + (1− 2υ)y

= − τ1 − τ2 + (2τ1 − 1)x1 + (2τ2 − 1)x2 + 1

≥ − 1

Therefore (x1, x2, y) ∈ B.

A ⊇ B:

Let (x1, x2, y) ∈ B.
For y 6= υ there is nothing to show. Thus, let y = υ and assume x1 6= τ1∧x2 6=
τ2:

υ − τ1 − τ2 + (2τ1 − 1)x1 + (2τ2 − 1)x2 + (1− 2υ)y

= υ + (1− 2υ)υ

= − 2

< − 1

Therefore x1 = τ1 ∨ x2 = τ2 and (x1, x2, y) ∈ A.
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4.1 Standard formulation

x1

x2

y

Figure 4.3: Illustration of Corollary 4.1.11

The following two corollaries are a direct result of Lemmas 4.1.9 and 4.1.10.

Corollary 4.1.11

Let X := {0, 1}3. Then

{(x1, x2, y) ∈ X : (x1 = 1 ∨ x2 = 1)⇔ y = 0}

= {(x1, x2, y) ∈ X : (x1 + x2 + y ≥ 1) ∧ (x1 + x2 + 2y ≤ 2)} .

Proof

Since

(x1 = 1 ∨ x2 = 1)⇔ y = 0

⇔ ((x1 = 1 ∨ x2 = 1)⇒ y = 0) ∧ ((x1 = 1 ∨ x2 = 1)⇐ y = 0),

Lemmas 4.1.9 and 4.1.10 can be applied with τ1 = τ2 = 1 and υ = 0.

Corollary 4.1.12

Let X := {0, 1}3. Then

{(x1, x2, y) ∈ X : x1 = x2 = 1⇒ y = 0}

= {(x1, x2, y) ∈ X : x1 + x2 + y ≤ 2} .

Proof

Since [x1 = x2 = 1⇒ y = 0]⇔ [(x1 = 0 ∨ x2 = 0)⇐ y = 1], Lemma 4.1.10 can

be applied with τ1 = τ2 = 0 and υ = 1.
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4 A partition problem with convex target function

x1

x2

y

Figure 4.4: Illustration of Corollary 4.1.12

Thus, with Corollary 4.1.11 for Expression (4.1.3) and Corollary 4.1.12 for Ex-

pression (4.1.4) the following linear constraints are derived:

esk,k′ + esk′,k + ok,k′ ≥ 1 (4.1.8)

esk,k′ + esk′,k + 2ok,k′ ≤ 2 (4.1.9)

xk,m + xk′,m + ok,k′ ≤ 2 (4.1.10)

Equations (4.1.6), (4.1.7), (4.1.8), (4.1.9) and (4.1.10) can be tightened in a

way such that all o variables become redundant. To see this the two following

lemmas and a corollary are presented. Deliberately the notation is kept informal

to carve out the key messages. The meaning of the terms and variables should

be clear from their use before.

Lemma 4.1.13

esk,k′ + esk′,k ≤ 1.

Proof

Suppose esk,k′ = esk′,k = 1. Then sk + dk ≤ sk′ and sk′ + dk′ ≤ sk by Equa-

tion (4.1.7). Furthermore, sk < sk+dk by the de�nition of a job. Thus, it follows

sk′ + dk′ ≤ sk < sk + dk ≤ sk′ . This is in contradiction to the de�nition. Thus,

esk,k′ + esk′,k ≤ 1 holds.

Lemma 4.1.14

Equations (4.1.8) and (4.1.9) can be substituted by esk,k′ + esk′,k + ok,k′ = 1.
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4.1 Standard formulation

Proof

By adding the inequality in Lemma 4.1.13 to Equation (4.1.9)

2esk,k′ + 2esk′,k + 2ok,k′ ≤ 3

follows and therefore

esk,k′ + esk′,k + ok,k′ ≤
3

2
.

Since all variables are integer, this resolves to

esk,k′ + esk′,k + ok,k′ ≤ 1.

In combination with Equation (4.1.8) this proves the claim.

Lemma 4.1.14 shows that esk,k′ , esk′,k and ok,k′ are in direct dependency and

thus ok,k′ can be simply substituted.

Corollary 4.1.15

Equation (4.1.10) is equivalent to xk,m + xk′,m − (esk,k′ + esk′,k) ≤ 1

Proof

The equation in Lemma 4.1.14 is equivalent to ok,k′ = 1 − (esk,k′ + esk′,k).

Substitution of ok,k′ in Equation (4.1.10) proofs the claim.

Therefore all o variables can be omitted and just the following linear represen-

tation is su�cient to describe the feasible region:

sk′ + 1− (sk + dk)− (H + 1)esk,k′ ≤ 0

(sk + dk)− sk′ +H(esk,k′ − 1) ≤ 0

xk,m + xk′,m − (esk,k′ + esk′,k) ≤ 1

Further, it is easy to see that the integrality of s can be omitted. For a solution

in which s is fractional simply use bsc or dse as integral solution. The functions
b·c or d·e are meant componentwise. Thus, the domain for sk is

sk ∈ [smin
k , smax

k ] ⊆ R

as a subset of R.
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4 A partition problem with convex target function

Altogether, this leads to the following de�nition.

De�nition 4.1.16

Let I := (K,M, T, t̂, r, c, f) be an instance of MJAP, where smin
k and smax

k are

the bounds for the starting time and dk is the duration of movable job k ∈ K.

De�ne H := maxk,k′∈K{(smax
k + dk) − smin

k′ }. The problem MJAPlinI is de�ned

as the following ILP:

min c0
∑
m∈M

wm +
∑
m∈M

ym

s.t.∑
m∈M

xk,m = 1 ∀k ∈ K

xk,m ≤ wm ∀k ∈ K,m ∈M

xk,m ≤ rk,t̂(m) ∀k ∈ K,m ∈M

c1
∑
k∈K

dkxk,m ≤ ym ∀m ∈M

c2
∑
k∈K

dkxk,m − f(c2 − c1) ≤ ym ∀m ∈M

sk′ + 1− (sk + dk)− (H + 1)esk,k′ ≤ 0 ∀k 6= k′ ∈ K

(sk + dk)− sk′ +H(esk,k′ − 1) ≤ 0 ∀k 6= k′ ∈ K

xk,m + xk′,m − (esk,k′ + esk′,k) ≤ 1 ∀k 6= k′ ∈ K,m ∈M

xk,m ∈ {0, 1} ∀k ∈ K,m ∈M

wm ∈ R ∀m ∈M

ym ∈ R ∀m ∈M

sk ∈ [smin
k , smax

k ] ∀k ∈ K

esk,k′ ∈ {0, 1} ∀k 6= k′ ∈ K

4.1.2 Heuristic solution

Since in MJAPlinI a quadratic amount of binary variables and constraints in the

size of |K| are needed, solving the ILP could take much time and a lot of memory

is needed for large instances. Therefore, a heuristic which selects the starting

times for the movable jobs in a separate problem is developed. Afterwards the

smaller program JAPlinI can be solved for the resulting set of jobs.
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4.1 Standard formulation

Since for each machine a �xed cost of c0 has to be paid, it is reasonable to

arrange the movable jobs in such a way that the number of needed machines for

the resulting set of jobs J is minimal. The question is how the number of needed

machines can be computed. Obviously, the size of the largest overlapping set ρJ
is a lower bound. In the following it is shown that ρJ machines are also su�cient

to process all jobs. This is done via graph theory and thus a job graph is de�ned

as follows.

De�nition 4.1.17

Let J be a �nite set of jobs. The graph GJ := (VJ , EJ) with VJ := {vj}j∈J and

EJ := {{vj, vj′} : j 6= j′ ∈ J , j and j′ are overlapping}

is called job graph for J .

With this de�nition the overlapping sets in J and the cliques in GJ are in

one-to-one correspondence. This is shown in the following lemma.

Lemma 4.1.18

Let J be a �nite set of jobs, J ′ ⊆ J and GJ = (VJ , EJ) the job graph for J . The

following equivalence holds:

J ′ is an overlapping set⇔ {vj}j∈J ′ is a clique in GJ

Proof

Let sj be the starting time and dj the duration of job j ∈ J .

�⇒�: Let J ′ ⊆ J be an overlapping set. All pairs of jobs j, j′ ∈ J ′ overlap

(Remark 4.0.4) and therefore

{{vj, vj′} : vj, vj′ ∈ J ′, vj 6= vj′} ⊆ EJ .

�⇐�: Let {vj}j∈J ′ be a clique in GJ . Then

{{vj, vj′} : vj, vj′ ∈ J ′, vj 6= vj′} ⊆ EJ .
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4 A partition problem with convex target function

This means every two trips j and j′ ∈ J ′ overlap. Let τj,j′ ∈ N0 be the

overlapping indicator for j, j′ ∈ J ′,

τ := max
j∈J ′
{sj}

and

u := argmax
j∈J ′

{sj}.

By de�nition τ = su ≤ τj,u holds for all j ∈ J ′ because u overlaps with

every other job in J ′. Therefore

sj ≤ τ ≤ τj,u < sj + dj

for all j ∈ J ′ and τ is an overlapping indicator for J ′.

This corollary follows directly.

Corollary 4.1.19

Let J be a �nite set of jobs. The size of a maximum cardinality clique in GJ is

equal to ρJ .

Proof

By Lemma 4.1.18 every clique in GJ corresponds to an overlapping subset of

J and vice versa. Thus, the size of the largest clique is equal to the size of the

largest overlapping set.

The following lemma states the fact that GJ is chordal. That means every cycle

of length larger than 3 has a chord (see De�nition 1.3.2). Thus, if in a set

{j1, j2, j3, j4} of four jobs the jobs j1 and j2, j2 and j3, j3 and j4, as well as j4
and j1 overlap, then also either j1 and j3, or j2 and j4 must overlap.

Lemma 4.1.20

Let J be a �nite set of jobs. Then GJ is chordal.
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4.1 Standard formulation

Proof

Let sj be the starting time and dj the duration of job j ∈ J . Further, let C be

a cycle in GJ with length larger than 3. De�ne

u := argmax
j∈J

{sj : vj ∈ C}

and let vu′ and vu′′ be the neighbors of vu in C (u′ 6= u′′ since the length of

the cycle is larger than 3). Let τu,u′ and τu,u′′ be the corresponding overlapping

indicators. Then su is an overlapping indicator for u′ and u′′:

su′ ≤ su ≤ τu,u′ < su′ + du′ and su′′ ≤ su ≤ τu,u′′ < su′′ + du′′

Therefore u′ and u′′ overlap and {vu′ , vu′′} is a chord for C.

This leads to the following corollary.

Corollary 4.1.21

Let J be a �nite set of jobs. Then GJ is ρJ-colorable.

Proof

If GJ were not ρJ -colorable, with Theorem 1.3.3 and Lemma 4.1.20 a (ρJ + 1)-

clique would exist. This is in contradiction to Corollary 4.1.19.

Now the main result can be proven. All sets of jobs J can be partitioned into ρJ
subsets such that in these subsets no jobs overlap. Thus, all jobs in a subset can

be assigned to one machine and therefore ρJ machines are su�cient to process

all jobs.

Theorem 4.1.22

Let J be a set of jobs and k := ρJ . Then there exists a partition S = {S1, . . . , Sk}
of J with ρSi

≤ 1 for all i ∈ {1, . . . , k}.

Proof

Let f be a k-coloring for GJ (exists because of Corollary 4.1.21). De�ne

Si := {j ∈ J : f (vj) = i}

for all i ∈ {1, . . . , k}. Since f is a coloring, there is no edge {vj, vj′} ∈ EJ with

j, j′ ∈ Si for all i ∈ {1, . . . , k}. Hence, no two jobs overlap in Si, which means

ρSi
≤ 1 for all i ∈ {1, . . . , k}.
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4 A partition problem with convex target function

Theorem 4.1.22 shows that the number of needed machines is exactly the size of

the largest overlapping set. Thus, the starting times of the movable jobs should

be chosen such that the largest overlapping set is as small as possible.

With Lemma 4.0.6 the idea is to introduce a variable for each starting time sk′

and each movable job k. This variable encodes the activity of the job at the

starting time. Thus,

pk,k′ ∈ {0, 1}

for all k, k′ ∈ K, where pk,k′ = 1 if the job jk is active at the starting time of

jk′ . The number of active jobs at time sk′ gives the size of the corresponding

overlapping set. Thus, a variable

z ∈ N

is introduced. With the constraints∑
k∈K

pk,k′ ≤ z (4.1.11)

for all k′ ∈ K this variable forms an upper bound for the size of all overlapping

sets. Thus, the minimal z represents the size of the largest overlapping set. The

feasible region for p is expressed by the following logical expression:

pk,k′ = 1⇔ sk ≤ sk′ < sk + dk

Like before, since all variables are integer, this leads to

(pk,k′ = 1 ∧ (sk + 1 ≤ sk′ + 1 ≤ sk + dk))∨

(pk,k′ = 0 ∧ (sk ≥ sk′ + 1 ∨ sk′ ≥ sk + dk))
(4.1.12)

or equivalently

(pk,k′ = 1 ∨ (sk ≥ sk′ + 1 ∨ sk′ ≥ sk + dk))∧

(pk,k′ = 0 ∨ (sk + 1 ≤ sk′ + 1 ≤ sk + dk)).
(4.1.13)

Unfortunately, in general these logical expressions cannot be expressed by lin-

ear inequalities without introducing further variables. Thus, in general there is
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4.1 Standard formulation

no formulation as ILP with only these variables. In the following, an extensive

analysis of the feasible region is performed. Criteria are developed which cate-

gorize the cases whether such a linear representation is possible or impossible.

To derive ILPs for the impossible cases more variables are introduced later.

Therefore, the following results are also presented to show that these further

variables are needed.

The relaxation of an ILP (integral conditions are omitted and all variables are

considered continuous) has always a convex feasible region. Thus, to prove that

a linear representation is impossible it is shown that Expression 4.1.12 or 4.1.13

cannot be expressed as an intersection of some convex set and the integer num-

bers.

In the following lemmas and corollaries the sets A and B represent the sets of

feasible starting times for movable jobs k and k′. Thus, a1 and b1 stand for

smin
k and smin

k′ , and a2 and b2 stand for smax
k and smax

k′ . Further, ν or µ either

represent the duration of movable job k or just the number 1, as it is needed in

Expressions (4.1.12) or (4.1.13).

First the part

sk ≥ sk′ + 1 ∨ sk′ ≥ sk + dk

of Expression (4.1.12) is analyzed. For that a set A is de�ned in the following

statements. This set represents the feasible region

F := {(sk, sk′) ∈ [smin
k , smax

k ]× [smin
k′ , s

max
k′ ] : sk ≥ sk′ + 1 ∨ sk′ ≥ sk + dk}

in a general form (F is just an acronym in this paragraph and is not used

later). In the next lemma it is assumed that F only contains one point with

sk = sk′+1 and only one point with sk′ = sk+dk. As a result these points must

be (smax
k , smin

k′ ) and (smin
k , smax

k′ ).

Lemma 4.1.23

Let ν, µ ∈ N, a1, a2, b1, b2 ∈ Z with a1 ≤ a2, b1 ≤ b2 and A := [a1, a2] ∩ Z,
B := [b1, b2] ∩ Z. Further, let X := A× B and

A := {(a, b) ∈ X : a ≥ b+ µ ∨ b ≥ a+ ν}.
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4 A partition problem with convex target function

If

{(α1, β1)} = A ∩ {(a, b) : a = b+ µ} and {(α2, β2)} = A ∩ {(a, b) : b = a+ ν}

with α1 6= α2 and β1 6= β2, then

(α1, β1) = (a2, b1) and (α2, β2) = (a1, b2).

Proof

α1 > α2 holds:

If α1 < α2, then the inequalities

α1 < α2 ≤ a2

and

β1 = α1 − µ < α2 − µ = β2 − ν − µ < β2 ≤ b2

would hold. Therefore (α1 + 1, β1 + 1) ∈ A ∩ {(a, b) : a = b+ µ} follows, which
is in contradiction to |A ∩ {(a, b) : a = b+ µ} | = 1. So it is a1 ≤ α2 < α1 ≤ a2

(α1 6= α2 by assumption).

β1 = b1 holds:

If β1 > b1, then the point (α1 − 1, β1 − 1) also would be element of A ∩
{(a, b) : a = b+ µ} which is a contradiction. β2 = b2 follows likewise.

α1 = a2 holds:

If α1 < a2, then the point (α1 + 1, β1 + 1) also would be element of A ∩
{(a, b) : a = b+ µ} (remember b1 = β1 6= β2 = b2) which is a contradiction.

α2 = a1 follows likewise.

The following lemma covers the case when there is at least one point in F with

sk > sk′ + 1 and at least one point with sk′ = sk + dk.

Lemma 4.1.24

Let ν, µ ∈ N, a1, a2, b1, b2 ∈ Z with a1 ≤ a2, b1 ≤ b2 and A := [a1, a2] ∩ Z,
B := [b1, b2] ∩ Z. Further, let X := A× B and

A := {(a, b) ∈ X : a ≥ b+ µ ∨ b ≥ a+ ν}.
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4.1 Standard formulation

α
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(α2, β2)

Figure 4.5: Illustration of Lemma 4.1.23

If there exist

(α1, β1) ∈ A ∩ {(a, b) : a > b+ µ} and (α2, β2) ∈ A ∩ {(a, b) : b ≥ a+ ν}

(i) with α1 = α2 or β1 = β2, then

|A ∩ {(a, b) : a = b+ µ} | ≥ 1.

(ii) with α1 6= α2 and β1 6= β2, then

|A ∩ {(a, b) : a = b+ µ} | ≥ 2.

Proof

(i) Just the case for α1 = α2 is demonstrated:

De�ne (α′1, β
′
1) := (α1, α1 − µ). Then

b1 ≤ β1 + µ− µ < α1 − µ︸ ︷︷ ︸
=β′1

= α2 − µ ≤ β2 − ν − µ < b2

and thus (α′1, β
′
1) ∈ A ∩ {(a, b) : a = b+ µ}.

(ii) Two points lying in A∩{(a, b) : a = b+ µ} are constructed regarding three
cases:
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4 A partition problem with convex target function

• Case β2 < β1: De�ne (α′1, β
′
1) := (β1 − 1 + µ, β1 − 1) and (α′′1, β

′′
1 ) :=

(β1 + µ, β1). With

a1 < α2 + ν + µ ≤ β2 + µ < β1 + µ︸ ︷︷ ︸
=α′′1

< α1 ≤ a2

and

b1 ≤ β2 < β1︸︷︷︸
=β′′1

≤ b2

it follows (α′′1, β
′′
1 ) ∈ A ∩ {(a, b) : a = b+ µ}. In the same way it can

be shown that (α′1, β
′
1) ∈ A ∩ {(a, b) : a = b+ µ}.

• Case β1 < β2 and α2 < α1: De�ne α′1 := max{α2, β1+µ}, β′1 := α′1−µ
and (α′′1, β

′′
1 ) := (α′1 + 1, β′1 + 1). With

a1 ≤ α2 ≤ α′1 ≤

{
α2

β1 + µ

}
< α1 ≤ a2

and

b1 ≤ β1 + µ− µ ≤ α′1 − µ︸ ︷︷ ︸
=β′1

≤

{
α2 − µ

β1 + µ− µ

}

≤

{
β2 − ν − µ

β1

}
< β2 ≤ b2

it follows (α′1, β
′
1) ∈ A ∩ {(a, b) : a = b+ µ}. In the same way it can

be shown that (α′′1, β
′′
1 ) ∈ A ∩ {(a, b) : a = b+ µ}.

• Case β1 < β2 and α1 < α2: De�ne (α′1, β
′
1) := (α1, α1 − µ) and

(α′′1, β
′′
1 ) := (α′1 + 1, β′1 + 1). With

a1 ≤ α1︸︷︷︸
=α′1

< α2 ≤ a2
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4.1 Standard formulation

Case β2 < β1:

α

β

[ ]
Aµ

[
]

B

ν

(α1, β1)(α2, β2)
(α′1, β

′
1)

(α′′1, β
′′
1 )

Case β1 < β2 and α2 < α1:

α

β

[ ]
Aµ

[
]

B

ν

(α1, β1)

(α2, β2)

(α′1, β
′
1)

(α′′1, β
′′
1 )

Case β1 < β2 and α1 < α2:

α

β

[ ]
Aµ

[
]

B

ν (α1, β1)

(α2, β2)

(α′1, β
′
1)

(α′′1, β
′′
1 )

Figure 4.6: Illustration of Lemma 4.1.24 (ii)

and

b1 ≤ β1 < α1 − µ︸ ︷︷ ︸
=β′1

< α2 − µ ≤ β2 − ν − µ < b2

it follows (α′1, β
′
1) ∈ A ∩ {(a, b) : a = b+ µ}. In the same way it can

be shown that (α′′1, β
′′
1 ) ∈ A ∩ {(a, b) : a = b+ µ}.

Using this result and Lemma 4.1.23 the next corollary follows directly. If F

contains only one point with sk = sk′ +1 and only one point with sk′ = sk+ dk,

then F contains no other points.
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4 A partition problem with convex target function

Corollary 4.1.25

Let ν, µ ∈ N, a1, a2, b1, b2 ∈ Z with a1 ≤ a2, b1 ≤ b2 and A := [a1, a2] ∩ Z,
B := [b1, b2] ∩ Z. Further, let X := A× B and

A := {(a, b) ∈ X : a ≥ b+ µ ∨ b ≥ a+ ν}.

If

{(α1, β1)} = A ∩ {(a, b) : a = b+ µ} and {(α2, β2)} = A ∩ {(a, b) : b = a+ ν}

with α1 6= α2 and β1 6= β2, then

{(a2, b1)} = A ∩ {(a, b) : a ≥ b+ µ} and {(a1, b2)} = A ∩ {(a, b) : b ≥ a+ ν} .

Proof

If there existed a point (α, β) ∈ A ∩ {(a, b) : a > b+ µ}, with Lemma 4.1.24

|A ∩ {(a, b) : a = b+ µ} | ≥ 2 would follow. This is a contradiction. Thus,

{(α1, β1)} = A ∩ {(a, b) : a ≥ b+ µ}. With Lemma 4.1.23 it follows (α1, β1) =

(a2, b1).

The equality {(a2, b2)} = A ∩ {(a, b) : b ≥ a+ ν} can be shown in the same

way.

To shorten the proof of the upcoming Lemma 4.1.27 the following lemma is

given �rst.

Lemma 4.1.26

Let P1 = (α1, β1), P2 = (α2, β2), P3 = (α3, β3) and P = (α, β) ∈ Z2 be four

points with P2 = P1 + (1, 1) and P = P1 + (0, 1). If α3 ≤ α and β3 ≥ β, then P

lies in the convex hull of P1, P2 and P3.

Proof

As proof a simple picture is given in Figure 4.7.

The following lemma describes the case where F contains at least three points.

One of these points satis�es sk ≥ sk′ + 1 and another sk′ ≥ sk + dk. This

lemma states the �rst negative result since in this case F cannot be expressed

as intersection of a convex set and the integer numbers.
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4.1 Standard formulation

α

β

P1

P2

P3

P

Figure 4.7: Proof of Lemma 4.1.26

Lemma 4.1.27

Let µ, ν ∈ N, a1, a2, b1, b2 ∈ Z with a1 ≤ a2, b1 ≤ b2 and A := [a1, a2] ∩ Z,
B := [b1, b2] ∩ Z. Further, let X := A× B and

A := {(a, b) ∈ X : a ≥ b+ µ ∨ b ≥ a+ ν}.

If there exist three points (α1, β1), (α2, β2) and (α3, β3) ∈ A, where α1 ≥ β1 + µ

and β3 ≥ α3 + ν, then there is no convex set C ⊆ R2 with A = C ∩ Z2.

Proof

The goal is to �nd a point (α, β) ∈ Z2 in the convex hull of points in A but

(α, β) /∈ A. Thus, every convex set C with A ⊆ C also would contain (α, β) and

therefore A 6= C ∩ Z2.

Without loss of generality α2 ≥ β2 + µ can be assumed due to the symmetry

of A. With Lemma 4.1.24 the following expressions are well-de�ned:

(α′2, β
′
2) := argmax

(a,b)∈X
{a : a = b+ µ} ∈ A,

(α′1, β
′
1) := (α′2 − 1, β′2 − 1) ∈ A,

(α′3, β
′
3) := argmax

(a,b)∈X
{a : b = a+ ν} ∈ A

α′3 ≤ α′2 and β
′
2 ≤ β′3 follow immediately:

With α′3 > α′2 the inequality

b1 ≤ β′2 = α′2 − µ < α′3 − µ = β′3 − ν − µ < β′3 ≤ b2
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4 A partition problem with convex target function

would follow and thus (α′3, α
′
3− µ) ∈ X. This is in contradiction to the de�ni-

tion of (α′2, β
′
2).

Since

argmax
(a,b)∈X

{a : a = b+ µ} = argmax
(a,b)∈X

{b : a = b+ µ} ,

in the same way β′2 ≤ β′3 can be shown.

The point (α, β) is created regarding the following two cases:

• Case α′2 = α′3: De�ne (α, β) := (α′2, β
′
2 + 1). Therefore

α′2 = α = α′3 and β′2 < β′2 + 1︸ ︷︷ ︸
=β

< β′2 + µ+ ν = α′2 + ν = α′3 + ν = β′3.

Thus, (α, β) is a convex combination of (α′2, β
′
2) and (α′3, β

′
3). Furthermore

α = α′2 = β′2 + µ < β′2 + 1 + µ = β + µ

and

β = β′2 + 1 < β′2 + µ+ ν = α′2 + ν = α + ν.

Thus, (α, β) /∈ A as required.

• Case α′2 > α′3: It follows α
′
1 = α′2 − 1 ≥ α′3 and remember β′2 ≤ β′3. De�ne

(α, β) := (α′2 − 1, β′2) = (α′1, β
′
1 + 1). Then α′3 ≤ α and β′3 ≥ β and thus

with Lemma 4.1.26 the point (α, β) is a convex combination of (α′1, β
′
1),

(α′2, β
′
2) and (α′3, β

′
3). Further,

α = α′2 − 1 = β′2 + µ− 1 < β′2 + µ = β + µ

and

β = β′2 < β′2 + µ− 1 + ν = α′2 − 1 + ν = α + ν.

Thus, (α, β) /∈ A as required.
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4.1 Standard formulation

α

β

[ ]
Aµ

[
]

B

ν

(α′1, β
′
1)

(α′2, β
′
2)

(α′3, β
′
3)

(α, β)

Figure 4.8: Illustration of Lemma 4.1.27

To apply this result to Expression (4.1.12) one dimension for pk,k′ has to be

added. This is done in the following theorem.

Theorem 4.1.28

Let δ ∈ N, a1, a2, b1, b2 ∈ Z with a1 ≤ a2, b1 ≤ b2 and A := [a1, a2] ∩ Z,
B := [b1, b2] ∩ Z. Further, let X := {0, 1} × A× B and

A := {(x, a, b) ∈ X : (x = 0 ∧ (a ≥ b+ 1 ∨ b ≥ a+ δ))∨

(x = 1 ∧ (a ≤ b ∧ b+ 1 ≤ a+ δ))}.

If there exist three points (0, α1, β1), (0, α2, β2) and (0, α3, β3) ∈ A, where α1 ≥
β1 + 1 and β3 ≥ α3 + δ, then there is no convex set C ⊆ R3 with A = C ∩ Z3.

Proof

Using the same notation as in the proof of Lemma 4.1.27 (with µ = 1 and ν = δ)

a point (0, α, β) in the convex hull of (0, α′1, β
′
1), (0, α

′
2, β

′
2) and (0, α′3, β

′
3) ∈ A

with (0, α, β) /∈ A can be created. Therefore, there is no convex set C ⊆ R3

with A = C ∩ Z3.

Thus, if F contains more than two points of which one satis�es sk ≥ sk′ + 1

and another sk′ ≥ sk + dk, modeling Expression (4.1.12) in an ILP without

introducing further variables is impossible.

In the following the case where F contains only two points is studied. The next

helping lemma characterizes in what case the convex hull of two points in Z2

contains a point that lies in Z2 again.
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4 A partition problem with convex target function

Lemma 4.1.29

Let (α1, β1), (α2, β2) ∈ Z2 with α1 6= α2 and

r̂ := min

{
r ∈ N : r

β2 − β1
α2 − α1

∈ Z
}
.

Then there exists λ ∈ (0, 1) with λ(α2, β2) + (1− λ)(α1, β1) ∈ Z2 if and only if

r̂ < |α2 − α1|.

Proof

First note |α2 − α1|︸ ︷︷ ︸
∈N

β2 − β1
α2 − α1

∈ Z. Thus, r̂ is well-de�ned.

�⇒�: Let λ ∈ (0, 1) with λ(α2, β2)+(1−λ)(α1, β1) ∈ Z2. De�ne r := λ|α2−α1|.
Then

r

|α2 − α1|
α2 +

(
1− r

|α2 − α1|

)
α1 ∈ Z

⇒ α1 + r
α2 − α1

|α2 − α1|
∈ Z

⇒ α1 + r sgn(α2 − α1) ∈ Z

⇒ r ∈ Z

and since 0 < λ|α2 − α1| = r, it is r ∈ N. Further,

r

|α2 − α1|
β2 +

(
1− r

|α2 − α1|

)
β1 ∈ Z

⇒ β1 + r
β2 − β1
|α2 − α1|

∈ Z

⇒ r
β2 − β1
|α2 − α1|

∈ Z.

Therefore, r̂ ≤ r = λ|α2 − α1| < |α2 − α1|.

�⇐�: De�ne

λ :=
r̂

|α2 − α1|
∈ (0, 1).

Then like in ⇒� it follows λ(α2, β2) + (1− λ)(α1, β1) ∈ Z2.
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4.1 Standard formulation

This result can be also used as a computation instruction to �nd an integer

point in the convex hull of two integer points. As coe�cient for the convex

combination use λ = r̂/|α2 − α1|. With this lemma the following theorem can

be proven. If F only contains two points with sk = sk′ +1 and sk′ = sk+dk and

no integer points lie in the convex hull of these points, then Expression (4.1.12)

can be modeled by linear inequalities. These inequalities are also provided in

the theorem. Again, otherwise formulating Expression (4.1.12) in an ILP is

impossible without introducing further variables.

Theorem 4.1.30

Let δ ∈ N, a1, a2, b1, b2 ∈ Z with a1 ≤ a2, b1 ≤ b2 and A := [a1, a2] ∩ Z,
B := [b1, b2] ∩ Z. Further, let X := {0, 1} × A× B and

A := {(x, a, b) ∈ X : (x = 0 ∧ (a ≥ b+ 1 ∨ b ≥ a+ δ))∨

(x = 1 ∧ (a ≤ b ∧ b+ 1 ≤ a+ δ))}.

(i) If

{(0, α1, β1)} = A ∩ {(0, a, b) : a = b+ 1}

and

{(0, α2, β2)} = A ∩ {(0, a, b) : b = a+ δ}

with α1 6= α2 and

r̂ := min

{
r ∈ N : r

β2 − β1
α2 − α1

∈ Z
}
≥ |α2 − α1|,

then A = B, where

B := {(x, a, b) ∈ X :

(x− a+ b ≤ δ)∧

(x+ a− b ≤ 1)∧

((a2 − a1)(b2 − b1)x+ (b2 − b1)a+ (a2 − a1)b ≥ a2b2 − a1b1)∧

((a2 − a1)(b2 − b1)x+ (b1 − b2)a+ (a1 − a2)b ≥ a1b1 − a2b2)}.
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4 A partition problem with convex target function

(ii) If there exist

(0, α1, β1) ∈ A ∩ {(0, a, b) : a = b+ 1}

and

(0, α2, β2) ∈ A ∩ {(0, a, b) : b = a+ δ}

with either α1 = α2 or

r̂ := min

{
r ∈ N : r

β2 − β1
α2 − α1

∈ Z
}
< |α2 − α1|,

then there is no convex set C ⊆ R3 with A = C ∩ Z3.

Proof

The parts (i) and (ii) are proven separately.

(i) First β1 6= β2 is shown:

With β1 = β2 the inequality

α1 = β1 + µ = β2 + µ = α2 + ν + µ ≥ α2 + 2

and r̂ = 1 would hold. Therefore, 1 = r̂ ≥ |α2 − α1| ≥ 2, which is a

contradiction. Thus, β1 6= β2.

A ⊆ B:
Let (x, a, b) ∈ A. Two cases have to be considered. Either x = 0 or

x = 1:

• Case x = 0: With Lemma 4.1.23 and Corollary 4.1.25 two cases

follow:

◦ Case (x, a, b) = (0, α1, β1) = (0, a2, b1): Then it is a2 = b1 + 1.

x− a+ b = 0− a2 + b1 = −(b1 + 1) + b1 = −1 ≤ δ

x+ a− b = 0 + a2 − b1 = (b1 + 1)− b1 = 1

(a2 − a1)(b2 − b1)x+ (b2 − b1)a+ (a2 − a1)b
= (b2 − b1)a2 + (a2 − a1)b1
= a2b2 − a1b1

(4.1.14)
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4.1 Standard formulation

(a2 − a1)(b2 − b1)x+ (b1 − b2)a+ (a1 − a2)b
= (b1 − b2)a2 + (a1 − a2)b1
= a1b1 − a2b2

◦ Case (x, a, b) = (0, α2, β2) = (0, a1, b2): Then it is b2 = a1 + δ.

x− a+ b = 0− a1 + b2 = −b2 + δ + b2 = δ

x+ a− b = 0 + a1 − b2 = b2 − δ − b2 = −δ ≤ 1

(a2 − a1)(b2 − b1)x+ (b2 − b1)a+ (a2 − a1)b
= (b2 − b1)a1 + (a2 − a1)b2
= a2b2 − a1b1

(4.1.15)

(a2 − a1)(b2 − b1)x+ (b1 − b2)a+ (a1 − a2)b
= (b1 − b2)a1 + (a1 − a2)b2
= a1b1 − a2b2

• Case x = 1: It follows a ≤ b and b+ 1 ≤ a+ δ.

x− a+ b = b+ 1− a ≤ a+ δ − a = δ

x+ a− b = 1 + a− b ≤ 1 + b− b = 1

(a2 − a1)(b2 − b1)x+ (b2 − b1)a+ (a2 − a1)b
≥ (a2 − a1)(b2 − b1) + (b2 − b1)a1 + (a2 − a1)b1
= a2b2 − a1b1

(a2 − a1)(b2 − b1)x+ (b1 − b2)a+ (a1 − a2)b
≥ (a2 − a1)(b2 − b1) + (b1 − b2)a2 + (a1 − a2)b2
= a1b1 − a2b2

Therefore, (x, a, b) ∈ B.

B ⊆ A:

Let (x, a, b) ∈ B.

• Case x = 0:

Assumed a < b+ 1 and b < a+ δ. From the two inequalities

(b2 − b1)a+ (a2 − a1)b ≥ a2b2 − a1b1
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and

(b1 − b2)a+ (a1 − a2)b ≥ a2b2 − a1b1

it follows

(b2 − b1)a+ (a2 − a1)b = a2b2 − a1b1.

With Equations (4.1.14) and (4.1.15) this shows that the points

(0, a2, b1), (0, a1, b2) and (0, a, b) lie on a line. Therefore, it exists

λ ∈ R with

(0, a, b) = λ(0, a2, b1) + (1− λ)(0, a1, b2).

It is λ ∈ [0, 1] since

λ < 0⇒ a = λa2 + (1− λ)a1 < a1 + (1− λ)a1 = a1  

and

λ > 1⇒ a = λa2 + (1− λ)a1 > a2 + (1− λ)a2 = a2.  

Further, with Lemma 4.1.23 it follows

a2 = b1 + 1 and b2 = a1 + δ.

Together with a < b + 1 and b < a + δ it follows λ ∈ (0, 1). This

is in contradiction to the result of Lemma 4.1.29. Thus, a ≥ b + 1

and b ≥ a+ δ as needed.

• Case x = 1:

a = (x+ a− b)− 1 + b ≤ 1− 1 + b = b

b+ 1 = a+ (x− a+ b) ≤ a+ δ

Altogether, (x, a, b) ∈ A.
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4.1 Standard formulation

(ii) First, it is shown that every real convex combination of (0, α1, β1) and

(0, α2, β2) is not an element of A:

With λ ∈ (0, 1) it follows

[λα1 + (1− λ)α2] = λ(β1 + 1) + (1− λ)(β2 − δ)

= λβ1 + (1− λ)β2 − δ + λ(δ + 1)

< λβ1 + (1− λ)β2 − δ + δ + 1

= [λβ1 + (1− λ)β2] + 1

and

[λβ1 + (1− λ)β2] = λ(α1 − 1) + (1− λ)(α2 + δ)

= λα1 + (1− λ)α2 + δ − λ(δ + 1)

< [λα1 + (1− λ)α2] + δ.

Thus, λ(0, α1, β1) + (1− λ)(0, α2, β2) /∈ A.

For both cases α1 = α2 and r̂ < |α2−α1| a real convex combination which

lies in Z2 can be created:

• Case α1 = α2:

It follows

β1 = α1 − 1 = α2 − 1 = β2 − δ − 1 ≤ β2 − 2.

Then (0, α, β) := (0, α1, β1 + 1) ∈ Z3 is a real convex combination of

(0, α1, β1) and (0, α2, β2).

• Case r̂ < |α2 − α1|:
Lemma 4.1.29 provides a real convex combination (0, α, β) ∈ Z3 of

(0, α1, β1) and (0, α2, β2).

Therefore, there is no convex set C ⊆ R3 with A = C ∩ Z3.

There is one last case left which is approached in the following theorem. If F

contains only points with either sk ≥ sk′ + 1 or only points with sk′ ≥ sk + dk,

then a representation by linear inequalities is possible.
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Theorem 4.1.31

Let δ ∈ N, a1, a2, b1, b2 ∈ Z with a1 ≤ a2, b1 ≤ b2 and A := [a1, a2] ∩ Z,
B := [b1, b2] ∩ Z. Further, let H := max{b2 − a1, a2 − b1}, X := {0, 1} × A × B
and

A := {(x, a, b) ∈ X : (x = 0 ∧ (a ≥ b+ 1 ∨ b ≥ a+ δ))∨

(x = 1 ∧ (a ≤ b ∧ b+ 1 ≤ a+ δ))}.

(i) If A ∩ {(0, a, b) : a ≥ b+ 1} = ∅, then

A = {(x, a, b) ∈ X : (a+ δ − b− (H + δ)x ≤ 0)∧

(b+ 1− (a+ δ) + (H + δ + 1)(x− 1) ≤ 0)}.

(ii) If A ∩ {(0, a, b) : b ≥ a+ δ} = ∅, then

A = {(x, a, b) ∈ X : (b+ 1− a− (H + 1)x ≤ 0)∧

(a− b+H(x− 1) ≤ 0)}.

Proof

Since (ii) can be shown like (i), only the proof for (i) is demonstrated. With

A ∩ {(0, a, b) : a ≥ b+ 1} = ∅ it follows a ≤ b for all (x, a, b) ∈ A and A can be

rewritten as

A = {(x, a, b) ∈ X : (x = 1 ∨ b ≥ a+ δ) ∧ (x = 0 ∨ b+ 1 ≤ a+ δ)}.

The claim follows with Theorem 4.1.8.

Theorems 4.1.28, 4.1.30 and 4.1.31 characterize in which cases new variables

have to be introduced and in which cases Expression (4.1.12) can be modeled

with linear inequalities. For the second case the according linear inequalities are

already presented in Theorems 4.1.30 and 4.1.31.

For the cases where sk, sk′ and pk,k′ are not su�cient to describe the feasible

region two new sets of variables

ssk,k′ ∈ {0, 1} and esk,k′ ∈ {0, 1}
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4.1 Standard formulation

for k, k′ ∈ K are introduced. It is ssk,k′ = 1 if jk starts before jk′ and (like

before) esk,k′ = 1 if jk ends before jk′ starts. Thus,

ssk,k′ = 1⇔ sk ≤ sk′ and esk,k′ = 1⇔ sk + dk ≤ sk′ .

With Corollary 4.1.8 and the integrity of the variables this can be modeled as

sk′ − sk − (H + 1)ssk,k′ + 1 ≤ 0 (4.1.16)

sk − sk′ +H(ssk,k′ − 1) ≤ 0

sk′ − (sk + dk)− (H + 1)esk,k′ + 1 ≤ 0

(sk + dk)− sk′ +H(esk,k′ − 1) ≤ 0, (4.1.17)

where H ∈ R must be large enough.

The job jk is active at the starting time sk′ if it starts before sk′ but does not

end before sk′ . Thus, pk,k′ is connected to ssk,k′ and esk,k′ as follows:

pk,k′ = 1⇔ ssk,k′ = 1 ∧ esk,k′ = 0 (4.1.18)

To linearize this expression the following corollary is given.

Corollary 4.1.32

Let X := {0, 1}3. Then

{(x1, x2, y) ∈ X : (x1 = 1 ∧ x2 = 0)⇔ y = 1}

= {(x1, x2, y) ∈ X : (2y − x1 + x2 ≤ 1) ∧ (y − x1 + x2 ≥ 0)} .

Proof

Since [(x1 = 1 ∧ x2 = 0)⇔ y = 1] ⇔ [(x1 = 0 ∨ x2 = 1)⇔ y = 0] holds, Lem-

mas 4.1.9 and 4.1.10 can be applied with τ1 = υ = 0 and τ2 = 1.

Using this result, Expression (4.1.18) can be formulated as:

2pk,k′ − ssk,k′ + esk,k′ ≤ 1 (4.1.19)

pk,k′ − ssk,k′ + esk,k′ ≥ 0 (4.1.20)

Similar to the last section, Equations (4.1.19) and (4.1.20) can be tightened in

such a way that all p variables become redundant. To see this the following
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4 A partition problem with convex target function

results are given in a short informal notation. The meaning of the terms and

variables should be clear from their use above.

Lemma 4.1.33

esk,k′ − ssk,k′ ≤ 0.

Proof

Suppose 1 = esk,k′ > ssk,k′ = 0. Then sk + dk ≤ sk′ and sk′ + 1 ≤ sk by Con-

straints (4.1.17) and (4.1.16) and therefore sk+dk < sk. This is in contradiction

to the de�nition. Thus, esk,k′ ≤ ssk,k′ holds.

Lemma 4.1.34

Equations (4.1.19) and (4.1.20) can be substituted by pk,k′ − ssk,k′ + esk,k′ = 0.

Proof

By adding the inequality in Lemma 4.1.33 to Equation (4.1.19)

2pk,k′ − 2ssk,k′ + 2esk,k′ ≤ 1

follows. Since all variables are integer, this resolves to

pk,k′ − ssk,k′ + esk,k′ ≤ 0. (4.1.21)

In combination with Equation (4.1.20) the claim is proven.

Therefore, the p, ss and es variables are in direct dependency and thus the p

variables in Equation (4.1.11) can be substituted as follows.

Corollary 4.1.35

Equation (4.1.11) is equivalent to∑
k∈K

ssk,k′ − esk,k′ ≤ z

for all k′ ∈ K.

Proof

The equation in Lemma 4.1.34 is equivalent to pk,k′ = ssk,k′−esk,k′ . Substitution
of pk,k′ in Equation (4.1.11) proofs the claim.
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4.1 Standard formulation

Therefore, all p variables can be omitted and only the constraints

sk′ − sk − (H + 1)ssk,k′ + 1 ≤ 0

sk − sk′ +H(ssk,k′ − 1) ≤ 0

sk′ − (sk + dk)− (H + 1)esk,k′ + 1 ≤ 0

(sk + dk)− sk′ +H(esk,k′ − 1) ≤ 0

for all k, k′ ∈ K and ∑
k∈K

ssk,k′ − esk,k′ ≤ z

for all k′ ∈ K describe the feasible region.

This leads to the following de�nition, where with the same arguments as before

the integrality conditions for s and z are omitted.

De�nition 4.1.36

Let I := (K,M, T, t̂, r, c, f) be an instance of MJAP, where smin
k and smax

k are the

bounds for the starting time and dk the duration of movable job k ∈ K. De�ne

H := maxk,k′∈K{(smax
k + dk)− smin

k′ }. The problem to �nd a set of corresponding

jobs, where the size of the largest overlapping set is minimal, is called MinOSlinI

and is de�ned as the following ILP:

min z

s.t.

sk′ − sk − (H + 1)ssk,k′ + 1 ≤ 0 ∀k, k′ ∈ K

sk − sk′ +H(ssk,k′ − 1) ≤ 0 ∀k, k′ ∈ K

sk′ − (sk + dk)− (H + 1)esk,k′ + 1 ≤ 0 ∀k, k′ ∈ K

(sk + dk)− sk′ +H(esk,k′ − 1) ≤ 0 ∀k, k′ ∈ K∑
k∈K

ssk,k′ − esk,k′ ≤ z ∀k′ ∈ K

sk ∈ [smin
k , smax

k ] ∀k ∈ K

z ∈ R

ssk,k′ ∈ {0, 1} ∀k, k′ ∈ K

esk,k′ ∈ {0, 1} ∀k, k′ ∈ K
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4 A partition problem with convex target function

In the implementation of MinOSlinI in Section 4.3 the variables ss and es are

only created if they are not predetermined. If for example smax
k > smin

k′ , then

ssk,k′ must be 0 and is not created. Further, ss and es are not created if a

formulation with p is possible. In this case the appropriate inequalities from

Theorems 4.1.30 and 4.1.31 are used.

4.2 Compact formulation

In the last section a heuristic to solve MJAP was presented. In this section a

heuristic for JAP is developed to tackle instances which are too large to be solved

with JAPlinI . The idea is to substitute all machines of one type by one single

object and in this way to create a more compact formulation. Thus, jobs get

assigned to machine types instead of machines. Motivated by Theorem 4.1.22 the

number of machines of one type can be determined by calculating the largest

overlapping set of the assigned jobs. To not exceed the number of available

machines the size of the largest overlapping set is bounded by |t̂−1(t)| for each
machine type t. The same approach is also applied to derive another heuristic

for MJAP in Section 4.2.1. The compact formulation for JAP is given in the

following de�nition.

De�nition 4.2.1 (Compact Convex Job Assignment Problem)

Let J be a �nite set of jobs, where dj is the duration of job j ∈ J . Further, let
M and T be �nite sets, t̂ : M → T , r ∈ {0, 1}J×T , c0, c1, c2 ∈ R+

0 with c1 ≤ c2

and f ∈ N0.

The problem to �nd an assignment a : J → T with rj,a(j) = 1 for all j ∈ J and

ρa−1(t) ≤ |t̂−1(t)| for all t ∈ T , where

c0
∑
t∈T

ρa−1(t) +
∑
t∈T

max

c1 ∑
j∈a−1(t)

dj, c2
∑

j∈a−1(t)

dj − ρa−1(t)f(c2 − c1)


is minimal, is called Compact Convex Job Assignment Problem (CJAP).

In this notation ρa−1(t) represents the number of needed machines of type t since

this is the size of the largest overlapping set of the jobs assigned to t. The number

of available machines of type t must not be exceeded. Thus ρa−1(t) ≤ |t̂−1(t)|.
Further, the production limit f has to be multiplied by ρa−1(t) since it is provided
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4.2 Compact formulation

for each machine. At this point it becomes apparent that CJAP is just a heuristic

to solve JAP. If the assigned jobs to a machine type t can be evenly distributed

among the ρa−1(t) machines, the solution value of CJAP should be very close

to the corresponding solution value of JAP. However, if these jobs cannot be

evenly distributed, e.g. if the durations of the jobs have a high variance and the

durations of some jobs are large compared to f , great di�erences can arise. This

is demonstrated in the following example:

Let j1 = (0, 1) and j2 = (0, 9) be two jobs starting at time 0 with the durations

1 and 9. There are two machines m1 and m2 both of type t1. For simplicity

reasons the restriction matrix r is 1 in each component and c0 = 0. Further,

let f = 5 with c1 ≤ c2. For CJAP the only solution is to assign j1 and j2 to

t1. Since j1 and j2 overlap, it is ρa−1(t1) = 2. This results in a solution value of

max {c1 · (1 + 9), c2 · (1 + 9)− 2 · 5 · (c2 − c1)} = 10c1.

For JAP the only solution is to assign j1 to m1 and j2 to m2 (or vice versa

since m1 and m2 are exchangeable). This results in a solution value of

max {c1 · 1, c2 · 1− 5 · (c2 − c1)}+max {c1 · 9, c2 · 9− 5 · (c2 − c1)}

= c1 + 4c2 + 5c1

= 6c1 + 4c2

≥ 10c1.

Thus, depending on the di�erence between c1 and c2 the solution values for

JAP and CJAP can vary strongly. How much the heuristic solution can di�er

from the optimal solution, depending on the input parameters, is a �eld of

future research.

Furthermore, another term in De�nition 4.2.1 is conspicuous. To get the total

�xed costs for each machine type the number of needed machines is multiplied

by c0, which gives c0
∑

t∈T ρa−1(t). At the �rst glance it seems to be easier to

simply calculate c0ρJ . However, in general and also in the case of an optimal

assignment
∑

t∈T ρa−1(t) = ρJ may not hold:

Consider the following example with the four jobs j1 = (0, 4), j2 = (0, 4),

j3 = (0, 2) and j4 = (2, 2). Thus, three jobs start at time 0, two of which have

the duration 4 and one has the duration 2, and one job with duration 2 starts
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4 A partition problem with convex target function

at time 2. Further, there are 3 machines of type t1 and 3 machines of type

t2, where only t1 is allowed to process j1 and only t2 is allowed to process j2.

Because of the symmetry j1 and j2, as well as j3 and j4 are interchangeable.

This leads to only two feasible assignments:

{j1, j3} 7→ t1

{j2, j4} 7→ t2
and

{j1, j3, j4} 7→ t1

{j2} 7→ t2

Further, let f = 3 and c0 � c1 � c2. Thus, c1 is much larger than c0 and c2
is much larger than c1. Since

ρ{j1,j3} = ρ{j1,j3,j4} = ρ{j2,j4} = ρ{j2,j3,j4} = 2,

it is optimal to assign j1 and j3 to t1, and j2 and j4 to t2 because the total job

duration on both machine types equals the production limit (4 + 2 = 2 · 3 =

ρa−1(t1)f) and consequently the variable costs are (2 + 4)c1. If j1, j3 and j4

would be assigned to machine type t1, then 2 + 2 + 4 > 2 · 3 = ρa−1(t1)f and

the variable costs would be 2c2 + (2 + 4)c1. Since c1 � c2, these solutions are

not preferred.

Therefore, in the optimal solution j1 and j3 are assigned to t1, and j2 and j4
are assigned to t2. However, it is ρJ = 3 and ρa−1(t1) + ρa−1(t2) = 2 + 2 = 4.

Thus, even for an optimal assignment
∑

t∈T ρa−1(t) 6= ρJ may not hold and

c0
∑

t∈T ρa−1(t) has to be calculated.

As an insight into the complexity of CJAP the following theorem is given.

Theorem 4.2.2

Unless P = NP, there is no polynomial-time approximation algorithm that solves

CJAP with approximation ratio in O
(
2poly(|J |,|M |,|T |,f)

)
for some polynomial

poly : R4
≥0 → R≥1. This is true even if |M | = 2, |T | = 2, rj,t = 1 for all

j ∈ J and t ∈ T , c0 = 0 and c1 = 1.

Proof

The proof is analogous to the proof of Theorem 4.1.3 except that the assignment

function a assigns jobs to machine types and not to machines.
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4.2 Compact formulation

The ILP to solve an instance I of CJAP is very similar to JAPlinI . The variables

xj,m are substituted by

xj,t ∈ {0, 1}

for j ∈ J and t ∈ T , where xj,t = 1 encodes � job j is processed by a machine of

type t�. As before each job must be assigned to exactly one machine type. This

is ensured by ∑
t∈T

xj,t = 1

for all j ∈ J . A new set of integer variables

zt ∈ N0

for t ∈ T is introduced. These variables count the number of needed machines

of type t ∈ T (which is ρa−1(t)) and therefore are bounded by |t̂−1(t)|. With

Lemma 4.0.5 Equation (4.1.1) can be replaced by∑
j∈O

xj,t ≤ zt

for all t ∈ T and all overlapping sets O ∈ OJ . The target function becomes

c0
∑
t∈T

zt +
∑
t∈T

max

{
c1
∑
j∈J

djxj,t, c2
∑
j∈J

djxj,t − ztf(c2 − c1)

}
,

which can be linearized like before. A set of new variables

yt ∈ R

is introduced for t ∈ T . These form an upper bound for the maximum expression

in the second summand. This is ensured by the constraints

c1
∑
j∈J

djxj,t ≤ yt and c2
∑
j∈J

djxj,t − ztf(c2 − c1) ≤ yt

for all t ∈ T .
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4 A partition problem with convex target function

Thus, the cost function becomes

c0
∑
t∈T

zt +
∑
t∈T

yt.

The complete ILP is presented in the following de�nition.

De�nition 4.2.3

Let I := (J,M, T, t̂, r, c, f) be an instance of CJAP, where dj is the duration of

job j ∈ J . The problem CJAPlinI is de�ned as the following ILP:

min c0
∑
t∈T

zt +
∑
t∈T

yt

s.t.∑
t∈T

xj,t = 1 ∀j ∈ J

xj,t ≤ rj,t ∀j ∈ J, t ∈ T

c1
∑
j∈J

djxj,t ≤ yt ∀t ∈ T

c2
∑
j∈J

djxj,t − ztf(c2 − c1) ≤ yt ∀t ∈ T∑
j∈O

xj,t ≤ zt ∀t ∈ T,O ∈ OJ

zt ≤ |t̂−1(t)| ∀t ∈ T

xj,t ∈ {0, 1} ∀j ∈ J, t ∈ T

yt ∈ R ∀t ∈ T

zt ∈ N0 ∀t ∈ T

4.2.1 Movable jobs

As for JAP a compact formulation can be introduced for the time window

version MJAP. The mathematical description is presented in the following def-

inition and is a composition of MJAP and CJAP.

De�nition 4.2.4 (Compact Convex Movable Job Assignment Problem)

Let K be a �nite set of movable jobs, where dk is the duration of movable job

k ∈ K. Further, let M and T be �nite sets, t̂ : M → T , r ∈ {0, 1}K×T ,
c0, c1, c2 ∈ R+

0 with c1 ≤ c2 and f ∈ N0.
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4.2 Compact formulation

The problem to �nd a feasible set of corresponding jobs J = {jk}k∈K for K and

an assignment a : J → T with rk,a(jk) = 1 for all k ∈ K and ρa−1(t) ≤ |t̂−1(t)|
for all t ∈ T , where

c0
∑
t∈T

ρa−1(t) +
∑
t∈T

max

c1 ∑
j∈a−1(t)

dj, c2
∑

j∈a−1(t)

dj − ρa−1(t)f(c2 − c1)


is minimal, is called the Compact Convex Movable Job Assignment Problem

(CMJAP).

CMJAP does not admit a polynomial-time approximation algorithm with ex-

ponential approximation ratio. This is stated in the following theorem.

Theorem 4.2.5

Unless P = NP, there is no polynomial-time approximation algorithm that solves

CMJAP with approximation ratio in O
(
2poly(|K|,|M |,|T |,f)

)
for some polynomial

poly : R3
≥0 → R≥1. This is true even if |M | = 2, |T | = 2, rk,t = 1 for all k ∈ K

and t ∈ T , c0 = 0 and c1 = 1.

Proof

The proof is analogous to the proof of Theorem 4.1.6 in combination with The-

orem 4.2.2 except that the function a assigns jobs to machine types and not to

machines.

An ILP for CMJAP is created as a mixture of MJAPlinI and CJAPlinI . The

same x and z variables as in CJAPlinI are used except that x is not indexed

by jobs anymore (index j) but by movable jobs (index k). Furthermore, like for

MJAPlinI , the variables ss and es encode if a job starts or ends before another

job starts. In Section 4.1.2 the constraints
∑

k∈K ssk,k′ − esk,k′ ≤ z are used to

determine the size of the overlapping set at time sk′ . Since for CMJAP only

those jobs assigned to a machine type contribute to an overlapping set, these

constraints change to ∑
k∈K

xk,t(ssk,k′ − esk,k′) ≤ zt (4.2.1)

for all t ∈ T .
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4 A partition problem with convex target function

Obviously, this is no linear expression. Thus, two new sets of binary variables

xss and xes with

xssk,k′,t = xk,tssk,k′ ∈ {0, 1} (4.2.2)

and

xesk,k′,t = xk,tesk,k′ ∈ {0, 1} (4.2.3)

for all k, k′ ∈ K and t ∈ T are introduced. The corresponding logical expressions

are

xssk,k′,t = 1⇔ xk,t = 1 ∧ ssk,k′ = 1 and xesk,k′,t = 1⇔ xk,t = 1 ∧ esk,k′ = 1.

Equations (4.2.2) and (4.2.3) are still nonlinear but due to the integrity of

the variables a linear representation exists. This representation is given in the

following corollary.

Corollary 4.2.6

Let X := {0, 1}3. Then

{(x1, x2, y) ∈ X : (x1 = 1 ∧ x2 = 1)⇔ y = 1}

= {(x1, x2, y) ∈ X : (2y − x1 − x2 ≤ 0) ∧ (x1 + x2 − y ≤ 1)} .

Proof

Since [(x1 = 1 ∧ x2 = 1)⇔ y = 1] ⇔ [(x1 = 0 ∨ x2 = 0)⇔ y = 0] holds, Lem-

mas 4.1.9 and 4.1.10 can be applied with τ1 = τ2 = υ = 0.

Therefore, Equations (4.2.2) and (4.2.3) resolve to

2xssk,k′,t − xk,t − ssk,k′ ≤ 0

xk,t + ssk,k′ − xssk,k′,t ≤ 1

2xesk,k′,t − xk,t − esk,k′ ≤ 0

xk,t + est,u − xesk,k′,t ≤ 1

for all k, k′ ∈ K and t ∈ T .
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4.2 Compact formulation

Equation (4.2.1) can be rewritten as∑
k∈K

xssk,k′,t − xesk,k′,t ≤ zt

for all k′ ∈ K and t ∈ T . This leads to the following ILP for CMJAP.

De�nition 4.2.7

Let I := (K,M, T, t̂, r, c, f) be an instance of CMJAP, where smin
k and smax

k are

the bounds for the starting time and dk the duration of movable job k ∈ K.

De�ne H := maxk,k′∈K{(smax
k + dk)− smin

k′ }. The problem CMJAPlinI is de�ned

as the following ILP:

min c0
∑
t∈T

zt +
∑
t∈T

yt

s.t.∑
t∈T

xk,t = 1 ∀k ∈ K

xj,t ≤ rj,t ∀j ∈ J, t ∈ T

c1
∑
k∈K

dkxk,t ≤ yt ∀t ∈ T

c2
∑
k∈K

dkxk,t − ztf(c2 − c1) ≤ yt ∀t ∈ T

sk′ − sk − (H + 1)ssk,k′ + 1 ≤ 0 ∀k, k′ ∈ K

sk − sk′ +H(ssk,k′ − 1) ≤ 0 ∀k, k′ ∈ K

sk′ − (sk + dk)− (H + 1)esk,k′ + 1 ≤ 0 ∀k, k′ ∈ K

(sk + dk)− sk′ +H(esk,k′ − 1) ≤ 0 ∀k, k′ ∈ K

2xssk,k′,t − xk,t − ssk,k′ ≤ 0 ∀k, k′ ∈ K, t ∈ T

xk,t + ssk,k′ − xssk,k′,t ≤ 1 ∀k, k′ ∈ K, t ∈ T

2xesk,k′,t − xk,t − esk,k′ ≤ 0 ∀k, k′ ∈ K, t ∈ T

xk,t + est,u − xesk,k′,t ≤ 1 ∀k, k′ ∈ K, t ∈ T∑
k∈K

xssk,k′,t − xesk,k′,t ≤ zt ∀k′ ∈ K, t ∈ T

zt ≤ |t̂−1(t)| ∀t ∈ T
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xk,t ∈ {0, 1} ∀k ∈ K, t ∈ T

yt ∈ R ∀t ∈ T

sk ∈ [smin
k , smax

k ] ∀k ∈ K

zt ∈ N0 ∀t ∈ T

ssk,k′ ∈ {0, 1} ∀k, k′ ∈ K

esk,k′ ∈ {0, 1} ∀k, k′ ∈ K

xssk,k′,t ∈ {0, 1} ∀k, k′ ∈ K, t ∈ T

xesk,k′,t ∈ {0, 1} ∀k, k′ ∈ K, t ∈ T

4.2.2 Assignment of jobs

Until now only the assignment of jobs to machine types was covered. The as-

signment of jobs to single machines is left. To approach this problem a small

ILP, which has to be solved for every machine type, is designed in the following.

The goal is to distribute the production times (i.e. durations) evenly between

the machines of one type. In this way, the production limit f is exhausted �rst

and hopefully only c1 has to be paid per time unit.

The program for the CJAP case is introduced in the following. Let t be some

machine type. The variable zt, as part of a solution of CJAPlinI , denotes the

number of machines which have to be provided of this type. In the following

de�nition these machines are denoted by Mt = {1, . . . , zt}. Further, Jt holds all
jobs that have to be processed by these machines. The binary variables u encode

the assignment of jobs to machines (u is chosen to not get confused with the x

variables of the solution of CJAPlinI). Thus,∑
j∈Jt

djuj,m

is the total processing duration of machine m. To create an evenly distributed

assignment the maximum of all total processing times is minimized. Thus, a

variable v is introduced, which denotes the maximal processing time of all ma-

chines. The constraints ∑
j∈Jt

djuj,m ≤ v
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4.2 Compact formulation

ensure that v is an upper bound for this maximum. Therefore, if v is minimized,

the maximal processing time is minimized as needed. Additionally, the jobs on

one machine are not allowed to overlap. This is modeled by∑
j∈O

uj,m ≤ 1

for all O ∈ OJt . The complete ILP is presented in the following de�nition.

De�nition 4.2.8

Let I := (J,M, T, t̂, r, c, f) be an instance of CJAP. Further, let x and z be the x

and z part of a solution vector of CJAPlinI and t ∈ T . De�ne Mt := {1, . . . , zt}
and Jt := {j ∈ J : xj,t = 1}. The ILP to solve the machine assignment problem

for CJAP is called CJAPx,z,tlinI and de�ned as follows:

min v

s.t.∑
m∈Mt

uj,m = 1 ∀j ∈ Jt∑
j∈O

uj,m ≤ 1 ∀m ∈Mt, O ∈ OJt∑
j∈Jt

djuj,m ≤ v ∀m ∈Mt

uj,m ∈ {0, 1} ∀j ∈ Jt,m ∈Mt

v ∈ R

To �nd a solution for JAP �rst CJAPlinI is solved. This produces the solution

vectors x and z. Afterwards, for each machine type t the machine assignment

problem CJAPx,z,tlinI is solved. This creates a valid job to machine assignment

for JAP, which can be evaluated with respect to the target function of JAP.

Also for CMJAP an assignment problem which assigns jobs to machines has to

be solved for each machine type. This is done analogously as for CJAP with

one little distinction. The starting times of the movable jobs are determined by

CMJAPlinI in the vector s. Thus, the set of jobs for machine type t depends

also on s. It is denoted as Js,t := {(sk, dk) : xk,t = 1, k ∈ K}. As before, this
leads to the following de�nition.
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4 A partition problem with convex target function

De�nition 4.2.9

Let I := (K,M, T, t̂, r, c, f) be an instance of CMJAP, where dk is the duration

of movable job k ∈ K. Further, let x, s and z be the x, s and z part of a solution

vector of CMJAPlinI and t ∈ T . De�ne Mt := {1, . . . , zt} and Js,t := {(sk, dk) :
xk,t = 1, k ∈ K}. The ILP to solve the machine assignment problem for CMJAP

is called CMJAPx,s,z,tlinI and de�ned as follows:

min v

s.t.∑
m∈Mt

uj,m = 1 ∀j ∈ Js,t∑
j∈O

uj,m ≤ 1 ∀m ∈Mt, O ∈ OJs,t∑
j∈Js,t

djuj,m ≤ v ∀m ∈Mt

uj,m ∈ {0, 1} ∀j ∈ Js,t,m ∈Mt

v ∈ R

To �nd a solution for MJAP �rst CMJAPlinI is solved. This produces the

solution vectors x, s and z. The sets of jobs Js,t are created for each machine

type t (note that the union
⋃
t∈T Js,t forms a valid set of jobs for MJAP). After

that, for each machine type the machine assignment problem CMJAPx,s,z,tlinI
is solved. This creates a valid job to machine assignment for MJAP, which can

be evaluated with respect to the target function of MJAP.

Altogether, besides solving an instance I of MJAP optimally with MJAPlinI ,

there are three ways to get a heuristic solution:

• solve CMJAPlinI → solve CMJAPx,s,z,tlinI

• solve MinOSlinI → solve JAPlinI

• solve MinOSlinI → solve CJAPlinI → solve CJAPx,z,tlinI

All these solving methods are tested in the next section.
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4.3 Numerical results

To test the algorithms developed in the last sections instances of MJAP with

three di�erent values for |K| and |T | are generated. Additionally, three di�erent
so-called �diversity factors� are tested, which is explained later. As test instances

for JAP the generated instances of MJAP are used, except that the movable

jobs are substituted by jobs with �xed starting time smin and duration d.

Since JAP and MJAP get harder to solve if jobs are overlapping more often,

instances with smaller and larger overlapping sets are created. For that, a di-

versity factor is introduced. This factor scales the (integer) interval in which

the starting times are randomly chosen. This means, if the diversity factor is

large, also the interval is large. Therefore, jobs do not tend to overlap. If the

factor and hence the interval are small, the starting times of the jobs are close

together and the jobs tend to overlap more often.

The maximal duration of the movable jobs in all instances is set to 10. Thus, for

all k ∈ K the duration dk ∈ {1, 2, . . . , 10} is randomly chosen. The previously

mentioned interval for the starting times is de�ned as

{0, 1, . . . , ddiversity · (|K| − 1) · 10e} .

In this way for a diversity of 1.0 a set of |K| movable jobs could be arranged

one after another such that no two jobs overlap. For a smaller diversity factor

the interval gets smaller and at some point jobs have to overlap. Nevertheless,

since all values are chosen randomly, this also happens already for a diversity

factor of 1.0. Still, if the diversity gets smaller the sizes of the overlapping sets

increase.

For each k ∈ K the lower bound for the starting time.

smin ∈ {0, 1, . . . , ddiversity · (|K| − 1) · 10e}

and the upper bound

smax ∈
{
smin, smin + 1, . . . , smin + 10

}
are chosen randomly. This means, each movable job may at most be moved by

10 time units. For JAP the set of jobs is de�ned as J := {(smin
k , dk)}k∈K .
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4 A partition problem with convex target function

The number of machines for each machine type is chosen as⌈
ρJ
|T | − 1

⌉
.

In this way enough machines should be provided to process all jobs since

|M | =
⌈

ρJ
|T | − 1

⌉
· |T | > ρJ .

The machine type function t̂ is chosen canonical such that the number of ma-

chines is the same for each machine type. The restriction matrix r is chosen

randomly such that about 90% of the entries equal 1.

The production limit is de�ned as

f :=

⌈∑
k∈K dk

ρJ

⌉
.

Like this, if all jobs can be distributed evenly, the production times of the

machines should be around f . However, since r restricts some job machine

type combinations, some machines should exceed the production limit and some

should require less time. This is wanted because otherwise the production limit

would not have any impact on the solution. Finally, the cost vector is chosen as

(c0, c1, c2) := (3f, 1, 2).

The ILP solver (Xpress) often detects infeasible instances very fast. If a gener-

ated instance is infeasible (for example, if r is chosen such that no machine type

is allowed for a job), it is generated randomly again.

It has to be mentioned that in the ILP implementations of JAPlinI , CJAPlinI
and CJAPx,z,tlinI not all constraints for O ∈ OJ are created. For two overlap-

ping sets O,O′ ∈ OJ with O ⊆ O′ it is∑
j∈O

xj,m ≤
∑
j∈O′

xj,m ≤ 1.

Therefore, the constraint for O is already induced by the constraint for O′.

Therefore, the constraint for an overlapping set O is only created if no other

overlapping set O′ with O ⊆ O′ exists. Further, as already mentioned, in the im-

plementations of MJAPlinI , MinOSlinI and CMJAPlinI the ss and es variables

and the according constraints are only created if they are not predetermined.
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4.3 Numerical results

To solve JAP two methods were developed. The �rst is to solve JAPlinI ,

which produces the optimal solution. The second is to solve CJAPlinI and

then CJAPx,z,tlinI for each machine type. This produces a heuristic solution.

The results for both methods are noted in Table 4.1 (columns JAP and CJAP).

Not only the runtime of the algorithms but also the solution values are given.

Further, the results of a randomized algorithm are stated in the last column.

The randomized algorithm tries random assignments of jobs to machines and

returnes the best assignment. The algorithm is run for 100 times. To make the

results comparable the runtime for each run is bounded by the time JAPlinI
needed to �nd the optimal solution (column JAP → time). Besides the ratio

how often a feasible solution was found in the 100 runs, the average target value

of these solutions is given. For the cases in which no solution was found at all

no target value exists. This is denoted by �-�.

The most eye-catching detail in Table 4.1 are the target values of in the columns

JAP and CJAP. Without exception the heuristic found not only the optimal

solution but this especially in a fraction of the time that was needed to solve

JAPlinI . This is rooted in the fact that the durations of the jobs just range from

1 to 10, which is small compared to f . Thus, the jobs can be evenly distributed

among the machines and the bad case like the example after De�nition 4.2.1

does not occur.

All instances can be solved by the heuristic in less than 0.3 seconds. However,

the runtime for JAPlinI and the results of the randomized algorithm strongly

depend on |J |, |T | and the diversity.

For |J | = 50 all instances can be solved optimally in about 1 second or less. The

randomized algorithm nearly always �nds a solution except for |T | = 5 and a

diversity of 1.0 or 0.6. In these two cases a solution is only found in 95% or 14%

of the 100 runs.

For |J | = 100 the runtime of JAPlinI ranges up to about 15 seconds for |T | = 8

and a diversity of 0.6. Already for this number of jobs it gets hard for the ran-

domized algorithm to �nd feasible solutions. For a diversity factor of 0.6 never a

solution is found. For |T | = 3 and a diversity of 1.0 in 60% of the runs a solution

is found, for a diversity of 0.8 just in 20%.

For |J | = 200 the randomized algorithm never �nds a feasible solution and the

runtime of JAPlinI goes up to about 57 seconds for a diversity of 0.6 and 8

machine types. It is apparent that the runtime of JAPlinI gets larger if the
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4 A partition problem with convex target function

|J| |T| div.
JAP CJAP JAP rand.

time target time target ratio target

50 3 1.0 0.434 852 0.090 852 100% 996.8

0.8 0.706 838 0.104 838 100% 978.0

0.6 1.064 716 0.084 716 100% 967.6

5 1.0 0.312 896 0.091 896 97% 1098.3

0.8 0.244 854 0.087 854 100% 1047.3

0.6 0.458 826 0.106 826 14% 896.0

8 1.0 0.970 846 0.103 846 100% 1292.1

0.8 0.568 836 0.112 836 100% 1283.3

0.6 0.989 820 0.104 820 100% 1353.8

100 3 1.0 2.355 1744 0.133 1744 60% 2040.3

0.8 2.035 1556 0.103 1556 20% 1816.0

0.6 1.403 1570 0.126 1570 0% -

5 1.0 0.720 1676 0.120 1676 14% 1816.0

0.8 1.608 1746 0.121 1746 0% -

0.6 1.966 1726 0.123 1726 0% -

8 1.0 3.217 1584 0.156 1584 100% 2143.3

0.8 13.730 1508 0.167 1508 100% 2050.0

0.6 15.487 1560 0.159 1560 0% -

200 3 1.0 8.695 3306 0.140 3306 0% -

0.8 11.373 3112 0.155 3112 0% -

0.6 16.411 3190 0.174 3190 0% -

5 1.0 3.172 3286 0.180 3286 0% -

0.8 1.395 3370 0.178 3370 0% -

0.6 1.451 3186 0.174 3186 0% -

8 1.0 42.799 3118 0.243 3118 0% -

0.8 31.398 3260 0.261 3260 0% -

0.6 56.784 3334 0.244 3334 0% -

Table 4.1: JAP results
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4.3 Numerical results

|J| |T| div.
JAP rand. JAP

improvement
target target

50 3 1.0 996.8 852 15%

0.8 978.0 838 14%

0.6 967.6 716 26%

5 1.0 1098.3 896 18%

0.8 1047.3 854 18%

0.6 896.0 826 8%

8 1.0 1292.1 846 35%

0.8 1283.3 836 35%

0.6 1353.8 820 39%

100 3 1.0 2040.3 1744 15%

0.8 1816.0 1556 14%

0.6 - 1570 -

5 1.0 1816.0 1676 8%

0.8 - 1746 -

0.6 - 1726 -

8 1.0 2143.3 1584 26%

0.8 2050.0 1508 26%

0.6 - 1560 -

Table 4.2: Improvement of JAP compared to randomized results

diversity decreases. This is due to the increasing sizes of the overlapping sets.

In the most cases the runtime for 3 machine types is similar to the runtime for

5 machine types. However, for 8 machine types the runtime is much higher in

most cases.

The optimal and randomized results are compared in Table 4.2. Only the in-

stances with |J | ∈ {50, 100} are considered since for |J | = 200 the randomized

algorithm never �nds a solution. For |J | = 50 the optimal value returned by

JAPlinI is in average 23% smaller than the randomized result. For |J | = 100

the optimal solution is about 18% smaller but it also has to be taken into ac-

count that the randomized algorithm �nds only feasible solutions for 5 of the 9

instances.

Also some further instances, where the durations have a high variance and are

allowed to be large compared to f , were generated. For these instances the

171



4 A partition problem with convex target function

heuristic does not necessarily �nd the optimal solution value. Nevertheless, in

practical applications the durations usually are of similar length since the jobs

come from a common �eld. Further, the durations are much smaller than the

production limit since the limit would not make sense, if it were already ex-

ceeded by a single job. Therefore, these unrealistic bad case instances are not

presented here.

As already mentioned there are four methods to solve MJAP. The �rst is to

solve MJAPlinI , the second to solve CMJAPlinI and then CMJAPx,s,z,tlinI , the

third to solve MinOSlinI and then JAPlinI and the fourth to solve MinOSlinI ,

then CJAPlinI and then CJAPx,z,tlinI . In the implementations variables and

constraints are created only if necessary, as already described previously. For

MinOSlinI , for example, in this way around 97% of the variables and constraints

can be saved. This reduces the size of the ILP and consequently the solving time

and memory.

The results of the four methods are presented in Tables 4.3 and 4.4. Further,

the results of a randomized algorithm are shown. Compared to JAP this ran-

domized algorithm has also to randomly generate starting times for the movable

jobs. The runtime for each run of the randomized algorithm is bounded by the

time so solve MJAPlinI (column MJAP → time). Like for JAP, the runtime

of all algorithms increases with increasing |K| and |T | and decreasing diver-

sity factor. In average the time to solve CMJAPlinI is larger than the time to

solve MJAPlinI . This is because in CMJAPlinI much more binary variables

are involved (O(|K||M | + |K|2) versus O(|K|2|T |)). Therefore, solving MJAP

via CMJAPlinI and CMJAPx,s,z,tlinI is unfavorable, whereas solving MinOSlinI
and JAPlinI is much faster. Even for |K| = 200, |T | = 8 and a diversity of 0.6

the runtime for this method does not exceed 12 seconds. However, the fastest

method is solving MinOSlinI , CJAPlinI and CJAPx,z,tlinI . For all instances the

runtime of this method is less than 0.405 seconds.

Like for JAP all four heuristics �nd the optimal solution for every single instance.

The reason for this was already explained before. Nevertheless, instances can

be specially designed for the MinOS method, for which the heuristic does not

�nd the optimal solution. For example, if the �xed costs were set to 0 (c0 = 0).

MinOSlinI minimizes the number of needed machines but with c0 = 0 machines

are for free. Thus, using more machines would surely improve the solution.
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|K| |T| div.
MJAP CMJAP MinOS+JAP

time target time target time target

50 3 1.0 0.356 780 0.504 780 0.321 780

0.8 0.250 698 0.186 698 0.584 698

0.6 0.396 636 1.280 636 0.814 636

5 1.0 0.473 796 1.957 796 0.295 796

0.8 0.459 758 2.018 758 0.210 758

0.6 0.517 686 15.112 686 0.331 686

8 1.0 0.703 752 1.229 752 0.360 752

0.8 0.435 742 2.280 742 0.549 742

0.6 1.011 728 26.175 728 0.548 728

100 3 1.0 0.476 1598 0.486 1598 2.317 1598

0.8 0.768 1296 1.728 1296 1.124 1296

0.6 1.125 1438 2.166 1438 1.566 1438

5 1.0 0.676 1396 3.292 1396 0.163 1396

0.8 0.792 1600 4.024 1600 0.394 1600

0.6 2.130 1582 32.210 1582 1.106 1582

8 1.0 3.512 1452 9.370 1452 3.599 1452

0.8 2.464 1256 29.232 1256 0.894 1256

0.6 6.018 1430 19.113 1430 3.051 1430

200 3 1.0 1.795 3030 2.469 3030 4.242 3030

0.8 1.455 2852 2.149 2852 9.761 2852

0.6 4.022 2924 4.622 2924 7.469 2924

5 1.0 1.369 3012 6.015 3012 0.782 3012

0.8 1.489 3088 16.853 3088 0.764 3088

0.6 2.281 2920 17.058 2920 0.823 2920

8 1.0 4.686 2598 58.185 2598 1.256 2598

0.8 49.850 2988 50.423 2988 11.959 2988

0.6 58.356 3056 45.978 3056 10.061 3056

Table 4.3: MJAP results (part 1)
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4 A partition problem with convex target function

|K| |T| div.
MinOS+CJAP MJAP rand.

time target ratio target

50 3 1.0 0.115 780 97% 1000.0

0.8 0.099 698 100% 976.7

0.6 0.099 636 100% 974.3

5 1.0 0.107 796 95% 1104.5

0.8 0.106 758 100% 1046.5

0.6 0.137 686 22% 900.0

8 1.0 0.106 752 100% 1331.9

0.8 0.120 742 100% 1329.0

0.6 0.146 728 100% 1326.0

100 3 1.0 0.151 1598 5% 2057.0

0.8 0.135 1296 7% 1816.0

0.6 0.156 1438 0% -

5 1.0 0.165 1396 0% -

0.8 0.162 1600 0% -

0.6 0.175 1582 0% -

8 1.0 0.175 1452 100% 2149.7

0.8 0.182 1256 60% 2064.3

0.6 0.200 1430 0% -

200 3 1.0 0.217 3030 0% -

0.8 0.300 2852 0% -

0.6 0.243 2924 0% -

5 1.0 0.313 3012 0% -

0.8 0.270 3088 0% -

0.6 0.333 2920 0% -

8 1.0 0.317 2598 0% -

0.8 0.405 2988 0% -

0.6 0.365 3056 0% -

Table 4.4: MJAP results (part 2)
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|K| |T| div.
MJAP rand. MJAP

improvement
target target

50 3 1.0 1000.0 780 22%

0.8 976.7 698 29%

0.6 974.3 636 35%

5 1.0 1104.5 796 28%

0.8 1046.5 758 28%

0.6 900.0 686 24%

8 1.0 1331.9 752 44%

0.8 1329.0 742 44%

0.6 1326.0 728 45%

100 3 1.0 2057.0 1598 22%

0.8 1816.0 1296 29%

0.6 - 1438 -

5 1.0 - 1396 -

0.8 - 1600 -

0.6 - 1582 -

8 1.0 2149.7 1452 32%

0.8 2064.3 1256 39%

0.6 - 1430 -

Table 4.5: Improvement of MJAP compared to randomized results

However, due to the practical irrelevance such instances are not considered in

this analysis.

The optimal and randomized results are compared in Table 4.5. Only instances

with |K| ∈ {50, 100} are considered since for larger instances the randomized

algorithm cannot �nd a solution in the given time. For |K| = 50 the optimal

solution is in average 33% smaller than the randomized result. For |K| = 100 the

optimal solution is in average 31% smaller than the randomized result. Note that

the randomized algorithm �nds only feasible solutions for 4 of the 9 instances.

In Table 4.6 the optimal solutions of the JAP instances are compared to the

solutions of the corresponding MJAP instances, where jobs are allowed to be

moved. The possible movement lies in a similar range as the duration of the

jobs (smax − smin ∈ {0, 1, . . . , 10} and dk ∈ {1, 2, . . . , 10}). Thus, the average
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|J|/|K| |T| div.
JAP MJAP

improvement
target target

50 3 1.0 852 780 8%

0.8 838 698 17%

0.6 716 636 11%

5 1.0 896 796 11%

0.8 854 758 11%

0.6 826 686 17%

8 1.0 846 752 11%

0.8 836 742 11%

0.6 820 728 11%

100 3 1.0 1744 1598 8%

0.8 1556 1296 17%

0.6 1570 1438 8%

5 1.0 1676 1396 17%

0.8 1746 1600 8%

0.6 1726 1582 8%

8 1.0 1584 1452 8%

0.8 1508 1256 17%

0.6 1560 1430 8%

200 3 1.0 3306 3030 8%

0.8 3112 2852 8%

0.6 3190 2924 8%

5 1.0 3286 3012 8%

0.8 3370 3088 8%

0.6 3186 2920 8%

8 1.0 3118 2598 17%

0.8 3260 2988 8%

0.6 3334 3056 8%

Table 4.6: Improvement of MJAP compared to JAP
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possible movement is about the average job duration. In practical applications

jobs often can be moved in a wider range. However, as it is shown in Table 4.6,

even in the case where jobs are allowed to be moved as much as their duration,

an average improvement of already 11% can be achieved.

This improvement is independent of the size of |J |/|K|, |T | and the diversity

since the jobs are generated randomly such that they are distributed equally

within a certain domain. Thus, all parts of the domain possess the same structure

and the number of jobs or machine types have no impact on the improvement.

Further, the diversity has no impact since the number of machines which can be

saved by moving jobs is independent of the size of the overlapping sets. Larger

overlapping sets do not necessarily imply that more machines can be saved.

Nevertheless, for a larger range for smax− smin even better results are expected.
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Chapter 5

Conclusion

In this work two new classes of partition problems were introduced. The goal

was to examine their complexity and to create e�cient solving techniques. For

partition problems with nonconstant weight functions mainly the complexity

was studied, whereas for partition problems with convex target function the

focus was on modeling of ILPs without discretizing the time. Further, either

approximation algorithms or heuristics were developed.

Two di�erent types of partition problems with nonconstant weight function were

covered: Decision type problems and minimization type problems.

The decision type problems are NP-complete even if the weight function pos-

sesses certain monotonic properties. Thus, a heuristic based on integer linear

programming was developed. This heuristic iteratively creates partitions, where

the last partition is used to estimate the weights of the next partition. This is

done until a feasible partition is found. The complexity of the problem can also

be seen in the numerical results. For many instances for which a heuristic �nds

a solution in a few seconds the expected chance of a randomized approach to

�nd a solution is zero.

For the minimization type problems the situation is quite di�erent. For decision

type problems the hardness is independent of the monotonic properties of the

weight function, whereas for minimization type problems these properties have

an impact on the hardness. For the general case a simple heuristic was devel-

oped. The idea is to start with some random partition and then iteratively move

or switch elements between the partitioning sets such that the target function

decreases. For instances in which the monotonic properties hold fast approxi-

mation algorithms were devised. To get even better solutions the approximation

results were used as starting partitions for the heuristic. As for the decision type

problems, the developed solution techniques for the minimization type problems
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perform signi�cantly better than a randomized approach.

In summary, for both problem types fast algorithms were designed that produce

really good solutions compared to a random approach.

Partition problems with convex target function were speci�ed as special job

assignment problems. For these problems two di�erent versions with �xed and

variable starting times were introduced. To derive ILPs for both problems logi-

cal dependencies between descriptive variables were established. The according

linear inequalities were generated and the correctness was veri�ed. Deliberately

an approach that does not need discretization of the time was chosen. In this

way even long periods can be tackled. The ILPs produce optimal solutions. To

solve larger problem instances heuristics were developed afterwards. These are

also implemented as ILPs. For variable starting times a preprocessing heuris-

tic which arranges the jobs such that as few as possible machines are needed

was presented. For this heuristic an extensive analysis of the feasible region was

given to single out the cases where variables and constraints can be saved in

the formulation. Further, for �xed as well as for variable starting times heuris-

tics which �rst assign jobs to machine types and afterwards to single machines

were devised. Finally, the heuristics were combined. This approach results in

two ways to solve the �xed starting times version and four ways to solve the

variable starting times version.

The numerical results are really convincing. For large instances, which still can

be solved optimally in less than 1 minute, randomized approaches cannot �nd a

feasible solution at all in comparable time. Further, if a randomized algorithm

�nds a solution it is in average 20% to 30% worse than the optimal solution.

This also underlines the complexity of the partition problems. Another very

interesting fact is that the heuristics even �nd the optimal solution for all in-

stances and this in less than a second. Only for arti�cial designed instances,

which are assumed to be irrelevant for practical applications, the heuristics fail.

In summary it can be said that an interesting set of new problem de�nitions,

which are motivated by their occurrence in practical applications, was proposed

in this work. Further, exact algorithms, approximation algorithms and heuristics

were developed, which solve the problems in phenomenal time. Due to the fact

that all problems were �rstly introduced in this work no other solving techniques

yet exist. Thus, all algorithms are compared with randomized algorithms. Espe-
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cially the heuristics often run in milliseconds and deliver outstanding solutions,

which are up to 56% better than the randomized result.

A lot of future research is imaginable in the context with the presented partition

problems. A few thoughts and considerations are given in the following.

In Chapter 3 subset functions were de�ned. These functions weight single ele-

ments of V depending on a subset of V . However, it would also be interesting to

weight tuples of elements in a nonconstant way. Thus, problems like CSC could

be formulated such that distances between points are variable. This would in-

crease the area of application for the problem. Further, additional properties,

like some sort of convexity or subadditivity, could be introduced for subset and

cumulated subset functions. It would be interesting to see how the complexity

of FPP, MinSumPP and MinMaxPP changes if the weight function has one or

multiple of these properties.

For FPP a heuristic was developed, which often �nds a feasible solution. How-

ever, there is no guarantee for that. To create an algorithm which �nds a feasible

solution if one exists would be of great advantage. Also criteria which can iden-

tify feasible or infeasible instances of FPP would be a considerable bene�t.

Moreover, two minimization type problems, MinSumPP and MinMaxPP, were

studied. However, also many other target functions could be analyzed. For ex-

ample for each subset some target value could be introduced and the deviation

from this value is punished with a penalty factor. In this setting the goal would

be to minimize the total penalty. Further, approximation algorithms with bet-

ter approximation ratios should be developed. Especially for MinSumPP this

is important since the approximation is sometimes worse than the expected

randomized result. Constant approximation ratios which do not depend on V

or k would be of great value. Better approximations would also lead to better

solutions for the heuristics if these are used as starting partitions.

For JAP and MJAP the focus was mainly on the modeling of ILPs. Already in

some cases criteria were provided which describe the necessity of variables and

constraints. The search for such criteria should be extended to all developed

programs. Further, it would be helpful to �nd a smaller ILP representation for

all problems. Less variables and constraints often entail a shorter runtime and

less memory usage.

In this work piecewise linear convex functions with two di�erent gradients were
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considered. The models can easily be adapted to functions with more di�erent

gradients. Further, in general convex functions can be approximated by piece-

wise linear convex functions. Thus, JAP and MJAP could be introduced with

general convex functions and solved with the existing methods, where the convex

function is approximated by a piecewise linear convex function. In this context

the question would be how much this approximation a�ects the solution value.

The cost vector c was de�ned without any restrictions. It would be interesting to

see whether the complexity changes if c is restricted in some way. For example,

if c2 − c1 is bounded by some value or if c0 must be larger than a certain value.

The role of f could also be analyzed in further studies.

For JAP and MJAP exact algorithms or heuristics were introduced. Especially

the heuristics have a very short runtime and produce excellent solutions. How-

ever, approximation algorithms, which run in polynomial time and guarantee a

certain solution quality, would be of great advantage.

Altogether, it can be summarized that the special partition problems which were

introduced in this work open up a whole area for further research. Advancing

this research will make it possible to express problems in a more general context

and thus to reach even more practical applications.
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