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Abstract

In this thesis, we show a classification procedure using methodologies of com-

binatorial optimization to partition the euclidean space into convex sets of

prescribed number and size. After introducing the theoretical background,

we present a clustering based classifier and compare it with established algo-

rithms. We show that an iterative sequence based on a geometric clustering

in each step leads to a segmentation of the data space especially suitable for

our prediction task. Based on this procedure, we define corresponding binary

classifiers and introduce a new probabilistic test procedure to evaluate the re-

liability of a clustering based prediction. Furthermore, we show the excellent

performance of the new classification technique and demonstrate the clustering

based test of hypotheses on real world data.





Zusammenfassung

Das in dieser Arbeit vorgestellte Klassifikationsverfahren basiert auf Metho-

den der kombinatorischen Optimierung und partitioniert einen geometrischen

Raum in konvexe Mengen vorgeschriebener Anzahl und Größe. Im Anschluss

an die theoretischen Grundlagen wird ein darauf aufbauender Vorhersageal-

gorithmus vorgestellt und mit etablierten Methoden verglichen. Die darin

enthaltene iterative Sequenz besteht in jedem Schritt aus einem geometrischen

Clustering und führt schließlich zu einer Aufteilung des Raumes. Basierend

auf dieser Zerlegung in konvexe Zellen werden binäre Klassifikatoren definiert

sowie ein neuer wahrscheinlichkeitstheoretischer Ansatz zur Beurteilung der

Prognosegüte vorgestellt. Die hervorragende Prognosegenauigkeit des neuen

Verfahrens wird im letzten Schritt anhand von bekannten Praxisdatensätzen

analysiert. Dabei wird neben dem Vergleich mit anderen Algorithmen auch die

vorgestellte stochastische Beurteilungsmethode einer clusterbasierten Vorher-

sage demonstriert.
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The International Data Corporation (IDC) study [42] predicts a 50−fold growth

of the digital data from 2010 to the end of 2020 and a big gap between the

gathered and the analyzed data. IDC presumes that at the end of the year

2020 only a tiny portion of the gigantic amount of data is actually analyzed

but about one third of the digital information would be useful to be analyzed.

Therefore, it becomes more and more important to have efficient methods at

hand to handle big data (see Figure 0.1).

Figure 0.1.: Prediction of the growth of gathered data in the future (see [42]).

The technical advance in computer technology is not very useful if the cor-

responding software technology does not develop in the same way. Besides

powerful hardware it is necessary to have suitable software and algorithms to

handle big data.

The interdisciplinary field of data mining combines mathematics, statistics

and computer sciences to retrieve information out of mostly large data sets.

Data mining is widely used in a large variety of fields like economics (market
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research, credit scoring,...), science (physics, medicine,...) but also in national

security or military affairs.

While data mining focuses on discovering new patterns, the similar field of ma-

chine learning concentrates on applying trained knowledge on new data. Both

fields are very similar and often hard to distinguish. There are different defini-

tions in the literature and it is often threatened equivalently with Knowledge

Discovery in Databases (KDD). In [37], Fayyad et al. describe data mining as

the following:

Data mining is a step in the KDD process that consists of applying

data analysis and discovery algorithms that produce a particular

enumeration of patterns (or models) over the data.

Supervised and unsupervised learning are the two main categories in the field

of machine learning. Unsupervised techniques discover structure in data with-

out prior information.

In contrast, supervised learning trains a mapping based on a given set of in-

put/output pairs (see [71]). If the output values are continuous, the problem is

called regression. The problem is called classification in the case of categorical

outputs.

Classification as a supervised learning technique assigns new data to a class

based on a training set with known classes or assignments. For example, the

training set could consist of one-hundred different people and the category is

set to male or female. A classification algorithm, called classifier, assigns new

data, in this case a new group of persons, without knowing their gender into

the category using explanatory variables like weight, height or age.

There exist numerous classification techniques which differ from each other

in many ways. Possible approaches are, for example, the estimation of the

functional relationship, the estimation of conditional probabilities or the eval-
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uation of the neighborhood of the data. Additionally, the combination of

different techniques is an intuitive approach to achieve a good classification

and prediction.

In this thesis we focus on classification problems with two possible outputs,

i.e., binary classification. The new classification technique introduced in this

work is based on another important field in data mining, which is the discov-

ery of groups with similar attributes. These groups are called clusters. Even

though a cluster is not precisely defined (see [34]), in the following we interpret

a cluster as a group of points or objects. Assigning data to clusters is called

cluster analysis or clustering. It is a core task in the field of data mining (see

[46]).

The cluster analysis was first used by anthropologists in 1932 (see [31]) and

soon became an important technique of statistical data analysis in many sci-

entific fields (see [85] and [3]). Clustering can be done by numerous different

ways. The techniques differ in the kind of data they can handle, for example,

qualitative or quantitative input values. For an overview of different clustering

techniques see [91]. In this work we focus on clusterings with similarity defined

by geometrical proximity expressed in (Euclidean) distance measures.

This thesis is based on the work of Brieden and Gritzmann on geometric clus-

terings, their representation via polytopes and their application on real life

problems like the consolidation of farmland (see [17], [19], [21], [22] [23] and

[24] for details). The algorithmic approach is adopted as a classifier for binary

classification problems in this thesis.

The joint work with Brieden and Gritzmann applies geometric clustering to

binary classification problems. The introduced classifier combines supervised

and unsupervised learning techniques. The introduced clustering based classi-

fier is a supervised learning approach because of the training step followed by

9



the classification in the next step. On the other hand, it is unsupervised as it

discovers structure in the training data by means of cluster analysis.

The main part of this new classifier consists of an iterative sequence that solves

a linear optimization program in every step. The result of this algorithm is

a local optimum with respect to given parameter, a clustering particularly

suitable for the classification task. The resulting clusters are pairwise linearly

separable. Additionally, the clusters form a convex cell decomposition which

is a key component for the prediction task.

In the first part of this thesis we present the theoretical background of binary

classification problems. Therefore, we introduce the problem and describe the

naive Bayes, the logistic regression and the k-nearest neighbor as basic classi-

fiers. Additionally, we present evaluation techniques which will be useful later

in this work to measure the performance of the clustering based classifier.

The next part outlines the clustering approach and its application to binary

classification tasks. At first, we present theoretical mathematical aspects of

the clustering approach like the identification of a feasible clustering with poly-

topes and the mathematical properties of the introduced clustering. After these

theoretical aspects related to combinatorial optimization, the clustering tech-

nique is adopted as a classifier. Therefore, the classification or data mining

content of the first part is integrated in the context of geometric clustering and

vice versa. Additionally, a new statistical evaluation approach is introduced in

Section 4.10. It relies on the clustering setting as it defines a pair of hypothe-

ses for each individual cluster. Evaluating these hypotheses by computing a

test statistic based on a classified data set leads to a measure of reliability

expressed by a pair of statistical p-values.

In the following part, we present and discuss empirical results. They show

the excellent performance of the new clustering based classifier. The results
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base on real world data sets like the German Credit and the Census Income

data set. These broadly used data sets are provided by the UCI Machine

Learning Repository, a well known database for machine learning. Besides the

performance evaluation of the classifier, this part also demonstrates the new

statistical evaluation approach on real world data.

In the conclusion as the last part of this thesis we summarize and discuss the

main results and identify possible future work.
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Part II.

Binary Classification
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In general, the term classification covers any context of prediction or forecast

based on currently available information (see [66]). In the context of machine

learning or statistics, classification is regarded as an algorithmic procedure

applied on data with unknown classes or labels but known features. The clas-

sification procedure is trained on data where both the labels and the features

are known (see [66]).

Classification with more than two classes or labels is called multi-class classi-

fication. In this thesis we focus on the task of classifying binary labels.

At first, we give a formal problem description and the definition of a classifier

and the corresponding components like the scoring function, the classification

error and estimation principles. From a probabilistic point of view the intro-

duction gives the reader the basic mathematical definitions for classification

and prediction used in this work.

After the formal introduction of classification and binary classification, impor-

tant basic concepts and their implementation are illustrated. Therefore, the

naive Bayes, the logistic regression and the k-nearest neighbor procedure as

examples for different types of binary classification are presented. They are

examples for generative, discriminative and nearest neighbor techniques. Be-

sides their use for comparison, the basic concepts of these approaches will be

found in the new clustering approach introduced in the next part of this work.

The end of this part refers to model evaluation techniques. The concepts of

parameter adjustments and performance measures for classification techniques

will be used later in this work to evaluate the new classification approach. For

a broad introduction to machine learning see, for example, [13] and [47].
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1. Problem Description

The task of classification in the context of machine learning or mathemati-

cal statistics is to predict the categorical label of a data point. For a broad

view on the learning respectively classification problem see also [4], [65] and

[71]. If the prediction technique uses the information of a training set with

known input values and labels, it is called supervised learning. In statistics

and in machine learning the levels of measurement are important criteria of

distinction. If the output variables are quantitative, the naming convention

for prediction is regression. Predicting qualitative outputs is called classifica-

tion in the literature (see [47] for an overview). The methodology depends on

the type of variable. In this work we focus on the prediction of binary labels

leading to the binary classification problem. The following formal definition

originates from the concept of statistical learning theory (see for example [70]).

It interprets the input and output values as a realization of independent and

identically distributed (i.i.d.) random variables.

Definition 1.0.1 (Binary Classification Problem)

Let {xi}ni=1 = {xi1, ..., xid}ni=1 and {yi}ni=1 with xi, yi ∈ Rd be n i.i.d. realiza-

tions of the (discrete) stochastic variables X = (X1, ..., Xd) and Y with an

unknown joint probability distribution DZ := DX ×DY consisting of two prob-

ability distributions DX and DX . The random variable Z with the underlying

probability distribution DZ is defined as Z := X × Y = {(x, y|x ∈ X, y ∈ Y )}.

17



1. Problem Description

Then S = {(xi, yi)}ni=1 ⊂ Rd × Rd is called the (training) data set with input

values X and labels Y .

A function h ∈ H := {h : X → Y } is called classifier. h is called binary

classifier if |{yi : yi ∈ Y }| = 2.

Finding a classifier h : X → Y by minimizing the so-called (generalization)

error of h, err(h,D) : H → R on the probability distribution DZ,

errP (h,D) = P (h(x) 6= y|(x, y) ∼ DZ)

with

h(x) = arg min
{h∈H}

P (h(x) 6= y|(x, y) ∼ DZ)

is called a classification problem and binary classification problem if h is binary.

Definition 1.0.1 states that the task of classification is to find a ’good’ mapping

from the input space X to the output space Y . This is equivalent to learn or

train a classifier under the assumption that S = {(xi, yi)}ni=1 ⊂ Rd × Rd is a

sample from a fixed but unknown joint distribution. The definition of the error

in Definition 1.0.1 originates from the statistical learning theory and will also

be useful when algorithms are compared. Input values X of Definition 1.0.1

are also called features, attributes or co-variates in the literature (see [71]) and

therefore these terms will be used as synonyms in the following. Additionally,

without loss of generality, the binary labels belonging to Y will be set to {0, 1}.

In practice, as the probability distribution is estimated by the given training

data, a more useful error definition is the so-called sample error or observed

error instead of the theoretical concept of the generalization error.

Definition 1.0.2 (Sample Error)

Let S = {(xi, yi)}ni=1 ⊂ Rd × {0, 1} be a data set and h : X → Y a binary

18



classifier. The sample or observed (classification) error of the set is defined as

errS(h(x);S) =
1

n

n∑
i=1

(h(xi)− yi)2 .

As the error in Definition 1.0.1 is more of theoretical interests, we focus on

the sample error errS in the following. It provides an unbiased estimation

of the real error errP as it is the mean estimation and will be relevant later

in this thesis. Often, the performance of the classification result is measured

differently, depending on the classification task. In chapter 3 there is a more

detailed overview of performance measures for binary classification.

Error estimation depends on the type of the data set S, relating to binary,

discrete or continuous valued labels for Y . We focus on discrete valued input

samples X and corresponding binary output values Y . For the input values

X, this is only a small limitation as real valued labels need to be previously

clustered in most cases and are therefore reduced to a discrete number of values

or classes.

The basic idea behind supervised learning is to train an algorithm on a given

training set and use this information on the data set that needs to be predicted,

often called testing set. Training or learning are used synonymously from now

on. The two stages of training and testing are equivalent to the inference and

decision stage in decision theory (see [13]).

A classifier mostly classifies by assigning a real-valued score to a new element.

This leads to the scoring function used for binary classification. This function

needs to be computed by the training data and induces a classification rule.

Training a classifier is therefore done by computing the scoring function.

19



1. Problem Description

Definition 1.0.3 (Scoring Function)

Let h : X → Y be a binary classifier, then a function f : Rd → R with

h(x) =

 1, f(x) ≥ ω

0, otherwise

is called a scoring function with threshold value ω ∈ R.

The value ω defines the threshold for the class assignment. If not stated oth-

erwise, the default threshold value is set to zero in the following. Commonly

used scoring functions are, for example, linear scoring functions. Linear means

that their general functional form is f(x) = aTx+b with a ∈ Rd and b ∈ R (see

Figure 1.1). In this case the scoring function is equivalent to a separating hy-

perplane. The separating hyperplane leads to the so called decision boundary

DB := {x : aTx + b = 0}. DB≥ := {x : aTx + b ≥ 0} is the (positive) half-

space with every point assigned 1. Consequently in DB< := {x : aTx+ b < 0}

every point is assigned 0. Of course, the data is mostly not linearly separable,

leading trivially to an error in such cases. 1

The separation of the data by a hyperplane into cells can be interpreted as a

special case of our new approach in Part III. The two half-spaces DB≥ and

DB< can be interpreted as two cells of a convex clustering. While linear bi-

nary classifiers have the same number of cells and classes, the later introduced

clustering technique releases this connection. It partitions the multidimen-

sional data space into a given number of convex, pairwise linearly separable

cells. The cluster number in our new classification approach can be chosen

freely. It is not restricted to two convex cells like the binary classification ap-

proaches introduced in Section 2.1 and 2.2 of Chapter 2. Definition 1.0.1 gives

the underlying concept of a joint probability distribution for the joint random

1Finding an optimal separating hyperplane leads to support vector machines (for details
see [71]).
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Figure 1.1.: The figure shows a two-dimensional classification example with
a linear decision boundary. As a convex clustering, this corresponds to a
clustering with two clusters. The orange region represents the part of the
input space classified as orange = 1, while blue represents the second class
blue = 0. The color of the points represents the true value (see [47]).
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1. Problem Description

variable Z := X × Y , DZ . From a probabilistic point of view, a classification

procedure estimates the conditional probability P (Y |X) based on the given

training data. From a practical point of view, the underlying probability dis-

tributions are unknown and their parameters have to be estimated. Therefore,

in the next step, underlying estimation concepts are introduced. They will be

used later in this work in explicit classification approaches. For an overview

of the following content see for example [68] or [71].

Because of the categorical output, the estimation by an ordinary least squares

approach is not suitable. Therefore, the concept of the maximum likelihood

estimation and the maximum a posteriori estimation will be introduced next.

Both principles are used later in Sections 2.1 and 2.2 for the naive Bayes ap-

proach and the logistic regression.

Furthermore, these concepts will be applied to our clustering based classifier in

Part III of this work. They lead to cluster values and scoring functions derived

from the training data assigned to clusters.

A common approach to construct prediction models or estimate their param-

eters is the statistical concept of maximum likelihood (ML) parameter esti-

mation. The adjustable parameters are chosen to maximize the probability

to generate the underlying data set. As mentioned before, each pair of points

(xi, yi), i ∈ {1, ..., n} of the set S = {(xi, yi)}ni=1 ⊂ Rd × {0, 1} is a represen-

tation of n independent and identically distributed (i.i.d.) random variables

Zi = Xi × Yi, i ∈ {1, ..., n} with unknown joint probabilities P (xi, yi|θ) and

unknown parameter θ. The assumption of independent and identically dis-

tributed variables leads to the joint probability

P (S|θ) =
n∏
i=1

P (X = xi, Y = yi|θ)

22



for the set S. The maximum likelihood estimation maximizes the likelihood

for the data set S by maximizing the probability with respect to θ,

θML = arg max
θ
P (S|θ) = arg max

θ

n∏
i=1

P (X = xi, Y = yi|θ) ,

under the assumption of a joint probability distribution DZ = DX×DY . Loga-

rithmization leads to the equivalent maximization because of the monotonicity

of the logarithm. This leads to the so-called log-likelihood

θML = arg max
θ

n∑
i=1

ln(P (X = xi, Y = yi|θ)) .

The log-likelihood is easier to calculate and therefore commonly used.

A more general concept of prediction is based on the Bayes’ rule

P (θ|S) =
P (S|θ)P (θ)

P (S)
, (1.1)

which is often interpreted as

posterior =
likelihood · prior

evidence
.

It connects the concept of the maximum likelihood estimation with a more

general concept of estimation. It originates from Bayesian concept learning

and leads by the Bayes’ rule (1.1) to another estimation concept explained in

the next step (see [71]).

Besides maximizing the likelihood of a data set another possibility is to maxi-

mize the posterior under a pre-given prior.

This concept is called maximum a posteriori (MAP) estimation and is related
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1. Problem Description

to the maximum likelihood estimation mentioned before. It originates from

θMAP = arg max
θ
P (θ|S).

and ’switches’ the condition compared to the maximum likelihood estimation.

The maximum a posteriori estimation uses the most probable class label and is

equivalent to the mode of the posterior distribution. The posterior distribution

with probabilities P (θ|S) and the assumption of a probabilistic parameter θ

leads to the formulation

θMAP = arg max
θ
P (S|θ)P (θ) = arg max

θ

n∏
i=1

P (X = xi, Y = yi|θ)P (θ)

by applying the Bayes’ rule (1.1). Like the maximum likelihood approach it

has an equivalent logarithmized version:

θMAP = arg max
θ

n∑
i=1

ln(P (X = xi, Y = yi|θ)) + ln(P (θ)) .

The maximum likelihood estimation can be interpreted as a simplification of

the maximum a posteriori estimation with θ uniformly distributed.

Contrary to the maximum likelihood estimation, the maximum a posteriori

estimation allows to incorporate prior knowledge. The reason for this gener-

alization of the maximum likelihood approach is mostly practical and will be

useful in Chapter 2, as well as the maximum likelihood estimation itself.

24



2. Algorithmic Approaches

In this chapter, we present several algorithmic concepts for the binary classi-

fication task.

There are many different approaches to classify data. They can be split into

two main groups differing in the estimation of the conditional probabilities

P (Y |X). The first popular way of determining the conditional probabilities is

computing them indirectly via the Bayes’ rule

P (Y = y|X = x) =
P (X = x|Y = y)P (Y = y)
l∑

i=1

P (X = x|Y = yi)P (Y = yi)

for l classes, or

P (Y = y|X = x) =
P (X = x|Y = y)P (Y = y)

P (X = x|Y = 0)P (Y = 0) + P (X = x|Y = 1)P (Y = 1)

in the binary case. This approach leads to the so-called generative approaches

like the naive Bayes classification method introduced in Section 2.1. The term

generative in this case refers to the possibility of generating sample data. It

originates from modeling both the distribution of the input data as well as the

distribution of the output data (see [13]).

The second approach directly determines the conditional class probabilities

P (Y |X). The logistic regression introduced in Section 2.2 is an example for

such a discriminative approach.
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2. Algorithmic Approaches

The following two Sections 2.1 and 2.2 introduce these basic examples for dis-

criminative and generative methods. Both techniques divide the feature space

into two groups by a linear decision boundary.

In the first step, the theoretical background will be introduced. After this

basic introduction, the parameter estimation will be explained. Additionally,

there is a broad discussion whether discriminative or generative models are

better for classification (see e.g. [72] and [92]). Even though naive Bayes

and logistic regression are rather old techniques for classification, they are still

very popular and widely used (see [26]). Additionally, they are basic, indi-

vidual classifiers and are often combined to more complex techniques (see for

an overview [82]). The parameter estimation for both classifiers will be done

by the already in Chapter 1 introduced maximum likelihood and maximum a

posteriori estimation.

After these two examples for discriminative and generative classifiers, the k-

nearest neighbor approach is introduced in Section 2.3. It is a different clas-

sification technique as it is a nonlinear classifier and belongs to the nearest

neighbor approaches. Additionally, it has some similarities to our new ap-

proach introduced in Part III of this thesis.

2.1. Naive Bayes

As a first example for an often used classification method we present the

naive Bayes approach. Classifiers like the generative naive Bayes are linked

to Bayesian networks and the Bayes’ rule for conditional probabilities. They

are basic examples for generative classifiers. The underlying principle is the

indirect estimation of the conditional probabilities P (Y |X) by estimating the

conditional probabilities P (X|Y ) (for further information of the naive Bayes
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2.1. Naive Bayes

approach see [68]). The fundamental equation is the Bayes’ rule

P (Y = y|X1 = x1, ..., Xd = xd) =
P (X1 = x1, ..., Xd = xd|Y = y)P (Y = y)
l∑

i=1

P (X1 = x1, ..., Xd = xd|Y = yi)P (Y = yi)

already mentioned in the introduction of this section (see [77] for details). The

above equation contains the conditional probabilities

P (X1 = x1, ..., Xd = xd|Y = y) ,

which are impractical to estimate. The main assumption of the naive Bayes

approach is the conditional independence of the stochastic input variables.

Conditional independence is similar to the usual concept of stochastic inde-

pendence and is defined in the following Definition 2.1.1.

Definition 2.1.1 (Conditional Independence)

Let X, Y and Z be random variables. Then X and Y are conditionally inde-

pendent given Z if and only if the probability distribution of X is independent

of the value of Y given Z. This is equivalent to

P (X = xi|Y = yj, Z = zk) = P (X = xi|Z = zk),∀i, j, k .

The above definition implies that conditional independence holds for two ran-

dom variables X and Y given a third random variable Z if and only if they

are independent in their conditional probability distribution given Z (see [29]).

Definition 2.1.1 of the conditional independence leads to

P (X1 = x1, ..., Xd = xd|Y = y) =
d∏
i=1

P (Xi = xi|Y = y) (2.1)
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for variables X1, ..., Xd. This represents the factorization of a joint probabil-

ity P (X1 = x1, ..., Xd = xd|Y = y) into its marginals P (Xi = xi|Y = y),

i = 1, ..., d, and directly leads to the main assumption of the naive Bayes clas-

sifier.

The ’naive’ independence between the input values X1, ..., Xd could be seen as

oversimplifying but [93] gives some theoretical reasons why it is nevertheless ef-

fective in most cases. The conditional independence leads to a new formulation

of the conditional probability.

P (Y = y|X1 = x1, ..., Xd = xd) =

P (Y = y)
d∏
i=1

P (Xi = xi|Y = y)

l∑
j=1

P (Y = Yj)
d∏
i=1

P (Xi = xi|Y = yj)

(2.2)

is the fundamental equation for the naive Bayes classifier. The result is an

estimation of a complex multidimensional probability distribution via inde-

pendent, one-dimensional distributions also called marginals. This is useful

for high dimensional data as it helps to avoid problems arising from increasing

dimensions or number of variables. With a growing number of input variables,

the amount of data, necessary to estimate the combined probabilities, grows

exponentially. The avoidance of this ’curse of dimensionality’ (also known as

combinatorial explosion) leads to the efficiency and effectiveness of the naive

Bayes method despite the extreme simplification (see [41] and [93]).

Equation (2.2) gives the probability for a label under the condition of a new

instance x = (x1, ..., xd). The corresponding distributions are estimated from

the training data.

The classification rule is

h(x) = arg max
y∈{y1,...,yl}

P (Y = y)
∏d

i=1 P (Xi = xi|Y = y)∑l
j=1 P (Y = yj)

∏d
i=1 P (Xi = xi|Y = yj)

.

28



2.1. Naive Bayes

As the denominator is irrelevant for the maximization, it can be simplified to

h(x) = arg max
y∈{y1,...,yl}

P (Y = y)
d∏
i=1

P (Xi = xi|Y = y).

Like the logistic regression in the next Section 2.2, naive Bayes represents a

linear classifier. This is obvious after the logarithmization which leads to the

equivalent maximization task in the following equation:

h(x) = arg max
y∈{y1,...,yl}

ln(P (Y = y)) +
d∑
i=1

lnP (Xi = xi|Y = y) .

Remark 2.1.2

As shown in [75], for a multinomial distributed random variable X = (X1, ..., Xd)

the naive Bayes is a linear classifier with the scoring function

fNB(x) =
P (Y = 1)

P (Y = 0)

d∏
i=1

P (Xi = xi|Y = 1)

P (Xi = xi|Y = 0)
− 1 (2.3)

in the binary case. This leads to the (linear) decision boundary

DBNB :=

{
x ∈ Rd : ln

(
P (Y = 1)

P (Y = 0)

)
+

d∑
i=1

ln

(
P (Xi = xi|Y = 1)

P (Xi = xi|Y = 0)

)
xi = 0

}
.

and the corresponding classifier

hNB(x) =

 1, fNB(x) > 0

0, otherwise
.

In the next step, we show the parameter estimation based on the training data.

As mentioned in the previous Chapter 1, there exist different estimators. At

first, we introduce the maximum likelihood estimators θML(Y ) for P (Y ) and
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θML(Xi|Y ) for P (Xi|Y ), i = 1, ..., d, respectively.

Remark 2.1.3

Let S = {(xj, yj)}nj=1 ⊂ Rd × {0, 1} with xj = (xj1, ..., xjd) be a sample of

d stochastic random variables Xi, i = 1, ..., d. Then the maximum likelihood

estimates for the naive Bayes classifier hNB in Remark 2.1.2 are

θML(Y = y) =

∑n
j=1 1{yj}(y)

n

and

θML(Xi = x|Y = y) =

∑n
j=1 1{yj}(y) · 1{xji}(x)∑n

j=1 1{yj}(y)
, i = 1, ..., d .

If realizations do not occur in the given data together with y, then the esti-

mation for P (Xi = x|Y = y) would result in a division by zero. A possible

solution is the maximum a posteriori approach which was introduced after the

maximum likelihood estimation in Chapter 1. As the input data is discrete,

the usually assumed prior follows a Dirichlet distribution which is the multi-

variate expansion of the beta distribution (see [38] and [52] for details).

Remark 2.1.4

Let S = {(xj, yj)}nj=1 ⊂ Rd × {0, 1} with xj = (xj1, ..., xjd) be a sample of d

stochastic random variables Xi, i = 1, ..., d, and nXi the number of possible

(discrete) values for Xi. Then the maximum a posteriori estimation for the

(binary) naive Bayes classifier hNB is

θMAP (Y = y) =

∑n
j=1 1{yj}(y) + α

n+ 2α

and

θMAP (Xi = x|Y = y) =

∑n
j=1 1{yj}(y) · 1{xij}(x) + α∑n

j=1 1{yj}(y) + nXiα
, i = 1, ..., d
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2.2. Logistic Regression

with α > 0 as a smoothing parameter.

The naive Bayes approach is widely used because of its fast but effective pre-

diction technique. The conditional independence assumption leads to a rather

small number of required training samples. Modeling the conditional proba-

bility P (Y |X) as a product of marginals results in a parameter reduction (see

[68], [72] and [86]).

In the next section, we present another widely used approach for binary classi-

fication, the logistic regression. While the naive Bayes approach uses a detour

via the Bayes’ rule, the logistic regression approach models the conditional

probabilities directly.

2.2. Logistic Regression

Linear regression models or ordinary least squares are not suitable for binary

classification problems. The outputs of the ordinary least squares naturally

are not restricted to [0, 1]. Additionally, with binary labels, the assumption

of normal distributed errors is violated. A solution is the logistic regression

model (see [73]). Although it has the term ’regression’ in its name it is rather

used for classification than for regression.

There are a lot of different equivalent specifications of the logistic regression.

It can be motivated via numerous ways, for example, as a generalized model

or as a perceptron. As we focus on the logistic regression as a method for

binary classification problems we will not discuss the theoretical background

more detailed (see [1], [10] and [50] for further information). The logistic

regression model is a discriminative classification approach in contrast to the

generative naive Bayes classifier. While naive Bayes used the Bayes’ rule to

model the conditional probability P (Y |X) by P (X|Y ), the logistic regression

models P (Y |X) directly. The concept of the logistic regression as a method
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for binary classification is to map the feature vector x to a real number, such

that large positive numbers are set to the binary label y = 1 and negative

numbers are set to y = 0. This can be done by calculating the weighted sum

of the parameter vector θ = (θ1, ..., θd) ∈ Rd with a feature vector x ∈ Rd in

the functional model f : Rd → R with

f(x) = θ0 + θTx, θ0 ∈ R .

Obviously, this is a linear function with values in the range ] −∞,∞[. The

logistic function g : R→ [0, 1] with

g(x) =
1

1 + exp(−x)

maps the interval ]−∞,∞[ to the interval [0, 1] (see Figure 2.1). It is applied

−6 −4 −2 0 2 4 6

0.5

1

Figure 2.1.: The logistic function g(x) = 1
1+exp(−x)

.

32



2.2. Logistic Regression

to model the required conditional class probabilities

P (Y = 0|X1 = x1, ..., Xd = xd) =
1

1 + exp(θ0 +
∑d

i=1 θixi)
(2.4)

P (Y = 1|X1 = x1, ..., Xd = xd) =
exp(θ0 +

∑d
i=1 θixi)

1 + exp(θ0 +
∑d

i=1 θixi)
. (2.5)

Equations (2.4) and (2.5) lead with

P (Y = 1|X1 = x1, ..., Xd = xd)

P (Y = 0|X1 = x1, ..., Xd = xd)
= exp(θ0 +

d∑
i=1

θixi)

to the decisions

1, if
P (Y = 1|X1 = x1, ..., Xd = xd)

P (Y = 0|X1 = x1, ..., Xd = xd)
≥ 1

and

0, if
P (Y = 1|X1 = x1, ..., Xd = xd)

P (Y = 0|X1 = x1, ..., Xd = xd)
< 1 .

The corresponding classifier hLOG with scoring function fLOG is based on

ln

(
P (Y = 1|X1 = x1, ..., Xd = xd)

P (Y = 0|X1 = x1, ..., Xd = xd)

)
= θ0 +

d∑
i=1

θixi

and is a linear classifier like the naive Bayes approach.

Remark 2.2.1

The logistic regression is a linear classifier with the scoring function

fLOG(x) = ln

(
P (Y = 1|X1 = x1, ..., Xd = xd)

P (Y = 0|X1 = x1, ..., Xd = xd)

)
= θ0 +

d∑
i=1

θixi,

the decision boundary DBLOG := {x ∈ Rd : θ0 +
∑d

i=1 θixi = 0} and the
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classifier

hLOG(x) =

 1, f(x) ≥ 0

0, otherwise
.

The logarithmized ratios ln
(
P (Y=1|X1=x1,...,Xd=xd)
P (Y=0|X1=x1,...,Xd=xd)

)
are called logits, log-odds

or the logarithm of the odds and lead to an expression equivalent to the linear

regression model (see [51] for details).

The estimation of the parameter vector θ, which is equivalent to the train-

ing step, can be done with a conditional log likelihood estimation

θML = max
θ

n∑
i=1

lnP (Y = yi|X = xi, θ).

In the binary case, this is equivalent to

θML = max
θ

n∑
i=1

(Yi lnP (Yi = 1|X = xi, θ) + (1− Yi) lnP (Yi = 0|X = xi, θ))

= max
θ

n∑
i=1

(
Yi ln

(
P (Yi = 1|X = xi, θ)

P (Yi = 0|X = xi, θ)

)
+ lnP (Yi = 0|X = xi, θ)

)
= max

θ

n∑
i=1

(
Yi(θ0 + θTxi)− ln(1 + exp(θ0 + θTxi))

)
,

which has no closed form. Therefore, it can be calculated with the gradient

descent approach (see [68]).

The maximum a posteriori estimation (MAP) described in Chapter 1 is com-

monly used to avoid problems arising in real world cases. One possible problem

is the infinitely high number of solutions in the case of linear separability of

the data points. A solution to this problem is the addition of a penalty term

that originates from the maximum a posteriori estimate. The MAP estimate

incorporates a prior on the unknown and now probabilistic parameter θ as-
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2.2. Logistic Regression

suming the zero-mean Gaussian distribution for P (θ). This leads to the search

for the parameter vector θMAP with

θMAP = arg max
θ

n∑
i=1

ln(P (Yi = 1|X = xi, θ)) + lnP (θ)

or

θMAP = arg max
θ

n∑
i=1

ln(P (Yi = 1|X = xi, θ))−
λ

2
θT θ .

The penalty term is related to the variance of θ if P (θ) is a zero-mean Gaus-

sian distribution. Like in the maximum likelihood estimation, the underlying

convex function has no closed form and is often solved with Newton-Raphson

iterations, also called iterative re-weighted least squares (see [13]).

The logistic regression directly models the conditional probabilities and is

therefore a broadly used classifier in the group of discriminative models. Be-

sides the logistic regression, support vector machines and neural networks also

belong to this group of classifiers. Discriminative models often yield to very

good results by estimating the conditional probabilities P (Y |X) directly. In

contrast, generative models like the naive Bayes introduced in Section 2.1

estimate the conditional probabilities P (Y |X) by applying the Bayes’ rule.

Despite the different categorization of the logistic regression and the naive

Bayes, both classification techniques are linked. For example, the Gaussian

naive Bayes classifier as modification for continuous input values is motivated

by Equations (2.4) and (2.5). 1 Furthermore, the logistic regression can also

be used for classification problems with more than two classes leading to the

multinomial logistic regression (see [13] for more information).

Both linear classifiers, the naive Bayes approach in Section 2.1 and the logistic

regression in Section 2.2 are widely used for binary and also multiclass classi-

1The Gaussian naive Bayes modification assumes continous valued input variables following
a Gaussian distribution (see [68] for details).
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fication problems.

In the following, we summarize the main results Ng and Jordan showed in

[72]. They showed that discriminative approaches like the logistic regression

are almost always to be preferred in terms of the so-called asymptotic error. It

is smaller for generative techniques compared to discriminative methods like

the naive Bayes.

With errSn we denote the sample error based on a training set of size n, drawn

from the underlying distribution DZ of Z := X×Y . The so-called asymptotic

error errS∞ leads to the generalization error

errP (h,D) = P (h(x) 6= y|(x, y) ∼ D) = E(1{h(x)6=y|(x,y)∼D}) ,

introduced in Definition 1.0.1. The generalization error is the expected value

of the misclassification rate when averaged over future data (see [71]). As D is

unknown, it is estimated by samples drawn from a superset. Converging the

number of samples to infinity (n → ∞) leads to the asymptotic error errS∞ .

In the following, errS∞(hLOG) is the asymptotic error of the logistic regression

and errS∞(hNB) the asymptotic error of the (Gaussian) naive Bayes algorithm.

Ng and Jordan showed in [72] that the logistic regression has a smaller asymp-

totic error than the naive Bayes and both converge to their asymptotic errors

at different rates. While the asymptotic error errS∞(hLG) of the logistic re-

gression holds the inequality

errSn(hLOG) ≤ errS∞(hLOG) +O

(√
d

n

)
,
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the corresponding inequality for the asymptotic error ˆerrn(hNB) of (Gaussian)

naive Bayes approach is

errSn(hNB) ≤ errS∞(hNB) +O

(√
log(d)

n

)
.

Additionally, the (Gaussian) naive Bayes requires O(log(d)) to converge while

the logistic regression takes O(d). Ng and Jordan also show that logistic

regression outperforms the (Gaussian) naive Bayes approach most of the time.

Only in cases when there are few samples in the training set, naive Bayes

performs better than the logistic regression. In contrast to this results, Xue and

Titterington show that for real world data it is not clear whether discriminative

or generative approaches are more suitable (see [92]).

2.3. k-Nearest Neighbor

We introduced the naive Bayes and the logistic regression as linear classifiers.

The k-nearest neighbor (KNN) approach is a density estimation technique.

It is a nonparametric, nonlinear classification approach. Without assuming a

functional form, it is similar to the later introduced new clustering approach as

it classifies new instances by their proximity to training instances (see for ex-

ample [13]). Besides the linear classifiers introduced in the sections before, the

nearest neighbors approach is an intuitive but different classification technique.

In the concept of the so-called k-nearest neighbor, an instance x is classified

by the most common amongst its k-nearest neighbors. The predicted value for

x is the the label in the k-neighborhood with the highest frequency. Figure 2.2

shows an example with a 15-nearest neighbor classifier. In the case of k = 1,

a new instance is assigned with the label of its nearest neighbor (see Figure

2.3).
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Figure 2.2.: The 15-nearest neighbor approach for the same data as in Figure
1.1 with the resulting piecewise linear decision boundary. The orange region
represents the part of the input space classified as orange = 1, while the blue
region represents the second class blue = 0. The color of the points represents
the true value of their label (see [47]).
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Definition 2.3.1

Let S = {(xi, yi)}ni=1 ⊂ Rd×Rd be a data set. Then the k-neighborhood Nk(x)

of a point x ∈ Rd in the data set S is given by

Nk(x) := {X ⊂ S : |X| = k ∧ d(x, xi) ≤ d(x, xj),∀xi ∈ X, ∀xj ∈ S\X}

under the metric d.

The estimation for a new instance x and the corresponding scoring function is

derived from

f(x) =

∑
xi∈Nk(x) yi∑

xi∈Nk(x) 1{(x,y)∈S:x∈Nk(x)}
.

Remark 2.3.2

Let S = {(xi, yi)}ni=1 ⊂ Rd × Rd be a data set. The k-nearest neighbor is a

classifier with the scoring function

fKNN(x) =

∑
xi∈Nk(x) yi∑

xi∈Nk(x) 1{(x,y)∈S:x∈Nk(x)}
− 0.5,

and the classifier

hKNN(x) =

 1, fKNN(x) ≥ 0

0, otherwise
.

Nk(x) is the k-neighborhood of x.

A common proximity measure for the k-nearest neighbor approach depends

on distance measures like the Euclidean distance. Therefore, even if it is

not dependent on stringent assumptions on the data, it is dependent on the

underlying distance measure. While by definition, the introduced linear clas-

sifiers naive Bayes and logistic regression have linear decision boundaries, the

k-nearest neighbor approach results in a piecewise linear decision boundary. It
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Figure 2.3.: The 1-nearest neighbor approach for the same data as in Figure
1.1 and 2.2 with the resulting piecewise linear decision boundary. The orange
regions represent the parts of the input space classified as orange = 1, while
the blue regions represent the second class blue = 0. The color of the points
represents the actual value of their label (see [47]).

is composed of hyperplanes that form perpendicular bisectors of pairs of points

from different classes ([13]). In case of k = 1 the 1-nearest neighbor approach

produces a Voronoi tessellation (see [32]) like seen in Figure 2.3. This Voronoi

tessellation is closely related to the segmentation of the data space into convex

cells of the classification approach introduced in Part III of this thesis.

The basic concepts of the linear classifiers introduced in Section 2.1 and 2.2

as well as the k-nearest neighbor method will be found in our new clustering

technique. The nearest neighbor techniques lead to a partition of the data

space but does not allow a given number of distinct cells or areas. The sim-
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ilarity measure is a crucial point and the prediction depends on the chosen

distance metric.

The k-nearest neighbor algorithm is very simple but effective and belongs, like

the introduced naive Bayes and logistic regression, to the top ten of the data

mining algorithms (see [90]). Nevertheless, it has some crucial disadvantages.

At first, the computational complexity is O(d · n) to find the exact nearest

neighbor of a single test point. Therefore, the algorithm can become quite

slow in high dimensional spaces. Secondly, the whole training data has to be

stored in the memory and last but not least the distance measure has to be

specified.

The clustering approach for classification introduced in Part III of this work

allows a classification based on the values of the neighborhood similar to the

k-nearest neighbor technique. One crucial difference of our approach is the

possibility of a given number of cells instead of neighbors. Additionally, our

technique has a complexity depending on this given number of cells and not

on the number of points. Therefore, the k-nearest neighbor algorithm becomes

slow with an increasing number of instances as its complexity is O(d·n). There

are some techniques to speed up KNN or the underlying nearest neighbor prob-

lem but the complexity is still dependent on the number of training points (see

for example [27], [28] or [87]).
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Chapter 1 introduced the theoretical basics and the definitions for the binary

classification problems. After exemplary classification techniques in Chapter

2, we now present relevant evaluation techniques based on the error definition

in Chapter1. This includes, for example, the often used statistical perfor-

mance measures sensitivity and specificity. Also enhanced measures like the

receiver operating characteristic and the related area under curve (AUC) are

introduced. Additionally, statistical evaluation techniques like confidence es-

timation and the cross-validation techniques are highlighted to complete the

basics for evaluating classification results and comparing classification algo-

rithms. The introduced content will be applied to evaluate and compare our

classification approach on real world data in Part IV.

3.1. Binary Accuracy Measures

The following topics are related to [36] and [64]. The goal of achieving a ’good’

classification depends on the used evaluation criteria. What is regarded as a

good classifier depends on the underlying performance measure. In medical

studies, identifying someone falsely as sick is usually not as bad as not identify-

ing a sick person at all. This leads to different measures of a good classification

and different error definitions for optimization. The error definitions in Chap-

ter 1 are now extended and embedded in the field of information retrieval.
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Therefore, we will focus on the empirical error related to the evaluation of the

sample sets instead of the theoretical probabilistic error.

Definition 3.1.1 (Classification Accuracy)

Let S = {(xi, yi)}ni=1 ⊂ Rd × {0, 1} be a data set, h(x) a binary classifier

and errS(h(x);S) the corresponding sample error. The (sample) classification

accuracy is defined as

accS(h(x);S) = 1− errS(h(x);S) .

As we focus on the sample error and not on theoretical errors, we will use

the term error and sample error and the corresponding terms for accuracy

equivalently in the following. For any binary classifier h(x) there are two

possible errors that are summed up in the classification error:

• misclassifying a sample with label 0 as 1 (so called false positive fp)

• misclassifying a sample with label 1 as 0 (so called false negative fn)

The resulting false positive and false negative rates are important, for example,

in clinical studies. The above measures in this context represent healthy people

incorrectly identified as sick (fp) or sick people incorrectly identified as healthy

(fn).

Definition 3.1.2 (Binary Performance Measures)

Let S = {(xi, yi}ni=1 ⊂ Rd × {0, 1} be a data set, h(x) a binary classifier and

errS(h(x);S) the corresponding sample error.

The true positives (tp) are defined as

tp(h(x);S) =
n∑
i=1

1{h(xi)=1∧yi=1}
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and the true negatives (tn) as

tn(h(x);S) =
n∑
i=1

1{h(xi)=0∧yi=0} .

The corresponding false positives (fp) and false negatives (fn) are defined as

fp(h(x);S) =
n∑
i=1

1{h(xi)=1∧yi=0}

and

fn(h(x);S) =
n∑
i=1

1{h(xi)=0∧yi=1}

The sensitivity (sens) and the specificity (spec) are defined as

sens(h(x);S) =
tp(h(x);S)

tp(h(x);S) + fn(h(x);S)

and

spec(h(x);S) =
tn(h(x);S)

fp(h(x);S) + tn(h(x);S)
.

The precision (prec) is defined as

prec(h(x);S) =
tp(h(x);S)

tp(h(x);S) + fp(h(x);S)

and the recall (rec) is equivalent to the already defined sensitivity.

The negative prediction value (npv) of a classification is defined as

npv(h(x);S) =
tn(h(x);S)

tn(h(x);S) + fn(h(x);S)
.

The different terminologies mostly depend on their original scientific field.

The specificity and the sensitivity are widely used in medical classification

problems. In this context, the specificity represents the number of truly healthy
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people among all persons classified as healthy. The sensitivity corresponds to

the ’hit rate’ or the number of actually sick classified people compared to all

persons classified as sick. In the context of pattern recognition and information

retrieval, precision (also known as confidence) is interpreted as the probability

that a positive label is actually true (see [74]). In the following, to simplify

the further reading, we will write tp instead of tp(h(x);S) and so on. The

classification accuracy and the (sample) classification error can be expressed

in the setting of Definition 3.1.2.

Remark 3.1.3

The sample error err(h(x);S) can be expressed as

errS =
fp+ fn

tp+ tn+ fp+ fn
=
fp+ fn

n

and the corresponding sample accuracy accS(h(x);S) as

accS =
tp+ tn

tp+ tn+ fp+ fn
=
tp+ tn

n
.

The following Table 3.1 gives an overview of the above introduced performance

measures of Definition 3.1.2. The solitary consideration of the sensitivity and

h(xi)\yi yi = 1 yi = 0
h(xi) = 1 tp fp prec = tp

tp+fp

h(xi) = 0 fn tn npv = tp
tp+fp

sens = tp
tp+fn

spec = tn
fp+tn

Table 3.1.: Overview of binary classification measures.

the specificity has little use from a theoretical point of view. The reason is

always assigning 1 or 0 would lead to a value of 100% for sens and spec, respec-

tively. Therefore, both values should be interpreted pairwise. The threshold

parameter ω of the scoring function, ’tunes’ the relation between the sensitivity
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and the specificity. The resulting pairs lead to the so-called receiver operating

characteristic curve (ROC-curve). It is a two-dimensional graph with the sens

on the vertical axis and 1-spec on the horizontal axis. A complete randomly

assigned labeling would converge to a ROC-curve equivalent to the bisecting

line (see Figure 3.1).
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Figure 3.1.: ROC-curve in scenario T 500
lin for Strain for the later introduced

Census Income data set in Section 6.1. The green bisecting line represents a
classification achieved by random assignment.

ROC-curves allow to easily compare the performance of different classifiers.

They visualize information of the sensitivity and the specificity and addition-

ally lead to another often used measure, the area under curve or AUC . The

AUC represents the area between the X-axis and the ROC-curve and gives a

point estimation for the performance of a classifier. Therefore, the AUC value

always lies in the interval [0, 1]. 1 would represent a classification accuracy of

100% and 0.5 would be the expected result of a random assignment.

Of course, the introduced measurements depend on the underlying data. In

a worst case scenario, if all training labels are assigned with 1 and all testing

labels are assigned with 0, no classifier can perform well. To compare the clas-
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sifiers based on the introduced values, a good estimation of a representative

combination of a training and testing set is required to get a good estimation

of the measures above.1

3.2. Statistical Evaluation

The evaluation measures in the previous Section 3.1 have no direct probabilistic

component. From the probabilistic point of view introduced in Section 1, the

given data is a realization of the stochastic random variable Z = X × Y . This

motivates the following content based on Chapter 5 in [68].

Besides the deterministic measures introduced in Section 3.1, it is also possible

to compute confidence intervals to evaluate the performance of classifiers. They

are closely related to our new statistical evaluation approach introduced in

Section 4.10. Additionally, they are used for the evaluation of the classification

approach on real-world data later in this work.

In the next step, we link the introduced error definitions of Chapter 1, the

theoretical generalization error

errP (h,D) = P (h(x) 6= y|(x, y) ∼ D)

of a classifier h and the sample error

errS(h(x);S) =
1

n

n∑
i=1

(h(xi)− yi)2 .

The statistical estimation of confidence intervals allows the comparison of these

two errors. Of course, the sample error is the most probable value for the

1Of course, there are plenty of functions to measure the performance like the popular Brier
score. It uses the actual value of the scoring function f(x) in comparison to its binary
label and not the class label h(x): BS(h(x);S) = 1

n

∑n
i=1(f(xi)− yi)

2 (see [49]).
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true error. It depends on a (randomly) chosen sample set. Like introduced

in Chapter 1, a data set S = {(xi, yi)}ni=1 ⊂ Rd × {0, 1} is interpreted as

n i.i.d. realizations of random variables Z = X × Y from an unknown joint

distribution DZ = DX×DY . For multiple samples S1, ..., Sk every sample error

errSi , i ∈ {1, ..., k} gives an estimation of the real, but unknown error errP .

It is therefore a realization of the random variable errS. The random variable

r = n · errS follows a binomial distribution with the parameter p = errP and

the sample size n. 2 Because of

E(errS) = errP = p,

errS is also an unbiased estimator for errP . Additionally, if n represents the

cardinality of the sample set, the standard deviation of the sample error is

given by

σerrS =

√
p(1− p)

n
=

√
errP (1− errP )

n
,

leading with the substitution of errP by errS to the estimation

σ̂errS =

√
errS(1− errS)

n

of the standard deviation σerrS .

The random variable r = n · errS follows the binomial distribution converging

to the normal distribution for n → ∞. Therefore, errS is approximated by

a normal distribution with the same mean and the same standard deviation

for sufficiently large n (n ≥ 30, see [68]). This leads to an interval estimation

introduced in Remark 3.2.1.

2This can be easily seen as n · errorS is the number of misclassified labels by the classifier
h with the probability of p = errP for each label to be misclassified.
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Remark 3.2.1

Let S = {(xi, yi)}ni=1 ⊂ Rd × {0, 1} be a data set and h a classifier. Then the

1-α confidence interval for the sample error errS (= errS(h(x);S)) is given by

Ierr(1−α) =
[
lerr1−α, u

err
1−α
]

=

[
errS − z(1−α

2
)

√
errS(1− errS)

n
; errS + z(1−α

2
)

√
errS(1− errS)

n

]

with z(1−α
2

) being the (1− α
2
)-quantile of the standard normal distribution.

For the classification accuracy accS = 1 − errS, the corresponding interval is

given by

Iacc(1−α) =
[
lacc1−α, u

acc
1−α
]

=

[
accS − z(1−α

2
)

√
accS(1− accS)

n
; accS + z(1−α

2
)

√
accS(1− accS)

n

]
.

Besides the two-sided confidence interval in Remark 3.2.1, one-sided intervals

are calculated analogously.

Confidence interval estimates for the error errP allow a better performance

evaluation of a classifier. This holds especially in cases when there is no given

partition into training and testing data like in the later introduced German

Credit data set. Additionally, the concept of confidence intervals leads to hy-

pothesis testing and will be helpful in our new statistical evaluation technique

introduced in Section 4.10.

These estimation techniques are closely related to the k-fold cross-validation

presented in the next section. It improves the estimation by a partition of the

data into k sample sets.
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3.3. Model Validation Techniques

To evaluate the performance of a binary classification technique it is impor-

tant to have representative training and testing data sets. The k-fold cross-

validation is one of the most common techniques to evaluate the performance

of an algorithm. Additionally, the k-fold cross-validation is the basic cross-

validation technique leading to similar approaches as, for example, the N × k-

fold cross-validation (see [30]). It is also applied to optimize the adjustable

parameters according to the desired performance measure. The later intro-

duced clustering based classifier will be evaluated and adjusted using a k-fold

cross-validation technique. For further information see [83], [43], [33] and [60].

In the concept of the k-fold cross-validation, the data set S is uniformly, ran-

domly partitioned into k folds F = {F1, ..., Fk} with S =
⋃k
i=1 Fi, Fi 6= Fj ∀i 6=

j, of approximately equal size. The classifier is trained and tested k times. In

every step j ∈ {1, ..., k} it is trained on Sj = F\Fj and tested on Fj (see [60]

and [76]). The resulting average estimation is the cross-validation estimate of

the error and the accuracy, respectively (see Remark 3.3.1).

Remark 3.3.1

Let S = {(xi, yi)}ni=1 ⊂ Rd × {0, 1} be a data set and h a classifier. Further-

more, let F = {F1, ..., Fk} be a partition of S into k sets Fj, j = 1, ..., k, with

similar size and S =
⋃k
i=1 Fi, Fi 6= Fj for all i 6= j.

Then the k-fold cross-validation sample error errCVS of h and F = {F1, ..., Fk}

is defined as

errCVS (h(x);F ) =
1

n

k∑
i=1

∑
(x,y)∈Fi

(h(x)− y)2.

The k-fold cross-validation accuracy of h is

accCVS (h(x);F ) = 1− errCVS (h(x);F ) .
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Of course, the concept of cross-validation can be evaluated via a unspecified

scoring function f . The algorithmic concept is shown in Algorithm 1.

The error errCVS and the accuracy accCVS of a k-fold cross-validation are inter-

Algorithm 1: k-fold cross-validation

Input: data set S = {(xi, yi)}ni=1; number of folds k;
Output: k-fold scoring function f ;
Partition S randomly into k sets {F1, ..., Fk} of similar size.
for i ∈ {1, ..., k} do

1. Classify the training set S\Si.

2. Classify the testing set Si.

end
Calculate the average k-fold scoring function f .

preted as random variables as the training sets are chosen randomly from the

original data set. Therefore, it is a realization of i.i.d. random variables (see

Definition 1.0.1).

As an estimator for the real error or the real accuracy they are unbiased under

the assumption that the classification technique is stable. Stable in this context

means the classifier makes the same predictions for any of the k perturbations.

In this case, the two estimators have approximately the variance

V ar(errCVS ) = errCVS · (1− errCVS
n

) (3.1)

and

V ar(accCVS ) = accCVS · (1− accCVS
n

) (3.2)

(see [60] and [18]). This leads to better results as the bias of errCVS and accCVS

decreases when k is increased. The variance does not depend on the number

of folds k in this case. In [60], Kohavi shows that there is almost no change in
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the variances (3.1) or (3.2) when the number of folds is varied.

An intuitive extension to the k-fold cross-validation is the so-called complete

cross-validation which is the average of all
(
n
n/k

)
(if n

k
∈ N) possibilities for

choosing sets of size n
k

out of the superset of size n. In practice, complete

cross-validation is usually not suitable as the effort is way too high (see [60]

for details).

The cross-validation will be relevant in Part IV of this work to evaluate the

new classification approach.
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Part III.

Clustering for Binary

Classification Problems
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Brieden shows the approximation of discrete convex norm maximization in

[19] and together with Gritzmann numerous additional theoretical results con-

cerning the relationship between feasible clusterings and polyhedrals (see [19],

[20], [21], [22] and [23]). The practical application of the underlying theoret-

ical concept was already shown for the consolidation of farmland in [19], [20]

or with Borgwardt in [17]. Part II gave an introduction to the task of binary

classification including the problem description, basic classification approaches

and validation techniques. Now, based on the above mentioned theoretical and

algorithmic work for geometric clustering, we introduce its application for bi-

nary classification problems and present theoretical results in joint work with

Brieden and Gritzmann.

The task of clustering is to assign instances to groups (see [3]). These groups

should be similar with respect to a chosen measure. A common criterion is

geometric proximity like in the k-nearest neighbor approach of Section 2.3.

The main idea behind the new classification technique is the application of a

Figure 3.2.: Example instances in a two dimensional sample space.
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geometric clustering and its special characteristic, the induced decomposition

of the data space into convex cells.

In the first step, the new approach assigns the given data to a given number of

convex clusters (see Figure 3.2). In the next step, a so called power diagram

is composed which partitions the data-space into convex polyhedral cells, be-

longing to the clustering (see Figure 3.3). This partition is used in the next

Figure 3.3.: Computation of a convex cell decomposition (power diagram)
based on a feasible clustering.

step for the classification task of new data. To do so, the cells, i.e., clusters are

assigned with a prediction value, based on the labels of the clustered training

data (see Figure 3.4 and 3.5). New instances, for example the testing data,

are assigned to the cluster in the last step. The predictive value depends on

the cell the point lies in. It is labeled with the corresponding prediction value

of the cluster (see Figure 3.6). In Section 4.1 of this work, we introduce the

theoretical groundwork of geometric clustering. It is based on the work of

Brieden and Gritzmann mentioned above. Furthermore, we present new re-

sults of the underlying structure. These results allow the application of a new
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Figure 3.4.: Remaining convex cell decomposition as as segmentation of the
data space.

Figure 3.5.: Calculation of predictive values for each cluster.

59



Figure 3.6.: Labeling new instances with the cluster value, depending on the
underlying convex cell.

algorithmic approach to the already defined binary classification task. They

lead to a new classification technique which is introduced as a result of the cell

decomposition and the transformation in the later sections of this part. This

new algorithmic sequence based on a feasible clustering is especially suitable

for classification tasks.

Additionally, the later sections link the presented new technique to the topics

in Part II of this work.
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New Binary Classifier

In the first section of this chapter, we introduce the theoretical principles of

the clustering approach. They represent the main ideas of the classification

algorithm based on the work of Brieden and Gritzmann (see for example [20],

[21] and [22]). Basic definitions are given on the mathematical interpretation

of a clustering and how it is related to polytopes. We show the connection

between a vertex of a polytope, a feasible clustering and a cell partition of the

Rd, called power diagrams. It leads to a partition of the Euclidean space into

convex polyhedral cells. The possibility to compute a convex polyhedral cell

decomposition, a so-called power diagram, is a fundamental principle of the

new classification approach. The cell decompositions lead to the application

of the geometric clustering approach for classification problems.

Additionally, the data transformation technique introduced in Section 4.2 al-

lows the computation of a clustering for non-metric data by using the condi-

tional probabilities. It is closely related to the value difference metric intro-

duced in [81]. In Section 4.4, the new clustering approach is examined as a

supervised learning approach for binary classification problems as introduced

in Part II. We adopt the definitions and terms of classification techniques to

the new clustering based classification approach. Additionally, we compare

it to binary classification procedures. This leads to the definition of scoring
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functions for the new clustering approach in Section 4.5 based on the compu-

tation of instances of the training data assigned to the clusters. The weighting

of data in Section 4.6 originates from the transformation technique of Section

4.2. It determines which input variables are selected and weighted due to their

importance. The adjustment of the clustering parameters to optimize the pre-

diction, like the number of clusters, boundaries, etc. is the topic of Section

4.7. It introduces relevant techniques to additionally improve the quality of

prediction. In the end of this part, we present different scoring functions for

the introduced classification technique. They are used on real-world data in

Part IV of this work.

4.1. Clustering as a Norm Maximization

Problem

Clustering or cluster analysis as a field of unsupervised learning offers a broad

variety of different techniques and algorithmic approaches. We focus on ge-

ometric clustering. Therefore, we form cluster or group objects referring to

their geometric information. It is expressed by the position of a point in the

data space, mostly the Rd, and the distance measured by an ellipsoidal norm,

for example the Euclidean norm.

In this section, we interpret the first step of the classification task introduced

in Part II as finding (geometrical) similarity. It is represented by the geomet-

rical proximity in a given data set S. At first, it is a deterministic approach

without the probabilistic point of view of Part II. The statistical component

will be added afterwards. The clustering technique is unsupervised as it does

not use the labels yi but the input values xi. Similarity of instances as the

origin of a good estimation is measured by geometrical proximity leading to
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4.1. Clustering as a Norm Maximization Problem

convex clusterings in the following. At first, basic definitions of a clustering

are given and extended.

Definition 4.1.1 (Clustering)

A k-clustering C := (C1, ..., Ck) is a partition of a set X ⊂ Rd into k non-

empty sets C1, ..., Ck. Ci is called the i-th cluster of the Clustering C with

i ∈ {1, ..., k}.

Let C := (C1, ..., Ck) be a k-clustering of a data set X. Then κi = |Ci| is the

size of the i-th cluster for i ∈ {1, ..., k} and |C| := (|C1|, ..., |Ck|) is called the

shape of a k-clustering.

With X ⊂ S we denote the subset of input values, X = {xi}ni=1. As we regard

geometric clusterings, X is a subset of Rd in all the clusterings of this work.

The reason we can constrain ourselves to Rd is the transformation technique

explained later in Section 4.2. In addition, we focus on clusterings with given

sizes and bounds for each cluster. The advantage is the possibility to ’control’

the clusters in terms of a minimum number of points and therefore predeter-

mined estimation reliability. Even if the new objective function introduced

later in this work does not require strict bounds to ’fill’ all clusters evenly,

they could be used to adjust a clustering. The given sizes are possible be-

cause of the underlying bounded-shape partition polytope introduced later in

this section. Therefore, we extend the general definition of a clustering to a

(k, l, u)-clustering with given lower (l) and upper (u) integer bounds.

Definition 4.1.2 ((k, l, u)-Clustering)

A k-clustering C := (C1, ..., Ck) with l = (l1, ..., lk), u = (u1, ..., uk) ∈ Nk and

li ≤ κi ≤ ui for i ∈ {1, ..., k} is called (k, l, u)-clustering.

(k, l, u)-clusterings are equivalent to so-called integer balanced clusterings in

[23] and represent clusterings that fulfill the given pair of lower and upper size
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restrictions (l, u).

Remark 4.1.3

For a given set X of size n and lower and upper bounds (l, u) the number of

feasible clusterings is

∑
li≤κi≤ui,i∈{1,...,k}∑

i κi=n

n!∏k
i=1 κi!

∏k
i=1mi!

with mi := |{κi : κi ∈ {κ1, ..., κk}}|.

Remark 4.1.3 shows the enormous number of all feasible clusterings fulfilling

lower and upper size restrictions.

The lower and upper bounds determine the feasibility of a clustering, i.e.,

whether a clustering exists that fulfills the restriction given by the bounds.

Definition 4.1.4 (Set of (Feasible) Clusterings)

C(X, k) := {C : C is a k-clustering of X} is the set of k-clusterings of X and

C(X, k, l, u) := {C : C is a (k, l, u)-clustering of X}

is the set of (k, l, u)-clusterings of X.

Of course, there are trivial requirements for lower and upper bounds to allow

feasible clusterings.

Remark 4.1.5

Let X be a set of size n and (l, u) ∈ N2 lower and upper bounds. A clustering

C := (C1, ..., Ck) is feasible with respect to (l, u) if

k∑
i=1

li ≤ n ≤
k∑
i=1

ui

holds.
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In the following, we will always assume that the bounds will allow feasible

clusterings. Additionally, with the number of cluster k and the bounds (l, u)

clear from the context and fixed, we use the informal term bounded-shape

clustering (BSC) for a clustering respecting these numbers. Also, we use the

notation BSC(X) = BSC(k, l, u) := C(X, k, l, u).

Especially for classification a clustering with bounds is very helpful. A given

minimal number of points in a cluster leads to better statistical estimations

because of the law of great numbers.

In the next step, we focus on the relationship between vertices of special poly-

topes and the assignment of a clustering. Brieden and Gritzmann show in

[22] and [23] that vertices of a polytope can be identified with a clustering.

Therefore, the clustering is represented by a vector consisting of the sums of

the points of each cluster. Each resulting clustering can be (of course not

uniquely) identified with the center of gravity or the sum of all points (see

[23]).

Definition 4.1.6 (Cluster Sum and Center of Gravity)

Let C := (C1, ..., Ck) be a clustering of a set X. Then the cluster sum of a

cluster Ci is defined as si :=
∑
x∈Ci

x for i ∈ {1, ..., k}. The vector v(C) :=

(sT1 , ..., s
T
k )T ∈ Rd·k is called the cluster sum vector. The center of gravity ci of

a Cluster Ci is defined as ci :=
si
κi

for i ∈ {1, ..., k}.

While the center of gravity as the center of a cluster is more intuitive as

representative in the first place, the cluster sum allows lower and upper bounds.

In our case, the solution can be identified as a vertex of a special polytope, the

already mentioned bounded-shape partition polytope1. The set of all cluster

sum vectors lead to this polytope. It is the convex hull of the cluster sum

1 The bounded-shape partition polytope is also related to a network flow problem (see
[54]))
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vertices and can be expressed by linear constraints or a linear program.

Definition 4.1.7 (Set of Cluster Sum Vectors)

Let X be a subset of Rd. Then V := V (X; k, l, u) := {v(C) : C ∈ C(X, k, l, u)}

is the set of all cluster sum vectors.

In the next step the bounded-shape partition polytope is defined as the convex

hull of all feasible (k, l, u)-clusterings of a set S.

Definition 4.1.8 (Bounded-Shape Partition Polytope (BSPP))

Let X be a subset of Rd. The bounded-shape partition polytope is defined as

the convex hull of all cluster sum vectors

BSPP = BSPP (k, l, u) = BSPP (k, l1, ..., lk, u1, ..., uk) := convV (X; k, l, u) .

Each vertex of the bounded-shape partition polytope is related to a clustering

by its cluster sum vector representation.

Lemma 4.1.9

Let v∗ be a vertex of a BSPP . Then there is exactly one (k, l, u)-clustering

C = (C1, ..., Ck) with v(C) = v∗. We call this the clustering of v∗.

Proof:

The proof is given in [23] as the bounded-shape partition polytopes are contained

in the subspace of the described gravity bodies. �

Lemma 4.1.9 allows the identification of clusterings with polytopes which was

already shown by Barnes, Hoffman and Rothblum in [11]. This leads to linear

constraints and to the solution of a linear program representing a feasible

clustering. Additionally, the vertices, i.e., the corresponding clusterings have

an additional useful characteristic for the classification task. These clusterings
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are pairwise separable and allow a cell decomposition.

As shown in [54], the computation of a vertex of the bounded-shape partition

polytope can be done in the following linear system. It is the representation

by hyperplanes and corresponds to the vertex characterization of the BSPP

shown in Definition 4.1.8.

Definition 4.1.10 (BSPP)

Let k, li, ui ∈ N for all i ∈ {1, ..., k} with
∑k

i=1 li ≤ n ≤
∑k

i=1 ui. We call the

polytope defined by the constraints

n∑
j=1

ξij ≤ ui (i ≤ k)

n∑
j=1

ξij ≥ li (i ≤ k)

k∑
i=1

ξij = 1 (j ≤ n)

ξij ≥ 0 (i ≤ k, j ≤ n)

the bounded-shape partition polytope BSPP (k, l, u).

Hwang, Onn and Rothblum show in [54] that a bounded-shape clustering can

be computed as a solution (ξ∗ij) ∈ {0, 1}k×n of the following integer system:

max f(ξ)

n∑
j=1

ξij ≤ ui (i ≤ k) (4.1)

n∑
j=1

ξij ≥ li (i ≤ k) (4.2)

k∑
i=1

ξij = 1 (j ≤ n) (4.3)
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ξij ∈ {0, 1} (i ≤ k, j ≤ n) .

Hwang, Onn and Rothblum also showed that the bounded-shape partition

problem can be solved in polynomial time (see [53], [55]). The reason is the

total unimodularity of the underlying matrix derived from constraints (4.1),

(4.2) and (4.3) of the problem formulation above.

Because the corresponding matrix is totally unimodular (see [54]), every solu-

tion of the relaxation is integral. Therefore, it suffices to solve the following

relaxation of the program above:

max f(ξ)
n∑
j=1

ξij ≤ ui (i ≤ k)

n∑
j=1

ξij ≥ li (i ≤ k)

k∑
i=1

ξij = 1 (j ≤ n)

ξij ≥ 0 (i ≤ k, j ≤ n)

With the interpretation as vertices of the bounded-shape partition polytope, we

can show that each clustering resulting from the relaxation of the maximization

problem is a separable clustering.

Definition 4.1.11 (Linear Separability)

Let A,B ⊂ Rd. A and B are weakly linearly separable if there is a hyperplane

Ha,µ := {x ∈ Rd : aTx = µ} with a ∈ Rd\{0} and µ ∈ R such that A ⊂ H≥a,µ :=

{x ∈ Rd : aTx ≥ µ} and B ⊂ H≤a,µ := {x ∈ Rd : aTx ≤ µ}.

A and B are strictly linearly separable if there is a hyperplane Ha,β ⊂ Rd with

a ∈ Rd\{0} and β ∈ R such that A ⊂ H>
a,µ and B ⊂ H<

a,µ.
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Definition 4.1.12 (Separability of Clusterings)

Let C := (C1, ..., Ck) be a k-clustering of X. C allows (weak, strict) linear sepa-

ration (or is weakly, strictly linearly separable) if Ci and Cj are (weakly,strictly)

linearly separable for any i 6= j, i, j ∈ {1, ..., k}.

The separability of clusters as a similarity criterion in the terms of an intu-

itive ’good’ characterization was mentioned before when linear classifiers were

introduced in Part II of this work. The next theorem shows that every vertex

of the polytope represents a linearly separable clustering. This result was first

proven by Barnes, Hoffman and Rothblum in [11] for a similar polytope.

Theorem 4.1.13

Let v∗ be a vertex of the BSPP . Then the BSC C∗ associated with v∗ = v(C∗)

allows strict linear separation.

Proof.

See [11]. �

Besides the separability of a clustering, a vertex of the bounded-shape partition

polytope has a second characteristic. It leads to a special arrangement of a

cell decomposition with every cluster lying in a polytopal cell.

In the next step, we show an additional attribute a clustering should have to

be considered as a good clustering and that leads to a good classification. This

attribute is the pairwise distance of the centers.

Every vertex of the bounded-shape partition polytope is a feasible clustering of

the maximization problem described on page 67. A good clustering in our case

should be separable firstly and the pairwise (Euclidean) distance between the

centers of each cluster should be maximized secondly. The graphical examples

in Figure 4.1 and 4.2 show the need of the separability and the maximized

distance. Separability itself does not lead automatically to intuitive ’good’
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clusterings. Figure 4.1 shows that without an additional property a clustering

could be separable but it would not be the ’natural’ choice. If the distance

Figure 4.1.: The points are separated but the distance between the centers is
minimal.

between the points should be maximized, the result is a clustering which would

be intuitively valuated as good. The reason is that the points of each cluster

are clearly separated (e.g. Figure 4.2). The maximization of the pairwise

distance between the centers of a clustering would lead to the following type

of maximization:

max
C=(C1,...,Ck)∈C

k−1∑
i=1

k∑
j=i+1

ωiωj ‖ci − cj‖q , (4.4)

with weights ωi ∈ R, i ∈ {1, ...k}. This is a norm maximizing approach in-

cluding for example the Euclidean norm for q = 2. Unfortunately, this would

lead to a nonlinear optimization problem which is known to be NP-hard (see

[15]). The illustration in Figure 4.3 shows that norm maximization can be

interpreted as scaling up a unit ball to fit the feasible region. The nonlinear

norm maximization problem can be piecewise linearly approximated and the
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Figure 4.2.: The points are separated and the distance between the centers is
maximal.

optimal norm maximal vertex could be therefore iterative calculated as shown

in Figure 4.4 and 4.5. The algorithmic implementation of this procedure is

shown later in Section 4.3.

Brieden and Gritzmann show in [23]that in the case of
∑
{x∈X} x = 0 the

norm maximization in (4.4) is equivalent to the maximization of the total lin-

ear inter cluster distance (4.5) with a = (aT1 , ..., a
T
k )T ∈ Rd·k and ωi ∈ R for

i = 1, ..., k:

k−1∑
i=1

k∑
j=i+1

∑
xi∈Ci

∑
xj∈Cj

(ai − aj)T (si − sj), (4.5)

with si being the cluster sum of cluster Ci, i ∈ {1, ..., k}. Therefore, we use a

linear approach with a objective function aTv with a ∈ Rd·k and v = v(C) :=

(sT1 , ..., s
T
k )T ∈ Rd·k as a cluster sum approach

max
C=(C1,...,Ck)∈C

k∑
i=1

aTi ciκi = max
C=(C1,...,Ck)∈C

k∑
i=1

aTi si . (4.6)
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4. Geometric Clustering as a New Binary Classifier

Figure 4.3.: Norm maximization over a polytope.

This is related to the so-called least-squares assignment (LSA). Least-squares

assignments are connected to power diagrams introduced later in this section

(see [6] and [23]).

Definition 4.1.14 (Least-Squares Assignment (LSA))

Let C = (C1, ..., Ck) be a (k, l, u)-clustering of X ⊂ Rd and a = (aT1 , ..., a
T
k )T ∈

Rd·k. C is called a least-squares assignment (LSA) of X to a if and only if it

minimizes
k∑
i=1

n∑
j=1

ξij ||xj − ai||2

over the BSPP (k, l, u).

Finding a clustering with a minimal least-squares assignment is similar to

finding the clustering with the minimal intra-cluster variance (if the site vector

a is replaced with the centers of gravity c which is also a desirable feature of

a good clustering).
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4.1. Clustering as a Norm Maximization Problem

Figure 4.4.: The nonlinear problem is piecewise approximated by linear func-
tions.

The cluster sum approach (4.6) is defined in the next step as an approximation

of the least-squares assignment, the so-called cluster sum assignment. It is

motivated by application of the clustering technique for classification tasks.

Optimizing the objective functional of a least-squares assignment minimizes

the variance of the points assigned to a cluster. Therefore, outliers could be

identified and would often be assigned to a corresponding cluster with only a

few points. This characteristic of a least-squares assignment is often desirable

but not for our designated use as a classifier. For this task, the clusters should

contain enough points to precisely estimate the values used for prediction. In

clusters containing only outliers, new instances assigned to these clusters would

receive a ’bad’ estimation achieved by only a few points (that are even outliers).

A possible solution is to force a minimum number of points into a cluster

by setting lower bounds. Another possibility is the cluster sum assignment

defined in the next step which leads to proper clusters for estimation without
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Figure 4.5.: A norm maximal vertex is an optimal clustering.

the setting of strict lower bounds.

Definition 4.1.15 (Cluster Sum Assignment (CSA))

Let C = (C1, ..., Ck) be a (k, l, u)-clustering of X ⊂ Rd and a = (aT1 , ..., a
T
k )T ∈

Rd·k. C is called a cluster sum assignment (CSA) of X to a if and only if it

maximizes
k∑
i=1

n∑
j=1

ξija
T
i xj

over the BSPP (k, l, u).

Empirical results show that the cluster sum assignment consists of proper filled

clusters. They are perfectly suitable for the classification task introduced in

later sections. We show the link to the least-squares assignment in the next

theorem.
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4.1. Clustering as a Norm Maximization Problem

Theorem 4.1.16

Let ||ai|| = 1 for all i ∈ {1, ..., k}. Then minimizing

k∑
i=1

n∑
j=1

ξij ||xj − ai||2

is equivalent to maximizing

k∑
i=1

n∑
j=1

ξija
T
i xj .

Proof.

Minimizing
k∑
i=1

n∑
j=1

−2ξija
T
i xj

is equivalent to minimizing

k∑
i=1

n∑
j=1

ξij(||ai||2 − 2aTi xj)

if ||ai|| = 1 for all i ∈ {1, ..., k}. �

This theorem shows that with standardized sites ai, the resulting clusterings

of LSA and CSA are the same. Without the standardization in the proof of

Theorem 4.1.16, the term
k∑
i=1

n∑
j=1

ξij ||ai||2

would be influenced by the chosen assignment, i.e., the clustering. The com-

ponents, i.e., sites aTi ∈ Rd of the vector aT = (aT1 , ..., a
T
k )T with the highest

value ||ai|| would ’draw’ the points in its direction. Therefore, standardizing ai

leads to more balanced clusterings in terms of the size of the resulting clusters.

Additionally, the following example shows that without standardization, a
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4. Geometric Clustering as a New Binary Classifier

cluster sum assignment and a least-squares assignment could differ from each

other.

Example 4.1.17

Let

X := {x1;x2;x3} =


 1

1

 ;

 -1

-1

 ;

 0.5

-0.5


and

a :=

 1 + λ

0

 ;

 0

-1

 .

At first, let x1 and x3 be assigned to cluster C1 and x2 to cluster C2. This

leads for λ = 0 to an indifferent clustering C1 = {C1
1 , C

1
2} = {{x1, x3}; {x2}}

compared with C2 = {C2
1 , C

2
2} = {{x1}; {x2, x3}} with respect to the same clus-

ter sum assignment value of 2.5 for both clusterings and the same least-squares

assignment value of 2.5.

Theorem 4.1.16 shows that with the standardization of the vector a, the optimal

LSA is always equivalent to the optimal CSA.

In general, without ||ai|| = 1 for all i ∈ {1, ..., k}, the least-squares assignment

is not identical with the maximal cluster sum assignment.

For λ = 2 and λ = −0.5 the following two tables show the different LSA

and CSA decisions with all possible clusterings C0, C̄0, C1, C̄1, C2, C̄2, C3 and

C̄3. While the most important clusterings C1 and C2 have already been in-

troduced, the notation C̄i represents the ’opposite’ of C̄i, i.e. C̄i = {C1
2 , C

1
1}

instead of Ci = {C1
1 , C

i
2}. Therefore, with C0 = {C0

1 , C
0
2} = {{x1, x2, x3}; {}},

C3 = {C3
1 , C

3
2} = {{x1, x2}; {x3}} and the mentioned opposites, the following

tables list the LSA and the CSA values for all possible clusterings.
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4.1. Clustering as a Norm Maximization Problem

λ = 2 C0 C̄0 C1 C̄1 C2 C̄2 C3 C̄3

CSA 1.5 0.5 5.5 -3.5 4.5 -2.5 0.5 1.5

LSA 28.5 6.5 12.5 22.5 6.5 24 22.5 12.5

While in the case of λ = 2, the best clustering in terms of a maximal CSA

value is C1, it is C2 in terms of a minimal LSA value.

λ = -0.5 C0 C̄0 C1 C̄1 C2 C̄2 C3 C̄3

CSA 0.25 0.5 1.75 -1 2 -1.25 0.5 0.25

LSA 4.75 6.5 2.5 8.75 2.75 4 5 6.25

In the second case, with λ = -0.5, choosing by the CSA value would lead to C2

but choosing by the LSA value would lead to C1.

This example shows that maximizing the cluster sum assignment value could

generally result in completely different clusterings compared to least-squares

assignments.

If ai is standardized and the set X is replaced with the centered set Xc =

X−
∑n
i=1 xi
n

the cluster sum assignment can be interpreted as a clustering with

the centers of gravity ci being pushed away from the unit ball with respect

to directions ai. In Section 4.3, we show a special iterative sequence which

converges to
k∑
i=1

κi ||ci|| =
k∑
i=1

||si|| .

It computes an optimal cluster sum assignment in each step.

In the next step we show that we can compute a linearly separable clustering

by maximizing the cluster sum assignment over the bounded-shape partition

polytope.

Theorem 4.1.18

Let X ⊂ Rd be a set, k, li, ui ∈ N for all i ∈ {1, ..., k} with
∑k

i=1 li ≤ n ≤∑k
i=1 ui the parameter set, BSPP (k, l, u) the corresponding bounded-shape par-
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4. Geometric Clustering as a New Binary Classifier

tition polytope and a := (aT1 , ..., a
T
k )T ∈ Rd·k.

Then we can find a vertex v∗ of BSPP with aTv∗ ≥ aTv for any v ∈ BSPP

by solving a linear program.

Proof:

Hwang, Onn and Rothblum showed in [54] that the matrix of the bounded-

shape partition polytope is total unimodular. Therefore, every solution (ξ∗ij) of

the following relaxation is integral (see [78]):

max
k∑
i=1

n∑
j=1

ξija
T
i xj

n∑
j=1

ξij ≤ ui (i ≤ k)

n∑
j=1

ξij ≥ li (i ≤ k)

k∑
i=1

ξij = 1 (j ≤ n)

ξij ≥ 0 (i ≤ k, j ≤ n)

Lemma 4.1.9 shows that every vertex represents a feasible bounded-shape clus-

tering which implies the assumption. �

Theorem 4.1.18 shows the first core concept of our new classification approach.

The clustering used for the classification procedure is optimal with respect to

its cluster sum value and represents a vertex in the bounded-shape partition

polytope. Because of its unimodularity, the calculation of an integer clustering

is done in polynomial time (see [54]) and there even exist strongly polynomial-

time algorithms (see [53]). Additionally, Theorem 4.1.13 shows the property of

linear separability for each pair of clusters. This separability leads to a parti-

tion of Rd into convex polyhedral cells, also known as power diagrams. These

decompositions can be interpreted as a generalization of a Voronoi tessellation
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4.1. Clustering as a Norm Maximization Problem

and represent the next basic principle of our new classification approach. For

a general survey of power diagrams see [5].

Partitioning the Euclidean space into cells with every cell containing a cluster

leads to the new classification procedure shown in the later Section 4.3.

Definition 4.1.19 (Power Diagram)

Let a := (aT1 , ..., a
T
k )T ∈ Rd·k with ai 6= aj for all i, j ∈ {1, ..., k} with i 6= j and

Σ = (σ1, ..., σk) ∈ Rk. Then the i-th power cell P a,Σ
i is defined as

P a,Σ
i = {x ∈ Rd : ‖x− ai‖2

2 − σi ≤ ‖x− aj‖
2
2 − σj,∀j ∈ {1, ..., k}\i}

and Pa,Σ = (P a,Σ
1 , ..., P a,Σ

k ) is the (a,Σ)-power diagram.

Figure 4.6.: A power diagram of R2, consisting of 4 cells.

These power diagrams can be interpreted as a generalization of Voronoi dia-

grams as every Voronoi diagram always represents a power diagram (see [6])

The next corollary shows that the clustering associated with a vertex of the

bounded-shape partition polytope induces a power diagram and therefore par-

titions the metric space into convex cells.
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Corollary 4.1.20

Let v∗ be a vertex of the BSPP , C := (C1, ..., Ck) be the BSC associated with

v∗ and let a := (aT1 , ..., a
T
k ) ∈ Rd·k with aTv∗ > aTv for any v ∈ BSPP\{v∗}.

Then there exists a (a,Σ)-power diagram Pa,Σ = (P a,Σ
1 , ..., P a,Σ

k ) with Ci ⊂

int(P a,Σ
i ) for i ∈ {1, ..., k}.

Proof.

See [23] as the bounded-shape partition polytope is contained in the linear sub-

space in the described gravity bodies. �

Like the computation of the clustering shown in Theorem 4.1.18, the power

diagram Pa,Σ = (P a,Σ
1 , ..., P a,Σ

k ) can also be computed by solving a linear pro-

gram.

Theorem 4.1.21

Let X ⊂ Rd of size n and k, li, ui ∈ N for all i ∈ {1, ..., k} with
∑k

i=1 li ≤ n ≤∑k
i=1 ui. Let C := (C1, ..., Ck) be a (k, l, u)-clustering with v∗ := v∗(C) the

vertex of the corresponding polytope BSPP (k, l, u) and a ∈ Rd·k with aTv∗ >

aTv for any v ∈ BSPP\{v∗}.

Then we can calculate a (a,Σ)-power diagram Pa,Σ = (P a,Σ
1 , ..., P a,Σ

k ) with

Ci ⊂ int(Pi), for all i ∈ {1, ..., k} by solving a linear program.

Proof:

Let (ξ∗ij) ∈ {0, 1}k×n be the optimum corresponding to the vertex v∗(C) in the

linear program of Theorem 4.1.18 and A := {(i, j) : ξ∗ij 6= 0}. Referring to

Section 4 in [23], the solution µ∗i of the following linear program

min
k∑
i=1

κiµi +
n∑
j=1

ηj

µi + ηj ≥ γij (i, j ∈ A)
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4.2. Transformation by Conditional Probabilities

leads with

Σ = (σ1, ..., σk), σi = ‖ai‖2 − 2µ∗i , (1 ≤ i ≤ k)

to a (a,Σ)-power diagram Pa,Σ = (P a,Σ
1 , ..., P a,Σ

k ) with

P a,Σ
i =

⋂
i 6=j

{x : aTijx ≤ µ∗j − µ∗i } .

�

The introduced cell decomposition by power diagrams allows to easily assign a

point to a cell by evaluating the separating hyperplanes. With the calculation

of a clustering by solving a linear program the cell decompositions provide the

mathematical background for the new classification approach.

While the underlying data was set to a subset X ⊂ Rd in this section, in prac-

tice common data has nominal, ordinal or mixed level of scale. In the next

section we present a technique to apply the clustering approach on data that is

not real valued by replacing the data with its conditional expectations. Addi-

tionally, this introduces a statistical component to the deterministic clustering

procedure.

4.2. Transformation by Conditional

Probabilities

The following section will introduce the general principles of the data trans-

formation technique. Additionally, this links the new approach to stochastic

topics introduced in Part II. It it closely related to the value difference metric

introduced in [81]. The transformation of the input variables into metric scaled

values allows the use of the geometric clustering approach for data of every

level of scale. After the transformation, our clustering algorithm can perform

81



4. Geometric Clustering as a New Binary Classifier

an optimal clustering solution in the multidimensional Euclidean space.

The underlying probabilistic concept is similar to the naive Bayes approach

introduced in Section 2.1. For a basic overview of the underlying stochas-

tic principles and definitions see for example [62]. The ’naive’ assumption of

conditional independence is expressed by the following equation:

P (X1 = x1, ..., Xd = xd|Y = y) =
d∏
i=1

P (Xi = xi|Y = y) .

This equation was applied to model the desired probability P (Y = y|X1 =

x1, ..., Xd = xd) by the Bayes’ rule. The underlying assumption of conditional

independence reduced the probability P (Y = y|X1 = x1, ..., Xd = xd) to the

probabilities P (Xi = xi|Y = y), which are easier to determine.

A similar assumption is used in the following for the transformation technique.

It models the conditional probabilities P (Y = y|X1 = x1, ..., Xd = xd) by the

marginal conditional probabilities P (Y = y|Xi = xi), i ∈ {1, ..., d}, based on

the conditional expected value. The conditional expected value

E(Y |X1 = x1, ..., Xd = xd) =
∑
y∈Ωy

yP (Y = y|X1 = x1, ..., Xd = xd)

consists of the corresponding conditional probabilities. The following assump-

tion states that the conditional expected value is a combination of the one

dimensional conditional expected values E(Y |Xi = xi), i = 1, ..., d. In the

next step, this leads to

P (Y = y|X1 = x1, ..., Xd = xd) =
d∑
i=1

βiP (Y = y|Xi = xi)
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with

βi = β̂i
P (Y = y|X1 = x1, ..., Xd = xd)

P (Y = y|Xi = xi)
,

d∑
i=1

β̂i = 1 .

The result is a convex combination

d∑
i=1

βiE(Y |Xi = xi) (4.7)

with

βi = β̂i
E(Y |X1 = x1, ..., Xd = xd)

E(Y |Xi = xi)
,

d∑
i=1

β̂i = 1 .

The conditional expected values E(Y |Xi = x), i.e., their estimators are the

new values replacing the original input values of the i-th feature Xi. With

this transformation the data can be clustered in the next step. In the binary

case, the conditional expected values relate to a Bernoulli-distributed random

variable. Therefore, if x is fixed, they are equivalent with the conditional

probabilities.

Remark 4.2.1

If Y is a binary random variable, Y ∼ Be(p), then

E(Y |X = x) = P (Y = 1|X = x) =: p|x

holds.

Besides a transformation setting, this also leads to a linear convex weighting

approach introduced in Section 4.6.

The conditional expected values in (4.7) allow to cluster non-metric data with

the geometrical approach introduced in Section 4.1. In the binary case, all con-

ditional expectations are equivalent to conditional probabilities. Therefore, the

data is actually mapped to the d-dimensional unit cube [0, 1]d. Obviously, the
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transformed data set consists only of real values. Additionally, the transfor-

mation calculates the one-dimensional estimators for the conditional expected

values

E(Y |Xi = x), i ∈ {1, ..., d}, x ∈ Ωi ,

with Ωi as the sample space of the random variable Xi. These are equivalent

to the conditional probabilities

P (Y = 1|Xi = x), i ∈ {1, ..., d}, x ∈ Ωi ,

in the binary case. After the transformation, each instance x = (x1, ..., xd) is

represented by the vector of their conditional expected values

(x1, ..., xd)→ (E(Y |X1 = x1), ..., E(Y |Xd = xd))

or the equivalent conditional probabilities

(P (Y = 1|X1 = x1), ..., P (Y = 1|Xd = xd))

in the binary case. As the vector consists of expected values or probabilities,

the geometric clustering approach of Section 4.1 is applicable.

In the next step, the conditional expected values are estimated by the corre-

sponding conditional means of a data set S.

Remark 4.2.2

Let S = {(xj, yj)}nj=1 ⊂ Rd × {0, 1} with xj = (xj1, ..., xjd) be a sample of d

stochastic random variables Xi, i = 1, ..., d, and Y .
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Then

x̃y|x = θ(Y = y|Xi = x) =

∑n
j=1 1{yj}(y) · 1{xji}(x)∑n

j=1 1{xji}(x)
, for i = 1, ..., d

is an unbiased estimator for the conditional expected value E(Y |Xi = x).

Proof:

The definition of the conditional probability leads to

P (Y = y|Xi = x) =
P (Y = y,Xi = x)

P (Xi = x)
, i ∈ {1, ..., k} .

Therefore, the estimators

θ(Y = y,Xi = x) =

∑n
j=1 1{yj}(y) · 1{xji}(x)

n

and

θ(Xi = x) =

∑n
j=1 1{xji}(x)

n

consist of the (conditional) frequencies and lead to a mean estimation of the

conditional expected value E(Y |Xi = x). �

The following remark shows that the mean of each transformed variable x̃y|x

is equivalent to the mean of the labels y.

Remark 4.2.3

Let S = {(xj, yj)}nj=1 ⊂ Rd × {0, 1} and x̃y|x the estimator for the conditional

expected value E(Y |Xi = x) of Remark 4.2.2.

Then
1

n

n∑
j=1

x̃y|xji =
1

n

n∑
j=1

yj

holds for i ∈ {1, ..., d}.
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It follows from Remark 4.2.2 and corresponds to the property E(E(Y |X)) =

E(Y ) for conditional expected values (see [62]).

The estimation technique uses the labels of Y and the features of the input

variables X1, ..., Xd based on the given training data. All possible features of

the random variables X1, ..., Xd are included in their sample spaces Ω1, ...,Ωd.

Algorithm 2 shows the transformation of the data set by replacing these fea-

tures with the estimations of the conditional expected values.

Algorithm 2: Computation of the transformed training data

Input: training data set Strain = {(xtrainj , ytrainj )}nj=1 ⊂ Rd × {0, 1};

Input: sample spaces Ω1, ...,Ωd of X1, ..., Xd;

Output: S̃train = {(x̃trainj , ytrainj )}nj=1;

{{x̃y|xji : xji ∈ Ωi}}di=1 ⊂ R|Ω1|×...×|Ωd|;

for i = 1 to d do

for x ∈ Ωi do
calculate x̃y|x

end

end

Generate the transformed data set:

for i = 1 to d do

for j = 1 to n do

x̃trainji ← x̃y|xji

end

end

Return S̃train and {{x̃y|xji : x ∈ Ωi}}di=1.

In a second step, the data which should be classified needs a transformation

based on these estimations {{x̃y|xji : x ∈ Ωi}}di=1 ⊂ R|Ω1|×...×|Ωd|.

While the training data is transformed based on the labels of the training set,
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the testing data has to be adjusted in a different way. As the testing labels are

unknown, the features of the testing data {xtestj }mj=1 ⊂ Rd have to be replaced

with the estimations for the conditional expected values of the training data

{{x̃y|xji : x ∈ Ωi}}di=1 ⊂ R|Ω1|×...×|Ωd|. The result is a ’new’ testing data set

determined by Algorithm 3.

Algorithm 3: Assignment of the testing data

Input: testing data set {xtestj = (xtestj1 , ..., xtestjd )}mj=1 ⊂ Rd;

{{x̃y|xji : xji ∈ Ωi}}di=1 ⊂ R|Ω1|×...×|Ωd|;

Output: {x̃testj = (x̃testj1 , ..., x̃testjd )}mj=1;

Assign the testing data:

for i = 1 to d do

for j = 1 to m do

x̃testij ← x̃y|xji

end

end

Return {x̃testj }mj=1.

In the next step, we can compute a clustering based on the transformed training

data. Additionally, we can assign the transformed testing data to a cluster by

evaluating its position with respect to the separating hyperplanes of the power

diagram induced by the clustering.

4.3. Geometric Clustering for Classification

Problems

In this section, we complete the introduction of optimal geometric clusterings

as a foundation for a new technique to classify binary data sets. So far, we

presented the mathematical introduction of a geometric clustering in Section
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4.1 and the transformation technique in Section 4.2.

Now we describe and analyze the algorithmic implementation of the geometric

clustering. It is included in an iterative sequence in which we compute a clus-

tering in each step. This sequence converges to a cluster sum assignment (CSA)

introduced in Section 4.1. Furthermore, we prove termination and compare it

to a least-squares assignment (LSA). The introduced iterative clustering based

sequence is the foundation for the classifiers defined in the following sections

and is applied to real-world data sets in Part IV of this work.

At first, we show the computation of a single clustering. Algorithm 4 generates

an optimal clustering with respect to a given site vector a = (aT1 , ..., a
T
k )T ∈

Rd·k. It is equivalent to the search for an optimal vertex in the bounded-shape

partition polytope introduced in Section 4.1 and a solution of the linear pro-

gram in Theorem 4.1.18. The underlying data is the transformed feature set

{x̃trainj }nj=1 described in Section 4.2. Besides {x̃trainj }nj=1 and the site vector

a = (aT1 , ..., a
T
k )T , the cluster number k and bounds (l, u) are additional input

parameters.
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Algorithm 4: Calculation of the clustering C

Input: {x̃trainj }nj=1 ⊂ Rd, k, li, ui ∈ N with
∑k

i=1 li ≤ n ≤
∑k

i=1 ui;

initial site vector a = (aT1 , ..., a
T
k )T ∈ Rd·k;

Output: (k, l, u)-clustering C = (C1, ..., Ck);

Solve the linear program

max
k∑
i=1

n∑
j=1

ξija
T
i xj

n∑
j=1

ξij ≤ ui (i ≤ k)

n∑
j=1

ξij ≥ li (i ≤ k)

k∑
i=1

ξij = 1 (j ≤ n)

ξij ≥ 0 (i ≤ k, j ≤ n)

and return a feasible solution (ξ∗ij) ∈ {0, 1}k×n as the assignment.

Lemma 4.3.1

Algorithm 4 computes a (k, l, u)-clustering by linear programming with k · n

variables and (k + 1) · n+ 2 · k constraints.

We use the solution of Algorithm 4 as input for another linear program. There-

fore, the standardized sums of the clustering solution are applied as new sites

(a1, ..., ak)← (
c1

||c1||
, ...,

ck
||ck||

) = (
s1

||s1||
, ...,

sk
||sk||

)

of a linear program with the unchanged restrictions, i.e., the same underlying

BSPP . Because of ci = si
κi

, the standardized sum si
||si|| of a cluster Ci is equiv-

alent to the standardized center ci
||ci|| . This iterative step is repeated until the

solution does not change anymore.
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Algorithm 5: The iterative cluster sum approach

Input: {x̃trainj }nj=1 ⊂ Rd, k, li, ui ∈ N with
∑k

i=1 li ≤ n ≤
∑k

i=1 ui;

initial site vector a = (aT1 , ..., a
T
k )T ∈ Rd·k;

Output: (k, l, u)-clustering C = (C1, ..., Ck);

1. Apply Algorithm 4 for the site vector a = (aT1 , ..., a
T
k )T to obtain

clustering C and the related assignment (ξij) ∈ {0, 1}k×n.

2. Update each site ai as the standardized cluster sum si
||si|| with

si :=
∑n

j=1 ξijxj.

If the objective function value increases during the last iteration,

go to 1., else return the current assignment and sites.
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Theorem 4.3.2 (Iterative Clustering for a Cluster Sum Assignment)

Algorithm 5 terminates with a feasible (k, l, u)-clustering that is a cluster sum

assignment. The clustering allows a (a,Σ)-power diagram.

Proof:

We first prove that standardized cluster sums s1
||s1|| , ...,

sk
||sk||

with si :=
∑n

j=1 ξijxj

for all i ∈ {1, ..., k} of a clustering C = (C1, ..., Ck) consists of optimal sites

si
||si|| with respect to a cluster sum assignment.

If the sequence in Algorithm 5 terminates, the result is a cluster sum assign-

ment with a feasible power diagram.

Let C := (C1, .., Ck) be a fixed clustering with cluster sums s1, ..., sk ∈ Rd and

Θ(C,A) :=
k∑
i=1

n∑
j=1

ξij
xTj ai

‖ai‖

is the objective value for the clustering C with the sites A = {a1, ..., ak}. In

the first step, we show that with a fixed clustering C := (C1, .., Ck), Θ(C,A) is

maximal for ai = si.

Let further be C(l) the resulting clustering of the l-th iteration computed with

sites A(l) := {a(l)
1 , ..., a

(l)
k }. Therefore, A(l|1) = {a(l|1)

1 , ..., a
(l|1)
k } = {s(l)

1 , ..., s
(l)
k }

consists of the cluster sums of the clustering C(l).

Because of

k∑
i=1

n∑
j=1

ξij
xTj ai

‖ai‖
=

k∑
i=1

sTi ai
‖ai‖

=
k∑
i=1

‖si‖
(

si
‖si‖

)T (
ai
‖ai‖

)
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and the Cauchy Schwarz inequality −1 ≤
(

si
‖si‖

)T (
ai
‖ai‖

)
≤ 1, the inequality

Θ(C(l), A(l|1)) :=
k∑
i=1

n∑
j=1

ξ
(l)
ij

xTj a
(l|1)
i∥∥∥a(l|1)

i

∥∥∥
=

k∑
i=1

s
(l)
i

T
s

(l)
i∥∥∥s(l)

i

∥∥∥
≥

k∑
i=1

s
(l)
i

T
a

(l)
i∥∥∥a(l)

i

∥∥∥
=

k∑
i=1

n∑
j=1

ξ
(l)
ij

xTj a
(l)
i∥∥∥a(l)

i

∥∥∥
=: Θ(C(l), A(l))

holds. Because of

Θ(C(l), A(l|1)) =
k∑
i=1

n∑
j=1

ξ
(l)
ij

xTj a
(l|1)
i∥∥∥a(l|1)

i

∥∥∥
=

k∑
i=1

s
(l)
i

T
s

(l)
i∥∥∥s(l)

i

∥∥∥
≤ max

(ξij)∈{0,1}k×n

k∑
i=1

n∑
j=1

ξij
xTj s

(l)
i∥∥∥s(l)

i

∥∥∥
=

k∑
i=1

n∑
j=1

ξ
(l|1)
ij

xTj s
(l)
i∥∥∥s(l)

i

∥∥∥
=

k∑
i=1

n∑
j=1

ξ
(l|1)
ij

xTj a
(l|1)
i∥∥∥a(l|1)

i

∥∥∥
=: Θ(C(l|1), A(l|1)) ,
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the following sequence is increasing monotonously:

Θ(C(l), A(l)) ≤ Θ(C(l), A(l|1)) ≤ Θ(C(l|1), A(l|1)) . (4.8)

Algorithm 5 terminates because of its Step 2 and the monotonously increasing

sequence (4.8). In each iteration we compute a cluster sum assignment as a

vertex of the corresponding bounded-shape partition polytope. Therefore, the

last iteration leads to a (a,Σ)-power diagram due to Theorem 4.1.21. �

Applying a standardized cluster sum vector as a new direction leads to better

clusterings with respect to the objective value of the cluster sum assignment

in the next step. The new approach applies the standardized cluster sums

s1
‖s1‖ , ...,

sk
‖sk‖

of the resulting clustering C of Algorithm 4 as new sites in the

next step. Theorem 4.3.2 proves that the iterative sequence (4.8) is increasing

monotonously. Therefore, Algorithm 5 terminates with a feasible clustering

inducing a power diagram described in Section 4.1. Additionally, the iterative

approach leads to a clustering with

Θ(C(l), A(l|1))
x→∞−−−→ max

k∑
i=1

n∑
j=1

ξij
xTj s

∗
i

‖si‖
=

k∑
i=1

s∗i
T s∗i
‖si‖

=
k∑
i=1

‖s∗i ‖ .

Theorem 4.1.16 shows that computing a least-squares assignment is equivalent

to a cluster sum assignment if the sites ai are standardized. Therefore, the

standardization leads to clusterings that are least-squares assignments and

cluster sum assignments.

Corollary 4.3.3

The result of Algorithm 5 is a cluster sum assignment and a least squares

assignment, simultaneously.

Proof:
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Theorem 4.1.16 shows that for standardized sites, a least-squares assignment

is equivalent to a cluster sum assignment. �

Borgwardt, Brieden and Gritzmann show similar results for least-squares as-

signments in [16]. Their iterative sequence based on least-squares assignments

uses non-standardized centers of gravity as new sites in every step. The next

corollary shows that this sequence based on least-squares assignments also ter-

minates in the case of standardized sites.

Corollary 4.3.4

Algorithm 3 in [16] also terminates if each site is updated with the standardized

center of gravity ci
‖ci‖ instead of the non-standardized center of gravity ci. The

resulting least-squares assignment is also a cluster sum assignment.

Proof:

Theorem 4.1.16 shows that for standardized sites, a least-squares assignment

is equivalent to a cluster sum assignment. Therefore, Algorithm 3 in [16]

terminates with standardized centers of gravity in each step because of Theorem

4.3.2. �

In general, least-squares assignments and cluster sum assignments are not iden-

tical as we show in Example 4.1.17 in Section 4.1. For cluster sum assignments,

the standardization is necessary. The following example shows that without

the standardization, the monotonously increasing sequence (4.8) cannot be

guaranteed.

Example 4.3.5

Let

X := {x1;x2;x3} =


 -4

1

 ;

 1

-3

 ;

 -1

-1


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be the point set for a clustering with 2 clusters,

a0 =

 10

0

 ;

 0

-60



the initial sites and

Θ(C(l), A(l)) :=
k∑
i=1

n∑
j=1

ξ
(l)
ij x

T
j a

(l)
i =

k∑
i=1

n∑
j=1

ξ
(l)
ij x

T
j a

(l)
i

the objective function of a cluster sum assignment given in Definition 4.1.15.

Then the initial assignment achieved by the maximization of

Θ(C(0), A(0)) =
k∑
i=1

n∑
j=1

ξijx
T
j ai

has a value of Θ(C(0), A(0)) = 200 and the optimal clustering

C(0) = {{x1}; {x2, x3}}

with the corresponding (non-standardized) centers

c0 =

 -4

1

 ;

 0

-2

 = a1

as the next sites.

This leads to the value

Θ(C(0), A(1)) =

 -4

1

T  -4

1

+

 0

-4

T  0

-2

 = 25
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and in the next step by maximizing Θ(C,A(1)) with the centers of C(0) as new

sites A(1) to a maximal value of

Θ(C(1), A(1)) =

 -5

0

T  -4

1

+

 1

-3

T  0

-2

 = 26.

The corresponding clustering is C(1) = {{x1, x3}; {x2}} with its new centers

c1 =

 -2.5

0

 ;

 1

-3

 =: a2 .

Without standardization, this leads in the next step to the maximal objective

value of

Θ(C(1), A(2)) =

 -5

0

T  -2.5

0

+

 1

-3

T  1

-3

 = 22.5,

showing that without standardized sites, the iterative sequence is usually not

increasing.

The use of a cluster sum assignment is motivated by the use for classification

as described in Section 4.1. A cluster sum assignment is more suitable than

a least-squares assignment because the resulting clusters tend to be equally

filled with points. In contrast, least-squares assignments often identify outliers

which can lead to poorly filled clusters.

Theorem 4.3.6 (Runtime Upper Bound)

The number of iterations of Algorithm 5 is bounded by

(40ek2n)(d+1)k−1 .
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Proof:

Since Algorithm 5 computes a clustering that allows a strongly feasible power

diagram, the proof follows from Theorem 3 in [16].

The upper bound shows that the following algorithm has a polynomial run-

ning time for fixed d and k. Algorithm 5 is similar to the well known k-means

algorithm which iteratively calculates a clustering leading to a local optimum.

The calculation of a norm maximal global optimum of the k-means algorithm

is NP-hard as shown in [2] and [63].

Besides the computation of the clustering a second component of the new

classification approach is the induced cell-decomposition introduced in Section

4.1. In the next step, Algorithm 6 is presented that computes an (a,Σ)-power

diagram based on the results of Algorithm 5.

With the computations of Algorithm 6, the position of the separating hyper-

Algorithm 6: Calculation of the (a,Σ)-power diagram

Input: clustering C = (C1, ..., Ck) with vector a = (aT1 , ..., a
T
k )T ∈ Rd·k;

assignment (ξ∗ij) ∈ {0, 1}k×n;
Input: cluster sizes κi = |Ci|, i ∈ {1, ..., k};
Output: (a,Σ)-power diagram P = (P a,Σ

1 , ..., P a,Σ
k ) with

{µij := µ∗j − µ∗i }, i, j ∈ {1,...,k};
Compute the solution (µ∗i , η

∗
j ) of

min
k∑
i=1

κiµi +
n∑
j=1

ηj

µi + ηj ≥ γij (i, j ∈ A)

with A := {(i, j) : ξ∗ij 6= 0} which leads with

Σ = (σ1, ..., σk), σi = ‖ai‖2 − 2µ∗i , (1 ≤ i ≤ k)

to a (a,Σ)-power diagram Pa,Σ with P a,Σ
i =

⋂
i 6=j{x : aTijx ≤ µ∗j − µ∗i } .

planes Ha,µ is determined with Corollary 4.1.20 and Theorem 4.1.21.
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After the computation of the clustering and the cell decomposition, the (trans-

formed) testing data set can be classified by the use of the cell decomposition.

The following algorithm computes the assignment of the testing data accord-

ing to the geometrical information with respect to the separating hyperplanes.

The value Ca(x̃
test
i ) ∈ {1, ..., k} is therefore the cluster assignment index of an

instance, i.e., point x̃testi .

Algorithm 7: Assignment with a (a,Σ)-power diagram

Input: {x̃testi }mi=1 ⊂ Rd, (a,Σ)-power diagram P = (P a,Σ
1 , ..., P a,Σ

k ) and
{µij := µ∗j − µ∗i }, i, j ∈ {1,...,k};

Output: labeled testing set {(x̃testi , Ca(x̃
test
i ))}mi=1;

for i = 1 to m do
l := 1;
for j = 2 to k do

if aTljx̃
test
i > µlj then

l = j;
end
j = j + 1;

end
Ca(x̃

test
i ) = j

end

Lemma 4.3.7

Algorithm 7 has a running time of O(m · d · (k − 1)).

Proof:

The labeling of each point takes O(d · (k − 1)). �

After the testing data is assigned to the clusters of the underlying clustering,

the instances need to be labeled which completes the classification process. The

computation of typical cluster values, closely related to the scoring function,

can be done by different techniques. It is not related to the clustering process

itself but to the evaluation of the labels of the training data assigned to the

clusters. Therefore, the next section links the clustering approach and its use

as a classifier to the terminology introduced in Part II.
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4.4. Clustering as a Classifier

In this section the new clustering approach is examined as a supervised learn-

ing approach for binary classification problems.

Most of the techniques for binary classification perform badly when the binary

labels are not equally balanced over the data. The more unequal the distribu-

tion of the class labels is, the more the accuracy of the majority class differs

from the minority class. Especially in classification tasks arising in medicine,

this leads to severe problems. Woods et al. give an example of identifying

breast cancer in the ’Mammography Data Set’ containing 10921 ’negatives’

and 260 ’positives’ (see [89]). In data sets like the mentioned ’Mammography

Data Set’ with the ratio of negatives and positives differ naturally significant

from each other, the conditional accuracies are often extremely different. While

in examples like this, the majority class has an accuracy of nearly 100%, the

minority class is often single-digit. A lot of techniques are used to handle

this important problem. Sampling techniques are commonly used which try to

adjust the size of the minority or the majority so that the ratio between the

cardinality of the labels tend to 1 (see [48],[56]and [79]).

The new classification approach introduced in Section 4.3 is based on geomet-

ric clusterings and transformation technique using the conditional frequencies

introduced in Section 4.2. The concept of similarity by the conditional prob-

abilities in Section 4.2 is related to the probabilistic view already introduced

in Part II of this work. The underlying data is interpreted as an i.i.d. sample,

i.e., realizations of random variables X = (X1, ..., Xd) and Y , originating from

a sample space with an unknown, joint probability distribution DZ = DX×DY
of Z = X ×Y . The same sample space is a simplifying but necessary assump-

tion in most cases. In contrast, the clustering approach assumes that each

cluster describes an own sample space. Therefore, there are k sample spaces

99



4. Geometric Clustering as a New Binary Classifier

Ωi, i ∈ {1, .., k}, in this interpretation with the n realizations originating from

these sample spaces. The clustering naturally identifies the points with the

same underlying distribution. This leads to excellent results in data that con-

tains heterogeneous groups, violating the assumption of the same underlying

sample space. Each identified cluster Ci refers to its own underlying sample

space and to a cluster dependent set of random variables XCi = (X1
Ci
, ..., Xd

Ci
)

and YCi with the joint distribution DZ(Ci) = DX(Ci)×DY (Ci).

Therefore, in the binary case, the clustering identifies groups with a high con-

ditional probability for 1 and 0, respectively.

In the next step, we apply the technical definitions of Part II to introduce the

clustering based classifier. So far, the data set S consists of the feature set

{xi}ni=1 and the label set {yi}ni=1. In Section 4.2, the feature set was replaced

by the estimations for the conditional expected values. From now on, this will

be used as feature set {xi}ni=1.

Firstly, the assignment of points to a cluster is formalized.

Definition 4.4.1 (Cluster Assignment Vector)

Let C := (C1, ..., Ck) be a clustering of the set {xi}ni=1 and a = (aT1 , ..., a
T
k )T ∈

Rd·k with µij ∈ R, i, j ∈ {1, ..., k}, the corresponding (a,Σ)-power diagram.

Then

~Ca(x) = (Ca1(x), ..., Cak(x)) ∈ {0, 1}k

with

Cai(x); =
k∏
j=1

1{aTijx≤µij}, 1 ≤ i ≤ d

is called the cluster assignment vector of x.

The set Ca(x) := {i ∈ {1, ..., k} : Cai(x) = 1, Cai(x) ∈ ~Ca(x)} is called the

cluster assignment of x.
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This definition represents the assignment of points to clusters encoded in the

cluster assignment vector. For future work, it could also be set from discrete

{0, 1} to continuous [0, 1] which would correspond to fuzzy clustering (see [69]

for an overview).

The assignment of a point or instance to a cluster in Definition 4.4.1 is not

necessarily unique. In this case, which of course happens quite rare in practice,

one possible solution is an assignment in lexicographical order.

Definition 4.4.2

Let ~Ca(x) := (Ca1(x), ..., Cak(x)) ∈ {0, 1}k be a cluster assignment vector.

Then the lexicographical cluster assignment vector is defined as

~C lex
a (x) = (C lex

a1
(x), ..., C lex

ak
(x)) ∈ {0, 1}k

with

C lex
ai

(x) := arg min
j∈{1,...,k}

{Caj(x) ∈ ~Ca(x) : Caj(x) = 1}, 1 ≤ i ≤ d .

The index C lex
a (x) := {i ∈ {1, ..., k} : C lex

ai
(x) = 1, C lex

ai
(x) ∈ ~C lex

a (x)} is called

the lexicographical cluster assignment of x.

With the above definition of a lexicographical cluster assignment vector, every

assignment of an instance to a cluster is unique. This feature is required for

a distinct classification procedure. Unless stated otherwise, we assume the

lexicographical cluster assignment of x when we speak of the cluster or the

cluster number of x. The following definition of the cluster value corresponds

to the scoring function. The scoring function defined in Definition 1.0.3 assigns

a score to an instance x. The same concept holds for this new approach by

addressing a cluster number to the instance x and the corresponding value of
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the cluster as score for x.

Definition 4.4.3 (Cluster Value)

Let C := (C1, ..., Ck) be a clustering of the set {xi}ni=1 ⊂ Rd. The function

f(x|C) =
k∑
i=1

fi(Ci) · C lex
ai

(x)

with the lexicographical cluster assignment vector ~C lex
a (x) = (C lex

a1
(x), ..., C lex

ak
(x))

is called the cluster value of the clustering C for x.

Hereby, fi : C → R; Ci → fi(Ci) is called cluster value of the cluster Ci.

The function of the cluster value in Definition 4.4.3 is not specified explicitly.

It is only defined as a real value assigned to a cluster depending, for example,

on the labels of the training instances assigned to the cluster. Intuitive compu-

tations of cluster values will be given in the next section. Additionally, scoring

functions of different clusterings could be combined and lead to the maximum

and mean evaluation in Section 4.8 and 4.9. While the naive Bayes and the

logistic regression are linear classifiers, the k-nearest neighbor technique has a

piecewise linear decision boundary. This also holds for the geometric cluster-

ing approach as the convex polyhedral cell decompositions trivially leads to a

piecewise linear decision boundary.

Based on the scoring function defined above, the following definition of the

classifier completes the formal introduction of the new clustering approach as

a binary classifier.

Definition 4.4.4 (Clustering Based Classifier)

Let C := (C1, ..., Ck) be a clustering of the set {xi}ni=1 ⊂ Rd and

a = (aT1 , ..., a
T
k )T ∈ Rd·k with µij ∈ R, i, j ∈ {1, ..., k}, the corresponding

102



4.4. Clustering as a Classifier

(a,Σ)-power diagram. Let further be f(x|C) the corresponding cluster value.

Then

fclust(x|C) =
k∑
i=1

fi(Ci) · C lex
ai

(x)

is the scoring function, and

hclust(x|C) :=

 1, fclust(x|C) ≥ ω

0, otherwise

is the clustering based classifier of C with threshold value ω ∈ R.

This definition presents the clustering based classifier as a new individual con-

cept of a supervised learning technique. Actually, it is a combination of super-

vised and unsupervised learning. On the one hand, it uses the unsupervised

learning technique of a clustering approach. On the other hand, it has prior

knowledge of the labels as it evaluates them for the transformation technique

of Section 4.2 to estimate the conditional expected values. Additionally, the

labels are used to train the scoring function, i.e., to compute the cluster values.

Algorithm 8 shows the concept of the new clustering based classifier and gives

an additional overview of the previous algorithmic results in this part.

The clustering based classifier creates a partition of the multidimensional met-

ric space Rd into k convex polyhedral cells by computing a (a,Σ)-power di-

agram. The linear classifiers introduced in Chapter 2 also induce two linear

cells via the decision boundary. Therefore, the new approach can be seen as

a generalization in terms of dividing the data space into polyhedral decision

regions or cells. In the special case of two clusters, the iterative clustering

approach is trivially a linear classifier. While this shows a connection to the

linear classifiers, there is also a similarity to the k-nearest neighbor as they

both have piecewise linear decision boundaries.
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Algorithm 8: Clustering based classification

Input: data set Strain := {(xtraini , ytraini )}ni=1 as training set;

Input: data set {xtesti }mi=1 as testing data to be classified;

Output: data set Stest := {(xtesti , ytesti =: hclust(x̃
test
i ))}mi=1;

1. Apply Algorithm 2 on Strain := {(xi, yi)}ni=1 to update the training

data set with the estimation of its conditional probabilities

to get S̃train := {(x̃traini , ytraini )}ni=1.

2. Apply Algorithm 3 on {xtesti }mi=1 to update the testing data set with

the estimation of its conditional probabilities (based on Strain)

to get {x̃testi }mi=1.

3. Apply Algorithm 5 on {x̃traini }ni=1 to get clustering C.

4. Apply Algorithm 6 on C to get a (a,Σ)-power diagram Pa,Σ.

5. Apply Algorithm 7 to get the cluster assignments {Ca(x̃testi )}mi=1

based on C.

6. Evaluate hclust and return Stest := {(x̃testi , hclust(x̃
test
i |C))}mi=1.

Depending on the scoring function, there are many ways to define specific

clustering based classifiers. In the next section, we introduce some intuitive

scoring functions for the clustering based classification.

4.5. Scoring Functions for Clustering Based

Classification

In the last sections, the geometric clustering was introduced as a binary classi-

fier. The underlying scoring function, i.e., the underlying cluster value function
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f(x|C) =
∑k

i=1 fi(Ci) · C lex
ai

(x) was not specified exactly. The intuitive con-

cept is that the value of the scoring function for an instance x depends on the

cluster the point is assigned to. This is similar to binary linear classifiers (like

naive Bayes or logistic regression) which decide via two cells which of the two

labels {0, 1} is assigned. The clustering approach depends on the transformed

data set of Section 4.2 and the resulting similarity expressed by geometrical

proximity. Additionally, estimating the probabilities

p := P (Y = 1) = 1− P (Y = 0)

of the Bernoulli distributed random variable is trivially equivalent to esti-

mating its mean. An underlying functional relationship between the output

labels Y and the input values X = (X1, ..., Xd) is therefore not needed ex-

plicitly. As mentioned in Section 4.4, the clustering based classification as-

sumes not one underlying sample space Ω but k underlying sample spaces

Ω1, ...Ωk. Each identified cluster Ci refers to its own underlying sample space.

Furthermore, every sample space Ω refers to another set of random variables

XCi = (X1
Ci
, ..., Xd

Ci
) and YCi . Therefore, the computation of a cluster value

fi(Ci) is equivalent to the estimation of

p(Ci) := P (YCi = 1) = 1− PCi(YCi = 0)

for each cluster Ci.

Remark 4.5.1 shows an intuitive estimator for the cluster values calculated

by the average number of positive labels. As the output random variable YCi

is Bernoulli distributed, the intuitive scoring function is also called Bernoulli

scoring function. It is equivalent to a maximum likelihood estimation of the

expected value.
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Remark 4.5.1 (MLE for the Bernoulli Scoring Function)

Let YCi be a Bernoulli distributed random of the labels of cluster Ci. Then the

cluster values of the clustering based Bernoulli scoring function f be(x|C) are

given by

f bei (Ci) =

∑n
i=1 1{Clex(xi)=i∧yi=1}(xi, yi)∑n

i=1 1{Clex(xi)=i}(xi)
, i ∈ {1, ..., k} .

As f bei (Ci) is a mean estimation, it is the maximum likelihood estimator for

the expected value of YCi.

This remark represents the intuitive scoring approach as every cluster gets its

score depending on the relative frequency of the labels of the training set. It

also shows that this intuitive estimator is the best linear unbiased estimator

(BLUE) as it is the arithmetical mean as estimation for the expected value of

a random variable.

As introduced in Chapter 1, an often used alternative to the maximum likeli-

hood estimation is the maximum a posteriori estimation. With prior informa-

tion, the MAP estimation is often preferred. With the underlying parameter

belonging to a Binomial or Bernoulli distributed random variable, a common

distribution for the parameter itself is the beta distribution Beta(α, β) with

the two positive shape parameters α, β > 0 (see for example [12]).

Remark 4.5.2 (MAP for the Bernoulli Scoring Function)

Let YCi be a Bernoulli distributed random variable of the labels of cluster Ci.

Then the maximum a posteriori estimator for the mean of YCi and the cluster

value f bei (Ci) of the Bernoulli scoring function f be(x|C; (α; β)) are given by

f bei (Ci; (αi; βi)) =

∑n
i=1 1{Clex(xi)=i∧yi=1}(xi, yi) + αi − 1∑n
i=1 1{Clex(xi)=i}(xi) + βi + αi − 2

, i ∈ {1, ..., k},
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with αi, βi > 0.

αi and βi are the parameters of the corresponding Beta distribution with the

parameter p(Ci) ∼ Beta(αi, βi) of the underlying Bernoulli distribution of YCi.

In the case of α = β = 1 this leads to the case of ’no prior information’,

i.e., every value p(Ci) ∈ [0, 1] has the same probability. α and β can be

interpreted as pseudo counts of 1 and 0, respectively. As further possible

scoring functions the cluster value could consist of the cluster centers ci or for

example their closest neighbor in the training data. Additionally, adopting

approaches like the logistic regression or the naive Bayes to a cluster could

also be the fundamental of a scoring function.

Besides the calculation of the scoring function, another possibility of enhancing

the classification results is the combination of different scoring functions. This

is possible because of the initial target direction that could lead to different

iterative clustering results and therefore slightly different predictions. It will

be explained and applied in the Sections 4.8 and 4.9.

4.6. Weighting the Data

In addition to the scoring function, variable and feature selection is an impor-

tant part of data mining (see [14] and [45] for an overview). It is also important

in the clustering based classification.

While the calculation of the cluster values and the scoring function is similar

to classic classification techniques, the now introduced weighting of the data

refers to the geometrical interpretation of the clustering. The reason is the

replacement of the original data by their conditional expected values.

The cluster should represent typical groups of similar instances. In the next

step, the information is used to predict the corresponding binary labels. With-

out any further adjustment, the d input values are treated equally. Assuming
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an unknown functional relationship between the input variables X1, .., Xd and

Y leads intuitively to a weighting procedure of the input variables. Although

this seems to conflict with the assumption in previous sections (e.g. every

cluster originates from its own sample space), practical results show improved

accuracy for weighted data compared to unweighted data.

Especially the transformation technique introduced in Section 4.2 allows linear

weighting based on the conditional expected values to estimate the conditional

expected value E(Y |X1, ..., Xd) by

yi =
d∑
i=1

βixi + ε =
d∑
i=1

βiE(Y |Xi) + ε ,

ε ∼ N (0, σ2) .

The computation of the weighting can be done, for example, by an ordinary

least squares regression. Algorithm 8 of the clustering based classifier is com-

plemented with a weighting procedure after the transformation step. The

enhanced version is presented as Algorithm 9.

The results tend to be better on a weighted data set compared to an un-

weighted data set. Therefore, Part IV includes results for the weighted and

unweighted case to compare the performance. In the context of this chapter,

the logistic regression introduced as a classifier in Section 2.2 could also be

used to model or estimate the functional relationship between the input values

and the binary labels to measure the influence of each input variable (see for

example [40] or [58]).

In addition to the functional weighting models like the linear weighting model

introduced before or the mentioned logistic regression, there are numerous

other techniques to weight a data set or to select or rank variables based on

their importance (see [45] for an overview). This could be an interesting aspect
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of future work.

Algorithm 9: Clustering based classification with weighting procedure

Input: data set Strain := {(xtraini , ytraini )}ni=1 as training set;

Input: data set {xtesti }mi=1 as testing data to be classified;

Output: data set Stest := {(xtesti , ytesti =: hclust(x̃
test
i ))}mi=1;

1. Apply Algorithm 2 on Strain := {(xi, yi)}ni=1 to update the training

data set with the estimation of its conditional probabilities

to get S̃train := {(x̃traini , ytraini )}ni=1.

2. Apply a weighting procedure on {(x̃traini , ytraini )}ni=1.

3. Apply Algorithm 3 on {xtesti }mi=1 to update the testing data set with

the estimation of its conditional probabilities (based on Strain)

to get {x̃testi }mi=1.

4. Apply the weighting of step 2 on set {x̃testi }mi=1.

5. Apply Algorithm 5 on {x̃traini }ni=1 to get clustering C.

6. Apply Algorithm 6 on C to get a (a,Σ)-power diagram Pa,Σ.

7. Apply Algorithm 7 to get the cluster assignments {Ca(x̃testi )}mi=1

based on C.

8. Evaluate hclust and return Stest := {(x̃testi , hclust(x̃
test
i |C))}mi=1.

4.7. Adjusting the Clustering Parameters

Due to the two stage nature of the iterative clustering approach there are two

main classes of adjustable parameters. In addition to classification related pa-
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rameters like the scoring function or the weighting of the training data, the

introduced classifier has its specific clustering parameters introduced in Sec-

tion 4.1.

The first important clustering parameter is the given number of clusters. There

have been a lot of different approaches to determine the optimal cluster num-

ber (see [80], [84], [67] and [44] for details). A common method is to evaluate

parameter settings for the training set and then use the best result for classi-

fication.

The evaluation of different cluster numbers on the training set is done by the

k-fold cross-validation technique already introduced in Section 3.3. For a num-

ber l of possible cluster numbers k ∈ {k1, ..., kl} the k-fold cross-validation is

performed on the training set and the cluster number with the highest chosen

accuracy measure is used (see Algorithm 1).

Besides the number of the clusters, the clustering based classifier also allows to

set lower and upper bounds for each cluster. Similar to the maximum a poste-

riori estimation, where knowledge of a a posterior distribution could be taken

into account, lower and upper bounds allow the use of prior information of a

minimum cluster or group cardinality. In the estimation of a probability, i.e.,

mean of a Bernoulli distributed random variable, the variance of the estimator

f bei introduced in Remark 4.5.1 is decreasing with an increasing underlying

sample size. Therefore, it could be useful to secure a minimum number of in-

stances in each cluster to achieve a good estimation. Of course, if the bounds

are chosen too tight, it leads to an infeasible clustering problem, as there exists

no separable clustering.

Practical results in the next part of this work show that strict bounds are not

needed to achieve a good classification accuracy. The reason is the underlying

cluster sum assignment which tend to ’fill’ the clusters equally without strict

lower bounds.
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Another adjustable clustering parameter is the approximation degree of the

Euclidean unit ball by the number of initial linear target directions. This

parameter, the number of directions, is primarily performance-driven which

means the more directions the better. It is highly related to the enhanced

scoring functions introduced in the next Sections 4.8 and 4.9.

4.8. Maximum Clustering Based Classifier

As described in the previous sections, the clustering based classifier creates

with Algorithm 5 a cell decomposition of the data space with respect to a

given initial vector a = (aT1 , ..., a
T
k )T ∈ Rd·k. The clustering is a result of the

iterative, converging sequence described in Section 4.3.

In the following, we extend this approach to the case of more than one initial

site vector, i.e., a set A = {a1, ..., al} ⊂ Rd·k of initial vectors for a number of

clusters k ∈ N with ai = (aTi1, ..., a
T
ik)

T ∈ Rd·k.

In this setting, there exist different resulting cell decompositions of the data

space Rd. The performance of each cell decomposition has to be linked to a

representative value of the clustering. This value is then evaluated to select

the best clustering with respect to the performance measure, mostly the clas-

sification accuracy.

The random target direction is chosen with respect to the value

k∑
i=1

‖s∗i ‖ , (4.9)

which is the resulting objective value of the sequence in Section 4.3. The value

(4.9) is highly correlated with the quality of the prediction, measured by the

classification accuracy. Therefore, it represents a good performance measure
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for the quality of prediction.

With the information of more than one clustering, the high correlation between

expression (4.9) and the classification accuracy seen on empirical data leads

to the following classifier. It selects the best clustering with respect to (4.9).

Definition 4.8.1 (Maximum Clustering Based Classifier)

Let C = {Ci}mi=1 with Ci = (Ci1, ..., Cik) be a set of clusterings of the set

X ⊂ Rd and fclust(x|Ci) the corresponding scoring function of the clustering

based classifier hclust(x|Ci). Then the maximum scoring function is defined by

fmax
clust(x) = argmax {fclust(x|C):C∈C}

k∑
i=1

‖s∗i ‖ .

The scoring function fmax
clust implies the classifier

hmax
clust(x|C) =

 1, fmax
clust(x) ≥ ω

0, otherwise

as the maximum clustering based classifier of C with threshold value ω ∈ R.

As the prediction result depends on the initial target vector, another approach

can be used that does not rely on a single clustering but a set of different cell

decompositions. While the definition above picks one single scoring function,

the approach introduced in the next section composes a scoring function by

the mean of all ’single’ scoring functions. The assumed disadvantage of using

only one clustering for classification leads to an advantage on the other side.

The selection of a specific clustering allows the statistical testing approach in-

troduced in Section 4.10 to be used with hmax
clust.

112



4.9. Mean Clustering Based Classifier

4.9. Mean Clustering Based Classifier

In Section 4.1, the clustering based classification approach has been interpreted

as an approximation of a norm maximization problem. The underlying norm

is piecewise approximated by linear functions. These functions are, for exam-

ple, chosen randomly or determined by a given set. After the initial target

direction, the clustering based classifier iterates with the standardized cluster

sums as new sites and converges to a clustering. Like the similar k-means

approach for the clustering problem (see [35] for details), the results of the

new clustering based classifier depend on initial values, for example, the initial

target direction and the number of clusters. Combining the results achieved

with several initial directions leads to an extended scoring function, the mean

clustering based classifier.

Like the maximum evaluation technique described in Section 4.8, the mean

evaluation technique uses the information of different clusterings. Every clus-

tering is optimal with respect to the given sites and leads to a cell decompo-

sition, i.e., power diagram.

Motivated by our empirical results, the now introduced mean evaluation tech-

nique shows a good performance especially with an increasing number of clus-

ters. As the number of clusters is increased, the number of points ’remaining’

for each cluster decreases. Therefore, the variance of the estimation of the

cluster values tends to grow, too. Using the information of different cluster-

ings compensates this effect, which is what we see in empirical results.

Therefore, we define the mean clustering based classifier, which uses the infor-

mation of more then one clustering for each data point.

Definition 4.9.1 (Mean Clustering Based Classifier)

Let C = {Ci}mi=1 with Ci = (Ci1, ..., Cik) be a set of clusterings of the set X ⊂ Rd
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and fclust(x|Ci) the scoring function of the clustering based classifier. Then the

mean scoring function is defined by

fmeanclust (x) =
1

m

m∑
i=1

fclust(x|Ci) .

The scoring function fmeanclust implies the classifier

hmeanclust (x|C) =

 1, fmeanclust (x) ≥ ω

0, otherwise

as the mean clustering based classifier of C with threshold value ω ∈ R.

The mean clustering based classifier can be interpreted as a new classification

approach, consisting of iterative clustering classifiers with m different initial

target directions. This leads to stable and good prediction results shown in

Part IV on empirical data sets.

In comparison to the maximum based classification, the mean evaluation tech-

nique uses all the information a set of clusterings C provides. This leads to a

reliable estimation with low variance.

In reference to Algorithm 8 or 9, the transformation and weighting procedures

do not have to be executed for a new initial target direction. An algorithm

with the described mean or maximum evaluation would repeat the steps 3 to

6 and 5 to 8 in Algorithm 8 and 9, respectively.

The introduced techniques enhance the clustering based classification. In Part

IV of this thesis, we show the excellent performance of these classifiers on

real-world data.
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4.10. Clustering Based Test of Hypotheses

In Section 3.2, we introduced confidence intervals as a statistical approach to

estimate the accuracy of a classifier. Based on confidence intervals, hypothesis

tests can be used to compare classifiers (see [68]). In this section, we introduce

a hypothesis test procedure relying on the partition of the data generated by

the clustering. It provides a generalization of the usual evaluation of hypothe-

ses as it consists of tests for each cluster Ci of a clustering C = (C1, ..., Ck),

based on the predictive values generated by the scoring function.

Additionally, it leads to a reliability measure for a prediction and is joint work

with Brieden and Hinnenthal (see working paper [25]).

The new clustering approach allows a decomposition of the data set into several

underlying sample spaces. Each cluster represents a sample space generating

its own prediction for the instances assigned to it.

The underlying probabilistic concept introduced in Section 4.4 assumes that

the realizations originate from k sample spaces Ωi, i ∈ {1, .., k}. Therefore,

every cluster Ci refers to its own joint probability distribution DZ(Ci) =

DX(Ci)×DY (Ci) that allows a cluster based statistical test.

In general, a statistical hypothesis test is structured as illustrated in Figure

4.7 and consists of several stages. At first, the hypothesis must be set which

corresponds to an underlying assumption, in our case the designated cluster

value. This leads to the so-called null hypothesis H0 and the opposite, the al-

ternative hypothesis H1. In the second step, the level of significance α should

be set. It determines the probability that H0 is rejected, even though it is

true. Furthermore, the level of significance sets the region for rejection of the

calculated realization t of a test statistic T based on a test sample.

With a decreasing α, the rejection of H0 is getting harder. Therefore, if H0

is rejected with a low level of significance, the decision is most probably true
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Formulate the hypothesis H0

Set the level of significance α

Generate the test sample

Compute the realization
t of the test statistic T

Calculate the p-value corresponding to t

Reject H0 if the p-value is below
the chosen level of significance

Figure 4.7.: Hypothesis testing procedure.

as the probability for a wrong decision (under the condition that H0 is true)

is only α.

As only the described type1 error (rejecting H0 although H0 is actually cor-

rect) is controlled, accepting H0 has less explanatory power. For more details

of statistical hypothesis tests see for example [39] or [88].

Every statistical test is based on certain statistical assumptions for the test

sample. Common examples are the statistical independence or that the data

originate from the same distribution.

As described in previous sections, a probabilistic assumption of the clus-

tering based classification is that the sample set originates from k sample
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spaces Ωi and every cluster Ci corresponds to a joint probability distribution

DZ(Ci) = DX(Ci)×DY (Ci).

In this new concept we now formulate hypotheses based on each cluster. As

we are interested in the quality of a prediction, the hypotheses for each cluster

Ci are related to their cluster value f train(Ci).

The main assumption in this approach states that the true (overall) prediction

value

pi := P (YCi = 1) = 1− P (YCi = 0)

of a cluster Ci (referring to a Bernoulli distribution as introduced in Section

4.4 and 4.5) holds the following inequalities:

f traini (Ci) · δli ≤ pi ≤ f traini (Ci) · δui . (4.10)

These cluster values f traini (Ci) are computed from the training data Strain

and adjusted by a lower and an upper parameter δli and δui , respectively. The

evaluation on the cluster values f traini (Ci) of the training set Strain is calculated

by the Bernoulli scoring function introduced in Remark 4.5.1:

f traini (Ci) =

∑n
i=1 1{C(xtraini )=i∧ytraini =l}∑n

i=1 1{C(xtraini )=i}
, i ∈ {1, ..., k} .

Like mentioned before, not accepting but rejecting H0 is the goal of a testing

procedure. Therefore, for each cluster Ci two null hypotheses Hl
0(Ci) and

Hu
0(Ci) are formulated. This leads to the following setting as the basic testing
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scheme for a cluster Ci:

Hl
0(Ci) : pi ≤ f traini (Ci) · δli =: p̂li (4.11)

Hl
1(Ci) : pi > f traini (Ci) · δli =: p̂li (4.12)

Hu
0(Ci) : pi ≥ f traini (Ci) · δui =: p̂ui (4.13)

Hu
1(Ci) : pi < f traini (Ci) · δui =: p̂ui . (4.14)

The null hypothesis (4.11) represents the assumption that the true value pi is

at most p̂li while (4.13) corresponds to the assumption that the true cluster

value pi of the cluster Ci is at least p̂ui .

Definition 4.10.1 (Clustering Based Set of Hypotheses)

Let C := (C1, ..., Ck) be a clustering. The set of lower and upper (null) hypothe-

ses {(Hl
0(Ci),Hu

0(Ci))}ki=1 derived from (4.11) to (4.14) is called clustering

based set of (null) hypotheses and {(Hl
1(Ci),Hu

1(Ci))}ki=1 is the corresponding

set of alternative hypotheses.

The adjusting parameters (δli, δ
u
i ), i ∈ {1, ..., k}, of the underlying hypotheses

(4.11) to (4.14) can be modeled in several ways. A possibility is the dependence

on the ’neighbor’ values if the cluster values are sorted. This intuitive setting

is introduced in the next definition.

Definition 4.10.2 (Comparing Distance)

Let C := (C1, ..., Ck) be a clustering with cluster values

0 =: f train0 (C0) ≤ f train1 (C1) ≤ f train2 (C2) ≤ ... ≤ f traink (Ck) ≤ f traink+1 (Ck+1) := 1

and {(Hl
0(Ci),Hu

0(Ci)}ki=1 the set of (null) hypotheses for the clustering.
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Then the set {(δli, δui )}ki=1 ⊂ R× R with

δli = λi − (1− λi)
(

f traini (Ci)

f traini (Ci−1)

)
, i = 1, ..., k

and

δui = λi + (1− λi)
(
f traini (Ci+1)

f traini (Ci)

)
, i = 1, ..., k

with λi ∈ [0, 1] is called comparing distance parameter set. The corresponding

set of null hypotheses {(Hl
0(Ci),Hu

0(Ci))}ki=1 is then called comparing distance

hypotheses set.

The comparing distance parameter set corresponds to convex combinations of

the sorted cluster values. Of course, the sorting is just a permutation of the

indeces and therefore no restriction.

The underlying cluster value is computed in the training step of the classifica-

tion procedure, for example, as shown in Remark 4.5.1. The reliability of this

estimation is examined in the next step by the evaluation of the labeled testing

data Stest. This corresponds to step 4 in the usual statistical test procedure

described in Figure 4.7. It is the computation of the realization t of a test

statistic T derived from the value f testi (Ci) for the cluster Ci. f
test
i (Ci) is the

cluster value of the testing data for Ci and it is computed by the classified

testing set.

Definition 4.10.3 (Cluster Value for the Testing Data)

Let C := (C1, ..., Ck) be a clustering and Stest := {(xtesti , ytesti )}mi=1 ⊂ Rd×{0, 1}

a testing data set with ytesti = hclust(x
test
i |C),∀i ∈ {1, ...,m}, and {C lex(xtesti )}mi=1

the set of corresponding (lexicographical) cluster assignments. Then

f testi (Ci) =

∑m
i=1 1{Clex(xtesti )=i∧ytesti =1}∑m

i=1 1{Clex(xtesti )=i}
, i ∈ {1, ..., k},
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is called the (Bernoulli) cluster value of Ci for the testing data.

The test statistic T l(Ci) and T u(Ci) are the standardized random variables

resulting from the estimation of pi. Their realizations t(Ci)
l and t(Ci)

u are

computed with the estimations f test for each cluster.

Definition 4.10.4 (Cluster Based Test Statistic)

Let C := (C1, ..., Ck) be a clustering, {(Hl
0(Ci),Hu

0(Ci))}ki=1 the set of hypothe-

ses and Stest := {(xtesti , ytesti )}mi=1 ⊂ Rd×{0, 1} a classified testing data set and

{C lex(xtesti )}mi=1 the set of corresponding (lexicographical) cluster assignments.

Then

tl(Ci) =
f test(Ci)− p̂li√

p̂li(1−p̂li)
ntest(Ci)

and

tu(Ci) =
f test(Ci)− p̂ui√

p̂ui (1−p̂ui )

ntest(Ci)

with

ntest(Ci) :=
m∑
i=1

1{Clex(xtesti )=i}

are the realizations for the lower and upper cluster based (standardized) test

statistic T l(Ci) and T u(Ci) for cluster Ci. {(T l(Ci), T u(Ci))}ki=1 is the corre-

sponding clustering based set of test statistics.

Remark 4.10.5

Let C := (C1, ..., Ck) be a clustering, {(Hl
0(Ci),Hu

0(Ci))}ki=1 the clustering based

set of hypotheses and {(T l(Ci), T u(Ci))}ki=1 the corresponding set of test statis-

tics. Then the test statistics are approximately normal distributed with

T l(Ci) ∼ N

(
p̂li,

√
p̂li(1− p̂li)
ntest(Ci)

)
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and

T u(Ci) ∼ N

(
p̂ui ,

√
p̂ui (1− p̂ui )
ntest(Ci)

)

because of the central limit theorem.

Because of the relationship to the normal distribution we can derive the p-

values (pv) as their quantiles. In the next step, these probabilities can be

applied as a measure of reliability for the predicted cluster values.

Definition 4.10.6 (p-Values for the Clustering Based Classifier)

Let C := (C1, ..., Ck) be a clustering, {(Hl
0(Ci),Hu

0(Ci))}ki=1 the clustering based

set of hypotheses and {(T l(Ci), T u(Ci))}ki=1 the corresponding set of test statis-

tics.

Then {(pvli, pvui )}ki=1 is the set of corresponding p-values with

pvli := P (T l(Ci) > tl(Ci)|Hl
0(Ci))

and

pvui := P (T u(Ci) < tu(Ci)|Hu
0(Ci))

for the clustering based set of hypotheses.

The p-values can be interpreted by comparing them with given lower and upper

levels of significance (αli, α
u
i ) for a cluster Ci. They represent the probability

of obtaining a value for the test statistics of a cluster Ci that is at least as

extreme as the one observed under the assumption that the hypotheses are

correct. The smaller the p-value, the stronger the presumption against H0.

So the pair of the lower and the upper p-values of a cluster indicates how

’trustable’ a predicted cluster value f traini (Ci) is.
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Algorithm 10: Clustering Based Test of Hypotheses

Input: data set Strain := {(xtraini , ytraini )}ni=1 as training set; Input:

classified data set Stest := {(xtesti , ytesti )}mi=1 as testing set;

Input: corresponding clustering C = (C1, ..., Ck);

Output: set of p-values {(pvli, pvui )}ki=1;

1. Calculate the cluster value f train(Ci) for each cluster Ci in

C = (C1, ..., Ck) based on the training data.

2. Calculate the cluster value f test(Ci) for each cluster Ci in

C = (C1, ..., Ck) based on the testing data.

3. Formulate the hypotheses Hli
0 and Hui

0 by computing p̂li and p̂ui .

4. Compute the test statistics tli(Ci) and tui(Ci) for each cluster Ci.

5. Compute the p-values pli and pui for each cluster Ci.

This new clustering based test of hypotheses in Algorithm 10 allows us to com-

pute a probability for trusting the predicted values for an instance x. It en-

hances the fundamental concept of predicting a label by an additional measure

of trust. Especially when results of different cluster numbers are compared, a

tradeoff between accuracy and reliability is the upcoming effect. This can be

seen in the next Part of this work when the new approach is demonstrated on

real-world data.
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In the last part, the clustering approach for classification was introduced and

motivated while this part focuses on practical results. The techniques intro-

duced before are demonstrated and evaluated on real-world data.

The underlying technical implementation of the clustering technique, i.e., the

corresponding Algorithms 8 and 9 was done in JAVA with the optimization

problems of Chapter 4 computed by the optimization tool Xpress by FICO.

All calculations have been performed on a personal computer with an Intel

CORE i7 Q740 @ 1.73 GHz and 8GB RAM.

The first set is related to credit scoring. The German Credit data set consists

of 1000 instances and the task is to classify whether a person has a good or a

bad credit rating based on 20 input variables. It has no given separation into

training and testing sets. Therefore a 10-fold cross-validation was performed

to evaluate the clustering based classifier.

The second data set is the Census Income data set also known as the Adult

data set. The task is to classify whether a person has an income above or

below 50.000 $. In contrast to the German Credit data set, the Census Income

data set consists of more data points and less variables.

The results based on the German Credit data set show a first application of the

clustering based classifier and its good performance. After these first results,

the application of the clustering based classification on the Census Income data

set underlines its good performance. Additionally, the set allows the demon-

stration and the application of the new clustering based test of hypotheses.

In each chapter, we describe the underlying data and explain the classification

task in the first step. In the second step, we present the pre-processing and the

experimental setup including the different parameter scenarios. After that, we

show the corresponding excellent results and compare the performance of the

new introduced approach with common classifiers, if possible.
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The German Credit data set is frequently used for evaluating predictive algo-

rithms for binary classification problems. It consists of 1000 instances with 20

input variable. The goal of the German Credit data set is to predict whether

a risk has a good or a bad credit rating. The data was donated to the UCI

machine learning repository by Professor Dr. Hans Hofmann from the Institut

für Statistik und Ökonometrie at the University of Hamburg, Germany.

It was also used by the StatLog project to compare different classifiers (see

[59]) and can be retrieved from the UCI machine learning repository (see [7]).

An important difference to the later evaluated Census Income data set is the

missing segmentation into training and testing instances. Therefore, it is nec-

essary to generate a set of segmentations and to evaluate the method on each

of these training/testing samples. As shown in Chapter 3, there are common

evaluation techniques like the k-fold cross-validation. It is used in this case to

compare the results with other techniques like those introduced in the Sections

2.1 to 2.3.

Even if the results can not be compared completely because of the random

selection, the application of the 10-fold cross-validation technique and of con-

fidence intervals indicates the excellent performance based on evaluation mea-

sures like the classification accuracy.

The characteristics of the German Credit data set are a high number of input

variables and a comparatively small number of 1000 instances. There are 20
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5. The German Credit Data Set

different variables excluding the target variable. Seven of these input variables

have a numerical level of scale while the other thirteen have qualitative values.

An explicit overview of the different variables is given in Table 5.1. The target

variable indicates whether the person is actually a good or bad credit risk and

if the credit was a default or not. In the given data set, exactly 30 % of the

persons have a bad credit rating (0/negative) and 70 % have a good credit

rating (1/positive).

variable scale values

status of existing account qualitative 4
duration in months numerical 33
credit history qualitative 5
purpose qualitative 11
credit amount numerical 921
savings account/bonds qualitative 5
present employment since qualitative 5
installment rate in % of disposable income numerical 4
personal status and sex qualitative 5
other debtors/guarantors qualitative 3
present residence since numerical 4
property qualitative 4
age in years numerical 53
other installment plans qualitative 3
housing qualitative 3
# of existing credits at this bank numerical 4
job qualitative 4
# of people being liable to provide maintenance for numerical 2
telephone qualitative 2
foreign worker qualitative 2

good or bad credit rating qualitative 2

Table 5.1.: Variables of the German Credit data set.
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5.1. Experimental Pre-Processing and Setup

In this section, we give a detailed description how the data set was transformed,

how variables have been selected and what other pre-processing steps have been

made. Additionally, the underlying parameter settings for the used clustering

based classification are introduced.

Pre-Processing

The high number of possible combinations of the existing values of the 20 input

variables (∼ 47520000 for the qualitative variables) lead to an extremely small

ratio between the actual and the possible combinations.

Before the clustering procedure, the data set has been revised in different

terms.

In the first step, 9 of the 20 features or variables have been eliminated due

to their small influence on the prediction value. This was determined by Kim

and Sohn in [57] and used in our analysis as the first pre-processing step.

Table 5.2 gives an overview of the variables used, their level of scale and the

number of their occurring values. While the Census Income data set has a given

separation into training and testing sets, it is not the case for this data set.

The k-fold cross-validation was introduced as validation technique in Section

3.3 and will be applied in this case. We set the number of folds of the cross-

validation to 10. This leads to training sets Straini and testing sets Stesti for

i ∈ {1, ..., 10}. The 10 folds where chosen randomly with size 100 for every

fold, leading to a size of |Straini | = 900 for each training set and |Stesti | = 100

for each testing set.

For every combination (Straini , Stesti ) of training and testing data, we have to

apply the clustering based classification.
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5. The German Credit Data Set

variable scale values

status of existing account qualitative 4
duration in months numerical 5
credit history qualitative 5
purpose qualitative 11
credit amount numerical 5
savings account/bonds qualitative 5
present employment since qualitative 5
installment rate in % of disposable income numerical 4
personal status and sex qualitative 5
other debtors/guarantors qualitative 3
present residence since numerical 4
property qualitative 4
age in years numerical 53
other installment plans qualitative 3
housing qualitative 3
# of existing credits at this bank numerical 4
job qualitative 4
# of people being liable to provide maintenance for numerical 2
telephone qualitative 2
foreign worker qualitative 2

good or bad credit rating qualitative 2

Table 5.2.: Variables in the adjusted data set with 1000 instances after pre-
processing. Nine variables have been eliminated (red) and two discretized by
20%-quantiles (green).

Experimental Setup

The 10 training/testing combinations generated by the described 10-fold cross-

validation represent the input data for the clustering based classification. The

chosen classifier was the mean clustering based classifier hmeanclust as presented

in Section 4.9 for each combination (Straini , Stesti ), i ∈ {1, ...10}. The number

of evaluated clusterings, i.e., the size of the underlying clustering set C was

m = 50 for each couple of training and testing data (Straini , Stesti ).

The parameter setup for the clustering step consisted of a number of 30 clusters

(k = 30), lower bounds li = 20, i = {1, ..., k}, no upper bounds and no
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5.2. Experimental Results

weighting procedure. The chosen cluster number was a result of an internal

cross-validation of cluster sizes {10, 20, 30} on the training data. This was also

done for the chosen lower bounds.

5.2. Experimental Results

In the following, we present the results of the 10-fold cross-validation and the

performance comparison based on the detailed results in [9] and [82]. As [9]

and [82] do not include results for the training data, we cannot compare our

classifier for the training sets but only for the prediction results of the testing

data.

In the following tables, the values for the performance measures of Section

3.3 are listed depending on the underlying set (columns labeled with 1 to 10).

While the mean values (ø) in Table 5.3 and 5.4 are self-explanatory, the last

column refers to the standard deviation of the cross-validation with the un-

derlying data set size n as explained in Section 3.3. The positive values of the

target variable refer to a good loan and the opposite therefore represents a bad

loan. In the first step, the results based on the training set in Table 5.3 are

analyzed.

On the training data we see an average classification accuracy of 77.89 % in a

range from 76.44 % to 79.00 % with an average standard deviation of 1.38 %

and an overall cross-validation standard deviation of 0.44 %. The sensitivity

(SENS) on the training data is the percentage of good loans correctly labeled.

It has an average value of 88.95 % with a minimum value of 86.56 % in Strain8

and a maximum value of 90.69 % in Strain2 . Specificity (SPEC) is a measure

of how well the model is classifying bad loans correctly. Its average value is

52.06 % in a range between 43.98 % and 53.93 %. The AUC value as aggre-

gation measure has an average value of 82.25 %.
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The next results refer to the testing data. Therefore, they represent the predic-

tive classification performance of the clustering approach. They are compared

to the mentioned results found in [9] and [82].

We focus on the comparison with individual classifiers like the introduced tech-

niques in Sections 2.1 to 2.3, not on combined approaches also listed in [82].

The reason is that our clustering based classifier should also be seen as a new

individual classifier which, of course, can be combined with other individual

classifiers. Table 5.5 shows the performance for 17 classifiers plus the clustering

approach as first classifier (see [9]). Our clustering technique (CLUST ) takes

the first place out of the listed 18 techniques if we compare our classification

accuracy of the testing data of 75.48 % with the values listed in Table 5.5.

The listed accuracies excluding our clustering technique range from 59.0 % to

75.1 %. The naive Bayes (NB) and the logistic regression (LOG) introduced

in Sections 2.1 and 2.2 achieve an accuracy of 72.2 % and 74.6 %, respectively.

The also listed k-nearest neighbor classifier achieves only an accuracy of 70.7 %

with k = 10 and 68.9 % with k = 100.

Compared with the values listed in the second Table 5.6, consisting of the

classification accuracy and AUC values of [82] for individual classifiers, the

clustering technique also takes the first place with its average classification

accuracy of 75.48 % on the testing data out of 17 techniques including the

clustering approach. The average sensitivity of our approach on the testing

data is 88.11 %. The comparative results in Table 5.5 cover a range from

79.5 % to 100 %. High values like the best value of 100 % often correspond

with bad values for the specificity which is, for example, 0.00 % in this case for

the 100-nearest neighbor technique. The average specificity of the clustering

technique for the analyzed German Credit data set is 46.37 %. Compared with

the values listed in Table 5.5, ranging from 0.00 % to 52.4 %, our approach

takes the fourth place. The AUC values range from 62.0 % to 78.7 % in Table
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5. The German Credit Data Set

technique ACC (%) AUC (%)

CLUST 75.48 75.74

ANN 74.90 79.10
B-Net 73.10 76.40
CART 69.30 70.60
ELM 73.50 77.80
ELM-K 74.70 79.40
J4.8 71.70 73.40
KNN? 73.50 77.20
LDA 74.80 78.40
LOR 74.70 78.40
LOR-R 74.20 77.80
NB 74.00 77.70
NN RBF 72.70 76.20
QDA 58.60 67.40
Lin SVM 74.20 78.20
RBF SVM 75.30 79.90
VP 67.50 68.00

Table 5.6.: Comparison of individual classification algorithms in [82].
List of abbreviations: CLUST - clustering; ANN - artificial neural network;
B-Net - bayesian network classifier; CART - classification and regression trees;
ELM - extreme learning Machines; ELM - extreme learning machines with
kernels; J4.8 - open source implementation of the C4.5 algorithm; KNN - k-
nearest neighbor; LDA - linear discriminant analysis; LOG - logistic regression;
LOG-R - logistic regression with a L1 regularizer; NB - naive bayes; NN RBF
- neural networks with radial basis function; QDA - quadratic discriminant
analysis; RBF SVM - radial basis function with support vector machines; Lin
SVM - linear kernels with support vector machines; VP - voted perceptron

5.5 and 67.4 % to 79.9 % in Table 5.6 with the value for the clustering based

classifier of 75.74 % positioned in the middle-field.

These first results for our clustering based classification of the German Credit

data set consist of a solid specificity paired with a good sensitivity and an ex-

cellent overall classification accuracy compared with common individual clas-

sifiers listed in the Tables 5.5 and 5.6.

Of course, because of the cross validation setting, the true values can differ
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slightly but without the exact training/testing data sets there is always a small

bias and the results here should be interpreted together with the bounds of

the confidence intervals for the classification accuracy [lACC0.95 , u
ACC
0.95 ] (see for ex-

ample Table 5.4).

Additionally, Baesens assumes in [9] that most credit scoring data sets are only

weekly nonlinear which results in relatively good performance of, for example,

the logistic regression introduced in Section 2.2 with a classification accuracy

of 74.6 %. Therefore, in a more complex data structure like in the next data

set, our clustering based classifier performs even better.
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The Census Income data set is a well known data set to test the quality of a

prediction generated by data mining techniques for binary classification. It is

also known as Adult data set which will be used synonymously in the follow-

ing. Originally extracted by Barry Becker from the Census database of the

year 1994 it is cited in over 50 publications and is therefore one of the most

used data sets for the comparison of predictive algorithms.

It was first cited 1996 in [61] by Ron Kohavi and consists of 48842 instances,

45222 if instances with unknown values are removed. The number of input vari-

ables is originally 14, 7 being discrete and 7 continuous. A detailed overview is

given in Table 6.1. The data set can be retrieved from the UCI machine learn-

ing repository (see [8]). Looking for duplicated entries, only 50 of these 45222

instances are duplicated. Even if we look just at the discrete (or qualitative)

variables, there are 752640 possible combinations. The goal of prediction is

whether a person earns more or less than 50000 $ and corresponds therefore

to a binary classification problem.

A very important feature of this data set is the given separation into 2
3

training

and 1
3

testing set with (train has 30162 instances and test 15060 if unknown

values are removed). therefore, we can perfectly compare different data mining

techniques as everyone uses the same samples for training and testing. It also

leads to a broad comparative table as shown in Table 6.8.

In the first section, we examine the experimental setup while in Section 6.2,
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variable scale values

age continuous 74
workclass discrete 8
fnlwgt continuous 26741
education discrete 16
education-num continuous 16
marital-status discrete 7
occupation discrete 14
relationship discrete 6
race discrete 5
sex discrete 2
capital-gain continuous 122
capital-loss continuous 97
hours-per-week continuous 96
native-country continuous 41

Table 6.1.: Variables in the Census Income data set with 45222 instances.

we show the experimental results for different parameter settings, i.e., scenar-

ios and different scoring functions. Both the maximum evaluation and mean

evaluation classifiers of Section 4.8 and 4.9 are demonstrated on this data set.

Besides the important classification accuracy, like in the previous section, the

sensitivity, the specificity and the AUC value are used for performance eval-

uation. Additionally, we use the given segmentation into training and testing

data in the next chapter to demonstrate the new statistical hypothesis testing

approach introduced in Section 4.10.

6.1. Experimental Pre-Processing and Setup

In this first section, we present the pre-processing procedures to adjust the data

set for the classification task and introduce the different parameter settings.
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Pre-Processing

Like the German Credit data set, the data has been revised in different terms

before the application of the clustering based classifier. At first, incomplete

instances have been removed so that the original data set shrunk from 32561

instances for the training data and 16281 for the testing data to 30162 and

15060 instances, respectively.

In a second step, the variable ’fnlwgt’ has been eliminated as it is a check-sum

variable and therefore not relevant for our clustering approach. In addition,

the variable ’education’ has been removed as it is doubled with the variable

’education-num’. This leads to a total of 12 input variables. The values of the

metric scaled variables ’capital-gain’ and ’capital-loss’ have been discretized

by 20 %-quantiles which reduces the number of originally 122 and 97 different

values. Table 6.2 shows an overview of the variables after the described pre-

processing steps. In the following, the resulting training and testing data will

be set to Strain and Stest, respectively.

Experimental Setup

As described before, the whole data set consists of 14 input variables, orig-

inally. If a variable has no information for a persons income it should not

be used for prediction. This is equivalent to be weighted with zero or being

removed like the mentioned variables ’fnlwgt’ and ’education’. The remaining

variables should be weighted relative to their influence on the target value.

As described in Section 4.6, we use linearly weighted data and compare the

results with the unweighted data in the first step. At first, a cluster number

validated via a 3-fold cross-validation on a small range from 5 to 30 clusters

on the training set is presented for the unweighted and the linearly weighted

case. Secondly, we present the results for larger cluster numbers from 50 to 500
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variable scale values

age continuous 74
workclass discrete 8
fnlwgt continuous 26741
education discrete 16
education-num continuous 16
marital-status discrete 7
occupation discrete 14
relationship discrete 6
race discrete 5
sex discrete 2
capital-gain continuous 5
capital-loss continuous 5
hours-per-week continuous 96
native-country continuous 41

Table 6.2.: Variables in the Census Income data set with 45222 instances after
pre-processing. Two variables have been eliminated (red) and two discretized
by 20 %-quantiles (green).

which will be motivated by results gathered through the previous scenarios.

As described in Section 4.1, because of the cluster sum assignments in each

iteration, the clustering based classifier leads to non empty clusters of similar

size even without strict lower bounds. Therefore, in all following scenarios, the

lower bounds are set to 1 and no upper bounds were set to let the algorithm

assign the training instances unrestricted.

Both enhanced clustering based classifiers introduced in Sections 4.8 and 4.9,

hmaxclust and hmeanclust , were evaluated. If not stated otherwise, the default threshold

value ω of the underlying scoring function is set to 0.5. In this case, a cluster

is assigned with 1, if at least 50 % of the labels of the training data in the

cluster are labeled positive.

The corresponding initial sites a := (aT1 , ..., a
T
k )T ∈ Rd·k were chosen randomly

equally distributed out of the unit sphere and standardized as described in

Section 4.3. Figure 6.1 gives an overview of the different scenarios, i.e., pa-
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Strain Stest

unweighted

TCV 30
un : k = 5-30 10-CV

fmeanclustfmaxclust

linear weighted

TCV 30
lin : k = 5-30 10-CV

fmeanclustfmaxclust

T 50−500
lin : k = 50-500

fmeanclust

Figure 6.1.: Experimental overview of the scenarios for the evaluation on the
Census Income data set.

rameter settings the results in Section 6.2 originate from. We used Algorithm

8 for the unweighted data and Algorithm 9 with a linear weighting procedure

described in Section 4.6.

6.2. Experimental Results

In this section, we present the results for the different parameter settings listed

in Table 6.1. The first results in Table 6.3 show that the unweighted data set

leads to a worse prediction performance expressed in a lower classification

accuracy if we compare scenario TCV 30
un with scenario TCV 30

lin . TCV 30
un represents

the results of a performed cross-validation for cluster numbers between 5 to

30. The result is k = 29 as the best cluster number, evaluated on the 3-fold

cross validation with the classification accuracy as the performance criterion.

Both cross-validated classifications for the weighted and the unweighted case

TCV 30
un and TCV 30

un result in a best cluster number of k = 29 (see Table 6.3 and

6.4). In the unweighted case an classification accuracy of 85.02 % is achieved on
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6. The Census Income Data Set

the training data and 84.89 % for the testing data with the classifier hmaxclust. The

classifier hmeanclust achieves corresponding accuracy values that are both higher

with 85.12 % and 85.08 %, respectively. The same holds for the weighted case

classifier hmaxclust hmeanclust

data set Strain Stest Strain Stest

TP 3979 1938 4198 2061
FP 988 513 1177 608
FN 3529 1761 3310 1638
TN 21666 10839 21477 10744
ACC (%) 85.02 84.89 85.12 85.08
σACC (%) 0.21 0.29 0.20 0.29
lACC0.95 (%) 84.62 84.32 84.72 84.51
uACC0.95 (%) 85.43 85.46 85.53 85.65
ERR (%) 14.98 15.11 14.88 14.92
SENS (%) 53.00 52.39 55.91 55.72
SPEC (%) 95.64 95.48 94.80 94.64

Table 6.3.: Results for scenario TCV 30
un with cluster number k = 29.

with hmaxclust achieving 85.08 % on the training and the testing data, while hmeanclust

performs better, with 85.15 % for both the training and the testing data.

Additionally, Table 6.3 and 6.4 show that the important classification accuracy

and also the sensitivities are better in the weighted case. This result holds for

the maximum clustering based classifier hmaxclust as well as for hmaxclust and motivates

the focus on the linearly weighted data set in the next analyses.

Additionally, the hmeanclust classifier performed better than the hmaxclust classifier

on both the unweighted and the linearly weighted data if measured by the

classification accuracy. Therefore, besides the focus on the weighted data, we

also focus on the mean evaluation approach with hmeanclust as classifier.

Scenario T 50−500
lin consists of 10 classifications with a cluster number from 50 to

500 in a distance of 50 clusters between each single classification. As mentioned

in Section 4.9, the correlation between the underlying objective value of the

clustering and the classification accuracy decreases with increasing number of
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classifier hmaxclust hmeanclust

data set Strain Stest Strain Stest

TP 4251 2085 4250 2085
FP 1244 631 1220 621
FN 3257 1614 3258 1614
TN 21410 10721 21434 10731
ACC (%) 85.08 85.08 85.15 85.15
σACC (%) 0.21 0.29 0.20 0.29
lACC0.95 (%) 84.68 84.51 84.75 84.58
uACC0.95 (%) 85.68 85.65 85.55 85.72
ERR (%) 14.92 14.92 14.85 14.85
SENS (%) 56.62 56.37 56.61 56.37
SPEC (%) 94.51 94.44 94.61 94.63

Table 6.4.: Results for scenario TCV 30
lin with cluster number k = 29.

clusters. Therefore, and additionally indicated by the first presented empirical

results in the scenarios TCV 30
un and TCV 30

lin , the scenario T 50−500
lin is computed

with hmeanclust as classifier only. Table 6.5 as well as Figure 6.2 and 6.3 show that

increasing the cluster number tend to better results in terms of the classification

accuracy and sensitivity. Even though the specificity for the highest cluster
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0.87

Cluster Number k

C
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ss
ifi
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Figure 6.2.: Classification Accuracy for Strain (blue) and Stest (red) in scenario
T 50−500
lin .
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Figure 6.3.: Sensitivity for Strain (blue) and Stest (red) in scenario T 50−500
lin .

number k = 500 is slightly lower than for the other cluster sizes, the accuracy

and the sensitivity are maximal for k = 500. Therefore, we focus on the highest

cluster number and look into these results in detail in the following.
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Figure 6.4.: Specificity for Strain (blue) and Stest (red) in scenario T 50−500
lin .

Table 6.5 shows the highest value of 86.24 % of the classification accuracy for

the training set and 85.98 % for the testing set. Additionally, the values of the
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6. The Census Income Data Set

sensitivity are at their peak with the cluster number k = 500, being 65.13 %

for the training and 64.50 % for the testing data.

As mentioned before, the default value for the threshold parameter of the used

classifiers was ω = 0.5. Tables 6.6 and 6.7 show the classification results for

threshold parameters ω ranging from 0.1 to 0.9. Furthermore, AUC values

of 91.21 % (train) and 90.49 % (test) result from the corresponding receiver

operating characteristics shown in Figure 6.5.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4
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0.8

1

1-Specificity

S
en

si
ti

v
it

y

Figure 6.5.: ROC curve in scenario T 500
lin for Strain (blue) and Stest (red) with

an AUC-value of 91.21 % (Strain) and 90.49 % (Stest).

The ROC curve in Figure 6.5 as well as Table 6.7 show that the intuitive

threshold value ω = 0.5 leads to the best performance, both for the training

and the testing data. In the last step, these results are compared with other

classification techniques like naive Bayes or the k-nearest neighbor introduced

in Part II of this work.

Table 6.8 is contained in the data set description of the Census Income data

set and is a representative overview of the common binary classification tech-

niques and their performance on the Census Income data set measured by the

error rate. It is retrievable at the UCI machine learning repository (see [8]).

148



6.2. Experimental Results

th
re

sh
ol

d
ω

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

T
P

72
01

66
88

63
80

54
60

48
90

41
17

31
63

25
03

19
95

F
P

77
30

49
26

39
82

22
33

15
33

86
3

35
4

13
7

44
F
N

30
7

82
0

11
28

20
48

26
18

33
91

43
45

50
05

55
13

T
N

14
92

4
17

72
8

18
67

2
20

42
1

21
12

1
21

79
1

22
30

0
22

51
7

22
61

0
A
C
C

(%
)

73
.3

5
80

.9
5

83
.0

6
85

.8
1

86
.2

4
85

.9
0

84
.4

2
82

.9
5

81
.5

8
σ
A
C
C

(%
)

0.
25

0.
23

0.
22

0.
20

0.
20

0.
20

0.
21

0.
22

0.
22

lA
C
C

0
.9

5
(%

)
72

.8
5

80
.5

1
82

.6
3

85
.4

1
85

.8
5

85
.5

0
84

.0
1

82
.5

3
81

.1
4

u
A
C
C

0
.9

5
(%

)
73

.8
5

81
.3

9
83

.4
8

86
.2

0
86

.6
3

86
.2

9
84

.8
3

83
.3

8
82

.0
1

E
R
R

(%
)

26
.6

5
19

.0
5

16
.9

4
14

.1
9

13
.7

6
14

.1
0

15
.5

8
17

.0
5

18
.4

2
S
E
N
S

(%
)

95
.9

1
89

.0
8

84
.9

8
72

.7
2

65
.1

3
54

.8
3

42
.1

3
33

.3
4

26
.5

7
S
P
E
C

(%
)

65
.8

8
78

.2
6

82
.4

2
90

.1
4

93
.2

3
96

.1
9

98
.4

4
99

.4
0

99
.8

1
A
U
C

(%
)

91
.2

1

T
ab

le
6.

6.
:

R
es

u
lt

s
in

sc
en

ar
io
T

5
0
0

li
n

w
it

h
d
iff

er
en

t
th

re
sh

ol
d

va
lu

es
ω

(S
tr
a
in

).

149



6. The Census Income Data Set

th
resh

old
ω

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

T
P

3520
3273

3124
2659

2386
1990

1521
1206

946
F
P

3959
2510

2041
1167

797
457

206
75

25
F
N

179
426

575
1040

1313
1709

2178
2493

2753
T
N

7393
8842

9311
10185

10555
10895

11146
11277

11327
A
C
C

(%
)

72.51
80.49

82.62
85.34

85.98
85.61

84.16
82.94

81.54
σ
A
C
C

(%
)

0.36
0.32

0.31
0.29

0.28
0.29

0.30
0.31

0.32
l A
C
C

0
.9

5
(%

)
71.79

79.86
82.01

84.77
85.43

85.05
83.58

82.34
80.92

u
A
C
C

0
.9

5
(%

)
73.22

81.13
83.22

85.90
86.54

86.17
84.74

83.54
82.16

E
R
R

(%
)

27.49
19.51

17.38
14.66

14.02
14.39

15.84
17.06

18.46
S
E
N
S

(%
)

95.16
88.48

84.46
71.88

64.50
53.80

41.12
32.60

25.57
S
P
E
C

(%
)

65.13
77.89

82.02
89.72

92.98
95.97

98.19
99.34

99.78
A
U
C

(%
)

90.49

T
ab

le
6.7.:

R
esu

lts
in

scen
ario

T
5
0
0

lin
w

ith
d
iff

eren
t

th
resh

old
valu

es
ω

(S
test).

150
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The excellent performance can be seen as the clustering approach takes the

first place because of the highest achieved classification accuracy of all listed

classifiers. The listed techniques contain also state-of-the-art classifiers and

not only basic individual classifiers like the already in Section 2.1 introduced

naive Bayes which is taking rank 12 with a classification accuracy of 83.88 %.

In combination with the empirical performance results for the German Credit

technique ERR (%) ACC (%)

CLUST 14.02 85.98

FSS NB 14.05 85.95
NBTree 14.10 85.90
C4.5-auto 14.46 85.54
IDTM (Decision Table) 14.46 85.54
HOODG 14.82 85.18
C4.5 rules 15.54 85.06
OC1 16.64 84.96
Voted ID3(0.6) 15.64 84.36
CN2 16.00 84.00
NB 16.12 83.88
Voted ID3(0.8) 16.47 83.53
T2 16.84 83.16
1R 19.54 80.46
KNN3 20.35 79.65
KNN1 21.24 78.58

Table 6.8.: Comparison table for Stest of common classification techniques (see
[8]).

data set presented in Chapter 5, these results show the excellent performance

of the new clustering approach and its huge potential for classification tasks.
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7. Statistical Hypothesis

Evaluation on the Census

Income Data Set

The following results are motivated by clustering based tests of hypotheses

introduced in Section 4.10. This new approach allows to evaluate the reliability

of a classification by assigning a pair of p-values (pvli, pv
u
i ) to each cluster Ci,

i ∈ {1, ..., k}. These p-values correspond to a system of hypotheses

Hl
0(Ci) : pi ≤ f train(Ci) · δli =: p̂li

Hl
1(Ci) : pi > f train(Ci) · δli =: p̂li

Hu
0(Ci) : pi ≥ f train(Ci) · δui =: p̂ui

Hu
1(Ci) : pi < f train(Ci) · δui =: p̂ui

derived from cluster values f train(Ci) for each cluster based on the training

data. The labeled testing data Stest assigned to the clusters Ci leads to the

lower and upper realization (tl(Ci), t
u(Ci)) of the corresponding test statistics

(T l(Ci), T
u(Ci)). In the next step, they allow the computation of special
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7. Statistical Hypothesis Evaluation on the Census Income Data Set

quantiles, the p-values

pvli := P (T l(Ci) > tl(Ci)|Hl
0(Ci))

and

pvui := P (T u(Ci) < tu(Ci)|Hu
0(Ci)) .

The single steps are described in detail in Section 4.10 including an algorithmic

or procedural description in Algorithm 10.

The presented evaluation approach relies on the assignment of the training and

the testing data to clusters. Therefore, the mean evaluation approach, i.e., the

classifier hmeanclust is not suitable as there is no specific clustering as underlying

assignment. In contrast to the mean evaluation technique, the hmaxclust classifier

allows the evaluation based on statistical hypothesis tests.

7.1. Experimental Pre-Processing and Setup

The clustering based test of hypotheses provides a reliability measure for the

prediction as additional information. To demonstrate this new technique we

use the Census Income data set.

Pre-Processing

The German Credit data set analyzed in Chapter 5 is not as suitable as the

Census Income data set. The reason is the given segmentation in training

and testing data which makes the use of a technique like the cross-validation

unnecessary. We use the linear weighted Census Income data set introduced in

Chapter 6 with the same pre-processing steps. That leads to a training data of

size 30162 and a testing data set with 15060 instances and 12 input variables

summarized in Table 6.2.
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Experimental Setup

To illustrate the clustering based test of hypotheses, we choose a parameter

setup with only few clusters. A smaller number of clusters allows reliable

estimations of the predictive values and makes it easier to compare the sin-

gle cluster values. Additionally, the cluster values differ from each other more

clearly. The cluster numbers are 5 and 10 for the scenario T 5
lin and T 10

lin, respec-

tively. Additionally, we do not apply lower and upper bounds as the results

show proper filled clusters without bounds for both scenarios.

7.2. Experimental Results

At first, we evaluate the hmaxclust classifier on the training data to generate the

clustering based set of lower and upper null hypotheses {Hl
0(Ci),Hu

0(Ci)}ki=1.

Additionally, we use the comparing distance parameter set {(δli, δui )}ki=1 , ad-

justing the underlying hypotheses (4.11) to (4.14). It consists of a constant

convex combination as introduced in Definition 4.10.2 with the parameter

λi = 0.75 for i ∈ {1, ..., k}, leading to

δli = 0.75− 0.25(
f train(Ci)

f train(Ci−1)
), i = 1, ..., k

and

δui = 0.75 + 0.25(
f train(Ci+1)

f train(Ci)
), i = 1, ..., k

with

f train(C0) = 0 and f train(Ck+1) = 1.

The cluster indeces are permuted, so f train(Ci) ≤ f train(Ci+1) holds for i ∈

{1, ..., k}.
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The first underlying clustering scenario T 5
lin consists of five clusters (k = 5)

and leads to the results listed in Table 7.1 for the training and testing data.

The hypotheses Hl
0(Ci) and Hu

0(Ci) for i ∈ {1, ..., k} are specified with the

data set Strain Stest

TP 4278 2100
FP 1328 676
FN 3230 1599
TN 21326 10676
ACC (%) 84.89 84.88
σACC (%) 0.21 0.29
lACC0.95 (%) 84.48 84.31
uACC0.95 (%) 85.29 85.46
ERR (%) 15.11 15.12
SENS (%) 56.98 56.77
SPEC (%) 94.14 94.05

Table 7.1.: Results in scenario T 5
lin for clustering based test of hypotheses.

comparing distance parameter set {(δli, δui )}ki=1. In the next step, the classi-

fication of the testing data Strain is used to assign the test instances to the

cluster and to compute the realizations of T l(Ci) and T u(Ci). These values

then lead to the pair of p-values (pvli, pv
u
i ) for each cluster Ci (see Table 7.2).

All but one predicted values are significant to the level 5 % in a range of

±0.25 % to the next smaller/larger predicted value or cluster. These results

are compared with a second clustering scenario T 10
lin with the double number of

clusters (k = 10) in the next step. The other parameters are unchanged and

the resulting performance values are listed in Table 7.3.

While all lower and upper p-values for each cluster in the scenario T 5
lin were

below 5.2314 % and 7 out of 10 even below 0.0001 %, that statement holds

only for 2 out of 20 p-values in the second scenario with 10 clusters.

Of course, the higher number of clusters lead to the smaller differences between

the cluster values for the training and the testing data. This makes it harder
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data set Strain Stest

TP 4280 2103
FP 1377 702
FN 3228 1596
TN 21277 10650
ACC (%) 84.73 84.73
σACC (%) 0.21 0.29
lACC0.95 (%) 84.33 84.16
uACC0.95 (%) 85.14 85.31
ERR (%) 15.21 15.27
SENS (%) 57.01 56.85
SPEC (%) 93.92 93.82

Table 7.3.: Results in scenario T 10
lin for clustering based test of hypotheses.

to reject the null hypotheses as p̂li and p̂ui are closer to f test(Ci). Additionally,

there are fewer instances in a cluster at the average. Nevertheless, still 10 out

of 20 p-values are lower than 1 % as listed in Table 7.4. These exemplary

results demonstrate the new statistical evaluation approach for the clustering

classifier as introduced in Section 4.10. They show the tradeoff, measured by

statistical means, between the number of clusters and the reliability of the

predicted value. The higher the number of clusters, the lower the difference

between the (sorted) cluster values and the fewer instances per cluster used

for training the classifier.
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7. Statistical Hypothesis Evaluation on the Census Income Data Set
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Part V.

Conclusion

161





Summary of the Results

In this thesis, we introduced a new approach for classification problems. The

geometric clustering and its use for prediction offer a new way to solve classi-

fication problems. The underlying clustering uses geometrical proximity after

transforming the data into its one-dimensional conditional expected values.

Besides the development of the new clustering based classifier, we show sev-

eral new theoretical results based on the work of Brieden and Gritzmann for

example in [19], [20], [21], [22] and [23].

These theoretical results like the termination of the iterative sequence on the

basis of the introduced cluster sum assignments and its use for classification

show necessary characteristics for the algorithmic implementation. Addition-

ally, in Section 4.1 we show the connection and the difference of the introduced

cluster sum assignment and the similar least-squares assignment (see for ex-

ample [16]). Based on the theoretical framework in Section 4.1 and the data

transformation technique explained in Section 4.2, in Section 4.3 we combine

the combinatorial optimization with the field of supervised learning applying

the conceptual framework of classifiers.

The theoretical concept of scoring functions as a part of a classifier is adopted

in Section 4.5 to the clustering approach. We define the clustering based classi-

fication and two intuitive scoring functions leading to the maximum clustering

based classifier and the mean clustering based classifier.

The transformation technique introduced in Section 4.2 allows the use of clus-

tering techniques for non-metric input variables and in addition an useful

weighting technique for practical applications. This is explained and moti-

vated by statistical means in Section 4.6 and provides additional possibilities

to enhance and adjust the quality of prediction in the following sections. Addi-

tionally, in the last section of Chapter 4 we present a new approach to evaluate
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the quality of a prediction from of a probabilistic point of view. The clustering

based set of hypotheses allows corresponding tests of hypotheses and provides

p-values for each cluster as quantitative reliability measures.

Besides the theoretical introduction and motivation of the clustering approach

for classification, the empirical results of Part IV show the excellent perfor-

mance of the new clustering based classifier applied to two real-world data sets.

The classification of the Census Income and the German Credit data set show

the excellent performance compared to established classification techniques.

Depending on the performance measure, the new classification approach beats

the existing techniques for example in terms of the classification accuracy. Ad-

ditionally, the clustering based test of hypotheses introduced in Section 4.10

was demonstrated on the Census Income data set. These results allow the

comparison of the prediction quality when different clustering based classifica-

tions are performed.

The new iterative clustering approach is different in various ways compared to

the classification methods introduced in Part II of this thesis. In contrast to

the clustering based classifier, the naive Bayes, the logistic regression and the

k-nearest neighbor approach are obviously less complex but less flexible as they

allow less adjustments. The new iterative classification approach combines su-

pervised (training/testing classification) and unsupervised learning techniques

(clustering) and achieves great performance by constructing a feasible convex

cell decomposition of the data space. The partition is induced by a clustering

with a given cluster number and the possible setting of bounds for a cluster.

While the naive Bayes and the logistic regression divide the data space in

two half-spaces, the new clustering approach allows a freely chosen number of

cells. Therefore, it can be fitted appropriately to match the data structure.

Additionally, the segmentation of the data space into a given number of clus-

ters allows the statistical testing scheme introduced in Section 4.10 as a tiered
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reliability measure for the quality of prediction.

Outlook

The new clustering based classifier allows adjustments in many ways. The

approach can be divided into three core components: the data transforma-

tion, the clustering including the cell decomposition and the calculation of the

scoring function, i.e., the evaluation of the cluster cells. In each of these steps

there are parameters and procedures that can be modified.

In the first part, the data transformation, the one-dimensional conditional

expected values are estimated. Further work could concentrate on the exten-

sion to multidimensional conditional expectations. Besides the transformation,

another weighting procedure for the input variables could be examined and an-

alyzed.

In the second part of the new approach, the computation of the clustering,

there a numerous adjustable parameters to be investigated like lower and up-

per bounds, the approximation of the ellipsoidal norm and last but not least

the number of clusters. Additionally, the calculation of good initial sites or

improvements of the iterative procedure, like steepest descent, could be ana-

lyzed.

The last core part of the new approach, the actual classification, could also

be further adjusted. A variance based threshold on the classification values

or even an extension of the estimation by using other classifiers like the naive

Bayes or logistic regression on the cluster cells could improve the performance

that is already excellent as the results in Part IV show.

The statistical hypothesis testing approach is another main component of this

thesis and could be further analyzed. The setting of the underlying hypotheses

and the detailed analysis of the mentioned tradeoff between classification ac-

curacy and the reliability of the prediction is another possible aspect of future
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work. We introduced the comparing distance as a first parameter scheme for

the statistical hypotheses setting. Additional analysis of different parameter

settings in combination with different cluster numbers could also be an inter-

esting extension of this part.

In practical applications different classifiers often are combined to benefit from

their individual strength. A combination of established techniques with the

new clustering based classifier could further improve the prediction quality for

the binary classification problem.
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