Modelling, simulation and optimization of an elastic structure under moving loads
Herausgeber Sammlung:
Bach, V.; Fassbender, H.
Titel Konferenzpublikation:
Special Issue: Joint 87th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) and Deutsche Mathematiker-Vereinigung (DMV), Braunschweig 2016
Zeitschrift:
Proceedings in Applied Mathematics and Mechanics (PAMM)
Jahrgang:
16
Konferenztitel:
Annual Meeting of the International Association of Applied Mathematics and Mechanics (87., 2016, Braunschweig); Deutsche Mathematiker-Vereinigung (87., 2016, Braunschweig)
Konferenztitel:
Joint 87th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) and Deutsche Mathematiker-Vereinigung (DMV)
Tagungsort:
Braunschweig
Jahr der Konferenz:
2016
Datum Beginn der Konferenz:
07.03.2016
Datum Ende der Konferenz:
11.03.2016
Verlagsort:
Weinheim
Verlag:
Wiley-VCH Verlag
Jahr:
2016
Seiten von - bis:
697-698
Sprache:
Englisch
Schlagwörter:
Coupled ODE-PDE system, optimal control, finite element methods, linear elasticity
Stichwörter:
Elastic crane, elastic bridge
Abstract:
We consider an elastic structure that is subject to moving loads representing e.g. heavy trucks on a bridge or a trolley on a crane beam. A model for the quasi-static mechanical behaviour of the structure is derived, yielding a coupled problem involving partial differential equations (PDE) and ordinary differential equations (ODE). The problem is simulated numerically and validated by comparison with a standard formula used in engineering. We derive an optimal policy for passing over potentially fragile bridges. In general, our problem class leads to optimal control problems subject to coupled ODE and PDE. «
We consider an elastic structure that is subject to moving loads representing e.g. heavy trucks on a bridge or a trolley on a crane beam. A model for the quasi-static mechanical behaviour of the structure is derived, yielding a coupled problem involving partial differential equations (PDE) and ordinary differential equations (ODE). The problem is simulated numerically and validated by comparison with a standard formula used in engineering. We derive an optimal policy for passing over potentially... »