Logo
Benutzer: Gast  Login
Autoren:
Nenchev, Vladislav 
Dokumenttyp:
Zeitschriftenartikel / Journal Article 
Titel:
Layer-Stabilizing Deep Learning 
Zeitschrift:
IFAC-PapersOnLine 
Jahrgang:
52 
Heftnummer:
29 
Veranstalter (Körperschaft):
IFAC 
Konferenztitel:
IFAC Workshop on Adaptive and Learning Control Systems (13., 2019, Winchester)) 
Konferenztitel:
ALCOS 2019 
Tagungsort:
Winchester, United Kingdom 
Jahr der Konferenz:
2019 
Datum Beginn der Konferenz:
04.12.2019 
Datum Ende der Konferenz:
06.12.2019 
Jahr:
2019 
Seiten von - bis:
286-291 
Sprache:
Englisch 
Abstract:
Even though stability is a crucial property of dynamical systems and has been recognized as advantageous for learning, it has been often ignored in machine learning tasks. This paper presents a deep neural network learning approach that enforces layer stability during the learning process. Instead of solving the corresponding constrained optimization problem, the stability constraints are approximated based on a structured layer weight modification, and incorporated into the cost. Building upon...    »
 
ISSN:
2405-8963 
Open Access ja oder nein?:
Nein / No