Logo
Benutzer: Gast  Login
Autoren:
Panagiotou, Emmanouil; Roy, Arjun; Ntoutsi, Eirini 
Dokumenttyp:
Sonstiges / Other Publication 
Titel:
Synthetic Tabular Data Generation for Class Imbalance and Fairness 
Untertitel:
A Comparative Study 
Jahr:
2024 
Sprache:
Englisch 
Abstract:
Due to their data-driven nature, Machine Learning (ML) models are susceptible to bias inherited from data, especially in classification problems where class and group imbalances are prevalent. Class imbalance (in the classification target) and group imbalance (in protected attributes like sex or race) can undermine both ML utility and fairness. Although class and group imbalances commonly coincide in real-world tabular datasets, limited methods address this scenario. While most methods use overs...    »
 
Fakultät:
Fakultät für Informatik 
Institut:
INF 7 - Institut für Datensicherheit 
Professur:
Ntoutsi, Eirini 
Open Access ja oder nein?:
Ja / Yes 
Art der OA-Lizenz:
CC BY 4.0 
Sonstige Angaben:
Preprint auf arXiv; Presented at the BIAS Workshop co-located with ECML PKDD 2024